Low-temperature transport in ultra-thin tungsten films grown by focused-ion-beam deposition

O Chiatti and P A Warburton

London Centre for Nanotechnology, University College London 17-19 Gordon Street, London, WC1H 0AH, United Kingdom

MOTIVATION

Amorphous tungsten alloys have higher superconducting critical temperatures than crystalline tungsten. [1]

Tungsten composites deposited by focusedion-beam (FIB) induced chemical vapour deposition (CVD) are amorphous and superconducting at $T_c \approx 5$ K. [2]

FIB-CVD tungsten-composite (*FIB-W*) films have been found to be superconducting down to 25 nm. [3-4]

SAMPLE FABRICATION

Ultra-thin superconducting films undergo a superconductor-insulator transition depending on thickness. [5]

FIB-W can be used to fabricate superconducting three-dimensional structures by direct-writing. [6]

Potential applications of ultra-thin FIB-W films include single-photon detectors and qubits based on quantum-phase-slip centres.

IMPROVING ON PREVIOUS WORK

Superconductivity has been found in FIB-W films down to 25 nm thickness (from [4]):

Problem: films below 25 nm are not continuous. [4]

Solution: deposit on amorphous silicon, instead of silicon oxide:

> On silicon On silicon oxide

Recipe

- 1. Take a silicon wafer with a layer of silicon oxide and gold pads deposited by optical lithography and physical vapour deposition.
- 2. Mill with the FIB through the oxide layer to a depth of about 300 nm, just below the Si/SiO₂ interface, leaving a substrate of amorphous Si.
- 3. Use FIB-CVD with tungsten hexacarbonyl $(W(CO)_6)$ as a precursor gas to deposit the FIB-W ultra-thin film and electrical connections to the gold pads.

Sample	Α	В
Dose (pC/μm²)	30	20
Length (µm)	8.4	8.9
Width (µm)	0.8	1.0
Thickness (nm)	9	6
Cross-sectional area (µm²)	0.007	0.006

Fabrication details

System: Carl Zeiss Crossbeam XB1540

Milling through silicon oxide: $I(Ga^{+}) = 1$ nA at 30 kV time = 100 secNumber of layers = 10

Deposition of ultra-thin film: $I(Ga^{+}) = 5 \text{ pA at } 30 \text{ kV}$ $area = 1 \ \mu m \ge 10 \ \mu m$ $scan frequencies = 200 \text{ Hz} \times 20 \text{ kHz}$ time = 40 - 100 secprecursor pressure = $1-3 \ge 10^{-5}$ mbar

Geometry and topography

Data type Deflection Z range 1.500 nm

SEM micrographs of two ultra-thin films deposited with the same conditions, but on different substrates.

Measurement setups

System: Oxford Instruments ³He with 9 T magnet

Setup for DC measurements. Current source: Keithley 2400 Source-Meter; preamplifiers: Stanford Research Systems SR560 and SR570; digital multimeters: Keithley 2000 DMM and 4182 Nano-Voltmeter.

•
$$j_c(T = 0, H = 0) = 3 \times 10^4 \text{ A/cm}^2$$

Setup for AC measurements. Current source: *Wavetek* function generator and 100 M Ω resistor; preamplifiers: *SR560* and *SR570*; lock-in amplifier: Princeton Applied Research 5207.

REFERENCES

[1] Collver and Hammond, Phys. Rev. Lett. 30, 92 (1973) [2] Sadki et al., Appl. Phys. Lett. 85, 6206 (2004) [3] Li *et al.*, *J. Appl. Phys.* 104, 093913 (2008) [4] Li et al., IEEE Trans. Appl. Superc. 19, 2819 (2009) [5] Jaeger *et al.*, *Phys. Rev. B* 40, 182 (1989) [6] Li and Warburton, *Nanotechnology* 18, 485305 (2007)

1500

• $H_{c2}(T = 0) = 1.0 \text{ T} \rightarrow \xi_0 = 18 \text{ nm}$

• Coherence length > thickness

Sample B (6 nm)

• Two type II superconducting regions in series with a normal-resistive region • $T_{c}(H = 0) = 1.5 \text{ K and } 2.7 \text{ K}$

• $j_c(T = 0, H = 0) = 1.3 \times 10^3$ and 1×10^4 A/cm² • $H_{c2}(T=0) = 1.25 \text{ T} \rightarrow \xi_0 = 16 \text{ nm}$

Magnetic-field-Temperature phase diagram of samples A and B. The $H_{c}(T)$ curves have been fitted with a function using two free parameters.

OUTLOOK

Fabrication of ultra-thin films of varying thickness and width.

Investigation of superconductorinsulator transition.

Collaboration with Heriot-Watt University for single-photon detectors.

FIB-W ultra-thin film

deposited as a Hall-bar.

This work is supported by EPSRC.

Contact: o.chiatti @ucl.ac.uk