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IMPROVING ON PREVIOUS WORKIMPROVING ON PREVIOUS WORK
Superconductivity has been found in FIB-W 
films down to 25 nm thickness (from [4]):

Problem: films below 25 nm are not 
continuous. [4]
Solution: deposit on amorphous silicon, 

instead of silicon oxide:
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MOTIVATIONMOTIVATION
Amorphous tungsten alloys have higher 

superconducting critical temperatures than 
crystalline tungsten. [1]
Tungsten composites deposited by focused-

ion-beam (FIB) induced chemical vapour 
deposition (CVD) are amorphous and 
superconducting at Tc ≈ 5 K. [2]
FIB-CVD tungsten-composite (FIB-W) films 

have been found to be superconducting down 
to 25 nm. [3-4]
Ultra-thin superconducting films undergo a 

superconductor-insulator transition 
depending on thickness. [5]
FIB-W can be used to fabricate supercon-

ducting three-dimensional structures by 
direct-writing. [6]
Potential applications of ultra-thin FIB-W 

films include single-photon detectors and 
qubits based on quantum-phase-slip centres. 
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SAMPLE FABRICATIONSAMPLE FABRICATION

RecipeRecipe
1. Take a silicon wafer with a layer of silicon 

oxide and gold pads deposited by optical 
lithography and physical vapour deposition.

2. Mill with the FIB through the oxide layer to 
a depth of about 300 nm, just below the 
Si/SiO2 interface, leaving a substrate of 
amorphous Si.

3. Use FIB-CVD with tungsten hexacarbonyl 
(W(CO)6) as a precursor gas to deposit the 
FIB-W ultra-thin film and electrical connec-
tions to the gold pads. 

Scanning electron microscope images of sample A.
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Sample A B

Dose (pC/μm2) 30 20

Length (μm) 8.4 8.9

Width (μm) 0.8 1.0

Thickness (nm) 9 6

Cross-sectional area (μm2) 0.007 0.006

Fabrication detailsFabrication details
System: Carl Zeiss Crossbeam XB1540

Milling through silicon oxide: 
I(Ga+) =  1 nA at 30 kV
time = 100 sec
Number of layers = 10

Deposition of ultra-thin film:
I(Ga+) =  5 pA at 30 kV
area = 1 μm x 10 μm
scan frequencies = 200 Hz x 20 kHz
time = 40 – 100 sec
precursor pressure = 1–3 x 10-5 mbar

Atomic force microscope images of sample A.

Sample A (9 nm)
● Single type II superconductor
● Tc(H = 0) = 3.75 K
● jc(T = 0, H = 0) = 3x104 A/cm2

● Hc2(T = 0) = 1.0 T → ξ0 = 18 nm
● Coherence length > thickness
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Sample B (6 nm)
● Two type II superconducting regions in 

series with a normal-resistive region
● Tc(H = 0) = 1.5 K and 2.7 K
● jc(T = 0, H = 0) = 1.3x103 and 1x104 A/cm2

● Hc2(T = 0) = 1.25 T → ξ0 = 16 nm
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Current-voltage characteristicsCurrent-voltage characteristics Resistance vs TemperatureResistance vs Temperature

SEM micrographs of two ultra-thin films deposited with the 
same conditions, but on different substrates.

Measurement setupsMeasurement setups

Geometry and topographyGeometry and topography

Scanning electron microscope 
(SEM) to determine the planar geo-
metry and the quality of the film.
Atomic force microscope (AFM) in 

contact mode to determine the thick-
ness and the topography of the film.

AFM topography image (left) and extracted heigth 
profiles (right) for sample A.
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Setup for DC measurements. Current source: Keithley 2400 Source-
Meter; preamplifiers: Stanford Research Systems SR560 and SR570; 
digital multimeters: Keithley 2000 DMM and 4182 Nano-Voltmeter.

Setup for AC measurements. Current source: Wavetek function 
generator and 100 MΩ resistor; preamplifiers: SR560 and SR570; 
lock-in amplifier: Princeton Applied Research 5207. 

System: Oxford Instruments 3He with 9 T magnet

in field perpendicular to filmin field perpendicular to film

Magnetic-field–Temperature phase 
diagram of samples A and B.
The Hc(T) curves have been fitted with a 
function using two free parameters. 

H-TH-T phase diagram phase diagramin field perpendicular to filmin field perpendicular to film

Fabrication of ultra-thin films of varying 
thickness and width.

Investigation of superconductor-
insulator transition.

Collaboration with Heriot-Watt 
University for single-photon detectors.
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FIB-W ultra-thin film 
deposited as a Hall-bar.
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