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Abstract 

 

The ubiquitin signalling system has been shown to regulate many important biological 

events, ranging from DNA repair to the immune response. Different polyubiquitin 

chains linked by various linkages have been identified in vivo, and can be recognised by 

proteins containing ubiquitin-binding domains that act as downstream effectors. 

However, functions for many of them are not well understood. I have studied the 

function of K63-linked and linear polyubiquitin chains on a common substrate. The 

other branch of my study was to investigate the role of ubiquitin binding for a novel 

ubiquitin-interacting protein, SPC25.  

 

K63-linked and linear polyubiquitin chains have a similar topology, but whether they 

convey a similar signal in vivo remains unclear. I have used the eukaryotic replication 

clamp PCNA, a natural substrate of K63-linked polyubiquitylation, as a model substrate 

to directly compare the consequences of modification by different types of 

polyubiquitin chains. I have shown that K63-polyubiquitylated PCNA is not subject to 

proteasomal degradation. In contrast, linear, non-cleavable ubiquitin chains do not 

promote DNA damage tolerance, but function as general degradation signals. I found 

that a linear tetraubiquitin chain is sufficient to afford proteasomal targeting through the 

Cdc48-Npl4-Ufd1 complex without further modification. 

 

In the second part of my thesis, I describe the identification of SPC25, a subunit of the 

Ndc80 complex, as a novel ubiquitin-binding protein, using tetra-ubiquitin chains as 

baits in a genome-wide two-hybrid screen. I have shown that the C-terminal region of 

SPC25 interacts with ubiquitin in vivo and in vitro. This region does not exhibit 

significant similarity with any known ubiquitin-binding domains. Further genetic 

evidence suggests that this ubiquitin-binding domain contributes to the stability of the 

kinetochore complex. 
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Chapter 1. Introduction 

1.1 Ubiquitylation 

Cellular proteins are constantly exposed to changes in their environments, and as part of 

the natural response many proteins are posttranslationally modified. Posttranslational 

modifications therefore greatly extend the functional diversity of a protein. 

Ubiquitylation is among the most common and important forms of posttranslational 

modification in the cell. This section will introduce ubiquitin, the biochemical pathway 

of ubiquitylation and the enzymes involved in this process. 

 

1.1.1 Ubiquitin 

Ubiquitin is a 76-amino acid protein conserved in all eukaryotes. It is a member of a 

family of structurally related proteins, which includes many other ubiquitin like proteins 

such as SUMO (small ubiquitin like modifier), Nedd8 (neural precursor cell expressed 

developmentally down-regulated 8). In the early 1980s, it was found as a 

posttranslational protein modifier, which can be covalently conjugated onto substrate 

proteins (Hershko and Ciechanover, 1998). The structure of ubiquitin consists of a 5-

stranded β-sheet, a short 310 helix and a 3.5-turn α-helix. The most important 

functionally relevant features are a surface hydrophobic patch formed by L8-I44-V70 

and a solvent-exposed carboxyl-terminal tail (Figure 1.1A). The hydrophobic patch is 

important for interacting with many ubiquitin-binding proteins, and the carboxyl-

terminal tail is involved in ubiquitin conjugation and deconjugation reactions. There are 

seven lysine residues on the surface of ubiquitin, and all lysines together with the N-

terminal methionine can be used in the formation of polyubiquitin chains (Figure 1.1A). 
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Figure 1.1 The structure of ubiquitin and the enzymatic pathway of ubiquitylation 

(A) A ribbon representation of a ubiquitin monomer, protein data bank (PDB) code: 

1D3Z. Seven solvent-exposed lysine residues (blue) as well as the amino terminus (red) 

are available for chain assembly. Hydrophobic amino acids L8, I44, V70, which are 

important for interacting with many ubiquitin-binding domains, are labelled in green, 

pink and cyan respectively. This image was generated by PyMol. (B) The enzymatic 

pathway of ubiquitin conjugation and deconjugation. The process requires E1 (blue 

oval), E2 (green oval) and E3 (red oval) with the consumption of ATP to conjugate 

ubiquitin onto substrate proteins. DUB (brown oval) can remove ubiquitin from the 

substrate. This figure was adapted from (Pickart, 2001). 

 

1.1.2 Biochemistry of Ubiquitylation 

The biochemical process of protein ubiquitylation requires a cascade of enzymatic 

reactions involving a series of enzymes named ubiquitin-activating enzyme (E1), 

ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). A glycine residue at the 

C-terminus of ubiquitin is activated by the E1 in an ATP-dependent manner to form an 

intermediate ubiquitin adenylate while releasing PPi. Ubiquitin is then linked to a 

cysteine residue via a thiolester bond with the release of AMP. The activated ubiquitin 

is then transferred to the cysteine residue within the active site of E2. Finally, E3 

catalyses the formation of an amide isopeptide bond between the C-terminus of 
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ubiquitin and a ε-amino group of a lysine residue on the substrate protein (Hershko and 

Ciechanover, 1998) (Figure 1.1B). In some special cases, ubiquitin can also be 

conjugated on the N-terminus of the substrate protein independent of lysine residues, 

where a peptide bond is formed between the C-terminus of ubiquitin and the N-terminal 

α-amino group of a substrate protein (Aviel et al., 2000, Breitschopf et al., 1998). The 

enzymatic reaction can continue to put a second ubiquitin onto either a lysine residue of 

the first ubiquitin, which after several rounds of reaction leads to a polyubiquitin chain, 

or another site on the substrate protein, which in turn gives a multiply 

monoubiquitylated substrate.  

 

1.1.3 Ubiquitin Conjugation Enzymes 

E1 is the enzyme on the top of the ubiquitylation cascade. In yeast, there is only one E1 

enzyme that is responsible for activating ubiquitin for the entire ubiquitylation system. 

Each fully loaded E1 molecule carries two activated ubiquitin molecules: one as an 

ubiquitin adenylate and the other as a thiolester. The E1 is a very efficient enzyme, 

which has an ATP-AMP turn over number of 1-2 S
-1

 (Haas et al., 1982), 10-100 fold 

faster than the catalytic rate of protein ubiquitylation. This allows efficient production 

of activated ubiquitin.  

 

E2 functions between E1 and E3 to transfer the ubiquitin from E1 to an active cysteine 

residue in E2 in the form of a thiolester. There are significant but limited number of E2s 

in the cell (11 E2s in S. cerevisiae and more in higher eukaryotes). All of them share a 

conserved domain and each of them works with several E3s to reach their functional 

specificity. For example, Ubc2/Rad6 can work with E3 Ubr1 and functions in N-end 

rule proteolysis (Dohmen et al., 1991); alternatively, it can cooperate with E3 Rad18 to 

ubiquitylate PCNA in the DNA damage tolerance pathway (Bailly et al., 1994, Hoege et 

al., 2002).  
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The function of E3 involves substrate recognition and ligation. Ubiquitylation does not 

always have a common target sequence, which makes the identification of 

ubiquitylation targets by bioinformatic approaches very difficult. In fact, ubiquitylation 

can occur in a so-called destruction box (D box) sequence, RXALGXIXN, which has 

been found in many anaphase promoting complex (APC/C) substrates (Koepp et al., 

1999). In other cases, E3 mediated ubiquitylation events are not really site selective, 

such as the multiubiquitylation of c-Jun (Treier et al., 1994). E3s can be classified into 

three main groups based on the structural feature of their ligase domain. The first class 

of the E3 contains a homologous to E6-AP carboxyl terminus (HECT) domain, which is 

a conserved 350-residue domain first identified in E6-associated protein (E6-AP) 

(Huibregtse et al., 1995). This type of E3 binds E2s, but not through the HECT domain 

itself, and forms a thiolester with the activated ubiquitin that is transferred from the E2. 

It then catalyses the isopeptide bond formation between ubiquitin and the substrate 

(Pickart, 2001). Other examples of HECT E3 include Rsp5, Ufd4, etc. The second class 

of E3 contains the Really Interesting New Gene (RING) finger, which has a series of 

cysteine and histidine residues in coordination with two zinc ions. The RING family 

E3s function as a scaffold to bring E2s and substrates together, and transfer the 

activated ubiquitin from E2 directly onto the substrate (Petroski and Deshaies, 2005). 

Some of the RING family E3s have a single subunit, this type includes Ubr1 (N-end 

rule pathway), Rad18 and Rad5 (RAD6 pathway), etc. In some other cases, RING finger 

proteins form part of multi-subunit E3 complexes. APC/C, SCF (Skp1-Cullin-F-box 

protein) are typical examples and extra subunits play roles in aspects such as substrate 

recognition. There is a third type of E3, containing a U-box domain, also known as E4 

enzyme. The first example of such enzyme was yeast Ufd2, in which a conserved C-

terminal domain (70 amino acids) was identified as a U-box domain. Ufd2 binds to 

mono- or oligoubiquitylated model substrates and drives polyubiquitin chain assembly 

in the presence of E1, E2 and E3 (Koegl et al., 1999). In vivo, mammalian Ufd2a-

mediated multiubiquitylation of ataxin-3 requires extra E3 activity to initiate 

ubiquitylation, suggesting the enzyme is different from E3s in a physiological context 

(Matsumoto et al., 2004). However, the U-box domain is structurally related to the 

RING finger motif found in RING type E3s (Aravind and Koonin, 2000), and it can 

interact with its cognate E2 Ubc4 to facilitate ubiquitin transfer to relevant substrates 
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(Tu et al., 2007). In many instances U-box proteins are therefore better classified as 

E3s, and E4 function may just be a special case. 

 

1.1.4 Ubiquitin Deconjugation Enzymes 

The ubiquitylation reaction can also be reversed by a process called deubiquitylation, 

which is catalysed by a class of enzymes named deubiquitylating enzymes, DUBs. A 

proteolytic reaction is catalysed by DUBs to cleave the isopeptide linkage between a 

lysine residue and G76 or even a peptide bond between M1 and G76 in linear 

polyubiquitin chains (Figure 1.1B). In cells, head-to-tail arranged linear polyubiquitin 

are produced from ubiquitin genes as a precursor. DUB is required to process precursors 

into ubiquitin monomers (Reyes-Turcu et al., 2009). The activity of DUB relies on the 

C-terminal amino acid sequence of distal ubiquitin, in which R74 and G75 are crucial 

for ubiquitin recognition (Drag et al., 2008). Usually a DUB binds to a substrate 

ubiquitin chain in a special conformation to ensure that the C-terminus of the distal 

ubiquitin sits in the catalytic centre of the DUB (Komander et al., 2009a).  

 

1.2 Ubiquitin Signals 

As one of the major protein modifiers, ubiquitin appears as a number of different forms 

on substrate proteins to conduct their signalling functions. Proteins can be modified by 

monoubiquitin, multiple monoubiquitin, and polyubiquitin chains with various linkages 

(Figure 1.2). Various forms of ubiquitin signals usually convey different messages. 

Especially, polyubiquitin chains with different linkages exhibit distinct conformations. 

So far, structures of K48-, K63-, K11-linked and linear ubiquitin chains have been 

solved.  In addition to that, even same type of ubiquitin signal can signal for different 

functions in different contexts. This section will describe different forms of ubiquitin 

signals, their characteristics and their reported functions. 
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Figure 1.2 Forms of ubiquitin signals 

Ubiquitin (black filled circle) can modify a substrate (blue oval) as monoubiquitin, 

multiple monoubiquitin or polyubiquitin chains. Polyubiquitin chains exhibit distinct 

structures and seven lysine residues as well as the N-terminus of ubiquitin can all be 

used for chain formation. K48-linked chains adopt a closed conformation whereas K63-

linked chains have an open conformation almost identical to linear ubiquitin chains. 

K11-linked chains also exhibit a compact structure, but with its hydrophobic patches 

exposed, different from K48-linked chains. The structure of K6-, K27-, K29- and K33-

linked chains are still unknown. 

 

1.2.1 Monoubiquitylation 

Proteins can be monoubiquitylated on a single lysine residue or even on multiple lysine 

residues (Figure 1.2). Monoubiquitylation usually regulates the localisation and activity 

of many cellular proteins. Histone H2A was found to be modified by monoubiquitin as 
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the first known substrate of ubiquitylation (Goldknopf and Busch, 1977). 

Monoubiquitin at histone C-terminal tail is important for meiosis (Robzyk et al., 2000) 

and also plays roles in DNA damage response and transcription regulation (Vissers et 

al., 2008). Monoubiquitylation also regulates other factors such as FANCD2, PCNA 

and plays important roles in the DNA damage response (section 1.5.3 and 3.1.2)(Ulrich 

and Walden). Multiple monoubiquitylation of many proteins localised on the plasma 

membrane causes their internalisation into primary endocytic vesicles and eventually 

degradation by the lysosome (Hicke, 2001). Some elegant studies showed further that 

ubiquitin fused in frame to a lysine-less receptor protein, or even to a heterologous 

protein that is not normally internalised can also stimulate internalisation (Shih et al., 

2000, Roth and Davis, 2000). This trafficking process is mainly mediated by the 

endosomal sorting complex required for transport (ESCRT) machinery (Williams and 

Urbe, 2007). 

 

1.2.2 K48-linked Polyubiquitin Chains 

Cellular proteins are also modified by polyubiquitin chains with various linkages. Peng 

and coworkers confirmed by mass spectrometry the presence of different types of 

polyubiquitin chains in vivo, which are linked via seven available lysine residues on the 

surface of ubiquitin (Peng et al., 2003). Among those, approximately 29% of total 

polyubiquitin chains are K48-linked, which is the most abundant form (Peng et al., 

2003, Xu et al., 2009). An early biochemical study of the N-end rule substrate β-

galactosidase revealed that a polyubiquitin chain linked via K48 linkage is sufficient to 

target a model substrate to the 26S proteasome for degradation (Chau et al., 1989). Soon 

after this, Finley and coworkers found that yeast cells expressing K48R mutant as the 

only source of ubiquitin do not survive and that the degradation of proteins containing 

amino acid analogues is severely inhibited in cells, where the K48R mutant gradually 

replaces the wild type ubiquitin, suggesting that the K48-linked chain is the principal 

degradation signal for the proteasome in vivo (Finley et al., 1994). Further in vitro work 

has demonstrated that four ubiquitin moieties is the minimal length of K48-linked chain 

required for efficient proteasome targeting (Thrower et al., 2000). However, 



Chapter 1. Introduction 

 27 

proteasome-independent functions of K48-linked polyubiquitin chain have also been 

reported. Transcription factor Met4 is polyubiquitylated by SCF
Met30 

at K163. The 

ubiquitin chain is linked via K48-linkage, however, inhibition of such chain formation 

does not stabilise Met4 (Flick et al., 2004). The crystal structure of K48-linked 

tetraubiquitin shows a closed, compact chain structure, in which the hydrophobic patch 

L8-I44-V70 of all four ubiquitin moieties is buried within the structure and mediates an 

intra-chain interaction between ubiquitin units (Figure 1.3A)(Eddins et al., 2007). 

However, the ubiquitin–ubiquitin interaction is weak so that the hydrophobic surfaces 

are still accessible for other recognition factors (Pickart and Fushman, 2004). 

 

1.2.3 K63-linked Polyubiquitin Chains 

The second well-studied type of polyubiquitin chain is the K63-linkd polyubiquitin 

chain, which accounts for 16.3 % of total cellular ubiquitin conjugates in budding yeast 

(Xu et al., 2009). An early genetic study revealed that the ubiquitin K63R mutant is 

defective in DNA repair, but has normal proteolytic function (Spence et al., 1995). It 

was first introduced as a new type of ubiquitin chain in the report that identified Mms2-

Ubc13 as a heterodimeric E2 complex catalysing the formation of K63-linked chains in 

the context of DNA damage bypass (Hofmann and Pickart, 1999). Later, K63-linked 

polyubiquitin chains were found to modify the proliferating cell nuclear antigen 

(PCNA) at K164 and this modification initiates an error-free DNA damage bypass 

process (Hoege et al., 2002), whose molecular mechanism is still not clear (see section 

3.1 for more details). K63-linked chains have also been identified as essential signals in 

the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signalling 

pathway, formed by RING E3 ligase TRAF6 and E2 complex Ubc13-Uev1A. This type 

of chain was found to play a proteasome-independent role in activating IκB kinase 

(IKK) (Deng et al., 2000). It has now become clear that K63-linked ubiquitin chains 

function as scaffolds for the assembly of signalling complex in the NF-κB pathway 

(section 1.5 for more details) (Skaug et al., 2009). This non-degradative function of 

K63-linked chains is consistent with a recent report showing that cellular K63-linked 

ubiquitin conjugates do not accumulate upon the inhibition of proteasome activity, 



Chapter 1. Introduction 

 28 

whereas all other six types of lysine-linked chains increase (Xu et al., 2009). However, 

there are individual cases where a K63-linked chain functions as a degradation signal. 

An in vitro assembled K63-linked ubiquitin chain is sufficient to target a model 

substrate to the proteasome in a degradation assay and can bind the proteasome with an 

affinity similar to the K48-linked chain (Hofmann and Pickart, 2001). Recently, Saeki 

et al have shown that Rsp5-assembled K63-linked chains on Mga2 can lead to 

proteasomal degradation of Mga2, suggesting that a proteolytic role is also possible in 

vivo (Saeki et al., 2009). Structural work shows that the K63-linked tetraubiquitin chain 

has an extended conformation with no direct contact between the hydrophobic surfaces 

on each ubiquitin moiety (Figure 1.3B)(Datta et al., 2009). 

 

1.2.4 K11-linked Ubiquitin Chains  

Among all the non-canonical polyubiquitin chains, the K11 linkage has caught a lot of 

attention recently. Despite there being few examples of functionally relevant K11 

linkages in vivo, surprisingly the K11-linked chain is the second most abundant 

ubiquitin chain in budding yeast, accounting for about 28% of total ubiquitin 

conjugates, similar to K48-linked chains (Peng et al., 2003, Xu et al., 2009). In human 

cells, the APC/C works together with E2s UbcH10/UBE2C and UBE2s to catalyse the 

formation of K11-linked chains on various substrates including cyclin A and securin 

(Jin et al., 2008, Garnett et al., 2009, Williamson et al., 2009). In addition to that, K11-

linked chains have also been reported in the ERAD pathway (Alexandru et al., 2008). 

The conjugation reaction requires a cluster of residues around K11 on ubiquitin, named 

TEK-box, homologous of which has also been found in many APC/C substrates to 

facilitate chain nucleation. K11-polyubiquitylated substrates are degraded by the 

proteasome (Jin et al., 2008). In yeast, APC/C does not assemble K11-linked 

polyubiquitin chains on its substrates, and substrates modified by a K11-linked chain 

remain to be identified to explain the high abundance of this type of chain in vivo. 

Recently, the structure of a K11-linked diubiquitin was solved (Bremm et al., 2010). 

This type of chain adopts a compact conformation with K29 and K33 of the proximal 

ubiquitin facing the interface of the two ubiquitin moieties. An interesting feature is that 
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the hydrophobic patch is not involved in intra-chain interaction but rather exposed to 

solvent (Figure 1.3C) (Bremm et al., 2010). 

 

 

Figure 1.3 Crystal structures of K48-, K63-, K11-linked and linear ubiquitin 

chains 

(A) Crystal structure of K48-linked tetraubiquitin, PDB code: 2O6V. The colouring of 

ubiquitin moieties from proximal ubiquitin (ubiquitin moiety close to the substrate) to 

distal ubiquitin (ubiquitin moiety far away from the substrate) is: yellow-cyan-green-

blue (1-2-3-4) and there are intra-chain contact between ubiquitin units. The L8-I44-

V70 (red) hydrophobic patches of each ubiquitin are buried inside of the chain structure. 

The colouring scheme for ubiquitin moieties and hydrophobic patches are the same for 

all structures. (B) Structure of K63-linked tetraubiquitin, PDB code: 3HM3. The chain 

exhibits an open conformation and there is no contact between ubiquitin units. (C) 

Structure of K11-linked tetraubiquitin, PDB code: 2XEW. The K11-linked 

tetraubiquitin also exhibits a compact conformation, but unlike the K48-linked chain, 

the hydrophobic patches are exposed. (D) Crystal structure of linear diubiquitin, PDB 

code: 2W9N. The linear diubiquitin adopts a linear shape quite similar to the K63-

linked chain. This figure was generated by PyMol. 
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1.2.5 Other Lysine-linked Ubiquitin Chains 

K6-, K27-, K29- and K33-linked ubiquitin chains have also been detected in vivo in 

budding yeast (Peng et al., 2003) and higher eukaryotes (Nishikawa et al., 2004, Al-

Hakim et al., 2008), although they only represent relatively small proportions of total 

cellular ubiquitin conjugates: 10.9% (K6), 9% (K27), 3.2% (K29) and 3.5% (K33) in 

yeast. Breast and ovarian cancer susceptibility protein 1 (BRCA1) can work together 

with BARD1 to assemble K6-linked polyubiquitin chains on itself (Wu-Baer et al., 

2003) and the K6-polyubiquitylated BRCA1 is recognised by the proteasome. However, 

it is processed differently from a regular proteasome substrate, as it is deubiquitinated 

rather than degraded in vitro (Nishikawa et al., 2004). K29-linked chains were first 

described in the initial ubiquitylation step of the UFD (ubiquitin fusion degradation) 

pathway (see section 1.4.2 for more details), where the K29-linked chains are initially 

assembled by Ufd4 on the model substrate (Johnson et al., 1995). More recently, K29-

linked chains have been reported to function in lysosomal degradation of proteins in 

vivo (Chastagner et al., 2006). Furthermore, AMPK-related kinase 5 (ARK5) and 

MARK4 kinases are polyubiquitylated in vivo through K29/K33-linked chains, whose 

function is to block the kinase activation by interfering with phosphorylation of the 

activation-loop residues (Al-Hakim et al., 2008). 

 

1.2.6 Linear Ubiquitin Chains 

The scope of ubiquitin signals is broader than expected. Apart from seven lysine 

residues on the surface of ubiquitin, the discovery of linear ubiquitin chains has 

demonstrated that the N-terminal methionine can also be used to form a peptide bond 

with G76. In yeast, linear ubiquitin chains, synthesised as polyproteins by expression of 

a tetraubiquitin gene, UBI4, were initially considered as a source of cellular ubiquitin 

that is produced under stress conditions and quickly processed into ubiquitin monomers 

shortly after its production (Ozkaynak et al., 1984, Pickart and Fushman, 2004). Now 

LUBAC (linear ubiquitin chain assembly complex), a specific ligase complex 

composed of two E3s HOIL-1 and HOIP, has been identified to actively assemble linear 

ubiquitin chains linked via M1-G76 peptide bond in higher eukaryotes (Kirisako et al., 



Chapter 1. Introduction 

 31 

2006). It has been reported in the same study that overexpression of LUBAC promotes 

the degradation of model substrates, suggesting a potential role of linear ubiquitin 

chains in the proteasomal degradation pathway. More recently, NEMO (NF-κB 

essential modulator), the regulatory component of IκB kinase (IKK) complex, was 

shown to be the first physiological substrate of linear ubiquitin chains. LUBAC 

specifically assembles linear ubiquitin chains at K285 and K309 of NEMO (Tokunaga 

et al., 2009), and a UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO 

can interact specifically with this linear ubiquitin chain (Rahighi et al., 2009). Linear 

ubiquitylation of NEMO and the interaction between linear chains and UBAN domain 

are both required for the activation of the NF-κB signalling pathway. This is supported 

by experimental evidences from HOIL-1L knock out mice and cell lines expressing the 

mutant form of UBAN domain (Tokunaga et al., 2009, Rahighi et al., 2009). Finally, 

another interesting feature of linear ubiquitin chains is that they adopt a conformation 

very similar to K63-linked ubiquitin chains because M1 of ubiquitin is only 6.3 Å away 

from K63. Komander and coworkers have solved the crystal structure of linear 

diubiquitin (Figure 1.3D), which shows a structure almost identical to the K63-linked 

chain (Komander et al., 2009b). However, whether linear ubiquitin chains are 

functionally equivalent to K63-linked chains in vivo remains to be investigated.  

 

1.3 Ubiquitin-binding Domains 

The versatile ubiquitin signals need to be translated in cells, and ubiquitin-binding 

domains (UBDs) are protein modules that recognise different forms of ubiquitin signals. 

To date, more than twenty different types of UBDs have been identified. According to 

the structure they fold into they can be classified into several groups including α-helical 

structures, zinc-fingers (ZnFs), ubiquitin-conjugating enzyme-like (UBC) domains and 

pleckstrin homology (PH) folds (Dikic et al., 2009). Recent advancement of structural 

biology to crystallise UBDs in complex with ubiquitin has greatly improved our 

understanding on UBD-ubiquitin interactions. This section will focus on the recognition 

of monoubiquitin and different polyubiquitin chains by various UBDs.  
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1.3.1 Ubiquitin Recognition by Different Types of UBDs 

α-helical structures, the biggest family of UBDs, are commonly binding the 

hydrophobic patch in the β-sheet of ubiquitin centred around L8-I44-V70. The 

ubiquitin-associated domain (UBA) shows a perfect example where two discontinuous 

α-helices of the UBA domain interact with the I44 patch on ubiquitin (Figure 1.4A). 

ZnFs are the second largest family of UBDs and they can recognise three different 

surfaces of ubiquitin, therefore offering more diversity in ubiquitin recognition and 

binding affinity. For example, the A20 ZnF predominantly binds the polar patch on the 

ubiquitin centred on D58, the ZnF in NPL4 interacts with the surface around I44, and 

the ZnF of isopeptidase T binds to ubiquitin’s C-terminus (Figure 1.4B). It also suggests 

even a same class of UBD can have multiple ways to recognise ubiquitin and 

experimental approaches remain to be the most reliable way to determine the binding 

surface on both ubiquitin and ubiquitin-binding proteins. The third group of UBD are 

UBC-related domains and most of the time they are found in E2s. They usually 

recognise a surface on ubiquitin containing the hydrophobic patch around I44 (Figure 

1.4C). Last but not least, PH fold is a less represented group of UBD. The most well-

known example in this group is the PRU (PH receptor for ubiquitin) domain of Rpn13, 

which binds ubiquitin with very strong affinity (Husnjak et al., 2008). In this case, three 

loops in the PRU domain of Rpn13 can form hydrogen bonds with H68, which 

significantly contributes to the interaction with ubiquitin in addition to the canonical 

I44-centred binding surface (Figure 1.4D). 
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Figure 1.4 Structures of different ubiquitin-UBD complexes 

Co-crystal structures show several different structural domains binding to ubiquitin. 

Ubiquitin is shown in grey and I44 is labelled in red in all panels (A) Structure of 

ubiquitin in complex with the UBA domain (shown in cyan) of PLIC1 (protein linking 

IAP with cytoskeleton 1), PDB code: 2JY6. The UBA domain recognises hydrophobic 

patch centred around I44. (B) Structure of three different ZnFs in complex with 

ubiquitin: ZnF (also called NZF) of NPL4 (shown in yellow, PDB code: 1Q5W) binds 

the hydrophobic patch around I44 of ubiquitin; ZnF of RABEX5 (shown in light green, 

PDB code: 2FIF) binds the D58-centred polar surface on ubiquitin; ZnF of 

isopeptidaase T (shown in pink, PDB code: 2G45) interacts with the C-terminus of 

ubiquitin. This picture was taken from (Dikic et al., 2009). (C) Structure of ubiquitin in 

complex with UBC domain of UBCH5C (shown in orange, PDB code: 2FUH). (D) 

Structure of ubiquitin in complex with the PRU domain of RPN13 (shown in dark blue, 

PDB code: 2Z59). Both I44 (red) and H68 (yellow) on ubiquitin contribute to the 

interaction with the PRU domain. Figure A, C and D were generated by PyMol. 
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1.3.2 Linkage-Specific Recognition of Polyubiquitin Chains by UBDs  

Many UBDs can bind polyubiquitin chains to mediate specific cellular signalling 

events. As we know, ubiquitin chains exhibit diverse conformations depending on 

which lysine residue is used as linkage, for example K48-, K63-, K11-linked and linear 

ubiquitin chains all have distinct structures. Special UBDs of downstream effector 

proteins can act as signal receptors and transducers to bind ubiquitin chains with 

specific linkage. K48-linked chains exhibit a compact conformation as shown in Figure 

1.3A, with the I44-centred patch of each ubiquitin moiety buried within the chain. The 

UBA domain has been shown to bind the K48-linked chain specifically due to its ability 

to insert into the space between otherwise tightly folded diubiquitin and interact with 

the I44-centred patches of both ubiquitin molecules (Figure 1.5A)(Varadan et al., 2005).  

A K63-linked ubiquitin chain has an extended structure with the I44-centred 

hydrophobic patches exposed. The K63-specific deubiquitylating enzyme AMSH-LP in 

complex with a K63-linked diubiquitin illustrates that the enzyme not only recognises 

K63 but also neighbouring residues such as Q62 and E64 on the proximal ubiquitin to 

achieve its specificity (Figure 1.5B). This type of interaction also ensures that only 

K63-linked chains with correct orientation can bind to the enzyme. The I44-centred 

hydrophobic patch on the distal ubiquitin forms an additional interaction surface for 

AMSH-LP (Sato et al., 2008). More interestingly, some UBDs, such as UBAN domain, 

are even able to distinguish linear chains from K63-linked chains, two highly similar 

forms of ubiquitin signals. The UBAN domain of NEMO, a coiled-coil dimer, forms a 

heterotetrameric complex with two linear diubiquitin molecules (Rahighi et al., 2009, 

Ivins et al., 2009). Linkage specificity is achieved by a continuous surface along the 

coiled-coil that interacts with the I44-centred patch and the C-terminal tail (R72-G76) 

of the distal ubiquitin plus a unique interaction surface of the proximal ubiquitin 

(Rahighi et al., 2009) (Figure 1.5C). 
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Figure 1.5 The structure of different ubiquitin chains bound to proteins 

(A) Structure of K48-linked diubiquitin (grey) in complex with UBA2 domain from 

hHR23A (orange), PDB code: 1ZO6. The UBA2 domain inserts into the compact K48-

linked diubiquitin to interact with both I44-centred hydrophobic patches (red) (B) 

Structure of K63-linked diubiquitin (grey) in complex with AMSH-LP (green), PDB 

code: 2ZNV. The interaction surfaces on K63-linked diubiquitin include a surface 

formed by Q62-K63-E64 (shown in blue) on the proximal ubiquitin and I44-centred 

hydrophobic patch (red) on the distal ubiquitin. (C) Structure of two linear diubiquitin 

(grey) in complex with the NEMO UBAN domain dimer (cyan/megenta), PDB code: 

2ZVN. The contact surface covers the I44-centred patch (red) and the C-terminal tail 

(R72-G76, shown in blue) of the distal ubiquitin plus a unique interaction surface of the 

proximal ubiquitin (Q2, F4, K6, G10, T12, I13, T14, E16, E64 and T66; shown in 

yellow). All figures were generated from indicated PBD files with PyMol. 
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However, the same type of UBD does not always show the same linkage specificity. For 

instance, UBA domains are present in many ubiquitin-interacting proteins, but a 

systematic study shows that UBA domains have subgroups specifically binding to K48- 

or K63-linked chains, respectively. Some of the UBA domains do not show any 

preference for polyubiquitin chains (Raasi et al., 2005). Overall, the interaction between 

the ubiquitin monomer and UBDs is quite weak, in the range of 10-500 μM (Ikeda and 

Dikic, 2008), with the highest affinity observed so far (around 300 nM) for the PRU 

domain of Rpn13 (Husnjak et al., 2008). While the interaction between polyubiquitin 

chains and UBDs are stronger than the case of monoubiquitin. The interaction between 

ubiquitin and UBD is usually compensated by additional interactions between the 

ubiquitin-binding effector proteins and the ubiquitylated proteins. It is therefore more 

important to analyse the role of UBDs in a specific interaction between a ubiquitylated 

protein and a ubiquitin-binding protein. Examples of UBDs in ubiquitin mediated 

signalling will be described in Section 1.5. 

 

1.4 The Proteasome-dependent Degradation Pathway 

Ubiquitin is best known for its function to tag a protein and signal for proteasomal 

degradation. This section will introduce the major cellular degradation machinery, the 

26S proteasome, and pathways that ubiquitylate and target substrate proteins to the 

proteasome.  

 

1.4.1 The 26S Proteasome 

The ubiquitin proteasome system (UPS) is the major system for protein degradation in 

eukaryotes. Degradation of polyubiquitylated proteins occurs in the 26S proteasome, 

which is a giant protein complex with an overall size over 2.5 MDa (Finley, 2009). The 

proteasome contains two major parts, the core particle (CP) and the regulatory particle 

(RP), which sit on one or both ends of the cylinder-shaped core particle. The 

proteasome’s proteolytic activity lies within the large internal chamber of the CP, where 

β-type subunits form a heptameric ring structure hosting the proteolytic active sites 
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(Finley, 2009). Substrate access to the CP catalytic chamber is blocked through a 

topological mechanism, as substrates have to be unfolded and then pass through the 

narrow translocation channel in the RP in order to reach the CP. The RP has 19 subunits 

and has been subdivided into base and lid, which are proximal and distal to the CP, 

respectively. The basic function of RP is to recognise and process ubiquitin conjugates. 

The base of RP has subunits with ATPase activity, required for protein unfolding, 

translocation and proteolysis, and other subunits like Rpn10 and Rpn13 serve as 

receptors for ubiquitin conjugates. The lid of the RP harbours subunit Rpn11 with 

deubiquitylation activity, which positively contributes to the proteasome activity 

(Verma et al., 2002, Yao and Cohen, 2002). Overall, a polyubiquitylated substrate is 

first recognised and bound to the ubiquitin receptors in the base of the proteasome. 

Polyubiquitin chains are disassembled by the DUB activity of the lid and the substrate is 

unfolded and passed through the translocation channel to reach the CP for degradation. 

The second step, the unfolding, is mediated by ATPases in the base of the proteasome 

(Finley, 2009). Interestingly, the proteasome does not selectively degrade ubiquitin 

conjugates linkage-specifically. Proteasomal ubiquitin receptors include Rpn10, Rpn13, 

Ddi1, Rad23 and Dsk2, which do not show preference for ubiquitin chains of a specific 

linkage (Raasi et al., 2005), and many different types of ubiquitin chains can target 

substrates for proteasomal degradation in vitro (Hofmann and Pickart, 2001, Zhao and 

Ulrich, 2010). More recently, mass-spectrometry has detected an increase of six types 

of lysine-specific chains (K6, K11, K27, K29, K33 and K48) in cells treated with 

proteasome inhibitor, suggesting that the proteasome usually processes each of these 

types of chains (Xu et al., 2009). 

 

1.4.2  The N-end Rule and the UFD Pathway 

Generally, a substrate protein is recognised and ubiquitylated by specific E3 enzymes 

and the modified substrate is taken to the 26S proteasome for destruction. Therefore, the 

proteasomal degradation pathway can be divided into a substrate ubiquitylation step and 

a proteasome targeting step. Our understanding about ubiquitin-mediated substrate 

degradation stems largely from studying model substrates. Varshavsky and co-workers 
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found that expressing an ubiquitin-β-galactosidase fusion protein in yeast leads to 

cleavage of the ubiquitin and results in a deubiquitylated β-galactosidase exposing its 

N-terminal residue (Bachmair et al., 1986). Depending on the identity of the exposed N-

terminal residue, β-galactosidase exhibits a half-life from 3 minutes to more than 20 

hours. The relation between the metabolic stability of a protein and the identity of its N-

terminal residue is called the N-end rule, and the process in which cells recognise 

potential substrates by means of their N-termini and target them for degradation is 

called the N-end rule pathway (Varshavsky, 1996). Later, it became clear that an E3 

enzyme, Ubr1, specifically recognises N-end rule substrates and assembles K48-linked 

polyubiquitin chains on the substrate protein to trigger its degradation (Bachmair and 

Varshavsky, 1989, Chau et al., 1989, Bartel et al., 1990) (Figure 1.6A). The N-end rule 

pathway has been successfully used to develop the degron system, which can deplete a 

target protein in a regulatable manner (Turner and Varshavsky, 2000). 

 

Model substrates have also contributed to the identification of several factors 

downstream of substrate ubiquitylation, which are required for proteasome-dependent 

degradation. Varshavsky and co-workers used a short-lived, but non-cleavable version 

of ubiquitin-β-galactosidase to search for factors involved in its degradation (Johnson et 

al., 1995). Factors found in that screen were named as ubiquitin fusion degradation 1 

(Ufd1), Ufd2, Ufd3 (Doa1), Ufd4 and Ufd5 (Rpn4). Further studies have extended the 

UFD pathway and shown that relevant model substrates or physiological ERAD (ER-

associate degradation) substrates are initially mono- or di-ubiquitylated and bound by 

the Cdc48-Npl4-Ufd1 complex, where the Cdc48-bound factor Ufd2 further elongates 

the ubiquitin chain on the substrate to a length optimal for proteasome targeting. Then 

cellular ubiquitin shuttling factors like Rad23 and Dsk2 bind to the polyubiquitylated 

substrate and deliver it to the proteasome (Richly et al., 2005) (Figure 1.6B).  
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Figure 1.6 The N-end rule pathway and the UFD pathway 

(A) A schematic illustration of the N-end rule pathway. The ubiquitin moiety (black 

filled circle) of an ubiquitin-β-galactosidase fusion protein is cleaved off to generate a 

deubiquitylated β-galactosidase (blue oval) with an exposed N-terminal residue. E3 

Ubr1 (pink) recognises the N-terminal residue and assembles K48-linked polyubiquitin 

chains on β-galactosidase. The polyubiquitylated β-galactosidase is targeted to the 

proteasome (green cylinder shape) for degradation. (B) A schematic illustration of the 

UFD pathway. A non-cleavable ubiquitin-β-galactosidase fusion protein is first mono- 

or di-ubiquitylated by an E3 Ufd4 (purple oval) through K29-linkage. The 

oligoubiquitylated substrate is bound to the Cdc48-Npl4-Ufd1 complex (green-yellow-

grey) and the Cdc48-associated factor Ufd2 (red) further elongates the short ubiquitin 

chain on the substrate via K48-linkage. Rad23 and Dsk2 (orange oval) are recruited to 

the Cdc48 complex via Ufd2. They bind to the polyubiquitylated substrate and deliver it 

to the proteasome (green cylinder shape) for degradation. 

 

Within the UFD pathway, many factors participated in the process of substrate 

ubiquitylation and the proteasome targeting. In the case of UFD model substrates such 

as the non-cleavable ubiquitin-β-galactosidase, the E3 Ufd4 initially assembles a short 

K29-linked chain on the substrate (Johnson et al., 1995). Cdc48 forms a complex with 
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its cofactor Npl4 and Ufd1, which are important for substrate recruiting (Rape et al., 

2001, Meyer et al., 2000, Hitchcock et al., 2001). Ufd2 was described as an E4 enzyme 

and a Cdc48-associated factor (Koegl et al., 1999). It has two distinct functions in the 

UFD pathway: firstly, its U-box domain catalyses the elongation reaction of short 

ubiquitin chains on Cdc48-bound substrate proteins; secondly, it binds to Cdc48 and 

mediates the association of Rad23/Dsk2 with the Cdc48 complex (Richly et al., 2005). 

Rad23 and Dsk2 are ubiquitin shuttling factors. They each contain a UBA domain, 

which allows ubiquitin binding, and an ubiquitin-like (UBL) domain, which in turn can 

dock on-to the proteasome. Such elegant arrangement allows both factors to provide a 

connection between ubiquitylated substrates and the proteasome. The functions of 

Rad23 and Dsk2 in vivo are partially overlapping. Together with three additional 

ubiquitin receptor proteins, Ddi1, Rpn10 and Rpn13, they provide extra layers of 

substrate selectivity for the proteasome (Verma et al., 2004, Husnjak et al., 2008). 

 

1.5 Proteolysis-Independent Functions of Ubiquitin Signalling 

The proteolysis-independent functions of ubiquitin signalling are as important as its 

function as a degradation signal. The non-proteolytic functions of ubiquitin have been 

reported in the immune response, apoptosis and the DNA damage response. In those 

cases, mono- or poly-ubiquitin can function as a mediator for protein-protein 

interactions, where it provides extra binding sites for downstream UBD-containing 

effector proteins.  Alternatively, the conjugation of ubiquitin can have allosteric effects 

on substrate proteins to effect subtle changes to protein structure or enzymatic activity. 

There are many examples of different non-proteolytic functions of ubiquitin. However, 

in this section I will describe only a few selected ones that are illustrative of the 

mechanism of ubiquitin signalling.  
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1.5.1 NF-κB Pathway 

The NF-κB pathway is part of the cellular response to different stimuli including 

bacterial and viral antigens, free radicals, cytokines and stress. It has important roles in 

regulating the immune response to infection. The pathway functions to activate a 

transcription factor, NF-κB, which presents as a dimer of p50/p65 and controls a group 

of genes involved in immunity, inflammation and cell survival. However, inhibitor of 

NF-κB (IκB) binds to NF-κB and inhibits its activity by retaining the dimer in the 

cytoplasm under basal conditions. Ubiquitin-mediated signalling has been nicely 

illustrated in the NF-κB pathway, where K63-linked and linear ubiquitin chains fulfil 

non-proteolytic roles in the activation of the NF-κB, and deubiquitylating enzymes also 

negatively regulate this process. In the tumour necrosis factor (TNF) pathway, a sub-

branch of the NF-κB pathway, TNFα binding to the TNF receptor (TNFR) results in the 

rapid formation of a receptor-associated complex, which includes TNFR1-associated 

death domain protein (TRADD), TRAF2, cIAP1, cIAP2 and the receptor interacting 

protein kinase (RIP1) (Skaug et al., 2009). The TRAF2 and cIAPs assemble K63-linked 

polyubiquitin chains on RIP1 to recruit and activate TAK1 and IKK complexes (Ea et 

al., 2006). The K63-linked polyubiquitin chain acts as a platform for the assembly of 

the downstream signalling complex. TAB2 and NEMO, which are the regulatory 

subunits of TAK1 and IKK complexes, respectively, contain UBDs selective for K63-

linked chains to mediate this recruitment (Ea et al., 2006, Wu et al., 2006, Kanayama et 

al., 2004). Finally, the activated TAK1 phosphorylates and activates the IKK complex, 

which subsequently leads to the phosphorylation, ubiquitylation and proteasomal 

degradation of IκB and activates NF-κB (Figure 1.7). During this process, the 

ubiquitylation and ubiquitin-binding of NEMO positively regulates the activation 

process. NEMO is the regulatory subunit of the IKK complex. It is modified with linear 

ubiquitin chains via the newly identified LUBAC complex at K285/K309 and this 

modification is important for the activation of NF-κB (Tokunaga et al., 2009). NEMO 

also has a UBAN domain, which has been shown to bind linear ubiquitin chains as well 

as K63-linked chains, and that is also crucial for NF-κB activation (Rahighi et al., 2009, 

Wu et al., 2006). A structural study shows that the UBAN domain of NEMO, a coiled-

coil dimer, forms a heterotetrameric complex with two linear diubiquitin molecules 

(section 1.3.2 and Figure 1.5C). Although it has been proposed that linear ubiquitin 
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chain binding of IKK complex mediates its multimerisation, the exact mechanism of 

NF-κB activation by linear chains remains unclear (Iwai and Tokunaga, 2009). Last but 

not least, several deubiquitylating enzymes like CYLD and A20 also contribute to the 

downregulation of NF-κB by disassembling those functional important polyubiquitin 

chains, reflecting a dynamic regulation process mediated by ubiquitin signalling (Skaug 

et al., 2009). 

 

Figure 1.7 Role of ubiquitin in the TNF pathway 

Binding of TNFα (ruby) to the TNF receptor (blue) triggers the formation of a receptor-

associated complex, which consists of TRADD (dark green), RIP1 (light orange), cIAPs 

(green) and TRAF2 (purple). TRAF2 and cIAPs quickly assemble K63-linked 

polyubiquitin chains on RIP1, which recruits the TAK1 complex (TAB2/TAK1, shown 

in dark blue/pink) and the IKK complex (NEMO/IKKα/IKKβ, shown in 

orange/blue/dark red). TAK1 is activated via auto-phosphorylation, and it then 

phosphorylates IKKβ to activate the IKK. IκB (grey) is phosphorylated by the IKK and 

further modified by K48-linked polyubiquitin chains, which target IκB for proteasomal 

degradation. Finally, the free NF-κB dimer (p50/p65) (red) enters the nucleus to activate 

gene transcription. 
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1.5.2 Apoptosis 

In apoptosis, ubiquitin signalling has also played a number of regulatory roles at various 

stages of this important process (Broemer and Meier, 2009). Caspase activation and 

regulation is crucial for apoptosis. The inhibitor of apoptosis (IAP) proteins function as 

E3 ligases to negatively regulate the function of caspases. The mammalian X-linked 

IAP (XIAP) can catalyse the formation of polyubiquitin chains on caspase 3 (Suzuki et 

al., 2001, Morizane et al., 2005). Similarly, DIAP (Drosophila IAP) assembles K63-

linked polyubiquitin chains onto effector caspase drICE (homologue of caspase-3 and 

caspase-7). This modification does not affect protein levels of drICE or reduce its 

proteolytic activity directly. However, the K63-linked polyubiquitin chain sterically 

interferes with substrate entry to the catalytic site and may even cause a conformational 

change, which reduces the catalytic processivity of the enzyme (Ditzel et al., 2008). 

Moreover, cIAP1 and cIAP2 can also have negative effects on apoptosis via facilitating 

TNF-receptor-induced signalling to NF-κB, which in turn promotes the expression of 

many pro-survival genes. A UBA domain has been identified in many IAPs, and the 

presence of this UBD is required for constitutive activation of the NF-κB pathway, 

possibly by directly interacting with K63-polyubiqutylated NEMO (Gyrd-Hansen et al., 

2008). 

 

1.5.3 Genome Stability 

A third field, where proteasome-independent ubiquitin signalling plays many important 

roles, is maintaining genome stability. Genome stability is well maintained in the cell 

by various DNA damage responses and repair processes. In the double-strand break 

(DSB) repair, the recruitment and assembly of a signalling complex including the key 

DSB repair factor BRCA1 are mediated by a series of ubiquitylation events. E3 proteins 

including RNF8, RNF168 are sequentially involved in this process and UBDs (such as 

MIU domain of RNF168) contribute to the localisation of their host proteins to the DSB 

site. The ubiquitin conjugates generated by a series of ubiquitylation events at the DSB 

site are believed to be K63-linked chains (Stewart et al., 2009, Doil et al., 2009, 

Sobhian et al., 2007) and this polyubiquitin signal functions as a scaffold to facilitate 

the assembly of a complex including RAP80, abraxas, BRCC45, NBA1 and BRCC36 
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for a subsequent recruitment of BRCA1 (Kim et al., 2007, Liu et al., 2007, Sobhian et 

al., 2007, Wang et al., 2007). Any interruption on ubiquitylation or ubiquitin–binding 

domain within this signalling cascade leads to defects in the recruitment of the entire 

complex and key factors such as BRCA1, suggesting an crucial role of ubiquitin 

signalling in DSB repair. Intracellular interstrand cross-links (ICL) are mainly repaired 

by the Fanconi anaemia pathway. In this case, Fanconi core complex FANCA, FANCB, 

FANCE, FANCG, FAAP100 and the catalytic subunit FANCL form a multisubunit E3 

complex. The core complex monoubiquitylates FANCD2-FANCI and leads to the 

complex localised onto the chromatin (Garcia-Higuera et al., 2001, Smogorzewska et 

al., 2007). The monoubiquitylation event is absolutely required for the repair of ICLs. 

Deubiquitylation of the FANCD2-FANCI complex is also required by the Fanconi 

anaemia pathway. Interestingly, monoubiquitin fused to a non-ubiquitylable FANCD2 

mutant only partially rescues cellular ICLs repair defects (Matsushita et al., 2005, Ishiai 

et al., 2008) and it became clear later that USP1 mediated deubiquitylation of FANCD2 

is required for ICL repair (Oestergaard et al., 2007, Nijman et al., 2005). 

 

Figure 1.8 Ubiquitin signalling at double-strand breaks 

A cascade of ubiquitylation events and ubiquitin-binding events occurs in reponses to 

double-strand breaks. E3 enzyme RNF8 (ruby) and RNF168 (blue) act sequentially to 

assemble K63-linked ubiquitin chains (black), which then leads to the recruitment of 

RAP80 (purple), BRCC36 (yellow), abraxas (light green) and BRCA1(red) eventually.  
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Because ubiquitin plays so many important roles in processes such as the immune 

response, apoptosis and DNA repair, it is not surprising that the ubiquitin signalling 

system has become a very attractive target for the development of anti-cancer drugs. 

Treatment of proteasome inhibitors leads to severe defective consequences in 

degradation of cellular proteins and recycling of the free ubiquitin, therefore affecting 

multiple cellular pathways.  Now the first approved proteasome inhibitor bortezomib 

has been successfully used in clinics to treat multiple myeloma. Some studies have 

suggested that large basal level of ER stress associated with high levels of 

immunoglobulin production makes myeloma especially sensitive to proteasome 

inhibitors (Meister et al., 2007). The success of the first proteasome inhibitor-based 

drug has proved that studying the function of ubiquitin signalling has great clinical 

values. 

 

1.6 The Aims of the Thesis 

I have just given a very general introduction to the ubiquitin system, from the enzymatic 

reactions, the signalling diversity to its biological functions in different contexts. This 

study mainly focuses on two parts: polyubiquitin signals and UBDs. The first project 

was to address the question whether linear and K63-linked ubiquitin chains are 

functional interchangeable. Towards this end, PCNA was used as a model substrate to 

evaluate the function of two highly similar ubiquitin signals on a common substrate. 

The functions of linear and K63-linked chains on PCNA were studied separately. The 

second project aimed at identifying factors that specifically interact with K63-

polyubiquitylated PCNA and meanwhile search for novel ubiquitin-binding proteins. 

The focus of this project quickly shifted towards a characterisation of Spc25, a potential 

ubiquitin-binding protein identified in the screen. This thesis describes further studies of 

the ubiquitin-binding properties of Spc25, the identification of mutants that abolish 

ubiquitin binding in Spc25 and an investigation of the biological functions of ubiquitin 

binding in Spc25. Further efforts were undertaken to investigate the ubiquitylation of 

kinetochore proteins, especially those that interact with Spc25, and to identify the 

identity of modification targets.  
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Chapter 2. Materials and Methods 

2.1 Strains 

2.1.1 Yeast Strains 

Please see Appendix 1 for a list of yeast strains used in this thesis. 

2.1.2 E.coli strains 

Please see Appendix 2 for a list of E.coli strains used in this thesis.  

2.2 Plasmids 

2.2.1 List of Plasmids 

Please see Appendix 3 for a list of Plasmids used in this thesis. 

2.2.2 Construction of Linear Fusions of Ubiquitin to PCNA 

Constructs of Ub
*
n-PCNA

*
 were created based on Ub

*
-PCNA

*
, which was described 

previously (Parker et al., 2007). The open reading frame of ubiquitin with K29/48/63R 

and G76R mutations was sequentially inserted once or multiple times in frame at the N-

terminus of pol30 (K127/164R) as a BamHI/BglII fragment, resulting Ub
*
2-4(L)-PCNA

*
 

constructs. The linker sequence VQIQ between each ubiquitin moiety was generated as 

a ligation product of the BamHI/BglII sites. The linkerless version of Ub
*
4-PCNA

* 
was 

generated by insertion of a four-ubiquitin (Ub
*
4) module at the N-terminus of pol30 

(K127/164R). The Ub
*
4 module was assembled by blunt ligation of a StuI/MscI 

fragment bearing the ubiquitin (K29/48/63R, G76V) open reading frames. A ligation 

reaction was set up in the presence of StuI and MscI in order to eliminate ligation 

products with incorrect orientations (tail-to-tail or head-to-head). The reaction mix was 

incubated at 37°C overnight, where the ligase activity was reduced but restriction 

enzyme activity was optimal. PCNA
*
-Ub

*
4 was generated by replacing the Ub

*
 of 

PCNA
*
-Ub

*
 (Parker et al., 2007) with the Ub

*
4 module as a PCR product digested with 

KpnI and PstI. The C-terminal ubiquitin was truncated after amino acid 74 (referred as 

ΔGG) to prevent conjugation reactions. Ub
K63*

-PCNA
*
 was generated by replacing the 

Ub
*
 unit of Ub

*
-PCNA

* 
with an Ub

K63*
 (K29/48R, G76V). All constructs were 

individually cloned into a YIplac128 derivative, where the expression was under control 
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of the POL30 promoter. For protein production, Ub
*
4-PCNA

* 
was cloned into pET28a 

as a HindIII/EcoRI fragment. 

 

2.2.3 Construction of Linear Fusions of Ubiquitin to βGal 

The Ub-βGal construct was obtained from E. Johnson (Johnson et al., 1995). The 

episomal plasmid was originally called Ub
V76

-V-e
ΔK

-βGal and expression of the protein 

is under control of the GAL10 promoter. In order to create Ub
*
4-βGal, the single Wt 

ubiquitin moiety was replaced by the Ub
*
4 module which was described above. The 

Ub
V76

-V-e
ΔK

-βGal was first digested with SphI and followed by a blunt end reaction to 

the linearised plasmid. The Ub
*
4 module PCR amplified from pGAD-Ub

*
4 was digested 

with BglII and followed by a blunt end reaction. The vector was then ligated with the 

Ub
*
4 module to have a Ub

*
5-βGal. The product was digested with BamHI to remove the 

Wt Ub moiety originated from the parent vector, and a blunt end reaction and a ligation 

reaction were performed subsequently to have Ub
*
4-βGal. The control βGal construct 

was generated by deletion of the ubiquitin moiety as SphI/BamHI fragment and 

performing a blunt end reaction to the vector following by a religating reaction. To 

create Ub
*
8-βGal, a second Ub

*
4 module was inserted into as BamHI/BglII fragment 

into the BamHI site of Ub
*
5-βGal cloning intermediate, which was described above. 

Then the Wt Ub moiety was removed from the resulting Ub
*
9-βGal as a SphI/BamHI 

fragment. Ub
*
-βGal was generated by inserting the Ub

*
 module into a BamHI site 

directly upstream of the βGal moiety of Ub-βGal and subsequent removal of the 

remaining Ub sequence (SphI/BamHI) followed by religation. Plasmids were 

propagated in yeast on uracil-free medium. 

 

2.3 DNA Oligonucleotides 

Please see Appendix 4 for a list of oligonucleotides used in this thesis. 
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2.4 Buffers and Reagents 

2.4.1 Common Medium Solutions 

LB: Luria Broth (0.5% bacto-tryptone, 0.25% bacto-yeast extract, 170 mM NaCl, pH 

7.0 with NaOH) for bacterial growth was prepared by the Cancer Research UK London 

Research Institute Medium Service. Antibiotics were added into LB medium before use 

and medium with antibiotics was stored at 4°C. Ampicilin was dissolved in water to 

make a 100 mg/mL working stock, and a final concentration of 100 μg/mL was used in 

LB+Amp medium. Kanamycin was dissolved in water to make a 50 mg/mL working 

stock, and a final concentration of 50 μg/mL was used in LB+Kan medium. 

YPD: Yeast peptone glucose medium (1% yeast extract, 2% peptone, 2% glucose) and 

YPD agar were prepared by the Cancer Research UK London Research Institute 

Medium Service.  

Dropout Powder Stock: This was prepared by overnight mixing of 2 g p-aminobenzoic 

acid and 20 g of each of the following compounds: alanine, arginine, asparagine, 

aspartic acid, cysteine, glutamine, glutamic acid, glycine, inositol, isoleucine, lysine, 

methionine, phenylalanine, proline, serine, threonine, tyrosine and valine. 

Synthetic Complete (SC) Powder Stocks: These were prepared by overnight mixing 

of 36.7 g dropout powder, 4 g leucine, 2 g histidine, 2 g tryptophane, 2 g uracil and 0.5 

g adenine. One or more amino acids were omitted to make specific stocks of SC 

medium. 

Synthetic Complete (SC) Medium 2.5x Stock: This was prepared by mixing 5 g 

synthetic complete (SC) powder stock, 4.25 g Difco yeast nitrogen base (without amino 

acids and ammonium sulfate) and 12.5 g ammonium sulfate. The mix was dissolved in 

1 L H2O and autoclaved. 

Synthetic Complete Medium: 200 mL of 2.5x SC medium stock was mixed with 50 

mL of 20% glucose (w/v) and 250 mL of sterile H2O to obtain 1x SC medium with 2% 

glucose. For promoter shut-off experiments, 2% lactate was used to replace 2% glucose 

as carbon source, and 2% galactose was used later to induce protein expression from the 
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GAL promoter. To prepare SC complete (SC) medium agar plates, appropriate 2.5x 

stock solution (250 mL) was mixed with 200 mL of melted 4% (w/v) bacto agar and 50 

mL of 20% glucose (w/v). The mix was poured into Petri dishes and allowed to solidify 

before use. 

20% Glucose/Lactate/Galactose: 20% glucose stock solution was prepared by the 

Cancer Research UK London Research Institute Medium Service. 20% lactate was 

prepared by dissolving 20 g of lactate in 100 mL sterile H2O and adjusting the pH to 

6.0. 20% galactose was prepared by dissolving 20 g of galactose in 100 mL H2O. All 

final solutions were autoclaved before use.  

 

2.4.2 Buffers and Solutions 

2.4.2.1 Buffers for Yeast Manipulation and Experiments 

LIT buffer: 100 mM LiOAc and 10 mM Tris-HCl, pH 7.4. The solution needs to be 

autoclaved before use. 

LIT/PEG buffer: 100 g PEG (3350) was dissolved in 100 mL of LIT buffer. The 

solution needs to be autoclaved before use. 

Large scale transformation pre-mix: 1.08 mL 1 M LiOAc, 300 μL 10 mg/mL 

ssDNA, 7.2 mL 50% PEG and 2.22 mL H2O 

HU buffer: 8 M urea, 5% (w/v) SDS, 200 mM Tris-HCl pH 6.8, 1 mM EDTA, 0.1% 

(w/v) bromophenol blue and 1.5% (w/v) DTT (added fresh) 

Sporulation medium: 1% KOAc, autoclaved 

Z 0.5 Solution: 37 μL STE buffer (1.2 M sorbitol, 25 mM Tris-HCl pH 8.0, 25 mM 

EDTA, pH 8.0) +2 μL of 1 M DTT + 1μL zymolase 20T (20 mg/mL) 
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2.4.2.2 Buffers for E.coli Manipulation 

Tfb I buffer: 30 mM KOAc, 100 mM RbCl, 10 mM CaCl2, 50 mM MgCl2 and 15% 

v/v glycerol, pH 5.8 

Tfb II buffer: 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl and 15% v/v glycerol, pH 

6.5 

 

2.4.2.3 Buffers for DNA Manipulation 

TAE buffer: 40 mM Tris base, 40 mM glacial acetic acid and 1 mM EDTA. 

6x DNA Loading buffer: 50% (w/v) sucrose and 0.1% (w/v) bromophenol blue 

dissolved in TE and filtered through a 0.45 μm filter (Milipore). 

 

2.4.2.4 Buffers for RNA Manipulation 

Glyoxal reaction mix: 60% v/v DMSO, 20% v/v deionised glyoxal, 1.2x BPTE 

electrophoresis buffer and 5% glycerol 

RNA loading dye: 95% deionised formamide, 0.025% w/v bromophenol blue, 0.025% 

w/v xylene cyanol FF, 5 mM EDTA pH 8.0 and 0.025% w/v SDS 

BPTE electrophoresis buffer: 100 mM PIPES, 300 mM Bis-Tris and 10 mM EDTA 

10x SSC buffer: 1.5 M NaCl and 150 mM Na3C6H5O7 pH 7.0 

 

2.4.2.5 Buffers for Protein Manipulation and Analysis 

Coomassie de-staining solution: 45% methanol v/v, 10% glacial acetic acid v/v 
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Gel-drying solution: 3% glycerol, 20% methanol and H2O 

5x Laemmli Sample buffer: 250 mM Tris-HCl pH 6.8, 500 mM DTT, 10% (w/v) SDS, 

0.1% (w/v) bromophenol blue and 10% (v/v) glycerol 

5x Laemmli Running buffer: 125 mM Tris base, 1.25 M Glycine and 0.5% (w/v) SDS 

PBS (Phosphate Buffered Saline) buffer: NaCl 137 mM, KCl 2.7 mM, Na2HPO4 10 

mM, KH2PO4 1.76 mM, pH 7.4. The solution was prepared by Cancer Research UK 

London Research Institute Medium Service 

PBST buffer: 1xPBS and 0.05% Tween20 

Ponceau Staining Solution: 0.1% (w/v) ponceau S in 5% (v/v) acetic acid 

Western blot transfer buffer I: 300 mM Tris-HCl, pH 10.4 and 15% methanol v/v 

Western blot transfer buffer II: 30 mM Tris-HCl, pH 10.4 and 15% methanol v/v 

Western blot transfer buffer III: 25 mM Tris-HCl, pH 9.4, 40 mM 6-aminocaproic 

acid and 15% methanol v/v 

5% milk PBST solution: 5% milk w/v, PBS+ 0.05% Tween20 w/v 

Western blot stripping buffer: 100 mM Tris-HCl pH 7.5, 10 mM EDTA, 0.5% SDS 

and β-mercaptoethanol 7 μL/mL v/v 

Lysis buffer for GST-tagged protein: 1xPBS, 0.1% NP-40 

Elution buffer for GST-tagged protein: 50 mM Tris-HCl, 10 mM reduced 

glutathione, pH 8.0 

Benzamidine column binding buffer: 500 mM NaCl and 50 mM Tris-HCl, pH 7.4 

Lysis buffer for His-tagged protein: 100 mM NaCl, 50 mM NaH2PO4, 10 mM 

Imidazole, 0.1% NP-40, pH 8.0 
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Washing buffer for His-tagged protein: 100 mM NaCl, 50 mM NaH2PO4, 20 mM 

imidazole, pH 8.0 

Elution buffer for His-tagged protein: 100 mM NaCl, 50 mM NaH2PO4, 250 mM 

imidazole, pH 8.0 

His
Ub

*
4-PCNA

*
 buffer: 200 mM NaCl, 50 mM Tris-HCl pH 7.5 and 10% glycerol 

Gel filtration buffer: 150 mM NaCl, 50 mM Tris-HCl, pH 7.5, and 10% glycerol 

Buffer P: 50 mM Tris-HCl, pH 7.5, 100 mM NaCl and 10% glycerol 

Pull-down buffer I: 1x PBS, 20% glycerol, 0.1% Triton X-100, 1 mg/mL BSA and 5 

mM DTT 

Pull-down buffer II: 1x PBS, 20% glycerol, 0.1% Triton X-100, 1 mg/mL BSA  

HBS running buffer: 10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA and 

0.0005% P20 surfactant 

QIAGEN buffer A solution: 6 M guanidine HCl, 100 mM Na2HPO4/NaH2PO4, pH 8.0 

and 10 mM Tris-HCl, pH 8.0. 

QIAGEN buffer C/0.05% Tween20: 8 M Urea, 100 mM Na2HPO4/NaH2PO4 , pH 6.3 

and 10 mM Tris-HCl, pH6.3 

 

2.4.3 Antibodies 

Please see Appendix 5 for a list of antibodies used in this thesis. 
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2.5 Methods for Yeast Manipulation and Experiments 

2.5.1 Yeast Cultivation 

Yeast cells were grown in YPD medium at 30°C as a standard condition. Cells 

harbouring episomal plasmids were grown in synthetic complete (SC) drop-out medium 

lacking specific amino acids according to the relevant auxotrophic markers. 2% glucose 

was used as a primary carbon source in most of cases. For inducing protein expression 

under the control of a GAL promoter, galactose was used after an overnight incubation 

in medium containing lactate as a sole carbon source. Temperature-sensitive mutants 

were allowed to grow normally at their permissive temperature, and the experiments 

usually took place at a restrictive temperature. 

 

2.5.2 Yeast Transformation 

Yeast cultures were grown to logarithmic phase (OD600 1-2) in YPD or in selective SC 

medium at 30°C (or permissive temperature for temperature-sensitive strains). Cells 

were harvested by centrifugation at approximately 2000xg at room temperature for 3 

min. The pellet was then re-suspended in LIT buffer at a ratio of 5 OD600/ 100 μL. For 

each transformation, 100 μL of the LIT cell mix were transferred into an Eppendorf 

tube with 500 μL of LIT/PEG buffer. 10 μL of 10 μg/μL ssDNA and 1-2 μg of DNA 

(circular or linearised plasmids) were added into the tube. Cells and DNA were mixed 

in the tube by vortexing and continuously incubating on a rotating wheel for 20-30 min 

at room temperature. 50 μL of DMSO were added to each tube of transformation and 

cells were heat-shocked for 15 min (3-5 min for temperature-sensitive mutants) at 42°C. 

Finally, cells were spun down at 800xg for 30 s and the supernatant was carefully 

removed. Cells were finally re-suspended in YPD medium and plated on relevant 

selective plates, which were incubated for 2-3 days at 30°C (or permissive temperature). 

 

2.5.3 Yeast Colony PCR 

Single isolated colonies were picked and re-suspended in 25 μL of H2O, of which 1 μL 

was used in a 10-μL standard PCR reaction mix as a source of DNA template. A 15 min 
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prolonged step at 95°C was applied at the beginning of the PCR reaction to break the 

cells and 40 amplification cycles were usually required. 

PCR programme: 

1. 95°C for 15 min 

2. 95 °C for 45 seconds 

3. 56°C for 1 minute 

4. 72 °C for 1-2 min (depending on the length of PCR product) 

5. Step 2-4, 40 cycles 

6. 72 °C for 5 min 

7. 4 °C forever 

 

2.5.4 Yeast Gene Disruption and Gene Epitope Tagging 

For gene disruption, a pair of specific primers was designed as a 50-nucleotide long 5’ 

overhang region, which is complementary to either upstream or downstream of targeted 

ORF, combined with a 3’ end region that anneals to the knock-out cassette (Longtine et 

al., 1998), which encodes a selectable marker with its own promoter/terminator. A PCR 

reaction was performed to amplify a sufficient amount of knock-out cassette DNA, 

followed by ethanol precipitation. The concentrated cassette DNA was transformed into 

yeast strains, and the transformants were selected on plates selecting for specific 

auxotrophic markers. The positive transformants were usually confirmed by colony 

PCR and phenotypes if available. 
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For gene epitope tagging, a pair of specific primers was designed as a 50-nucleotide 

long 5’ overhang region, which is complementary to the sequence either immediately 

upstream or immediately downstream of the stop codon in the targeted ORF, combined 

with a 3’end that anneals to an appropriate epitope tagging cassette (Knop et al., 1999), 

which consists a desired epitope tag and a selectable marker. A PCR reaction was 

performed and the product was transformed into targeted strains as described above. 

The positive transformants were confirmed by colony PCR and western blot with 

antibody against that specific epitop tag. 

 

2.5.5 Isolation of Yeast Genomic DNA 

2 OD600 of yeast cells were harvested and subject to protocols described in the 

TAKARA Gentle
TM

 kit for isolating genomic DNA. Genomic DNA was finally 

dissolved in sterile H2O and stored at 4°C. Yeast genomic DNA was commonly used as 

a DNA template in PCR reaction to amplify specific yeast genes. 

 

2.5.6 Preparation of Total Cell Extracts from Yeast Cells 

Around 1 OD600 of cells was harvested from a growing yeast culture and pelleted in an 

Eppendorf tube. Each sample pellet was re-suspended in 500 μL of ice-cold sterile H2O 

with 75 μL of NaOH/ β-mercaptoethanol solution. The sample was mixed by vortexing 

and incubated on ice for 20 min. Subsequently, 75 μL of 55% TCA (w/v) solution was 

added and the sample was mixed by vortexing followed by incubation on ice for another 

20 min. During this time, proteins in the cells were precipitated. A 10 min 

centrifugation at 16000xg at 4°C was applied to recover precipitated proteins. After 

removing the majority of the supernatant, another short spin was applied to collect all 

remaining liquid and remove it by pipetting. Finally, the pellet was re-suspended in 20-

30 μL of HU buffer and incubated at 65°C for 15 min. If needed, the pH of the samples 

was adjusted by addition of 1-2 μL of Tris-HCl buffer, pH 10.4. 
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2.5.7 Mating and Tetrad Dissection 

From a saturated overnight culture, 5 μL of a MAT α strain and 5 μL of a MAT a strain 

were mixed and spotted on a YPD plate. Cells were incubated at 30°C for 3-4 h 

allowing them to mate. 1-2 drops of H2O were applied to the cell spot, and the diluted 

cells were spread out on the YPD plate. A micromanipulator (Singer) was used to 

isolate 8-10 zygotes and deposit them onto a different area of the plate. After 2-3 days 

of incubation at 30°C, the colonies derived from the zygotes were inoculated in 2 mL 

sporulation medium and incubated in 30°C for 2-3 days. Cells were analysed under the 

microscope for tetrad formation. After successful sporulation, 5 μL of the culture were 

mixed with 5 μL Z 0.5 solution to digest the ascus wall. The digested mixture was 

spotted onto a fresh YPD plate, and tetrads were separated by a micromanipulator. 

Plates were incubated at 30°C for 2-3 days and all the spores were tested for the mating 

types and the distribution of specific genetic markers. 

 

2.5.8 Spot Assays 

The relevant yeast strains were grown to logarithmic phase in YPD medium and the 

OD600 for each culture was measured. Cells were then diluted with YPD medium to 

reach a final OD600 of 1, which contained approximately 2x10
7
 cells/mL. A series of 10-

fold dilutions was made, and 3.5 μL of each dilution were spotted on plates with 

specific drug concentration. The plates were kept in the incubator for 2-3 days, and 

images of the plates were recorded by scanning every day to monitor the growth of 

sample strains at different drug concentrations. In the case of temperature sensitivity 

assay, similar dilutions of yeast cultures were spotted on YPD plates. Plates were kept 

in incubators at a range of temperatures from 25°C to 37°C. 

 

Plates containing the DNA-damage agent MMS were prepared as following: 100% 

MMS (liquid) was diluted to 1% with DMSO to generate a working stock. Typically, 25 

mL of melted YPD agar were enough for a Petri dish plate. The calculated volume of 

MMS stock was added into a 50 mL falcon tube containing melted YPD agar, the drug 
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was well mixed with the YPD agar in the tube before the mix was poured into the Petri 

dish to solidify. 

 

In the case of benomyl, high concentrations of the drug are known to be difficult to 

dissolve in YPD medium. Therefore, a 10 mg/mL working stock of benomyl was added 

into the medium drop by drop to the desired concentration in order to avoid 

precipitation.  

 

2.5.9 UV Survival Assay 

The relevant yeast strains were grown to logarithmic phase in YPD medium and the 

OD600 for each culture was measured. Dilutions were made to obtain appropriate cell 

densities, and 50 μL of culture were usually plated on YPD plates. Plates were left to 

dry and irradiated with the desired UV dose at 254 nm in a UV crosslinker (Stratalinker 

2400, Stratagene). Plates were then incubated in the dark for 2-3 days at 30°C before 

counting colonies. Culture dilutions were set up depending on the UV dose and the 

anticipated sensitivity of the strain to achieve a final number of ca. 200 cells per plate 

for convenient counting. Error bars were generated from triplicate experiments. 

 

2.5.10 Plasmid Loss Assay 

Wt or relevant mutant strains were transformed with plasmids pHU669 pHK110 and 

pHU794 pHT4467Δ. The transformants were selected on SC-URA plates. Isolated 

colonies from the transformation plates were grown in SC-URA liquid medium to 

saturation, and cultures were diluted to a cell density OD600 0.01 in YPD medium. Cells 

were allowed to grow for another 10 generations, aiming for a final cell density of ca. 

10 OD600. Cultures were diluted to a concentration of 10 cells / μL and, 30 μL of the 

diluted cultures were plated on YPD and SC-URA plates. The proportion of cells that 

maintained the plasmids was calculated as (Number of colonies on SC-URA/ Number 

of colonies on YPD). Three separate colonies were assayed for each strain to have 
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triplicate experiments, from where error bars were derived. Due to the fact that pHU669 

pHK110 has a short version of ARS, this plasmid was more difficult to maintain, and an 

elevated plasmid loss rate was generally seen in strains with this plasmid compared to 

that of strains harbouring pHU794 pHT4467Δ strain. 

 

2.5.11 Growth Rate Assay 

The relevant yeast strains were grown overnight and diluted to a cell density of ca. 0.2 

OD600 in the morning. Cultures were incubated again at 30°C, and the cell density of 

each sample strain was recorded spectrophotometrically as OD600 every 15 min. A 

growth curve, in which cell density was plotted against growth time, was used to 

compare the growth rate between different strains. 

 

2.5.12 Cell Synchronisation 

Yeast cells were grown to logarithmic phase in YPD medium, and α-factor was added 

to a final concentration of 5 μg/mL. Cells were incubated for another 2 h, and samples 

were analysed under the microscope for G1 cells. When most of cells had reached the 

G1 phase, cells were spun down and washed twice with fresh YPD medium. Finally, 

cells were released into fresh YPD medium, and cell cycle progression was monitored 

by Fluorescent Activated Cell Sorting (FACS) analysis. Nocodazole (15 μg/mL) was 

added to cultures to test if cells were able to arrest at G2/M phase in some experiments. 

 

2.5.13  Fluorescent Activated Cell Sorting (FACS) 

1 mL of cells (OD600 1-2) was harvested for each sample. The cell pellet was washed in 

H2O and re-suspended in 70% ethanol for fixation. Cells can be kept at this stage at 4°C 

before further processing. Cell pellets were washed with 50 mM Sodium Citrate buffer 

twice (pH 7.0) and re-suspended in 1 mL of the same buffer. 25 μL RNAase (10 

mg/mL) were added to each sample to degrade RNA. Samples were mixed by vortexing 

and incubated at 50°C in a water bath for 60 min. 15 μL of proteinase K (Fluka82456 
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20,000U/mL) were added to each sample, followed by a 60 min incubation at 50°C. 3-5 

s sonication was then applied to each sample to break up cell clumps and separate 

mother and daughter cells. Finally, propidium iodide stock (160 μg/mL) was diluted to 

20 μg/mL in sodium citrate buffer and 250 μL of cell samples were mixed with 1 mL of 

the diluted propidium iodide solution for FACS analysis. Fluorescence from 

intercalated propidium iodide was measured by FACS, and the result was illustrated as 

a histogram plotting counts on the Y-axis and propidium iodide signal on the X-axis. 

 

2.6 Methods for E.coli Manipulation 

2.6.1 E. coil Cultivation 

E.coli strains were grown at 37°C in Luria Broth (LB) medium as standard condition. 

Cells with plasmids were grown under selective pressure with appropriate antibiotic 

markers such as ampicilin, kanamycin, etc. 

 

2.6.2 E. coli Transformation 

E.coli strains Top10 and BL21 Condon
2+

, which were used in this thesis, were prepared 

as chemically competent cells for transformation.  10 mL of an overnight culture were 

diluted into 1000 mL of medium, which was then incubated at 37°C with aeration until 

an OD600 of ca. 0.5 was reached. Cells were chilled on ice for 15 min and were 

harvested by centrifugation at 5000xg for 5 min. Pellets were then re-suspended in 400 

mL of Tfb I buffer and incubated on ice for 15 min. Cells were spun down again and the 

pellets were re-suspended in 40 mL of Tfb II buffer. Cells were incubated on ice for 15 

min and aliquots of 100 μL were made to be frozen in liquid nitrogen, stored at -80 °C. 

 

Plasmid DNA was mixed with an aliquot of competent cells (100 μL) and chilled on ice 

for 10 min. The mixture was heat-shocked at 42°C for 90 seconds. 1 mL of LB medium 

was added, and cells were incubated at 37°C for 10-15 min before plating on a plate 

with selective antibiotic. For plasmid with kanamycin marker, a minimum of 30 min 
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incubation time was required after the heat shock to allow expression of the kanamycin-

resistance gene.  

 

2.7 Methods for DNA Manipulation 

2.7.1 Isolation of Plasmid DNA 

5 mL of an overnight E.coli culture harbouring the desired plasmid were centrifuged at 

8000xg for 5 min. The supernatant was discarded, and cell pellets were treated 

according to protocols described in the manual of the QIAprep Spin miniprep kit. DNA 

was finally eluted from the spin column with sterile H2O, and sample concentration was 

determined by measuring the absorbance at 260 nm. A Nanodrop ND-1000 

spectrophotometer from Labtech Interactional was used for all measurements.  

 

2.7.2 Agarose Gel Electrophoresis 

Agarose gels with appropriate concentrations of agarose (0.8-2% w/v) in TAE buffer 

were used to analyse DNA samples of different sizes. DNA samples were mixed with 

6x DNA loading buffer and separated by agarose gel electrophoresis in 1xTAE buffer in 

a horizontal gel electrophoresis apparatus from Jencons Scientific. 120 V were usually 

applied to the gel as a standard condition. 0.5 μg/mL of ethidium bromide or a 1:20,000 

dilution of CYBR
®
 Safe DNA gel stain (Invitrogen) were added into the agarose gel 

during preparation to visualise the DNA under a UV lamp (254 nm) or light at a 

wavelength of 473 nm, respectively. Lambda DNA digested with PstI as well as 

commercially available 100 bp or 1 Kb DNA ladders were used as DNA size standards. 

Gel images were taken by the Fujifilm LAS-3000 system. 

 

2.7.3 Polymerase Chain Reaction (PCR) 

100 μL of PCR reaction contained 10 μL of thermo pol buffer (10x), 1-200 μg of DNA 

template, 1 μL of Taq DNA polymerase (Fisher Scientific), 2.5 μL of each DNA primer 

(10 μM), 1 μL of dNTP (25 mM each) and H2O. For DNA amplification requiring high 
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fidelity, Phusion DNA polymerase (Finnzymes) was used in the PCR reaction. In such 

cases, 5x HF buffer or GC buffer was used in combination with the Phusion DNA 

polymerase.  

PCR programme: 

1. 95°C for 5 min 

2. 95 °C for 45 seconds 

3. 56°C for 1 minute 

4. 72 °C for 1-2 min (depending on the length of PCR product) 

5. Step 2-4, 30 cycles 

6. 72 °C for 5 min 

7. 4 °C forever 

 

2.7.4 Site-Directed Mutagenesis 

To introduce mutations within the ORF of SPC25, two internal primers with mutated 

nucleotide sequences at the desired sites were designed. The first round of PCR 

reactions were performed as such external primer 1/internal primer 2 and external 

primer 2/ internal primer 1 to have two separate but overlapping PCR products covering 

the entire ORF (Figure 2.1). 12.5 μL of each PCR reaction product was mixed to have a 

total amount 25 μL. After addition of 25 μL of 0.2 M NaOH, the mix was incubated at 

room temperature for 5 min. 50 μL of H2O, 100 μL of 3 M NaOAc pH 5.2 and 200 μL 

of isopropanol were added into the mix followed by 30 min incubation on ice. The 

sample was spun at 2,000xg for 20 min and the pellet was washed with 70% ethanol. 

Finally, the sample was spun at 2,000xg again for 20 min and the pellet was re-

suspended in PCR mix. The second round of PCR was performed without external 

primers as following program: 

1. 95 °C 5 min 

2. 95 °C 30 s 
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3. 50°C 30 s 

4. 72°C 30 s 

5. Step 2-5, 5 cycles 

6. 95°C forever 

The second round PCR served to extend the two overlapping PCR products from the 

first round PCR reactions to the end of the SPC25 ORF. The sample tube was chilled on 

ice for 3 min and external primers were added into the mix. A final round of PCR 

reaction was performed to amplify the mutagenised ORF. 

 

Figure 2.1 PCR-based site-directed mutagenesis 

A schematic illustration of PCR-based site directed mutagenesis. In the first round of 

PCR, two overlapping PCR products were generated with primer pairs: external primer 

2/ internal primer 1 (black primer pair) and external primer 1/ internal primer 2 (orange 

primer pair).  In the second round of PCR reaction, the overlapping products from the 

first PCR were extended. The third round PCR served to amplify the full-length product 

with the desired mutation. 
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2.8 Methods for RNA Manipulation 

2.8.1 Isolation of Total RNA from Yeast Cells 

Up to 5 OD600 yeast cells were harvested from cultures grown in logarithmic phase, and 

cells were lysed by mechanical disruption using the Fastprep
®
-24 system (MP 

Biomedicals). Total RNA was isolated from yeast lysate by following the protocol 

described in the QIAGEN RNeasy Mini Kit. 

 

2.8.2 Preparation of the Probes for Northern Blot Analysis 

Radiolabelled PCR products were used as probes in northern blot analysis. PCR 

reactions (50 μL) were performed using oligos oHU 412/79 to amplify a C-terminal 408 

bp fragment of POL30 gene and using oligos oHU 640/641 to amplify a 464 bp 

fragment of LacZ gene. PCR products of POL30 and LacZ gene fragments were 

labelled with dCTP P
32

, using Ready-To-Go DNA labelling beads (GE Healthcare) and 

following the manufacturer’s protocol to generate specific probes for northern blot 

analysis. The labelled PCR products were purified from excessive dCTP P
32

 using 

ProbeQuant G-50 microcolumns (GE Health). A final concentration for radiolabelled 

probe is 10 ng/mL in the hybridisation solution.  

 

2.8.3 Northern Blot Analysis 

Total RNA samples were first separated by agarose gel electrophoresis. 2 μL of RNA 

solution (5 μg) were mixed with glyoxal reaction mix and incubated at 55°C for 1 h. 

The sample was then chilled on ice immediately for 10 min. A short centrifugation was 

applied to the sample tube to collect all the liquid, and 2 μL of RNA loading dye were 

added. RNA samples were then analysed on a 1.5% agarose gel in BPTE 

electrophoresis buffer, 50 V for 5 h. After electrophoresis, the gel was washed 

successively in sterile H2O (10 min), 75 mM NaOH (30 min), 0.5M Tris, pH 7.2 (twice, 

10 min each) and 1.5 M NaCl (twice, 10 min each). 
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RNA samples were transferred from the agarose gel to a nylon membrane in 10x SSC 

buffer overnight by capillary transfer and the membrane was dried and baked for 30 min 

at 80°C prior to UV cross-linking. Hybridisation was performed with radiolabelled 

probes in ExpressHyb solution (Clontech) at 68°C for 1 h following manufacture’s 

protocol. Membranes were exposed to Amersham hyperfilm ECL  (GE Health) for 

different times, and the films were developed with an automatic X-Ray film processor 

(Model JP-33, Jungwon Precision Industry). Alternatively, membranes were exposed to 

Amersham Bioscience phosphor screens, which were analysed on a Typhoon Trio 

variable mode imager (GE Health) using ImageQuant Software. 

 

2.9 Methods for Protein Manipulation and Analysis 

2.9.1 Determination of Protein Concentration 

Protein concentration was primarily determined by measuring absorbance at 280 nm. 

Protein samples were analysed using the Nanodrop ND-1000 Spectrophotometer, 

(Labtech International) for absorbance at 280 nm. The extinction coefficient (ε) was 

calculated for each protein by the formula shown below: 

ε (cm
-1

 M
-1

) = 5500 x (the number of Tryptophan residues) + 1490 x (the number of 

Tyrosine residues)  

and the protein concentration was calculated by Beer-Lambert Law: 

Protein concentration = A (absorbance at 280 nm)/ε (extinct coefficient) x l cm 

Alternatively, the Bradford method based Bio-Rad Protein Assay was used according to 

manufacture’s instruction to determined protein concentration. The absorbance at 595 

nm was measured by a Biophotometer (Eppendorf), and the protein concentration was 

estimated by comparing the absorbance with a known BSA standard curve. 
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2.9.2 SDS-PAGE 

Tris-glycine SDS-polyacrylamide gels were prepared according to Laemmli (Laemmli, 

1970) in a Bio-Rad mini protein gel system to analyse most of the protein samples. Tris-

glycine SDS-polyacrylamide resolving gels were used at a concentration range of 6 to 

15% polyacrylamide, and the stacking gel had 5% polyacrylamide. Gel solutions and 

running buffers were prepared according to described protocols (Sambrook, 1989). 

Protein samples were mixed with sample loading buffer and then incubated at 95 °C for 

5 min. Gels were applied to a constant 150 V for approximately 1 h in 1x Laemmli 

running buffer. 

Alternatively, NuPAGE pre-cast gradient gels (4-12%) were purchased from Invitrogen 

to analyse protein samples requiring better resolution. Protein samples were mixed with 

reducing agent and loading buffer according to the manufacturer’s instructions and 

incubated for 10 min at 70°C. Gels were run at constant voltage (165 V) for 

approximately 90 min. 

 

2.9.3 Coomassie or Instant Blue Staining  

After SDS-PAGE, polyacrylamide gels were soaked in Coomassie Blue staining 

solution up to 1 h. Stained gels were de-stained in de-staining solution a few times as 

required. Gels were rinsed with H2O and incubated with gel-drying solution for 30 min. 

Gels were dried on a 3MM Whatman paper in a GelAir Dryer (Bio-Rad). 

 

Alternatively, Instant blue (Expedeon) was used to stain total proteins in the gels after 

SDS-PAGE. Protein bands were visualised on the gel after 10-20 min of staining by the 

Instant Blue solution at room temperature. 

2.9.4 Western Blots 

After SDS-PAGE, protein samples were transferred to a PVDF membrane (Millipore), 

which was activated by methanol in advance. A gradient transfer system consisting of 

three buffers (refer to section 2.4 buffers and reagents for details) was applied. 6 layers 
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of Whatman gel blotting paper were prepared at the size of the gel. Two layers of paper 

were soaked in western blot transfer buffer I, one layer of paper was soaked in western 

blot transfer buffer II and three layers of paper were soaked in western blot transfer 

buffer III. The transfer gradient was set up such that two layers of buffer I soaked paper 

were overlaid by one layer of buffer II soaked paper. On top of that, the activated PVDF 

membrane and gel were laid following by three layers of buffer III soaked paper. This 

stack was placed onto the anode plate of a semi-dry gel blotter apparatus (Roche). A 

constant current of 40 mA per gel was applied to the transfer device for 60-90 min. 

After transferring, the membrane was incubated with 5% milk PBST solution for 30 

min at room temperature. The membrane was then incubated with primary antibody 

(appropriate dilution in 5% milk PBST solution) for 2 h at room temperature or 

overnight at 4°C. After three washes of 10 min each in PBST buffer, the membrane was 

incubated with secondary antibody (appropriate dilution in 5% milk PBST solution) for 

1 h at room temperature. Finally, another three washing steps with PBST were carried 

out, and Western Lightning
TM

 chemiluminescence reagent plus (Perkin Elmer) was 

applied to the membrane according to the manufacturer’s instruction. The membrane 

was exposed to Amersham hyperfilm (GE Healthcare) for various times and the films 

were developed in an automatic X-Ray film processor (model JP-33; Jungwon Precision 

Industry). In the case of re-blotting with another antibody, membranes were incubated 

with western blot stripping buffer at 50°C for 30 min. After this incubation, membranes 

were washed with PBST three times, 10 min each, following by another blocking step 

as described before. Primary and secondary antibodies incubations were applied 

subsequently.  

 

2.9.5 Protein Purifications 

Most of the proteins produced in this thesis were expressed with either a GST tag or a 

6-His tag. The purification methods for both types of proteins were as follows. 

2.9.5.1 Purification of GST Fusion Proteins 

GST
Ub

*
4, 

GST
Ub

*
4(L), 

GST
Ub, 

GST
UBAN and 

GST
Spc25 (107-221) [co-purified with 

His
Spc24 (154-213)] were all expressed as GST-tagged proteins and purified by 
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glutathione affinity chromatography. 
GST

Ub
*
4 was expressed from an E.coli BL21 

Codon
2+

 strain using a pGEX-4T-1 vector  (Amersham/GE Healthcare). Cells carrying 

the expression construct were grown overnight at 37°C and diluted 100-fold to have a 

final cell density of approximately 0.05 OD600 in fresh LB medium. Cells were grown at 

37°C up to an OD600 of 0.5-0.8, and at that time 0.1 mM IPTG was added to the culture 

to induce protein production. The culture was shifted to 30°C for 6 h. At the end of the 

incubation, cells were harvested by centrifugation at 7700xg for 10 min at 4°C. Cell 

pellets were then washed with lysis buffer for GST-tagged protein and re-suspended in 

the same lysis buffer with Complete
®

 protease inhibitor Roche. Cells were passed 

through a homoginiser (Model TC5-612W-332) at 70 MPa at 4°C and lysed further by 

sonication (Branson sonifier) with a programme giving 5 short bursts of 10 seconds at 

40% of output and 1 minute incubation on ice between each pulse. The lysate was then 

rotated in 50 mL falcon tubes in the cold room for 30 min to enhance protein solubility. 

The soluble fraction was then separated from the cell debris by a centrifugation step at 

40,000xg for 20 min. A glutathione affinity column was self-packed with Glutathione 

Sepharose Fast Flow 4 (GE Healthcare) and equilibrated with the lysis buffer (without 

protease inhibitor). The soluble lysate was passed through the column, and the column 

was washed extensively with the same lysis buffer to get rid of all non-specifically 

bound materials. 
GST

Ub
*
4 was then eluted from the column with elution buffer for GST-

tagged protein. The eluted protein was dialysed against PBS buffer and the final protein 

concentration was determined spectrophotometrically as described in section 2.8.1. In 

order to remove the GST tag, 300 μL of 
GST

Ub
*
4  (1 mg/mL) were incubated with 5 μL 

of 1.4 unit/μL thrombin (Novagen) at room temperature overnight on a rotating wheel. 

The cleaved GST moiety was removed from the protein sample by incubation with 

glutathione beads at room temperature for 2 h. The sample was then passed through a 

benzamidine column, which was equilibrated with benzamidine column binding buffer, 

at a flow rate 1 mL/ min on an ÄKTA protein purification system (Model UPC-900, GE 

Healthcare) to remove the thrombin. 

 

GST
Spc25 (107-221)/

His
Spc24 (154-213) were expressed separately from pGEX-4T-1  

(GE Healthcare) and pET15b (Novagen) in separate strains. Both cultures were induced 



Chapter 2. Materials and Methods 

 68 

with 0.2 mM IPTG and were incubated at 18°C overnight to allow a slow protein 

expression under conditions of slow growth. The cell lysates were prepared as described 

above and were combined to allow an association between the expressed subunits. Then 

a single step of affinity purification on glutathione Sepharose was applied to the mixed 

lysate (same as described protocol above), and 
His

Spc24 (154-213) was co-purified with 

GST
Spc25 (107-221). The eluted protein sample was dialysed against PBS buffer with 

10% glycerol and 1 mM DTT. Other GST fusion proteins [
GST

Ub
*
4(L), 

GST
Ub, 

GST
UBAN] were purified by the standard protocol as described above. 

 

2.9.5.2 Purification of His-Tagged Proteins 

His
Ub

*
4-PCNA

*
, 

His
Spc24 (154-213) and 

His
Spc25 (107-221) were all expressed from 

pET series of vectors (Novagen) and purified by Ni-NTA affinity chromatography.  

His
Ub

*
4-PCNA

*
 

His
Ub

*
4-PCNA

* 
was expressed from E.coli BL21 Codon

2+
 strains using a pET28a vector 

(Novagen). Cells harbouring the expression construct were grown overnight at 37°C 

and diluted 100-fold in fresh LB medium to a final OD600 of approximately 0.05 the 

next morning. Cells were grown at 37°C up to an OD600 of 0.5-0.8, and at that time 0.1 

mM IPTG was added into the culture to induce protein production. The culture was 

shifted to 18°C for an overnight incubation. At the end of the incubation, cells were 

harvested by centrifugation at 7700xg for 10 min at 4°C. Cell pellets were then washed 

with lysis buffer for His-tagged protein and re-suspended in the same lysis buffer but 

with Complete® protease inhibitor tablet from Roche. Cell lysate was prepared as 

described in section 2.8.5.1. An ultracentrifugation was also performed at 100,000xg at 

4°C for 30 min (Beckman Ultracentrifuge) to separate all the membranes from the 

soluble fraction. In the end, the soluble fraction was incubated with Ni-NTA resin 

(QIAGEN) pre-equilibrated with the lysis buffer for 1 h at 4°C to allow His-tagged 

protein binding to the resin. The mixture was applied to an empty column to capture the 

resin and release the flow-through. The column was washed with washing buffer for 

His-tagged protein extensively to reduce non-specific binding. Finally, bound proteins 

were eluted from the column with elution buffer for His-tagged protein. The eluted 
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sample 
His

Ub
*
4-PCNA

*
 was applied to a Superdex 200 10/300GL gel filtration column 

(GE Healthcare) on an ÄKTA protein purification system (GE Healthcare). The peak 

fractions representing 
His

Ub
*
4-PCNA

* 
were collected and the purified 

His
Ub

*
4-PCNA

*
 

after gel filtration column was in 
His

Ub
*
4-PCNA

*
 buffer.  

His
Spc25 (107-221)/

 His
Spc24 (154-213) 

The 
His

Spc25 (107-221)/
 His

Spc24 (154-213) complex was co-expressed in a BL21 

Codon
2+

 E.coli strain from pET15b and pET28a respectively. Cells were grown in LB 

medium with 100 μg/mL ampicilin and 50 μg/mL kanamycin at 37°C and both proteins 

were purified using Ni-NTA affinity chromatography as described above. The eluted 

protein sample was immediately applied to a Superdex 200 10/300GL gel filtration 

column (GE Healthcare) on an ÄKTA protein purification system (GE Healthcare), 

which was equilibrated with gel filtration buffer. The peak fractions representing a 

heterodimer of Spc25(C)/Spc24(G) were collected and analysed on SDS-PAGE for 

Coomassie staining and anti-His western blot. The sample was further concentrated by a 

Vivaspin protein concentrator with a 5 kDa cut-off and the final protein concentration 

was determined by the Nanodrop analysis. A maximum concentration of 5 mg/mL 

protein for each subunit, which is equivalent to approximately 400 μM, can be obtained 

by this method. 

 

2.9.6 Assays for Protein Stability  

2.9.6.1 Cycloheximide Chase Analysis 

An appropriate yeast culture was grown to logarithmic phase (OD600 1-2) in YPD or 

selective SC medium at 30°C (or permissive temperature for temperature-sensitive 

strains). Cells were treated with 100 μg/mL cycloheximide to inhibit global protein 

synthesis and further incubated at the appropriate temperature. To observe an effect in 

temperature-sensitive mutants such as pre1-1 and npl4-1, cells were shifted to their 

restrictive temperature (30°C) after addition of cycloheximide. Aliquots of equal 

volume were withdrawn from the culture at appropriate time points and frozen in dry 
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ice. Protein of interests with in the total cell extract were analysed by SDS-PAGE 

followed by western blot with specific antibody. 

 

2.9.6.2 Promoter Shut-Off Assay 

Wt as well as different mutant yeast strains were transformed with episomal plasmids 

that express a series of βGal fusion proteins under control of a GAL10 promoter. Cells 

were grown in SC-URA medium with 2% glucose as carbon source at 25°C, followed 

by an overnight period in SC-URA medium with 2% lactate as carbon source. The 

following day, protein production was induced by addition of 2% galactose and 

incubation in this medium for 2 h. Then cells were shifted back to SC-URA +2% 

glucose medium in the presence of 100 μg/mL cycloheximide to terminate protein 

production. At this stage, temperature-sensitive mutants were shifted to 30°C. Aliquots 

of equal volume were withdrawn for further analysis by western blot against βGal. 

 

2.9.6.3 In Vitro Degradation Assay  

Degradation assays were performed at 37°C in a reaction mix containing 5 nM human 

26S proteasome (Enzo life science), 200 nM PCNA
*
 (provided by Jo Parker in the lab) 

or Ubi4
*
-PCNA

*
, Buffer P, 2 mM ATP, 5 mM MgCl2, and 1 mM DTT. The reaction 

mix was pre-incubated for 5 min at 37°C, and the reaction was initiated by adding 

proteasome. 1 volume of sample was withdrawn at each time point, and SDS loading 

buffer was added to stop the reaction. Samples were finally analysed on SDS-

PAGE/Western blot using anti-PCNA antibody. This protocol was adapted from (Saeki, 

2005) and further modified by myself. 

 

2.9.7 Assays for Protein-Protein Interaction 

2.9.7.1 Yeast Two-hybrid Analysis 

For genome-wide yeast two-hybrid screening, Ub
*
(3-4) (L)-PCNA

*
 and Ub

*
4 -PCNA

* 

were cloned into the vector pGBT9 in frame with the DNA-binding domain derived 
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from the transcription factor Gal4. These constructs served as baits in the screens. Ub
*

(3-

4)(L) and Ub
*
4 were also cloned into the vector pGBT9 in the same way to serve as 

controls. The yeast genomic library used in the screen was described in (James et al., 

1996). It was made from putting fragmented yeast genomic DNA sequences into a 

pGAD424 series vectors in frame with a transcription-activation domain from Gal4 

transcription factor in all three open reading frames (James et al., 1996). A large-scale 

yeast transformation was performed to reach highest efficiency and obtain as many 

colonies as possible to represent the entire yeast genome. The genomic library comes in 

all three frames due to single nucleotide differences upstream of the insertion sites. For 

each library, a 150 mL yeast culture was grown up to ca. 1.0 OD600 and cells were 

harvested by a 5-minute 3000xg centrifugation step. Pellets were re-suspended in 3 mL 

100 mM LiOAc and incubated at 30°C for 15 min. The cells were spun down and the 

supernatant was discarded. The pellet was then re-suspended in 10.8 mL of large scale 

transformation pre-mix. 30 μL of genomic library DNA was added to the mix. After 30 

min incubation at 30 °C, cells were subjected to a 40 min heat shock at 42°C. During 

the course of the heat shock, cells were inverted to mix for 15 s every 5 min. Cells were 

then spun down and re-suspended in 30 mL YPD for another 1 h incubation at 30°C. 

Finally, cells were harvested and re-suspended in 20 mL YPD. 500 μL of cells were 

plated on each 50 mL square plate using a total of 40 plates. After 3 days of incubation 

at 30 °C, the resulting colonies were washed off the plates with YPD. Over 2 million 

transformants were collected per library in the end. Cells were frozen down by placing 

them directly into a -80°C freezer, which allows a slow freezing process and gives 

optimal recovery later on. The resulting transformants together with the bait constructs 

were sent to a company for the actual screen as described in (Albers et al., 2005), where 

a Y187 strain with an opposite mating type and suitable reporter construct was 

transformed with the bait plasmids, and the resulting transformants were mated with the 

genomic library transformants. A physical interaction between the bait protein and an 

unknown factor X expressed from the genomic library would activate transcription at 

the reporter genes. The company performed automated screens and quantitatively 

analysed signals from reporter genes to reveal positive hits. Colonies representing 

positive interactions were then amplified to determine the identity of the inserts via 

sequencing. 



Chapter 2. Materials and Methods 

 72 

For direct yeast two-hybrid analysis, genes of interests were cloned into both pGBT9 

and pGAD424. Plasmids with gene A in pGBT9 and gene B in pGAD424, or the 

reverse combination, were transformed into yeast two-hybrid reporter strain PJ69-4A. 

As a control, empty plasmid vectors were usually included in the experiment to rule out 

false positive interactions caused by auto-activation. 0.5 μg of plasmid DNA for each 

construct was used in every transformation. Positive transformants were selected on –

LW plates. Five positive colonies were picked from each plate, combined and 

suspended in 500 μL of sterile H2O. 3.5 μL of this suspension were finally spotted on 

selective plates, which monitor the transcription of specific reporter genes. Positive 

interactions were monitored by a HIS3 reporter gene, which selects relatively weak 

interactions, and an ADE2 reporter gene, which was used to identify strong interactions. 

Plates -HLW (SC medium lack histidine, leucine and tryptophan) and –AHLW (SC 

medium lack adenine, histidine, leucine and tryptophan) were used for selection. For 

some cases, 5-fold dilutions of the original cell samples were also spotted on selection 

plates for a clearer result. Plates were incubated at 30°C for 2-3 days, and growth was 

monitored by scanning images from day 2 onwards. 

 

2.9.7.2 In Vitro Pull-down Assay  

GST
UBAN and Ub

*
4 pull-down 

To detect an interaction between 
GST

NEMO-UBAN and Ub
*
4, GST (3 μg) and 

GST
NEMO-UBAN (4 μg) were immobilised on 20 μL glutathione Sepharose 4 Fast 

Flow (GE Healthcare) for 2 h at room temperature in 500 μL pull-down buffer I. The 

beads were subsequently washed twice with the same buffer and were incubated with 1 

μg Ub4
*
 in 500 μL pull-down buffer for another 2 h. The beads were washed five times 

with pull-down buffer, mixed with 20 μL of 2x loading buffer, and incubated at 95°C 

for 3 min. The bound material was analysed on SDS-PAGE/western blot with an anti-

ubiquitin antibody. 

Ubiquitin Sepharose and 
GST

Spc25(C)/
His

Spc24(G) pull-down 
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For pull-down experiment with ubiquitin Sepharose, GST (60 μg) and 

GST
Spc25(C)/

His
Spc24(G) (180 μg) were incubated with ubiquitin Sepharose or control 

resin (protein G Sepharose) in 300 μL pull-down buffer II for 2 h. The beads were 

washed three times with the binding buffer and the bound materials were analysed by 

SDS-PAGE/western blot with an anti-GST antibody. 

GST
Ub

*
(n) and 

His
Spc25(C)/

His
Spc24(G) pull-down 

To study the interaction between Spc25/Spc24 and ubiquitin, GST and GST fusion 

proteins were immobilised on glutathione Sepharose 4 Fast Flow (GE Healthcare). GST 

(2 μg), 
GST

Ub (2.7 μg)
 
and 

GST
Ub

*
4(L) (4.7 μg) were incubated with 20 μL of glutathione 

Sepharose for 2 h in 500 μL of pull-down buffer II. The charged beads were washed 

twice with binding buffer and incubated with 180 μg 
His

Spc25(C)/
His

Spc24(G) in 500 μL 

of binding buffer for 1 h at 4°C. The beads were then washed five times with the 

binding buffer before incubation in protein loading dye at 95°C. The bound material 

was analysed on SDS- PAGE/western blot with an anti-His antibody. 

 

2.9.7.3 BIACORE Analysis  

Surface plasmon resonance measurements were performed using a BIACORE 3000 

instrument (GE Healthcare). All the experiments were performed at 25°C using a 

constant flow rate 5 μL/min in manufacturer supplied HBS running buffer. The 

analysed ligands were 
GST

Ub, which was immobilised on the surface of the chip, and 

His
Spc25(C)/

His
Spc24(G), which was flowing over the chip surface. A CM5 sensor chip, 

which was developed for standard amine-coupling, was first equilibrated in HBS 

running buffer for 30 min to prevent condensation. The chip surface was activated by 

injecting 30 μL of NHS/EDC mix (1:1 ration) at a flow rate of 5 μL/min. After 

activation, 35 μL of anti-GST antibody, diluted to 30 μg/mL in coupling solution 

supplied by the manufacturer, was injected. The chip surface was then deactivated with 

35 μL ethanolamine. Approximately 5,000 RU of GST antibody were captured by this 

method, and the resulting chip was used to capture GST fusion proteins. The chip was 

divided into two parallel flow cells in the experiments to capture GST and 
GST

Ub 

separately. Around 500 RU of GST and 673 RU of 
GST

Ub, which corresponds to 
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approximately stoichiometric amounts, were captured on the chip by injection of 

appropriate volumes. A series of samples of 
His

Spc25(C)/
His

Spc24(G) at a concentration 

range of 1-40 μM in HBS buffer were passed over the chip surface, and changes in RU 

were monitored. Signals generated from the GST control flow cell were subtracted from 

those of the 
GST

Ub flow cell, and sensorgrams were analysed using the BIAevaluation 

software. The RUs at equilibrium state of each ligand concentration were plotted 

against ligand concentrations, and the dissociation constant was calculated from the 

graph.  

 

2.9.8 Assays for Identifying Ubiquitylation in Vivo 

2.9.8.1 Detection of Ubiquitylated PCNA 

Yeast strains bearing the 
His

POL30 allele were prepared for efficient isolation of PCNA 

under denaturing condition. The strain yHU 1097 (
His

POL30) carries a deletion of 

endogenous POL30 and is rescued by integration of 
His

POL30 into the LEU2 (Papouli et 

al., 2005). The PDR5 gene was deleted in the 
His

POL30 strain to allow an efficient 

uptake of proteasome inhibitor MG132. The UMP1 gene was deleted in 
His

POL30 to 

generate yHU 2336 
His

POL30 ump1. pHU 732 (YIp128-P30-His-PCNA) (Davies et al., 

2008)was integrated into PRE1 and pre1-1 to generate yHU 2338 (
His

POL30 PRE1) and 

yHU 2339 (
His

POL30 pre1-1). 

 

Appropriate yeast strains were grown overnight and a diluted culture (OD600 0.5) of 50 

mL was set up for each strain. Cultures were incubated for another 2 h and then treated 

with 0.02% MMS for 60-90 min to introduce DNA damage. For the inhibition of 

proteasome activity, 
His

POL30 pdr5 cells were treated with 50 μM MG132 for 2 h prior 

to MMS treatment. Cells were then harvested and re-suspended in 5 mL ice-cold H2O. 

0.75 mL 2M NaOH and 75 μL β-mercaptoethanol were added to each sample. Samples 

were mixed properly and incubated on ice for 20 min. After that, 0.8 mL of 55% w/v 

TCA were added to every sample, followed by mixing and a 20-min incubation on ice. 

Samples were then centrifuged at 16,000xg at 4°C for 20 min. The supernatant was 
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removed and the pellet was re-suspended in 1.5 mL QIAGEN buffer A solution. 

Samples were rotated for 60 min at room temperature until the entire pellet was 

dissolved. A 10,000xg centrifugation was applied for 15 min at room temperature to 

remove all the insoluble material. The supernatant was used for the subsequent Ni-NTA 

pull-down experiment. 40 μL of equilibrated Ni-NTA agarose beads (QIAGEN) were 

incubated together with the supernatant, 22.5 μL of 1M imidazole and 22.5 μL of 10% 

Tween20. After an overnight incubation at room temperature on a rotating wheel, beads 

were recovered by a short spin and washed twice with 1 ml each of buffer A/0.05% 

Tween20 and three times with QIAGEN buffer C/0.05% Tween20. Finally, the beads 

were incubated with 40 μL loading buffer at 95 °C for 3 min. The bound material was 

analysed by SDS-PAGE/western blot with anti-PCNA and anti-ubiquitin antibodies.  

 

2.9.8.2 Detection of Ubiquitylated Kinetochore Proteins 

Yeast strains expressing C-terminally TAP-tagged genes of interest were obtained from 

the West Lab (Originally Open Biosystems) and transformed with plasmids pHU 308 

(YEplac181) and pHU 821 (YEp181-CUP1-His-Ub). Positive transformants were 

grown in SC-LEU medium in the presence of 0.1 mM CuSO4 to induce the expression 

of 
His

Ub. Total cellular ubiquitin conjugates were isolated by Ni-NTA pull-down as 

described in section 2.8.8.1 and bound material was analysed by western blot with anti-

TAP antibody to detect the protein of interest. To confirm the ubiquitylation events 

under conditions where ubiquitin levels are close to the endogenous situation, cells were 

grown in medium without CuSO4. Basal expression of 
His

Ub from the CUP1 copper 

inducible promoter was enough for Ni-NTA pull-down analysis without significantly 

altering cellular ubiquitin level. 
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Chapter 3.  Results I: Distinct Consequences of 

Posttranslational Modification by Linear versus K63-

Linked Polyubiquitin Chains 

 

3.1 Introduction 

3.1.1 Background 

Polyubiquitin chains linked via different lysine residues adopt different geometries 

(Ikeda and Dikic, 2008). Downstream effector proteins that specifically recognise one 

type of chain are believed to mediate the signal transduction after the modification. 

Although there are seven lysine residues on the surface of ubiquitin available for chain 

formation, only a few types are well studied for their biological functions. 

 

K48-linked polyubiquitin chains function as signals for proteasomal degradation. 

Solution structure has demonstrated that K48-linked chains exhibit a compact and 

“closed” conformation (Varadan et al., 2002). Similarly, K29-linked polyubiquitin 

chains also have a proteolytic role as shown in the UFD pathway (Johnson et al., 

1995)(section 1.4.2 for more details). K63-linked polyubiquitin chains assembled by the 

heterodimeric E2 complex of Ubc13 and the E2-like Uev1 (or yeast homologue, Mms2) 

have been reported to function in the NF-κB signalling pathway as well as the DNA 

damage tolerance pathway (Deng et al., 2000, Hofmann and Pickart, 1999, Ulrich, 

2009). Their role in NF-κB activation is unrelated to proteolysis; instead they appear to 

act as scaffolds for the assembly of a signalling complex. The role of K63-linked 

polyubiquitin chains in the DNA damage tolerance pathway remains unclear. A 

proteolytic role of K63-linked polyubiquitin chains in this case has not been fully 

excluded. In fact, K63-linked chains are able to target model substrates for degradation 

in vitro and recent evidence has suggested they may also function as degradation signals 

in vivo (Saeki et al., 2009, Hofmann and Pickart, 2001). The solution structure of K63-
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linked chains indicates they adopt an extended and open conformation, which is quite 

different from K48-linked polyubiquitin chains (Varadan et al., 2004). And indeed, 

many ubiquitin-binding domains have a strong preference for one type of chain over the 

other (Ikeda and Dikic, 2008). 

 

The picture of ubiquitin chain linkage is further complicated by the recent discovery of 

linear ubiquitin chains, where ubiquitin moieties are linked through N-terminal 

methionine and C-terminal glycine (Kirisako et al., 2006). As M1 is very close to K63 

in space (only 6.3 Å away), linear chains adopt a conformation almost identical to that 

of the K63-linked polyubiquitin chains (Komander et al., 2009b). The E3 complex 

LUBAC, which catalyses the formation of linear ubiquitin chains in higher eukaryotes, 

was found to be important for NF-κB activation (Tokunaga et al., 2009).  But the 

function of linear ubiquitin chains does not overlap with K63-linked chains in this case; 

this is consistent with the observation that a UBAN domain in NEMO has a strong 

preference on linear chains over K63-linked chains (Rahighi et al., 2009). Furthermore, 

LUBAC has been proposed to play a role in promoting model substrate degradation 

when it was originally identified, suggesting linear ubiquitin chains may be involved in 

proteasome targeting (Kirisako et al., 2006). 

 

Because of their distinct conformations, it is not difficult to understand that K48-linked 

chains are able to convey messages different from K63-linked chains. However, it may 

not be the case for linear and K63-linked chains, and current observations have raised 

some interesting questions. First of all, the high degree of similarity in structural 

conformation between these two types of chains has challenged the ability of cellular 

machineries to make a successful distinction. Secondly, both linear and K63-linked 

chains have been reported for their non-proteolytic functions as well as their potential 

proteolytic function in several separate events. It is relatively difficult to predict the 

outcome of each modification on a specific substrate. Therefore, it is interesting to 

answer a general question as to what extent linear and K63-linked polyubiquitin chains 

are interchangeable in their functions, and whether or not they act as degradation 
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signals. To address these questions, I directly compared the consequences of 

modifications by linear and K63-linked polyubiquitin chains on a common substrate 

PCNA. I would like to first introduce the DNA damage tolerance pathway, which I used 

as readout in my study to monitor the function of differently modified PCNA. 

 

3.1.2 The DNA Damage Tolerance Pathway 

DNA damage that has not been removed by the global DNA repair processes before the 

onset of the replication can create problems with the progression of the replication fork 

and the completion of the cell cycle. The mechanism that cells rely on to deal with those 

replication-blocking lesions is known as the DNA damage tolerance pathway. The 

process is targeting lesions that cannot be used as a template by the high fidelity 

replicative polymerase either in an error-prone manner or in an error-free manner. 

 

3.1.2.1 The RAD6 pathway 

In S. cerevisiae, the group of genes that are involved in DNA damage tolerance is 

named the RAD6 pathway. Through genetic analysis, the RAD6 pathway genes can be 

further classified into two subgroups: error-prone genes, which mediate damage-

induced mutagenesis, and error-free genes, which promote error-free bypass of the 

damage, respectively (Lawrence, 1994). The RAD18 and RAD6 genes are required for 

both branches of the damage tolerance. REV1, REV3, REV7 and RAD30 are only 

involved in the error-prone branch whereas RAD5, MMS2 and UBC13 are involved 

primarily in the error-free branch. Later it became clear that REV1, REV3, REV7 and 

RAD30 encode translesion DNA polymerases: REV1, polymerase ζ (Polζ) and 

polymerase η (Polη) respectively (Ohmori et al., 2001). RAD18 and RAD5 encode E3 

ubiquitin ligases, while RAD6 and MMS2-UBC13 encode E2 ubiquitin conjugating 

enzymes (Hofmann and Pickart, 1999, Jentsch et al., 1987, Ulrich and Jentsch, 2000). 
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3.1.2.2 The ubiquitylation of PCNA in damage tolerance 

The substrate of the RAD6 pathway was identified to be PCNA (Hoege et al., 2002), 

which forms a homotrimeric ring encircling the DNA to function as a processivity 

factor for replicative DNA polymerases. PCNA is monoubiquitylated by E3 Rad18 in 

cooperation with Rad6 at K164. Rad5 cooperating with the E2 complex Mms2-Ubc13 

can further modify PCNA on the same lysine residue with K63-linked polyubiquitin 

chains (Hoege et al., 2002)(Figure 3.1). The polyubiquitylation of PCNA is a sequential 

reaction that is initiated by the monoubiquitylation and followed by stepwise elongation 

(Parker and Ulrich, 2009). Initial genetic analysis has shown that mono-, but not 

polyubiquitylated PCNA is required for translesion DNA synthesis and damage-induced 

mutagenesis (Stelter and Ulrich, 2003). In vitro experiments further confirmed that 

monoubiquitylated PCNA could stimulate Polη and Rev1 activity to bypass the abasic 

sites (Garg and Burgers, 2005). Monoubiquitylation can directly enhance the affinity 

between PCNA and TLS polymerases Polη and Rev1 (Bienko et al., 2005); therefore 

promoting the switch between replicative polymerase and TLS polymerase at the stalled 

replication fork (Guo et al., 2006, Parker et al., 2007). PCNA polyubiquitylation is 

instead required for the error-free damage bypass, which may involve a template switch 

process to use the genetic information from the newly synthesised and undamaged sister 

chromatid (Zhang and Lawrence, 2005, Hoege et al., 2002). However, the molecular 

mechanism remains unclear and the possibility that K63-linked chains on PCNA may 

signal for proteasomal degradation has also not been experimentally addressed. 

 

Ubiquitylation of PCNA is a highly conserved event. Monoubiquitylation of PCNA has 

been successfully observed in various model organisms from budding yeast to frog, 

chicken and humans (Ulrich, 2009). The polyubiquitylation of PCNA has been difficult 

to observe in higher eukaryotes, but identification of the mammalian Rad5 homologue 

SHPRH and HLTF provides support for the existence of the error-free pathway in 

higher eukaryotes (Unk et al., 2006, Unk et al., 2008, Motegi et al., 2006, Motegi et al., 

2008). 
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Figure 3.1 Mechanism of DNA damage tolerance pathway 

During normal replication, the replicative polymerase (yellow oval) is associated with 

PCNA (green) for accurate DNA replication; when the replicative polymerase 

encounters a lesion (black star) on the template strain, PCNA is monoubiquitylated by 

the E2/E3 complex Rad6/Rad18 (orange oval and purple oval respectively) and recruits 

TLS polymerase (blue) to bypass the lesion in an error-prone manner. PCNA can also 

be polyubiquitylated after its monoubiquitylation with the help of the E2/E3 pair Mms2-

Ubc13/Rad5 (brown-green ovals and red pentagon). The pathway triggered by 

polyubiquitylated PCNA uses genetic information from the undamaged newly 

synthesised sister chromatid to facilitate an error-free mode of bypass, whose molecular 

mechanism remains unclear. Whether the indicated “chicken-foot” structure is 

physiologically relevant remains to be determined. But recent publication suggests such 

a structure is unlikely to be relevant in yeast (Daigaku et al., 2010, Karras and Jentsch, 

2010). 

 

3.1.2.3 Monoubiquitylated PCNA and TLS polymerases 

Normal replicative polymerase cannot process DNA lesions such as abasic sites due to 

its high fidelity catalytic site. There is a group of alternative DNA polymerases with 

active sites that are able to cope with those lesions, named TLS polymerases. In yeast 

TLS polymerases include Y-family polymerases Rev1, Polη and B-family polymerase 

Polζ (Prakash et al., 2005). Humans have two additional Y-family TLS polymerases, 

Polι and Polκ (Prakash et al., 2005). These TLS polymerases are less processive and 

more error-prone compared with the replicative polymerases Polδ and Polε, and they 

interact with the interdomain connector loop (IDCL) of PCNA, usually independently 

of ubiquitylation. The monoubiquitylation of PCNA functions as a molecular switch for 
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the replication machinery to change polymerases (Kannouche et al., 2004, Watanabe et 

al., 2004). The identification of UBM (ubiquitin binding motif) and UBZ (ubiquitin 

binding Zn finger) domains in TLS polymerases gives an explanation for the 

polymerase switch mechanism (Bienko et al., 2005). A yeast two-hybrid screen aiming 

to identify unconventional I44-independent ubiquitin interactors revealed human Polι as 

an interactor and later bioinformatic analysis identified two UBM domains within the 

protein. A similar domain structure was identified in another Y-family polymerase, 

Rev1, as well (Bienko et al., 2005). Another kind of ubiquitin-binding domain, the UBZ 

domain was identified in Polη (Rad30 in yeast) and Polκ (Figure 3.2)(Bienko et al., 

2005, Plosky et al., 2006). Hence, the most attractive hypothesis was that the ubiquitin-

binding domain in TLS polymerases might enhance the affinity between 

monoubiquitylated PCNA and TLS polymerases. This was experimentally addressed 

and confirmed by a number of studies (Guo et al., 2006, Parker et al., 2007, Guo et al., 

2008). Most interestingly, a monoubiquitin fused to the N-or C-terminus of a non-

ubiquitylable PCNA can partially rescue the UV sensitivity of rad18 cells in a TLS-

dependent manner (Parker et al., 2007). In a physical interaction study, the 

monoubiquitin-PCNA fusion preferentially interacted with Rev1 (Guo et al., 2006). 

These observations suggested that monoubiquitin-PCNA is a functional mimic of 

physiological K164-monoubiquitylated PCNA. Moreover, the monoubiquitin-PCNA 

fusion has proved to be a useful tool in vitro to study the regulation of the mechanisms 

of polymerase switching and PCNA polyubiquitylation (Zhuang et al., 2008, Parker and 

Ulrich, 2009). More recently, a split version of PCNA, which consists of one 

polypeptide covering a region from the N-terminus to residue 163 and a second 

polypeptide consisting of ubiquitin fused to residue 165 of the C-terminal portion of 

PCNA, can self-assemble and support both cell survival and TLS. The crystal structure 

of this “monoubiquitylated” PCNA has been solved (Freudenthal et al., 2010). In higher 

eukaryotes, the monoubiquitylation of PCNA can be reversed by USP1, and this process 

might contribute to the later stages of the polymerase switch, where the TLS 

polymerase is replaced by the processive replicative polymerase once the lesion is 

bypassed (Huang et al., 2006). Some TLS polymerases are ubiquitylated themselves, 

and the ubiquitin attached to the polymerase can compete with that on PCNA for UBDs 



Chapter 3. Results I 

 82 

via an intramolecular interaction to promote the removal of TLS polymerase from the 

PCNA (Bienko et al., 2005). 

 

Figure 3.2 Domain structure of translesion synthesis polymerases 

It shows the presence of ubiquitin-binding domains in Y-family TLS polymerases. The 

UBM domain is shown as an orange box; the UBZ domain is shown as a purple/green 

box. BRCT domain (Brca1 C-terminal domain) is shown as a pink box. This figure was 

adapted from (Hofmann, 2009). 

 

3.1.2.4 Polyubiquitylated PCNA 

PCNA is polyubiquitylated at K164 and the ubiquitin chain is K63-linked (Hoege et al., 

2002). Genetic analysis has shown that PCNA polyubiquitylation is required for error-

free damage bypass and further suggests a template switch mechanism that might use 

genetic information from the undamaged newly synthesised sister chromatid (Hoege et 

al., 2002, Zhang and Lawrence, 2005). However, the molecular details downstream of 

PCNA polyubiquitylation are not known. The K63-linked polyubiquitin is well-known 

for its non-proteolytic function, and an early genetic study showed a 10-fold lower UV-

sensitivity in a pre1 pre2 rev3 strain compared with a ubc13 rev3 strain. If the main 

function of the K63-linked chain is to target PCNA for proteasomal degradation, 

mutations in proteasome active sites would show a similar effect to blocking ubiquitin 

chain assembly, therefore pre1 pre2 rev3 and ubc13 rev3 would have a similar UV 

sensitivity. In contrast, the observation did not fit with the hypothesis that the K63-

linked polyubiquitin chains signal for degradation (Hofmann and Pickart, 2001). 

However, another genetic study has proposed a potential link between the proteasome 

and the RAD6 pathway by showing an epistatic relationship between proteasome 

maturation factor UMP1 and RAD6 pathway genes (Podlaska et al., 2003). This 
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discrepancy, derived from indirect genetic data, necessitates a direct experimental 

approach to test the hypothesis if a K63-linked polyubiquitin chain targets PCNA for 

degradation. Furthermore, factors specifically recognising K63-polyubiquitylated 

PCNA remain to be identified in order to fully understand the molecular process 

downstream of PCNA polyubiquitylation.  

 

In this chapter of work, PCNA has been used as a model substrate to directly compare 

the consequences of modifications by linear and K63-linked polyubiquitin chains. My 

results indicate that the DNA damage tolerance pathway is able to differentiate between 

linear and K63-linked polyubiquitin chains. K63-polyubiquitylated PCNA is not a 

target for proteasomal degradation. In contrast, linear, non-cleavable ubiquitin chains do 

not promote DNA damage tolerance, but instead function as general degradation 

signals. 

 

3.2 Linear Ubiquitin Chains Do Not Promote DNA Damage 

Tolerance 

In order to directly compare the consequences of modifications by linear and K63-

linked polyubiquitin chains, I decided to start my study with a model substrate on which 

both modifications can occur. There were two options: find a physiological substrate of 

K63-linked polyubiquitylation and replace the modification with linear ubiquitin chains 

or vice versa. PCNA is physiologically polyubiquitylated by K63-linked chains upon 

DNA damage and this modification event is highly conserved from yeast to human. It 

therefore provided me with a unique model substrate to analyse the exact outcomes of 

linear versus K63-linked polyubiquitylation. It is possible to create linear polyubiquitin 

chains as tandem repeats of ubiquitin units by molecular cloning. I can also take 

advantage of yeast genetics to determine the molecular details downstream of these 

modifications by manipulating readout strains. The other option involves putting K63-

linked polyubiquitin chains on a substrate of linear polyubiquitylation. The only such 

substrate reported up to date was NEMO and the far more complicated experimental 
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setting in a mammalian cell line system compared with a similar but more simple 

approach in a yeast system prevented me from pursuing this option.  In the case if linear 

chains are able to substitute K63-linked chains to function in DNA damage bypass, I 

could then use it to make mimics of real polyubiquitylated PCNA in order to investigate 

its biological functions. If linear chains do not function the same as K63-linked chains, I 

would still be able to investigate the functional differences between these two types of 

chains in the context of the DNA damage tolerance pathway. 

 

Based on these stated reasons, I wanted to analyse linear polyubiquitylated PCNA and 

K63-polyubiquitylated PCNA for their functions in the DNA damage tolerance 

pathway. Firstly, I need to create a linear polyubiquitylated form of PCNA. Previous 

observations from our lab showed that a single, non-extendable ubiquitin (K29R, K48R, 

K63R) fused to either N- or C-terminus of PCNA successfully complements a defect in 

monoubiquitylation at K164 (Parker et al., 2007). These data suggest that the position of 

ubiquitin on PCNA is not critical, at least for function in TLS.  In addition to that, in 

vitro the PCNA polyubiquitylation machinery is able to assemble chains on a fusion 

construct with WT ubiquitin fused to either N- or C-terminus of PCNA
*
 (K127R, 

K164R), whose major ubiquitylation and SUMOylation sites are mutated (Parker and 

Ulrich, 2009). It suggests that the polyubiquitylation machinery for PCNA is not 

selective for modification sites on PCNA at least in vitro and polyubiquitin chains 

attached to the N-terminus of PCNA may still function. Therefore, I further extended 

this system to generate a linear ubiquitin chain modified form of PCNA. I designed 

linear fusions of polyubiquitin arrays to the N- or C-terminus of PCNA (Figure 3.3). In 

order to allow for some conformational flexibility, I designed a series of constructs 

containing two to four ubiquitin repeats separated by a short linker (Ub
*

n(L)-PCNA
*
), 

and two constructs in which four ubiquitin moieties were joined precisely in a head-to-

tail manner (Ub
*
4-PCNA

*
 and PCNA

*
-Ub

*
4 ). In addition to ubiquitylation, PCNA is 

SUMOylated at K164 primarily as well as K127 (Hoege et al., 2002). The SUMOylated 

PCNA recruits Srs2 helicase to inhibit homologous recombination (Papouli et al., 2005, 

Pfander et al., 2005). In order to prevent further modification on my fusion constructs, 

the major ubiquitylation or SUMOylation sites on PCNA (K164 and K127) and on 
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ubiquitin (K29, K48 and K63) were mutated to arginine (indicated by an asterisk in our 

notation). A glycine to valine mutation at the C-terminus of ubiquitin was introduced to 

prevent isopeptidase cleavage. The last ubiquitin moiety at the C-terminus of PCNA
*
-

Ub
*
4 had a two-amino acid truncation (G75 and G76) represented as ΔGG to prevent 

further conjugation. Finally, in order to verify if K63-linked polyubiquitin chains can 

indeed support DNA damage tolerance even at the N-terminus of PCNA, I generated a 

construct named Ub
K63*

-PCNA
*
, similar to the previously described non extendable 

Ub
*
-PCNA

*
 fusion but with K63 available for further modification. The in vitro data for 

such a construct (Parker and Ulrich, 2009) would predict activity in both error-prone 

and error-free branches of damage tolerance. 

 

Figure 3.3 Linear ubiquitin-PCNA fusion constructs 

Schematic view of the linear ubiquitin-PCNA fusion constructs used in this study. 

Mutations in the open reading frames of ubiquitin (K29/48/63R, G76V) and PCNA 

(K127/164R) are indicated only once per panel; the mutant versions are presented as 

Ub
*
 and PCNA

*
, respectively. Amino acid sequences of linker peptides are shown 

below the constructs. The last ubiquitin moiety at the C-terminus of PCNA
*
-Ub

*
4 has a 

two-amino acid truncation (G75 and G76) represented as ΔGG. 
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The constructs were expressed under control of the POL30 promoter in a rad18 strain, 

which is not able to ubiquitylate endogenous PCNA. In that case, the linear ubiquitin-

PCNA fusion proteins were the only source of modified PCNA and their abilities in 

supporting damage tolerance would be reflected as sensitivities of host strains to the 

DNA damage agents methyl methanesulfonate (MMS) or ultraviolet (UV) irradiation. 

In the rad18 strain, I observed that Ub
K63*

-PCNA
*
 was able to suppress the damage 

sensitivity in MMS drug spot assay even at a concentration of 0.002% MMS, almost 10-

fold higher than the level of resistance observed in Ub
*
-PCNA

*
 (Figure 3.4). The 

suppression effect of Ub
*
-PCNA

*
 was mainly mediated by TLS as cell survival was 

abolished in the ΔTLS background, where all three TLS polymerases in budding yeast 

were defective due to rev1 rev3 rad30 mutations. However, the suppression effect of 

Ub
K63*

-PCNA
*
 was largely independent of TLS as the cell survival was only partially 

reduced in ΔTLS background (Figure 3.4). This result beautifully illustrated that Ub
K63*

-

PCNA
*
 can rescue damage sensitivity of rad18 cells independent of TLS-mediated 

error-prone damage bypass, most likely by activating the error-free branch of the DNA 

damage tolerance pathway. This result is also consistent with previously reported in 

vitro observations, where polyubiquitin chains can be formed on Ub-PCNA
*
 by the 

PCNA polyubiquitylation machinery (Parker and Ulrich, 2009), and it suggests that 

K63-linked polyubiquitin chains are indeed functional even at the N-terminus of PCNA. 

From this observation, I ruled out the possibility that changing the modification site 

from K164 to the N-terminus of the protein might have influence on the biological 

outcomes of polyubiquitylation on PCNA, therefore I was able to make a fair 

comparison for linear and K63-linked polyubiquitin chains on the same modification 

site of a common substrate. 
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Figure 3.4 K63-linked polyubiquitin chains support damage tolerance even at the 

N-terminus of PCNA 

Sensitivities of the indicated strains to MMS were determined by spot assays. Ub
K63*

-

PCNA
*
 permits formation of a K63-linked chain on the N-terminus of PCNA, 

suppresses the damage sensitivity of rad18 in a TLS-independent manner, indicating 

that the attachment site of the ubiquitin chain on PCNA is irrelevant for function in 

damage bypass. The rad18 ΔTLS strain (rad18 rev1 rev3 rad30) is defective in all three 

budding yeast TLS polymerases (Bottom). 

 

For linear fusion constructs, Ub
*
4(L)-PCNA

*
 suppressed the damage sensitivity of 

rad18 cells to some degree (Figure 3.5A). In contrast, the linkerless versions, Ub4
*
-

PCNA
*
 and PCNA

*
-Ub4

*
 did not show much rescue beyond the effect of PCNA

*
 alone 

(Figure 3.5B).  In addition to that, all of the linker-bearing constructs Ub
*
2(L)-PCNA

*
, 

Ub
*
3(L)-PCNA

*
 and Ub

*
4(L)-PCNA

*
 showed a rescue effect same as that of the 

construct equivalent to monoubiquitylated PCNA (Figure 3.5A). Most importantly, the 

rescue effect observed in cells with all these constructs required the presence of TLS 

polymerases, as the viability dropped back to the level of PCNA
*
 alone when similar 

experiments were performed in a rad18ΔTLS strain (Figure 3.5A). This result was 

further confirmed by UV survival assay with the same strains used in MMS drug spot 

assay (Figure 3.6). 
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These data indicate that Ub
*
n(L)-PCNA

*
 only support TLS, but not the error-free branch 

of damage bypass and increasing the length of the linear ubiquitin chain does not seem 

to help with TLS efficiency. The linkerless construct was even unsuccessful in TLS, 

suggesting that damage tolerant polymerases may require specific interaction sites on 

PCNA and proximal ubiquitin moiety, which could be masked by the head-to-tail 

linkage. Taking into account the fact that K63-linked polyubiquitin chains are 

functional at the N-terminus of PCNA, but none of the linear fusion constructs are able 

to support polyubiquitylation-dependent damage bypass, it indicates that in the context 

of the DNA damage tolerance pathway linear and K63-linked polyubiquitin chains are 

functionally distinct. 

 

Figure 3.5 Linear non-cleavable polyubiquitin chains on PCNA cannot substitute 

for the K63-linked modification in DNA damage bypass 

Sensitivities of the indicated strains to MMS were determined by spot assays. (A) 

Linker-bearing ubiquitin-PCNA fusions [Ub
*
n(L)-PCNA

*
] support only TLS, 

irrespective of the number of ubiquitin moieties. (B) Linkerless fusions of tetraubiquitin 

to PCNA (Ub
*
4-PCNA

*
 and PCNA

*
-Ub

*
4) do not promote damage bypass. 
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Figure 3.6 Linear ubiquitin fusions to PCNA rescue the UV sensitivity of rad18 

cells to different extents 

(A) Linear tetraubiquitin fusions to PCNA rescue the UV sensitivity of rad18 cells to 

different extents. UV sensitivities were determined for rad18 cells bearing the indicated 

constructs. (B) The number of ubiquitin units fused to PCNA
* 

does not affect the extent 

of rescue. UV survival assays were carried out as in (A). Diamond shape: WT; square 

shape: rad18; triangle shape: rad18+vector; circle shape: rad18+PCNA
*
; square with an 

“x”inside: rad18+PCNA
*
-Ub

*
4; solid black triangle: rad18+Ub

*
-PCNA

*
; solid black 

circle: rad18+Ub
*
4 (L)-PCNA

*
; solid black diamond: rad18+Ub

*
-PCNA

*
; solid black 

square: rad18+Ub
*
2 (L)-PCNA

*
; upside down solid black triangle: rad18+Ub

*
3(L)-

PCNA
*
; *: rad18+Ub

K63*
-PCNA

*
. 

 

3.3 Linear Polyubiquitin Chains Target PCNA for Proteasomal 

Degradation 

The fact that the DNA damage tolerance pathway is able to distinguish linear and K63-

linked polyubiquitin chains led me to investigate the exact function of each type of 

chain in this specific context. The first clue comes from analysing the protein levels of 

different linear fusions used in DNA damage sensitivity studies described in Figure 3.5. 

I noticed a dramatic reduction in the abundance of all fusion proteins with tetraubiquitin 

chains compared with the shorter versions or endogenous PCNA in rad18 strains 

(Figure 3.7). The potential effects caused by different levels of fusion proteins on their 

function in damage bypass will be discussed in detail in section 3.8.1. Similar patterns 

were observed when I expressed all fusion constructs in a WT strain (Figure 3.8A). It 
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has been shown that the minimum length for K48-linked polyubiquitin chains to be 

effectively recognised by the 26S proteasome is four ubiquitin moieties (Thrower et al., 

2000). I hypothesised that linear ubiquitin chains may also function as proteasomal 

degradation signals.  

 

Figure 3.7 Expression and abundance of ubiquitin-PCNA fusion proteins in rad18 

cells 

Protein levels of the PCNA fusions used in MMS spot assay and UV sensitivity assay 

(Figure 3.4, 3.5 and 3.6) in total extracts of rad18 cells, detected by Western blots 

analysis. The asterisks indicate cross-reactive bands, possibly SUMOylated endogenous 

PCNA. 
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I first tested if proteasome mutants were able to stabilise fusion proteins with 

tetraubiquitin chains. By expressing fusion proteins in a proteasome mutant pre1-1 

strain, which has impaired catalytic activity, and its isogenic WT, I observed increased 

steady-state levels of full-length fusion proteins in the proteasome mutant strain 

whereas the endogenous PCNA level remains equal in all lanes serving as loading 

control (Figure 3.8B).  There were species reactive with PCNA-antibody migrating at 

the size between full-length fusion proteins and endogenous PCNA. It is likely that they 

are partially processed fusion proteins and their appearance in pre1-1 cells could be due 

to the remaining proteasomal activity in this mutant. 

 

This effect could be a result of up-regulation of protein production or protein 

stabilisation in proteasome mutant cells. To distinguish these two possibilities, I 

performed Northern blot experiments to directly assess the levels of transcripts of Ub4
*
-

PCNA
*
 in both WT and proteasome mutant cells. Total RNA was isolated from both 

strains and a POL30 gene specific probe was used to detect Ub4
*
-PCNA

*
 transcripts and 

endogenous PCNA transcripts. I did not see any obvious changes in the amount of 

transcripts between WT and pre1-1 cells in this experiment, suggesting that increased 

protein levels of fusion constructs in proteasome mutant were not due to changes in the 

amount of specific transcripts in pre1-1 cells (Figure 3.8C).  Therefore, stabilisation of 

fusion proteins in pre1-1 cells is most likely to be the reason. 
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Figure 3.8 Protein levels of linear tetraubiquitin-PCNA fusions increase in a 

proteasome mutant 

(A) Protein levels of the ubiquitin-PCNA fusion constructs and endogenous PCNA 

were compared by Western blots with an anti-PCNA antibody. Linear tetraubiquitin 

chains destabilise the respective fusion proteins. (B) Steady-state protein levels of 

tetraubiquitin fusions to PCNA are increased in a proteasome mutant. The observed 

PCNA antibody-reactive species between full-length fusion proteins and endogenous 

PCNA are likely to be processed intermediates of the fusion proteins. (C) Northern 

blots, probed with a POL30-specific probe and showing mRNA levels of Ub
*
4-PCNA

*
 

and PCNA in the indicated strains. 
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To directly test this possibility, I decided to analyse the stability of tetraubiquitin-PCNA 

fusions in vivo. I treated PRE1 and pre1-1 cells with cycloheximide, a translation 

inhibitor, to block de novo protein synthesis and performed chasing experiments to 

analyse fusion protein levels from culture samples taken at different time points. Indeed, 

all tetraubiquitin-PCNA fusion proteins were degraded in WT cells and were stabilised 

in proteasome mutant cells (Figure 3.9). But the half-lives varied considerably from 60 

minutes to a few hours between the different fusion constructs.  PCNA
*
-Ub

*
4 had the 

shortest half-life and it was almost completely degraded in 60-80 minutes. In contrast, 

Ub4
*
-PCNA

*
 needed more than 15 hours to be degraded. It took even longer for 

Ub4
*
(L)-PCNA

*
 to have an observable reduction in its protein level (Figure 3.9). It 

suggests that indeed tetraubiquitin-PCNA fusions are degraded in vivo in a proteasome-

dependent manner. However, the observed turnover rate is at best moderate, not 

comparable with endogenous short-lived proteins or other model substrates whose 

degradation is mainly targeted by K48-linked polyubiquitin chains. The degradation 

rate of fusion proteins varies depending on the way ubiquitin moieties are connected in 

the linear chain or the attachment site on the substrate. Because the Ub4
* 

construct most 

closely resembles the arrangement of a physiological linear ubiquitin chain and it 

functions as a better degradation signal, all subsequent studies were focused on this 

form of linear ubiquitin construct. 
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Figure 3.9 Linear non-cleavable tetraubiquitin chains target PCNA for 

degradation by the 26S proteasome in vivo 

Cycloheximide chase experiments show the degradation of the tetraubiquitin fusion 

proteins in PRE1 cells and their stabilisation in pre1-1 cells. Exponential cultures were 

treated with 100 μg∕mL cycloheximide to inhibit de novo protein synthesis, and samples 

corresponding to equal culture volumes were processed for Western blot analysis at the 

indicated time points. 

 

 

 

In vivo, misfolded proteins are degraded via the 26S proteasome as part of the cellular 

quality control mechanism to eliminate defective proteins (Goldberg, 2003). In order to 

exclude the possibility that incorrect folding of the fusion protein causes proteasomal 

degradation, I decided to analyse if Ub4
*
-PCNA

*
 can fold properly. PCNA forms 

homotrimer in vivo and a previous observation in our lab shows that Ub
*
-PCNA

*
 is able 

to trimerise and be loaded onto DNA (Parker et al., 2007). Therefore, I speculate that 

Ub4
*
-PCNA

*
 should also be able to form trimers if the fusion protein can fold properly. 

I expressed 
6His

Ub4
*
-PCNA

*
 as N-terminally 6His-tagged recombinant protein in E.coli 

and performed a Ni-NTA affinity purification.  A gel filtration analysis was then 

performed to analyse the ability of Ub4
*
-PCNA

*
 or PCNA

*
 to form trimers. A mix of 

standard proteins was used to estimate the size of complexes presented in different 
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fractions. Recombinant PCNA alone was enriched in fractions #25-27 with a molecular 

weight around 90 kDa (Figure 3.10A). PCNA monomer has a size around 30 kDa, the 

observed enrichment at 90 kDa suggests PCNA
*
 alone forms trimers in vitro. I found 

6His
Ub

*
4-PCNA

* 
enriched in fractions #21-23 with a molecular weight around 210 kDa 

(Figure 3.10A, B).  With its monomer about 70 kDa in size, the detected 210 kDa 

complex indicates that 
6His

Ub
*
4-PCNA

* 
forms homotrimers as well in vitro. Therefore, 

Ub
*
4-PCNA

*
 has a proper folding structure and protein misfolding is unlikely to be 

responsible for the degradation of this fusion protein. 

 

Although three major ubiquitin acceptor sites (K29, K48 and K63) were mutated in my 

tetraubiquitin chains and there were no high molecular weight species on Western blots 

could indicate further modifications, I was interested to find out if a linear ubiquitin 

chain alone was sufficient for proteasomal targeting. I performed an in vitro degradation 

assay with purified 26S proteasome, which is commercially available. In my 

experiment, 5 nM 26S proteasome was supplied with 200 nM substrates protein. I 

observed that recombinant 
6His

Ub
*
4-PCNA

*
 was degraded in a few hours, but 

recombinant PCNA was not degraded during the same time course (Figure 3.10C). This 

result suggests a linear ubiquitin chain alone is sufficient for proteasome targeting in 

vitro. Interestingly, the rate of substrate degradation was also quite slow in this case, 

which is not comparable with other short-lived proteasome substrates but correlates 

with my previous in vivo observation. Potential explanations for this phenomenon will 

be discussed in section 3.8.3. 
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Figure 3.10 Recombinant Ub
*
4-PCNA

*
 forms homotrimers and is degraded by the 

26S proteasome in vitro 

(A) and (B) Gel filtration analysis of PCNA
*
 and Ub

*
4-PCNA

*
, followed by anti-PCNA 

Western blots, confirms the trimeric nature of the fusion protein. In (A), the pink trace 

represents Ub
*
4-PCNA

* 
and the blue trace represents PCNA

*
. Fraction numbers are 

labelled below the trace and the molecular weight standards are above the trace. The 

second and third peak of the pink trace represent partially cleaved products of Ub
*
4-

PCNA
*
.
 
(B) Western blots of samples from gel filtration analysis; elution of molecular 

weight standards and the void volume are indicated above the fraction numbers. (C) In 

vitro degradation assays were set up with 200 nM purified recombinant PCNA
*
 or Ub

*
4-

PCNA
*
 and 5 nM purified human 26S proteasome at 37°C. Samples were taken at the 

indicated time points and analysed by Western blot.  
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The linear ubiquitin chain constructs used in my study have extensive mutations on 

each ubiquitin moiety including: K29R, K48R, K63R and G76V. There are some 

evidences showing that lysine-less K0 ubiquitin has an altered surface charge and 

partial deficiency in its ability to interact with ubiquitin-binding domains (Komander, 

2009). The fact that my linear ubiquitin chain was still able to target PCNA for 

degradation suggests this form of ubiquitin chain was at least functional, if not optimal, 

in vivo. To further strengthen this point, I decided to directly test its ability to interact 

with a UBAN domain, which is an ubiquitin-binding domain selective for linear 

ubiquitin chains (Komander et al., 2009b, Rahighi et al., 2009). I expressed 
GST

Ub
*
4 

with an N-terminal GST-tag from E.coli and purified the fusion protein by glutathione 

sepharose based affinity chromatography. GST moiety was then cleaved by thrombin 

(Figure 3.11A) and protein samples were then passed through a glutathione column, 

followed by a benzamidine column to remove free GST and thrombin. The 
GST

UBAN 

domain of NEMO was expressed and purified in a similar way. An in vitro pull-down 

experiment was performed and indeed 
GST

UBAN is able to bind Ub
*
4 (Figure 3.11B). 

This result suggests the linear ubiquitin chain used in this study is able to bind the 

UBAN domain despite a series of mutations on its surface. 

 

In summary, these data suggest that linear polyubiquitin chains with sufficient length on 

PCNA act as proteasomal degradation signals in vivo and in vitro with a noticeably 

slower turnover rate compared to those of some short-lived endogenous proteins or 

model substrates (Johnson et al., 1995, Ciechanover et al., 2000). 
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Figure 3.11 The linear non-cleavable Ub
*
4 array is bound by the UBAN domain of 

NEMO 

(A) Coomassie staining of a gel shows purified 
GST

Ub
*
4 samples with or without 

thrombin treatment. 
GST

Ub
*
4 was expressed and purified from E.coli using glutathione 

affinity chromatography, the GST moiety was removed from the fusion protein by 

treating with thrombin overnight at room temperature and samples were applied to a 

glutathione column and a benzamidine column sequentially to remove free GST and 

thrombin. (B) GST pull-down experiments were performed with Ub
*
4 and a GST fusion 

of the NEMO UBAN domain. Proteins bound to the glutathione beads were detected by 

anti-ubiquitin Western blot and Ponceau staining of the membrane. 1.5% of the input 

and 12.5% of total bound material were loaded on this gel.  

 

 

3.4 K63-Polyubiquitylation Does Not Target PCNA for 

Degradation 

PCNA is polyubiquitylated by K63-linked chains under conditions of DNA damage. It 

remains unclear what is the function for K63-linked chains in this case. There is some 

indirect evidence suggesting two different possibilities. First of all, total cellular level of 

PCNA does not seem to drop after DNA damage-induced ubiquitylation, suggesting a 

non-proteolytic role of the modification (Hoege et al., 2002). However, as the fraction 

of polyubiquitylated PCNA is very little, lack of change at total PCNA level does not 
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necessarily indicate a non-degradative function. Further investigations are still required. 

The second possibility is based on genetic evidence that proteasome mutants exhibit 

DNA damage sensitivity and have an epistatic relationship with RAD6 pathway genes 

(Podlaska et al., 2003). It suggests that the proteasome may be involved in DNA 

damage tolerance as a consequence of this modification. But, again there is evidence 

against this idea mainly from another genetic observation showing lack of synergism 

between pre1-1 pre 2-2 and rev3 mutants (Hofmann and Pickart, 2001). I was therefore 

interested to investigate the role of K63-linked polyubiquitylation on PCNA. 

 

To address the possibility that K63-linked polyubiquitin chains may play a role as 

degradation signal on PCNA, I started to analyse the amount of polyubiquitylated 

PCNA in cells with normal or attenuated proteasome activity. As the first approach, I 

used a proteasome inhibitor to transiently block proteasome activity before introducing 

DNA damage. I treated yeast cells with proteasome inhibitor MG132 for 2 hours and 

then introduced DNA damage with MMS. A special yeast strain 
His

POL30 pdr5, in 

which a multidrug transporter encoded by PDR5 gene has been removed, was used to 

allow efficient uptake of proteasome inhibitor MG132. A 6His-tag was introduced into 

the POL30 genomic locus to allow efficient isolation of PCNA. 
His

PCNA was isolated 

from cell extracts under denaturing conditions to preserve polyubiquitylation. As a 

control for successful proteasome inhibition, I observed an accumulation of total 

cellular ubiquitin conjugates in the extracts from cells treated with proteasome inhibitor 

MG132 (Figure 3.12A).  In contrast, the levels of damage-induced polyubiquitylated 

PCNA did not increase in those cells, instead, a small reduction was observed (Figure 

3.12B).  

 

In order to confirm this observation, I decided to analyse the damage-induced PCNA 

polyubiquitylation in proteasome mutants that have a persistent attenuation of 

proteasome activity compared with a transient inhibition with inhibitor MG132 

treatment. I chose two mutants: ump1, a proteasome maturation factor mutant, UMP1 

has been reported to be epistatic with RAD6 pathway genes (Podlaska et al., 2003); 
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pre1-1, a catalytic mutant of the proteasome. In these proteasome mutants, a similar 

result was observed. Total cellular ubiquitin conjugates were accumulated in mutant 

strains and the levels of polyubiquitylated PCNA again showed a subtle reduction 

(Figure 3.13A, 3.13B). In Figure 3.13B, on the anti-ubiquitin Western blot, there was a 

noticeable increase in high-molecular weight signals specifically from proteasome 

mutant samples, that could be due to elevated pull-down background from proteasome 

mutant strains since none of them are damage specific or PCNA reactive. Therefore, it 

is unlikely the modified species have converted to longer chains in this case. To 

summarize, all these data clearly indicate that damage-induced K63-linked PCNA 

polyubiquitylation normally does not lead to proteasomal degradation. When 

proteasome activity is attenuated, the reduction in the amount of polyubiquitylated 

PCNA is likely due to the depletion of free ubiquitin that results from a lack of 

recycling. 

 

Figure 3.12 K63-polyubiquitylated PCNA does not increase in cells treated with 

proteasome inhibitor MG132 

(A) Inhibition of the proteasome by the chemical inhibitor MG132 causes an 

accumulation of total ubiquitin conjugates. Exponential cultures of 
His

POL30 pdr5 cells 

were treated with 50 μM MG132 for 2 h where indicated, and ubiquitylated species 

were detected in total extracts by Western blots with an anti-ubiquitin antibody. 

Detection of phosphoglycerate kinase (PGK) served as loading control. (B) Damage-

induced ubiquitylation of PCNA is reduced upon chemical inhibition of the proteasome. 
His

PCNA was isolated by denaturing Ni-NTA pull-down from extracts of 
His

POL30 pdr5 

cells treated with 50 μM MG132 for 2 h and 0.02% MMS for 90 min where indicated, 

and Western blots were developed with anti-PCNA and anti-ubiquitin antibodies.  
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Figure 3.13 K63-polyubiquitylated PCNA does not increase in proteasome mutant 

cells 

(A) Mutants with attenuated proteasome activity accumulate total ubiquitin conjugates. 

Extracts were prepared from the indicated strains and probed as in Figure 3.12A. (B) 

Damage-induced ubiquitylation of PCNA is reduced in mutants affecting proteasome 

activity. 
His

PCNA and its ubiquitylated forms were isolated from the indicated strains 

and detected as in Figure 3.12B. The high-molecular weight signals in (B) marked with 

an asterisk are due to nonspecific isolation of ubiquitin conjugates; they are neither 

PCNA-reactive nor damage-dependent. 

 

3.5 A Linear Ubiquitin Chain Acts as a General Degradation 

Signal 

To generalise my observation that linear ubiquitin chains can act as degradation signals 

and to further investigate the slow turnover rate of substrates marked by linear ubiquitin 

chains, I decided to analyse the effect of linear chains on another model substrate β-

galactosidase whose degradation pattern has been well studied (Bachmair et al., 1986). 

Based on the Ub-βGal construct originally described in the study of the UFD pathway 

(Johnson et al., 1992, Johnson et al., 1995), I generated a linear fusion of the head-to-

tail tetraubiquitin chain to the N-terminus of β-galactosidase, named Ub
*
4-βGal (Figure 

3.14). The Ub4
*
-βGal construct carrying mutations at three major modification sites 

K29, K48 and K63 as previously described and an expression construct for βGal alone 

were generated for protein stability assay along with Ub
*
4-βGal. All the constructs were 

expressed from episomal plasmids under control of the GAL10 promoter. By comparing 
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the degradation rate of Ub
*
4-βGal with Ub-βGal, which is an extremely short-lived UFD 

pathway substrate, it should allow an estimation of the efficiency of linear ubiquitin 

chains acting as degradation signals.  

 

I started with analysing the expression of all constructs by Northern blot. Total RNA 

was extracted from cells with or without galactose-induced fusion protein expression. 

Transcripts corresponding to the different constructs were detected with a radiolabelled 

probe specific for the LacZ gene. This experiment revealed that similar amounts of 

mRNA transcripts corresponding to each construct were made upon galactose induction 

(Figure 3.15A).  

 

 

Figure 3.14 Schematic view of the βGal constructs used in this study 

The asterisk denotes the ubiquitin mutant (K29/48/63R, G76V). Ub-βGal was originally 

described as Ub
V76

-V-e
ΔK

-βgal. Ub
*
4-βgal was generated by replacing the Ub unit 

within the original construct Ub-βGal with a Ub
*

4 unit. Ub
*
-βgal was constructed in a 

similar way using a Ub
*
 unit to replace the original Ub unit and βgal was generated by 

removing the Ub unit from the Ub-βGal construct. 
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Figure 3.15 A linear non-cleavable tetraubiquitin chain acts as a general, but 

inefficient degradation signal 

(A) Northern blot analysis indicates similar expression levels of all three βGal 

constructs upon induction with galactose (GAL). (B) Ub
*
4-βGal and Ub-βGal are 

degraded by the 26S proteasome with distinct kinetics. After growth in galactose 

medium for 2 h, a promoter shut-off (by shift to glucose) was combined with a 

cycloheximide chase (100 μg∕mL) to inhibit de novo protein synthesis in the indicated 

strains, and samples were processed as in Figure 3.9. The βGal construct served as a 

stable control protein. Lanes labelled “-“ represent samples from cultures grown in 

glucose medium. Note that degradation of Ub-βGal produces a stable fragment of ca. 90 

kDa (Bachmair et al., 1986). (C) A promoter shut-off/cycloheximide chase, performed 

as described in (B), demonstrates complete stability of Ub
*
-βGal in WT cells over the 

course of the experiment. Mutation of K29, K48, and K63 of the UFD substrate Ub-

βGal is sufficient to completely stabilise the fusion protein. 

 

Then I checked fusion protein stability by an experiment combining promoter shut–off 

and cycloheximide chasing. After 2 hours of protein expression in galactose medium, 

cells were shifted back to glucose medium in the presence of cycloheximide to 

terminate protein synthesis. The result showed Ub
*
4-βGal was indeed degraded 

suggesting linear ubiquitin chains can also target βGal for degradation (Figure 3.15B). 

This degradation was mediated by the proteasome as well because the fusion protein 

was completely stabilised in a proteasomal mutant cim3, which has defects in the 19S 

regulatory particle of the proteasome. Moreover, I noticed a remarkable difference in 

the turnover rate of Ub
*

4-βGal and Ub-βGal. Ub
*
4-βGal was degraded within a few 
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hours whereas Ub-βGal was degraded within minutes (Figure 3.15B). The observed 

kinetics were consistent with the degradation rate of Ub
*
4-PCNA

*
. As control, βGal 

remained stable during the course of the entire experiment (Figure 3.15B). In addition 

to that, I mutated K29/K48/K63 on the Ub-βGal construct and named the new construct 

Ub
*
-βGal. This fusion construct was also stable during the entire experiment (Figure 

3.15C).  Overall, these data show that a linear non-cleavable tetraubiquitin chain serves 

as a general, but relatively inefficient proteasomal degradation signal. 

 

3.6 Substrates Marked by Linear Polyubiquitin Chains Are 

Targeted to the Proteasome by Components of the UFD 

Pathway 

As my results demonstrated that a linear non-cleavable ubiquitin chain could target 

substrates for degradation, it is very interesting to know the downstream factors that 

mediate this process. Based on the fact that my Ub
*
4-βGal construct is very similar to 

the polyubiquitylated UFD pathway substrates, I hypothesised the degradation of Ub
*
4-

βGal would require some factors of the UFD pathway. Taking advantage of yeast 

genetics, I have used different deletion mutants or temperature sensitive mutants to 

analyse the importance of UFD pathway factors in Ub
*
4-βGal degradation. UFD 

pathway factors can be classified into two groups: factors involved in ubiquitylation and 

factors involved in substrate binding and sorting. Ufd4 and Ufd2 belong to the first 

category and the Cdc48-Ufd1-Npl4 complex, Rad23 and Dsk2 belong to the second 

category. Based on my results that the linear ubiquitin chain targets substrates for 

proteasomal degradation, I speculated that the ubiquitylation factors may not be 

essential in this case but factors from the second class would be much more important 

for the degradation process. 

 

To test this hypothesis, I performed protein stability assays similar to the one described 

in Figure 3.14B. In ufd4 cells, the fusion protein was degraded with no difference in the 
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turnover kinetics compared with that in WT cells (Figure 3.16A). This result indicates 

that the UFD pathway specific E3 enzyme Ufd4 is dispensable for fusion protein 

degradation and it is consistent with the observation that there are no high-molecular 

weight modified forms of fusion protein in either WT or proteasome mutants (Figure 

3.15B). Since a linear ubiquitin chain is already pre-attached to the substrate, no 

additional ubiquitylation step might be required. This notion would predict that Ufd2, 

the E4 enzyme required to convert short K29-linked chains on UFD substrates to longer 

K48-linked chains, would not be required for the degradation of Ub
*
4-βGal. 

Interestingly, I found the fusion protein was stabilized in ufd2Δ cells (Figure 3.16B). 

This result suggests Ufd2 is required for the degradation of linear chain marked 

substrates, which does not fit with my prediction. Richly and co-workers have 

demonstrated that Ufd2 can bridge the association between the Cdc48-Npl4-Ufd1 

complex and Rad23/Dsk2 ubiquitin adaptors (Richly et al., 2005). So, the requirement 

of Ufd2 shown by this experiment could be a result of either its E4 enzymatic activity or 

its function as an interaction mediator, even a combination of both. It was therefore 

important to analyse different functions of Ufd2 separately. From two-hybrid based 

truncation analysis, the N-terminal region (amino acids 1-380) of Ufd2 is required for 

Rad23 interaction and the central part of the protein up to amino acid 856 is responsible 

for Cdc48 binding. Finally the U-box domain sits at the C-terminus of the protein with 

E4 enzymatic activity (Richly et al., 2005). Moreover, a structural based study later 

defined the C-terminal region (amino acids 884-947) as a U-box domain and the N-

terminal region (amino acids 1-879) as a core domain (Figure 3.17). Amino acids 

Arg844 and Glu855 were further predicted to be the conserved residues important for 

Cdc48 binding (Tu et al., 2007).  



Chapter 3. Results I 

 106 

 

Figure 3.16 The ubiquitylation step of the UFD pathway is not required for the 

degradation of linear ubiquitin fusion proteins 

(A), (B) and (D) Promoter shut-off/cycloheximide chase experiments were carried out 

with Ub
*
4-βGal, Ub-βGal, and βGal in the indicated UFD pathway mutants and their 

respective isogenic WT strains as described in Figure 3.15. (C) A schematic view of 

Ufd2 protein and the interaction information of each part/domain. The ufd2 (ΔUbox) 

carries a truncation of the UFD2 open reading frame after amino acid 883. Protein 

levels of full-length Ufd2 and Ufd2 (ΔUbox) are compared by Western blots with an 

anti-myc antibody. 
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Figure 3.17 The crystal structure of Ufd2 

Structure of Ufd2 (1-947), PDB code: 2QIZ. The N-terminal variable region (1-187) is 

coloured blue; the core region (188-879) is coloured green. The region (1-879) is 

important for Rad23 and Cdc48 interaction. The C-terminal U-box domain (884-947), 

coloured red, interacts with E2 Ubc4 and has ligase activity. This figure was generated 

by PyMol. 

 

Based on these observations, I decided to make a C-terminal truncation form of Ufd2. 

An initial attempt of using 9myc tag to replace the C-terminal region (amino acids 856-

961) has generated a truncation construct similar to the one previously described in two-

hybrid analysis (Richly et al., 2005). However, this construct did not stabilise the fusion 

protein. Considering the key residues predicted for Cdc48 interaction Arg844 and 

Glu855 were adjacent to the site of truncation in my first construct and a C-terminal 

9myc tag might directly interfere with Cdc48 binding in the cell, I decided to make 

another truncation mutant based on the structure of Ufd2, in order to delete the U-box 

domain while minimising the negative effect from the C-terminal tag. Ufd2 (ΔUbox) 

mutant has the N-terminal region (amino acids 1-883), which has excluded the U-box 

domain completely and preserved the N-terminal core domain as much as possible to 
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maintain a stable Cdc48 association (Figure 3.16C). A strain expressing C-terminal 

9myc-tagged full-length Ufd2 has also been created as a control. First of all, the 

expression levels of WT and mutant Ufd2 were compared on the western blot, and a 

similar amount of protein was observed suggesting the truncation did not destabilise 

Ufd2 (Figure 3.16C). Then I performed a protein stability assay again in this Ufd2 

(ΔUbox) mutant, the degradation was restored this time (Figure 3.16D). My results 

indicate the requirement for Ufd2 in this case is not due to its E4 enzymatic activity, but 

rather to its function of mediating protein-protein interactions. 

 

The ubiquitylated UFD substrate needs to be recognised and transported to the 

proteasome for degradation. The Cdc48-Ufd1-Npl4 complex and Rad23/Dsk2 ubiquitin 

adaptor proteins play crucial roles in this process. I have also tested those non-

ubiquitylation components of the UFD pathway. Because a cdc48 null mutant is 

inviable, a temperature-sensitive allele, cdc48-2, was used to study the role of Cdc48 in 

model substrate degradation. At restrictive temperature, the fusion protein accumulated 

in cdc48-2 mutant cells suggesting Cdc48 is required for the degradation targeted by 

linear ubiquitin chains (Figure 3.18A). The fusion protein was also stabilised in npl4-1 

mutant cells, suggesting Npl4 is also required for this degradation (Figure 3.18B). 

Rad23 and Dsk2 contain ubiquitin-binding domains to interact with ubiquitylated 

substrates and have ubiquitin-like domains to interact with the proteasome. Their 

functions are largely overlapped for some substrates in vivo and it is necessary to delete 

both genes in order to see a complete stabilisation of some model substrates (Funakoshi 

et al., 2002, Elsasser et al., 2004, Verma et al., 2004). I then analysed the degradation of 

the fusion protein in a rad23 dsk2 double mutant and found the fusion protein was 

stabilised (Figure 3.18C). Further approaches to dissect the effect of Rad23 and Dsk2 

separately showed that neither of them alone afforded to stabilise the fusion protein 

suggesting functional redundancy towards this particular substrate (Figure 3.18D). To 

exclude any βGal-specific effect in my study, I also performed a similar experiment 

with another model substrate Ub
*
4-PCNA

*
. Indeed, its degradation also depended on the 

UFD pathway component Npl4 (Figure 3.19).  
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Figure 3.18 Degradation of linear ubiquitin fusion proteins depends on some 

components of the UFD pathway 

(A)-(D) Promoter shut-off/cycloheximide chase experiments were carried out with Ub
*
4 

-βGal, Ub-βGal, and βGal in the indicated UFD pathway mutants and their respective 

isogenic WT strains as described in Figure 3.15. Experiments involving temperature-

sensitive mutants were performed as follows: cells were pre-grown at permissive 

temperature (25°C) and shifted to galactose medium at 30°C to induce protein 

production and inactivation of the respective factor.  Subsequent steps of expression 

shut-off/cycloheximide chase were performed at 30°C as well.   
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Figure 3.19 Ub
*

4-PCNA
*
 is targeted to the proteasome by the same mechanism as 

UFD pathway substrates 

A cycloheximide chase experiment, performed as in Figure 3.9, shows stabilisation of 

the fusion protein in an npl4-1 mutant. 

 

In summary, it appears Ub
*
4-βGal and UFD substrates share a common pathway for the 

targeting process to the proteasome with the noticeable exception of the initial stage of 

polyubiquitin chain assembly. UFD substrates require ubiquitylation factors Ufd4 and 

Ufd2 to assemble K48-linked polyubiquitin chains with sufficient length for proteasome 

recognition. Whereas linear ubiquitin chains fused with βGal do not require further 

modifications and therefore the enzymatic activity of Ufd4 and Ufd2 appear to be 

dispensable in this case. Similar to the UFD substrates, subsequent substrate recognition 

and proteasome targeting requires the Cdc48-Ufd1-Npl4 complex and Rad23/Dsk2 

ubiquitin adaptor proteins.  

 

3.7 Linear Ubiquitin Chain Length Is Not a Limiting Factor for 

Degradation 

The relatively slow degradation of the fusion protein still needs an explanation. It is not 

substrate specific as similar degradation rates were observed from both PCNA and βGal 

based model substrates. Therefore, I hypothesised an inefficient recognition of linear 

tetraubiquitin chains by the proteasome may be responsible for this. Considering a K48-

linked ubiquitin chain with four ubiquitin units was reported to be the minimal signal 

for efficient proteasome recognition (Thrower et al., 2000), I asked if an increase in the 

length of a linear ubiquitin chain would help to compensate the poor recognition and 

therefore accelerate the degradation.  
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For this purpose, I increased the length of the linear chain attached to the N-terminus of 

βGal from 4 to 8 ubiquitin units by simply duplicating the tetraubiquitin module. The 

resulting construct was named Ub
*
8-βGal as shown in Figure 3.20A. Similar promoter 

shut-off/cycloheximide chase experiments were performed to compare the kinetics of 

degradation between Ub
*
4-βGal and Ub

*
8-βGal. Unexpectedly, there was no clear 

difference in the degradation of both constructs, indicating that the chain length is not 

the rate-limiting factor in this particular case (Figure 3.20B).  

 

 

Figure 3.20 Ubiquitin chain length is not a rate-limiting factor in the degradation 

of linear ubiquitin fusions 

(A) Schematic view of a Ub
*
8-βGal construct. Note that each of the Ub

*
4 modules used 

to create the octaubiquitin chain is identical to that used in Ub
*
4-βGal. (B) Ub

*
8-βGal is 

degraded at a rate comparable to that of Ub
*
4-βGal. Promoter shut-off / cycloheximide 

chase experiments were performed with the two constructs in a WT strain as described 

in Figure 3.15. 
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3.8 Discussion 

The high structural similarity between linear and K63-linked polyubiquitin chains has 

challenged our understanding if cellular machinery can differentiate highly similar 

forms of ubiquitin signals. The outcomes of the modifications by these two types of 

polyubiquitin chains also vary when they are conjugated to different substrates based on 

a series of in vivo and in vitro studies. This work has addressed several important 

questions. First of all, I addressed the significance of chain linkage in the system of 

DNA damage tolerance, mediated by K63-linked polyubiquitylation of PCNA. My 

results showed that the DNA damage bypass pathway is able to differentiate between 

linear polyubiquitin chains and K63-linked polyubiquitin chains. Secondly, I asked if 

K63-linked ubiquitin chains act as degradation signals on PCNA. My results suggest it 

does not target PCNA for proteasomal degradation. Thirdly, I found that a linear non-

cleavable ubiquitin chain is sufficient to target PCNA and another model substrate, β-

galactosidase, for proteasomal degradation with a relative slow turnover rate. Substrates 

marked with linear ubiquitin chains bind to the Cdc48-Ufd1-Npl4 complex and 

subsequently get transferred to the proteasome via ubiquitin adaptor proteins Rad23 and 

Dsk2 (Figure 3.21). While answering these questions, my observations have also raised 

some more interesting questions.  

 

3.8.1 Why Do Linear Chains Not Function in Damage Bypass 

Structural studies have shown that a linear ubiquitin chain with a head-to-tail 

arrangement for each ubiquitin moiety adopts an extended conformation almost 

identical to that of a K63-linked chain, but quite different from the “closed” 

conformation of a K48-linked chain (Figure 1.3). Many ubiquitin-binding domains that 

differentiate between K48- and K63- linkages make no distinction between linear and 

K63-linked chains (Komander et al., 2009b). However, in my system linear ubiquitin 

chain fused to the N-terminus of PCNA does not support error-free DNA damage 

tolerance whereas a K63-linked chain on the same position does activate this pathway. 
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There are several possibilities for this observed difference in the damage tolerance 

pathway.  

 

Figure 3.21 Model for the degradation of linear ubiquitin chain marked substrates 

A model substrate (blue) marked with a linear ubiquitin chain (chain made of black 

filled circle) is recognised by the Cdc48-Ufd1-Npl4 complex (green, grey and yellow 

oval shapes) and the Cdc48-bound Ufd2 (brown rectangle) further recruits ubiquitin 

adaptor proteins Rad23/Dsk2 (orange oval). Finally, the substrates are taken to the 

proteasome and eventually broken down. 

 

First of all, it is formally possible that the instability of the fusion protein prevents 

efficient error-free DNA damage bypass. I consider this unlikely because Ub
*
4(L)-

PCNA
*
 is active in TLS, but Ub

*
4-PCNA

*
 or PCNA

*
-Ub

*
4 with protein levels similar to 

Ub
*
4(L)-PCNA

*
 function poorly even in TLS. This observation suggests that the 

amount of fusion protein does not limit TLS function. Moreover, physiologically K63-

polyubiquitylated PCNA only counts as a tiny portion of total PCNA and is able to 

activate the error-free pathway effectively. In addition to that, if protein instability was 

indeed responsible for the poor performance of the fusion constructs in activating error-
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free damage bypass, I would expect to see a rescue effect beyond TLS from Ub
*
4-

PCNA
*
 in a proteasome mutant strain. In fact, an experiment analysing damage 

sensitivity of rad18 pre1-1 strains expressing different fusion constructs was attempted 

and my preliminary observation did not find evidence for such increased rescue effect 

beyond TLS. 

 

Secondly, I cannot exclude that the non-cleavable nature of the linear ubiquitin chain 

may interfere with its correct function in the error-free pathway. This is particularly 

important if the deubiquitylation step positively contributes to error-free damage 

bypass, although removal of the first ubiquitin is not required for activating TLS (Parker 

et al., 2007). In this case, a cleavable chain would not be helpful either, because it 

would be disassembled quickly and fusion proteins would be processed back to 

monoubiquitylated state or even unmodified state. One potential solution for this would 

be to create a linear ubiquitin chain that is partially accessible by DUBs. The substrate 

recognition of DUBs is partially mediated by the RLRGG motif at the C-terminal end of 

ubiquitin. Crystal structures of DUBs have revealed that G76 occupies a restricted 

tunnel in the centre of the active site; only glycine can fit into that position. However, at 

positions G75, R74 and L73, several other amino acids could substitute them and 

preserve partial activity of DUBs (Drag et al., 2008). An intermediate-level construct, 

which can only be processed by DUBs with reduced efficiency, would exhibit a rescue 

effect beyond that of the non-cleavable version if deubiquitylation were required for 

error-free damage bypass. 

 

Finally, a K63-specific downstream ubiquitin-binding protein, which mediates error-

free damage bypass, might not recognise the linear ubiquitin chain. Although a pull-

down experiment with the UBAN domain showed a positive interaction (Figure 3.11), 

the mutations on ubiquitin moiety may interfere with efficient binding with a PCNA-

specific ubiquitin receptor. Moreover, some ubiquitin-binding domains interact with 

K63-linked chains preferentially, such as the C-terminal NZF domain of TAB2. In this 

case, the NZF domain can bind to ubiquitin moieties in K63-linked chains in a two-side 
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manner due to the flexible joint of K63-linkage, whereas a linear chain could not satisfy 

this requirement (Kulathu et al., 2009). Such a domain may also exist for the damage 

tolerance pathway. At present, it is difficult to address this question since such 

downstream factors are still waiting to be identified. 

 

3.8.2 Why Is K63-polyubiquitylated PCNA Not Degraded 

Genetic data linking DNA damage bypass to proteasome activity have been indirect and 

rather controversial.  A study from Hofmann and Pickart (Hofmann and Pickart, 2001) 

has analysed UV sensitivities of strains with pre1-1 pre2-2 rev3 and ubc13 rev3. Based 

on their prediction, the former strain would show similar UV sensitivity to the latter one 

if the primary role of K63-linked chain on PCNA were to trigger degradation. The 

results showed pre1-1 pre2-2 rev3 was 10-fold less UV-sensitive than the ubc13 rev3 

double mutant and there was no synergism between pre1-1 pre2-2 and rev3 mutants, 

suggesting a non-degradative function for K63-linked polyubiquitin chains. Others have 

proposed a role of the proteasome in limiting the mutagenic activity of TLS. This idea 

was supported by the fact that a proteasome mutant was epistatic with the TLS genes 

RAD30 and REV3, and the spontaneous mutations in proteasome mutants were 

connected to the TLS activity (Podlaska et al., 2003, McIntyre et al., 2006).  

 

I have for the first time directly assessed the response of PCNA polyubiquitylation to 

alterations in proteasome activity and I found no evidence for a degradation role for the 

K63-linked polyubiquitin chain on PCNA. Instead, my observation reflects the global 

behaviour of K63-linked ubiquitin chains, which is not a degradation signal. This is 

consistent with a published mass spectrometry study where the authors have analysed 

the abundance of ubiquitin chains with different linkage in response to proteasome 

inhibition. In that case K63-linked chains did not accumulate (Xu et al., 2009). 

Meanwhile, the accumulation of K48-linked and other alternatively linked ubiquitin 

chains and the resulting depletion of free ubiquitin (Xu et al., 2004) may in fact explain 

my observation that the level of K63-polyubquitylated PCNA drops in proteasome 
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mutants and in cells after a treatment of proteasome inhibitor MG132. To my 

knowledge, the recent report that K63-linked polyubiquitylation of transcription factor 

Mga2 by E3 enzyme Rsp5 leads to proteasome-dependent degradation remains to be the 

only isolated case of proteolysis mediated by K63-linked chains in vivo (Saeki et al., 

2009). Even in that study, the contribution of K48-linked chains and chain editing by an 

Rsp5-associated deubiquitylation activity were not excluded. 

 

In vitro, the proteasome is less selective towards its preferred K48-linked chains. It 

binds K63-linked chains with an affinity not much different from that of the K48-linked 

chains despite the significant conformational difference (Tenno et al., 2004, Varadan et 

al., 2004, Hofmann and Pickart, 2001). If linked to a model substrate, K63-linked 

chains indeed target protein degradation in vitro (Hofmann and Pickart, 2001). 

Moreover, even short, heterogeneous and multiply monoubiquitylated substrates are 

degraded in vitro (Kirkpatrick et al., 2006). Therefore, proteasomal recognition is not 

the reason for inefficient degradation of K63-linked chain modified substrate. Upstream 

ubiquitin adaptor proteins such as Rad23 and Dsk2 also showed no linkage preference 

based on affinity studies (Raasi et al., 2005). Hence, the most straightforward 

explanation for the inefficiency of K63-linked chain as a degradation signal in vivo is a 

limited chain length. The minimal length for K48-linked ubiquitin chains to be 

efficiently recognised by the proteasome is four ubiquitin moieties (Thrower et al., 

2000). In fact in vivo polyubiquitylated PCNA exceeding the tetraubiquitylated state 

was very difficult to detect, and even the latter is less abundant than the mono- or di-

ubiquitylated forms (Windecker and Ulrich, 2008). This stands in contrast with in vitro 

observations, in which long K63-linked chains could be assembled on PCNA by 

purified enzymes (Unk et al., 2008, Unk et al., 2006, Parker and Ulrich, 2009). It 

remains unclear how chain length is maintained in vivo, but the use of deubiquitylation 

enzymes such as mammalian Usp1 (Huang et al., 2006) may be an effective strategy. A 

recent study reported that proteasome-bound K63-linked polyubiquitin chains were 

rapidly deubiquitylated without efficient degradation of their substrate whereas the 

deubiquitylation of K48-linked chains was a lot slower (Jacobson et al., 2009). This 
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report provided evidences for another layer of regulation to limit the length of K63-

linked chains from a proteasome perspective. 

 

3.8.3 Linear Ubiquitin Chains as Degradation Signals 

There has been some early evidence indirectly suggesting the possibility that linear 

ubiquitin chains could function as a degradation signal. In vitro, the proteasome is not 

particularly selective for certain linkages as discussed above. It processes K48-linked, 

K63-linked and other heterogeneous as well as multiple monoubiquitylated conjugates 

as substrates. It is therefore not surprising that linear ubiquitin chains can competitively 

inhibit degradation of K48-polyubiquitylated substrates (Thrower et al., 2000). There 

has been in vitro evidence showing that a linear non-cleavable ubiquitin chain fused to a 

model protein bearing a suitable unstructured N-terminal domain can trigger the 

degradation of its fusion partner in cis and a tightly associated protein in trans (Prakash 

et al., 2008). However, little is known about the suitability of linear chains as 

degradation signals in vivo. Non-cleavable tandem arrays of 2-8 ubiquitin units were 

shown to confer half-lives of less than 10 min to their fusion partner in reticulocyte 

lysates and cell culture (Stack et al., 2000, Prakash et al., 2008). When over-expressed 

in yeast, they effectively block the degradation of short-lived proteins. But extensive 

further ubiquitylation was observed in these cases, suggesting that the arrays of 

ubiquitin mainly function as efficient ubiquitin acceptors.  

 

Since linear polyubiquitin chains are co-translationally processed into ubiquitin 

monomers (Turner and Varshavsky, 2000), the function in vivo was not well studied. 

Recent identification of the E3 complex LUBAC that catalyses the assembly of linear 

ubiquitin chain in vivo has recalled our attention to this type of chain and its biological 

function (Kirisako et al., 2006). Now I have shown that a linear tetraubiquitin chain, 

which cannot be further modified due to mutations on its major acceptor lysine residues, 

is able to target model substrates for degradation in vivo. In my linear ubiquitin chain 

constructs, there are still four lysine residues (K6, K11, K27 and K33) available for 
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further modification. But if any of these might have significant contributions to the 

degradation of fusion protein in vivo, it would have the same effect on all fusion 

constructs including the shorter ones. In fact, instability was only observed for those 

bearing at least four ubiquitin moieties and even within those a variable half-life were 

observed (Figure 3.8A, 3.9). Furthermore, there is evidence from previous reports 

showing chain extension of UFD substrates are via K29- or K48- linkage (Saeki et al., 

2004b, Koegl et al., 1999, Johnson et al., 1995). Therefore, I consider further 

ubiquitylation on my constructs to be unlikely and linear non-cleavable ubiquitin chains 

to be sufficient for targeting degradation in vivo. 

 

Overexpression of LUBAC promotes the degradation of ubiquitin-GFP fusion protein 

via the proteasome in mammalian cell culture (Kirisako et al., 2006). At the same time, 

LUBAC assembles linear ubiquitin chains at K285 and/or K309 of NEMO, but it does 

not promote degradation, suggesting that the position of the chain attached to the 

substrate may affect its ability to function as a degradation signal (Tokunaga et al., 

2009). Similarly, in my system, linear ubiquitin chains attached to N- or C-terminus of 

PCNA revealed quite different degradation efficiency and Ub
*
4-βGal degradation was 

quite inefficient compared with its analogue UFD substrates. These observations 

initially suggested that poor recognition by the proteasome for a short linear ubiquitin 

chain might be responsible for the slow turnover rate. However, increasing the length of 

linear ubiquitin chains from 4 units to 8 units did not accelerate the degradation and a 

similar degradation pattern was also observed in my in vitro experiment, suggesting 

proteasome targeting is not the rate-limiting step in this case. This is supported by the 

fact that linear ubiquitin chains are associated with the proteasome in vivo although they 

are somehow less effective in competing for proteasome binding than K48-linked 

chains in vitro (Thrower et al., 2000, Saeki et al., 2004a). Taken together, these data 

rather suggest that proteasome processing will most likely be the reason for the 

observed slow turnover rate. This scenario is supported by the notion that proteasome-

associated isopeptidase Rpn11 positively contributes to proteolysis, presumably by 

removing polyubiquitin chains from substrates as they enter the catalytic core particle of 

the proteasome (Yao and Cohen, 2002, Verma et al., 2002). In my system, the non-
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cleavable nature of the linear chain has prevented chain disassembly such that the 

substrate protein was forced to be unfolded and degraded along with the long 

tetraubiquitin chain. Considering the tightly folded structure of ubiquitin, this may delay 

proteolysis especially since protein unfolding has been shown to affect degradation rate 

in vitro (Johnston et al., 1995, Thrower et al., 2000). Alternatively, some proteasome-

associated ubiquitin binding factors such as Rpn10 and Rpn13 may persistently bind to 

the linear ubiquitin chain due to deficiency in chain disassembly. This prolonged 

association with the proteasome regulatory particle may eventually delay the entry of 

the substrate moiety into the catalytic core. In either case, variations in the linear 

ubiquitin chain attachment site on the substrate may change the way in which substrate 

is presented to the proteasome, therefore affecting the degradation rate. 

 

Finally, linear ubiquitin chains have so far only been found in higher eukaryotes. 

Although a recent mass spectrometry study performed in yeast did not identify linear 

ubiquitin chains (Xu et al., 2009), the absence of evidence should never be interpreted 

as evidence of absence as pointed out by Kirkpatrick and colleagues (Kirkpatrick et al., 

2005), because mass spectrometry is somewhat biased towards abundant species and the 

level of linear ubiquitin chains in yeast might be quite low. Nevertheless, in higher 

eukaryotes, if linear ubiquitin chains acting as degradation signals on any physiological 

substrates remain an open question. Proteasomal degradation might be a default 

pathway, however, in some cases, the suitable effector proteins would recognise the 

linear ubiquitin chains and then direct the substrate to non-degradative functions. In 

yeast, such effector proteins may not exist therefore exposing linear chains to the 

proteasomal degradation factors. 
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Chapter 4. Results II: Identification and 

Characterisation of Kinetochore Component SPC25 as 

a Novel Ubiquitin-binding Factor 

 

4.1 Introduction 

4.1.1 Background 

Ubiquitylation is among the most well-conserved and widely used posttranslational 

modification mechanisms to regulate various cellular events. Its functional versatility is 

reflected by its appearance as different forms of ubiquitin signals such as monoubiquitin 

and various polyubiquitin chains with homotypic linkages as well as mixed linkages 

(Ikeda and Dikic, 2008). The outcomes of these types of modification are mediated by 

UBDs (ubiquitin-binding domains), which are able to recognise different ubiquitin 

signals specifically. There are more than 20 different types of known UBDs present in 

over 150 cellular proteins involved in many important cellular processes. For instance, 

in the proteasome-mediated degradation pathway, among ubiquitin receptor proteins the 

UBA domain of Rad23, Dsk2 and Ddi1, the UIM domain of Rpn10, and the PH domain 

of Rpn13 are all involved in recognising ubiquitylated substrates for proteasomal 

degradation (Dikic et al., 2009). Other examples have given extensive evidences for the 

contribution of UBDs to the regulation of apoptosis (Broemer and Meier, 2009), the 

DNA damage response (Hofmann, 2009), the endocytosis pathway (Williams and Urbe, 

2007) and the immune response (Skaug et al., 2009). Considering the number of 

ubiquitylated proteins in the cells, these reported examples can only represent a small 

portion of functions that UBDs are actually involved in. 

 

Our understanding of UBDs has been greatly expanded with the help of structural 

information, which nicely illustrates the way ubiquitin interacts with UBDs, and 

bioinformatic analysis, which in turn helps to identify potential candidate proteins 
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containing certain types of UBD. Based on the type of ubiquitin recognition structure 

they fold into, UBDs are classified into a few groups such as α-helical structures, zinc-

fingers (ZnFs), ubiquitin-conjugating enzyme-like (UBC) domains and pleckstrin 

homology (PH) folds (Dikic et al., 2009). The α-helical structure is the most common 

type of UBD and it binds to a hydrophobic patch on the β-sheet of ubiquitin centred 

around I44. Members of this group include UIM, UBA, GAT or CUE domains. A few 

examples of different UBDs have been identified for other types of ubiquitin-binding 

structures respectively.  Although most UBDs found so far recognise a common 

hydrophobic patch on ubiquitin centred around L8-I44-V70, in some cases, ubiquitin 

binding independent of this hydrophobic patch was reported such as for the UBM 

domain found in Rev1, a subunit of Y-family translesion synthesis polymerase ζ 

(Bienko et al., 2005). Biophysical methods have been applied to study the binding 

affinity of UBDs to various forms of ubiquitin signals. These have revealed that most of 

them interact with monoubiquitin quite weakly, in the range of 10-500 μM (Ikeda and 

Dikic, 2008) with the best affinity observed so far (around 300 nM) for the PRU domain 

of Rpn13 (Husnjak et al., 2008). 

 

Taking advantage of the information from structural studies of known UBDs, 

bioinformatic analysis has been applied to search for other candidate proteins that may 

have this type of domain or other domains with similar secondary structure (Hofmann, 

2009). This method has accelerated the identification of new ubiquitin-binding proteins 

and the characterisation of their functions in various biological pathways. However, 

bioinformatics has its limitations, since there is no evidence that the binding affinity for 

ubiquitin can be predicted on the basis of a UBD’s structure. In contrast, even the same 

type of UBD within different proteins can show a dramatic difference in binding 

affinity towards ubiquitin (Raasi et al., 2005). Similarly, ubiquitin recognition can occur 

through different surfaces and structural elements of UBDs even when the same 

structural domain is used to bind the I44-centred hydrophobic patch (Dikic et al., 2009). 

These evidences illustrate the difficulties of using bioinformatics as a sole approach to 

study UBDs and ubiquitin-binding proteins and further emphasise that conventional 

experimental approaches are still crucial. 
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During the course of my PhD research, I was interested in the recognition of ubiquitin 

signals, particularly UBDs in the context of maintaining genome stability. Although a 

lot of UBDs and ubiquitin-binding proteins have been identified in the past decades, 

given the ubiquitous role of ubiquitin signalling, there must be many unidentified 

ubiquitin-binding factors or even novel UBDs that play important roles in previously 

undescribed fields of cell biology. In this part of my thesis work, I have performed a 

two-hybrid screen aiming to identify factors, which may recognise and bind to 

polyubiquitylated PCNA, as well as other novel ubiquitin-binding factors. Ub
*
n-PCNA

*
 

fusion and tetraubiquitin chains were used as bait constructs. Despite the failure in 

identifying factors that specifically interact with Ub
*
n-PCNA

*
 fusion, I found two very 

interesting ubiquitin-binding factors, Spc25 and Etp1. I have focused on characterising 

the ubiquitin-binding of Spc25 in vitro and in vivo, and I have found phenotypes 

associated with the spc25 ubiquitin-binding deficient mutant.  

 

4.1.2 The Kinetochore Complex 

The majority of the work presented in the chapter is about Spc25, a kinetochore 

component. It was identified as a potential ubiquitin-binding protein in my two-hybrid 

screen. Therefore, I would like to give an overview on the budding yeast kinetochore 

complex. 

 

4.1.2.1 The Architecture of the Budding Yeast Kinetochore  

Kinetochore is a multiprotein complex assembled on the centromeric region of DNA to 

connect the plus ends of the spindle microtubules to the chromosomes. In addition to its 

function as a bridge, the kinetochore complex also acts as a signalling module that 

monitors its own stability and the status of microtubule attachment (Westermann et al., 

2007). The budding yeast centromere is characterised as a point centromere, which has 

a defined sequence of around 125 bp and is sufficient for kinetochore formation 

(Santaguida and Musacchio, 2009). Every point centromere only binds one microtubule 
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(Winey et al., 1995). In contrast, fission yeast and vertebrates have regional 

centromeres, which extend over quite large DNA regions. The kinetochore complex 

assembled on regional centromere bind multiple microtubules (Allshire and Karpen, 

2008). 

 

Due to its relatively simple structure, the most advanced biochemical description of 

kinetochores has been achieved in budding yeast. The budding yeast kinetochore is 

composed of over 60 different proteins, in which over 40 proteins are organised into 

subcomplexes, the CBF3, Ndc80, Mtw1 (MIND), Ctf19 (COMA and 12 additional 

proteins), Spc105, Dam1 and Ipl1 complexes (McAinsh et al., 2003, Westermann et al., 

2007)(Figure 4.1). Based on their relative position on the chromosome-microtubule 

axis, kinetochore proteins can be classified into three categories: inner kinetochore 

proteins, which directly interact with DNA and form platforms for the assembly of other 

kinetochore complexes; the microtubule-binding proteins, which associate with 

microtubules and the kinetochore; and the central kinetochore proteins, which link the 

inner kinetochore to the outer kinetochore-microtubule interface (Cheeseman et al., 

2002). Based on proteomic analysis that describes tightly interacting kinetochore 

subcomplexes and depletion experiments that analyse the effect of depleting one 

particular kinetochore protein on the localisation of other kinetochore proteins, the 

architecture of the kinetochore complex has been elucidated (Figure 4.1). The CBF3 

complex (Cep3, Ctf13, Ndc10 and Skp1) binds to the CDEIII element of the budding 

yeast point centromere, and its association with DNA is required for the recruitment of 

all other kinetochore proteins. The other primary determinant is Cse4 (CENP-A 

homologue), a histone H3 variant, that forms part of a specific centromeric nucleosome 

(Smith, 2002).  
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Figure 4.1 The budding yeast kinetochore 

An overview of the budding yeast kinetochore. This picture illustrates the three groups 

of kinetochore proteins and their positions in the overall kinetochore architecture. This 

picture was taken from (Westermann et al., 2007).  

 

Mif2 (CENP-C homolougue) was found to be associated with Cse4 nucleosomes and 

the MIND (Mtw1, Nsl1, Nnf1 and Dsn1) complex, suggesting that it functions as a 

linker between the inner kinetochore complex and the central kinetochore complex 

(Westermann et al., 2003). The central kinetochore proteins include the MIND 

complex, the Ndc80 complex (Ndc80, Nuf2, Spc25 and Spc24), the Spc105 complex 

(Spc105 and YDR532c), the COMA complex (Ctf19, Okp1, Mcm21 and Ame1) and 

the other members of the Ctf19 complex (Westermann et al., 2007). The function of 

central kinetochore proteins is to connect microtubule-binding proteins with inner 

kinetochore proteins. Furthermore, the Ndc80 complex and Spc105 have reported 

microtubule binding activity (Cheeseman et al., 2006, Wei et al., 2007). Therefore, 
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defects in central kinetochore proteins usually give common phenotypes such as 

chromosome missegregation. Recent advances in fluorescence microscopy have 

allowed the generation of a map of budding yeast kinetochore proteins and their relative 

positions on the DNA-microtubule axis (Joglekar et al., 2009). This study together with 

early localisation studies suggest the COMA complex is closely associated with the 

Cse4 containing nucleosome complex and the MIND complex sits between the 

Spc25/Spc24 end of the Ndc80 complex and the COMA complex. Spc105 closely 

associates with Dsn1 of the MIND complex and the Spc25/Spc24 subcomplex whereas 

the N-terminus of Ndc80 is the furthest away from the centromere (Figure 4.2). 

 

 

 

Figure 4.2 The relative locations of kinetochore proteins along the axis of 

kinetochore-microtubule 

Two-colour in vivo fluorescence microscopy was applied to measure the relative 

positions between the C-terminus of the Spc24 and other kinetochore proteins in 

metaphase and anaphase. The relative positions of MIND complex, COMA complex, 

Cse4 nucleosome, Spc105 complex and the Dam1 complex were determined. This 

figure was taken from (Joglekar et al., 2009). 
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At the microtubule-binding interface, there are many microtubule-associated proteins 

such as Stu2, the Ipl1 complex (Ipl1, Sli15 and Bir1) and the Dam1 complex. Stu2 has 

functions in stabilising the attachment of the microtubule to the kinetochore and 

promoting microtubule depolymerisation (Tanaka et al., 2005, He et al., 2001). The Ipl1 

(Aurora B homologue) in complex with Sli15 has important roles in the quality control 

of kinetochore microtubule attachment. The complex detects improperly attached 

kinetochores and detaches them to activate the spindle checkpoint (Pinsky et al., 2006).  

The Dam1 complex consists of ten different proteins identified by two-hybrid analysis 

and biochemical purification. The complex localises to the kinetochore and binds 

microtubules with proposed function as a force coupler, which translates mechanical 

energy into directed movement (Westermann et al., 2006) 

 

4.1.2.2 The Ndc80 complex 

Ndc80 was first identified by Kilmartin and coworkers through mass spectrometry 

analysis of highly enriched yeast spindle pole bodies (Wigge et al., 1998). It was later 

shown that Ndc80 forms a complex with Nuf2, Spc25 and Spc24 (Janke et al., 2001, 

Wigge and Kilmartin, 2001). This four-protein complex is essential for cell viability. 

Initial observation of temperature-sensitive ndc80 alleles showed a complete 

detachment of chromosomes from mitotic spindles under non-permissive conditions 

(Wigge et al., 1998). Other temperature-sensitive alleles of spc24 and spc25 also exhibit 

defects in chromosome segregation (Janke et al., 2001, Wigge and Kilmartin, 2001). 

The Ndc80/Nuf2 subcomplex was later found to have direct microtubule-binding 

activity (Cheeseman et al., 2006, DeLuca et al., 2006, Wei et al., 2007). The interaction 

between Ndc80/Nuf2 and the microtubule can be greatly enhanced by addition of 

Spc105 (Knl-1 homologue) and the MIND complex by means of forming a so-called 

KMN (Knl-1, Mtw1 complex and Ndc80 complex) network (Cheeseman et al., 2006).  

Yeast spc24 or spc25 temperature-sensitive alleles also show loss of the spindle 

checkpoint response (Janke et al., 2001), and similar observation was made in Xenopus 

as well (McCleland et al., 2003). These results suggest a direct or indirect connection 

between the recruitment of spindle checkpoint machinery and the Ndc80 complex. One 
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of the possibilities is that the Spc24/Spc25 subcomplex might function as a docking site 

for spindle checkpoint proteins on the kinetochore. Indeed, an interaction between 

Spc25 and spindle checkpoint protein Mad1 has been detected in yeast two-hybrid 

based interaction assay (Newman et al., 2000), but further investigation is required to 

explore this attractive idea. 

 

The Ndc80 complex is highly conserved among all eukaryotes. The human homologue 

of NDC80 was first identified as HEC1, a gene highly expressed in cancer cells. 

Disruption of the Ndc80 complex in higher eukaryotes results in similar defects as 

observed in budding yeast, including chromosome missegregation and impaired spindle 

checkpoint. The electron-microscopy structure of the yeast Ndc80 complex and a 

crystal structure of the partial yeast Spc24/Spc25 subcomplex have nicely illustrated the 

three-dimensional arrangement of the complex (Wei et al., 2005, Wei et al., 2006). 

Overall, the Ndc80 complex exhibits a dumbbell shape with a long coiled-coil region in 

the middle, which is formed by the C-terminus of Ndc80/Nuf2 and the N-terminus of 

Spc25/Spc24, and globular domains on either side (Figure 4.3A). A similar structural 

appearance was seen in the “bonsai” version of human Ndc80 complex, in which Ndc80 

is fused with Spc25, and Nuf2 is fused with Spc24 with shortened central coil-coiled 

regions on both fusions (Figure 4.3B)(Ciferri et al., 2008). The globular domain formed 

of Ndc80 and Nuf2 interacts with microtubules, whereas the globular domain formed of 

Spc24 and Spc25 is oriented towards the centromere, interacting with other central 

kinetochore proteins, such as the MIND complex and Spc105 (Cheeseman et al., 2006, 

Wei et al., 2007). The partial crystal structure of Spc24/Spc25 illustrates that the C-

terminal globular domains cover amino acids 133-221 of Spc25 and amino acids 154-

213 of Spc24. The heterodimeric complex also forms a centromere-oriented groove 

with highly conserved residues, which may provide an interaction platform for other 

kinetochore proteins (Figure 4.3C). Interestingly, the structure of the C-terminal 

domains of Spc24/Spc25 also shows disordered segments between the globular domains 

and the N-terminal coiled-coil regions. Due to the limited length coverage by this partial 

crystal structure, it is not clear how long this unstructured region is, and it is not clear if 

it is physiologically important (Wei et al., 2006). 
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Figure 4.3 Structures of budding yeast and human Ndc80 complex 

(A) A schematic diagram of the Ndc80 complex. MT: microtubule, CEN: centromere. 

Ndc80 (orange), Nuf2 (green), Spc25 (blue) and Spc24 (red) form an overall rod-like 

structure with a long coiled-coil region in the middle and globular domains at either end 

of the complex. (B) Crystal structure of human Ndc80
ΔN-bonsai

 complex, PDB code: 

2VE7. In this structure, hNdc80 (orange) and hNuf2 (green) have shortened C-termini, 

whereas hSpc25 (blue) and hSpc24 (red) have shortened N-termini. hNdc80 is fused 

with hSpc25 and hNuf2 is fused with hSpc24. (C) Crystal structure of budding yeast 

Spc24 (155-211)/Spc25 (136-221) globular domain subcomplex, PDB code: 2FTX.  

The indicated surface facing the centromere provides a binding platform for other 

kinetochore proteins. Figure 4.3B and C were generated by PyMol. 

 

4.1.2.3 Posttranslational Modifications in the Kinetochore 

Posttranslational modification has been reported to play regulatory roles in the 

kinetochore in a couple of instances. Firstly, within the Ndc80 complex, the 

microtubule binding activity of Ndc80 is regulated by Aurora B-mediated 

phosphorylation. In vitro experiments showed that phosphorylation of Ndc80 by Aurora 

B, which acts as a quality control process to counteract improper kinetochore-



Chapter 4. Results II 

 129 

microtubule attachment, reduces its affinity for the microtubule (Cheeseman et al., 

2006). This is achieved by altering the positive charges of the calponin homology (CH) 

domain and the N-terminal tail of Ndc80 and therefore affects their interaction with the 

negatively charged tubulin C-terminal tails (Ciferri et al., 2008).  In vivo, Ndc80 is not 

the only target of Aurora B to regulate microtubule association of the kinetochore. In 

fact, Aurora B phosphorylates the KMN network, and it is the combinational effect of 

phosphorylation on a number of proteins within the KMN network that modulates the 

overall microtubule binding activity, with the fully phosphorylated state severely 

compromising microtubule binding. The spatial distribution of the targets along the 

DNA-microtubule axis can lead to differential phosphorylation in response to changes 

to tension and the attachment state (Welburn et al., 2010, Akiyoshi et al., 2009). The 

small ubiquitin-like modifier SUMO also acts to regulate kinetochore functions. 

Matunis and coworkers reported that SUMO2/3 conjugates are present in the 

centromere and kinetochore, suggesting SUMO-modified proteins are localised at these 

places. Inhibition of SUMOylation blocks the microtubule motor protein CENP-E 

association with kinetochores, activates the spindle checkpoint and causes cell cycle 

arrest. Further investigation showed that CENP-E binds to polymeric SUMO2/3 chains 

via its SUMO-interacting motif (SIM) and found this feature to be required for the 

kinetochore localisation of CENP-E (Zhang et al., 2008). In that study, the exact 

substrate, which is modified by SUMO and responsible for CENP-E recruitment, are 

not clear. Nevertheless, it illustrated that SUMOylation occurs in kinetochore and plays 

an important regulatory role in the recruitment of certain kinetochore proteins. Other 

biologically relevant posttranslational modifications of kinetochore proteins remain to 

be identified. For instance, a two-hybrid system based interaction map for mitotic 

spindle has revealed interactions between Spc25 and Ubc4, Spc25 and Slx5, Ndc80 and 

Ufd1, Ctf19 and Slx5, plus connections between APC/C subunits and multiple 

kinetochore proteins. These interactions between ubiquitylation machinery and 

kinetochore proteins suggest a potential involvement of ubiquitin signalling in 

regulating kinetochore functions (Wong et al., 2007). 
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In this chapter, I reported that Spc25 is identified as a ubiquitin-binding protein. Its 

ubiquitin-binding property is characterised by several different methods. Further 

investigation was performed to study the biological function of the ubiquitin-binding 

domain in Spc25. This work for the first time suggests a function of ubiquitin signalling 

in maintaining the stability of the kinetochore complex. 

 

4.2 Identification of Novel Ubiquitin-binding Factors by Yeast 

Two-hybrid Screening 

The molecular mechanism downstream of polyubiquitylated PCNA is largely unknown. 

It has been proposed that an error-free pathway, which may involve a template switch 

mechanism, could use genetic information from the undamaged sister chromatid to 

bypass the lesion. However, factors involved in this process have not been identified 

yet. I was interested in using fusion constructs Ub
*
n-PCNA

*
 (as described in Figure 3.3) 

to identify their interaction partners, which may have a role in the RAD6 pathway 

downstream of PCNA polyubiquitylation, by a genome-wide yeast two-hybrid screen. 

Meanwhile, such a screen would also reveal many ubiquitin-binding factors, possibly 

even previously unidentified ubiquitin-binding factors. For this purpose, Ub
*
(3-4) (L)-

PCNA
*
 and Ub

*
4 -PCNA

*
 were cloned into a pGBT9 vector to generate bait constructs, 

where the inserts were N-terminally in frame with a DNA-binding domain derived from 

Gal4 transcription factor (Figure 4.4). Factors bound to these bait constructs should then 

interact with polyubiquitylated PCNA in vivo. PCNA
*
 alone and ubiquitin chains alone 

[Ub
*
(3-4) and Ub

*
4] were also included in the screen as bait constructs (Figure 4.4). 

PCNA
*
 (K127R, K164R) worked as control for factors bound to the unmodified PCNA 

and mutations at K127/K164 exclusively eliminated the possibility of further 

modification of the construct in vivo. Ub
*
(3-4)(L) and Ub

*
4 chains described in Figure 3.3 

were also sub-cloned into pGBT9 vectors. The various ubiquitin chain constructs not 

only served as controls to exclude factors generally bound to ubiquitin chains, but were 

also used to actively search for novel ubiquitin-binding factors. Ideally, a factor that 

specifically recognises PCNA polyubiquitylation in the RAD6 pathway would bind to 

Ub
*
n-PCNA

*
 fusion and possibly also bind to PCNA

*
 alone because the ubiquitylation 

may only enhance the interaction between such a factor and PCNA. 
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Figure 4.4 Bait constructs used in the yeast two-hybrid screens  

Schematic view of the bait constructs used in the genome-wide yeast two-hybrid 

screens. The DNA-binding domain is derived from the Gal4 transcription factor. 

Mutations in the open reading frames of ubiquitin (K29/K48/K63, G76V) and PCNA 

(K127R, K164R) are indicated only once; the mutation versions are designated as Ub
*
 

and PCNA
*
. Amino acid sequences of linker peptides are shown below the constructs. 

 

A good yeast genomic library is crucial for a successful screen. The yeast genomic 

library used in the screen was described in (James et al., 1996). It was made from 

putting fragmented yeast genomic DNA sequences into pGAD424 series vectors in 

frame with a transcription-activation domain from Gal4 transcription factor in all three 

open reading frames (James et al., 1996). The yeast genomic libraries were then 

transformed into a yeast two-hybrid reporter strain Y187 (Clontech) (Albers et al., 

2005). In order to maximise the chance of covering the entire yeast genome, 

approximately 2 million transformants were collected from each transformation. 

Colonies were washed off from selective plates with YPD medium and slowly frozen 

down to -80°C to ensure a high recovery rate. The resulting transformants together with 

the bait constructs were sent to a company for the actual screen as described in (Albers 

et al., 2005), where the bait constructs were transformed into a yeast strain with an 
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opposite mating type and those transformants were mated with the collection of 

transformants containing the yeast genomic library. A physical interaction between the 

bait protein and an unknown factor X expressed from the genomic library would 

activate transcription at the LacZ reporter gene. The entire screen was performed fully 

automated on microtiter plates with pipetting robots. Therefore this approach was not 

biased on restreaks or retransformations, which are typically involved in a traditional 

manual screen.  In addition, the readout system was based on quantitative analysis of 

reporter signals and used statistics to identify the hits (Albers et al., 2005). In the end, 

colonies representing positive interactions were then amplified and subjected to 

sequencing to determine the identity of the inserts. 

 

Based on this approach, a few factors were found to interact with Ub
*
n-PCNA

*
 in the 

screen (Table 4.1). However, most of those factors, like Bob1, were cytoplasmic 

proteins, which were less likely to be involved in the RAD6 pathway. Moreover, factors 

such as End3, Vps9, Lsb5, Sla1, Spc25 and Etp1 were also found to interact with one or 

both of the ubiquitin chain constructs (Table 4.1), suggesting that all of them are general 

ubiquitin-binding factors rather than factors specifically bound to polyubiquitylated 

PCNA. This result was rather disappointing since none of the factors fit our criteria. 

However, the control screen using PCNA
*
 alone as bait only identified Srs2 as an 

interactor among the over twenty known PCNA-binding proteins, suggesting that the 

two-hybrid system may be not suitable to study protein-protein interaction for PCNA. 

This could be due to the fact that PCNA needs to be trimerised and loaded onto DNA 

for its biological function. A fusion of the DNA-binding domain with PCNA may not 

be able to bind other PCNA-interacting protein properly. To rule out the possibility that 

the DNA-binding domain in two-hybrid vector specifically blocked the access of other 

proteins to PCNA, a large-scale pull-down experiment was performed using purified 

GST
Ub

*
4-PCNA

*
 to search for binding factors in total yeast extracts (Figure 4.5A). GST 

and 
GST

PCNA
* 

were used as background control in parallel experiments. The bound 

materials were eluted from the glutathione column and analysed by mass spectrometry, 

which was performed in Dr. Mark Skehel’s Mass Spectrometry Lab in Cancer Research 

UK Clare Hall Laboratories. Through this approach, some more but not all PCNA-
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interacting factors were found in the pull-down experiment with 
GST

PCNA
*
,
 
such as 

Msh2, Pol32, etc (Figure 4.5B). Factors bound to 
GST

Ub
*
4-PCNA

*
 included those 

PCNA-binding proteins and many other factors involved in the general ubiquitin 

pathway (Figure 4.5B). Unfortunately, no factor involved in genome stability was found 

in the 
GST

Ub
*
4-PCNA

*
 pull-down exclusively. Therefore, two different approaches of 

using Ub
*
n-PCNA

*
 fusions to identify factors that specifically recognise 

polyubiquitylated PCNA were not successful. 

Bait Hits 
Number of times each 

clone was identified 

Minimal region covered 

by repetitive clones 

(amino acids) 

PCNA
*
 SRS2 2 782-1039 

Ub
*
3(L)-PCNA

*
 

BOB1 1 141-392 

SLA1 1 94-345 

ETP1 1 415-586 

Ub
*
4(L)-PCNA

*
 

END3 6 388-638 

LSB5 9 161-355 

VPS9 1 382-573 

SLA1 5 1086-1139 

ETP1 13 459-573 

SPC25 3 107-222 

Ub
*
4-PCNA

*
 

END3 6 389-619 

VPS9 1 383-573 

SLA1 2 1086-1307 

ETP1 54 415-586 

Ub
*
4 

END3 1 342-602 

PAN1 1 218-445 

VPS9 4 446-573 

ETP1 17 415-586 

Ub
*
4(L) 

END3 18 392-638 

LSB5 3 161-355 

VPS9 10 443-572 

SLA1 2 259-381 

RSC6 1 94-211 

SPC25 9 107-222 

DDI1 2 188-441 

ETP1 11 415-586 

Table 4-1: Potential ubiquitin-binding proteins obtained from a genome-wide yeast 

two-hybrid screen 

This table lists the names of the genes that were found to bind Ub
*
4 or Ub

*
4(L) in a 

genome-wide yeast two-hybrid screen. Other information includes the number of times 

each clone was identified and the minimal range of amino acids covered by repetitive 

clones. 
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Figure 4.5 Identification of PCNA
*
 and Ub

*
4-PCNA

*
 binding factors by pull-

down/mass spectrometry 

Pull-down experiments were performed in total cell extracts with purified GST, 
GST

PCNA
*
 and 

GST
Ub

*
4-PCNA

*
. GST fusion proteins were first immobilised on 

glutathione sepharose beads and yeast cell extracts were incubated with the charged 

beads at 4°C for 2 h. After washing with the binding buffer for five times, the bound 

proteins were eluted from the beads and separated on a 4-12% gradient gel, stained with 

Sypro Ruby. (B) Three lanes in (A) were sliced and sent to mass spectrometry for 

protein identification. This table lists all candidate proteins found in the gel. At least 3 

peptides were identified for each of the proteins listed.  

 

Despite the failure in identifying factors bound to polyubiquitylated PCNA, a number of 

general ubiquitin-binding proteins were identified via the two-hybrid screen (Table 4.1). 

Among those hits, there were some known ubiquitin-binding factors. For instance, Vps9 

was identified as a ubiquitin-binding factor from both bait constructs and it contains an 

UBA-like domain, which binds to ubiquitin, suggesting the two-hybrid screen was 

working. A few previously unknown potential ubiquitin-binding factors caught our 

attention. First of all, Spc25, which is a subunit of an evolutionarily conserved 

kinetochore complex, the Ndc80 complex (Janke et al., 2001, Wigge and Kilmartin, 
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2001), was found to interact with Ub
*
4(L) and Ub

*
4 (L)-PCNA

*
. Sequence analysis of 

Spc25 did not find any known ubiquitin-binding domain within the protein, suggesting 

that it may contain a new class of ubiquitin-binding domain. Most interestingly, there is 

no previous record about a function of ubiquitin-binding factors in the kinetochore 

complex. Secondly, a factor called Etp1 was identified as an interactor for both Ub
*
4 

and Ub
*
4(L). In fact, Etp1 has a ZnF-UBP domain that is known to interact with 

ubiquitin (Seigneurin-Berny et al., 2001); however, the identified fragment of Etp1 in 

the two-hybrid screen contains its C-terminal region (amino acids 458-586), which 

excluded the ZnF-UBP domain. Sequence analysis of Etp1 did not reveal any known 

UBDs in its C-terminal region, and I therefore predicted that Etp1 might also contain a 

novel ubiquitin-binding domain. It would be interesting to find out why Etp1 has two 

distinct types of UBDs and how these UBDs contribute to the function of Etp1. Last but 

not least, a component of a chromatin remodelling factor, Rsc6, was identified in the 

screen against Ub
*
4 (L). Again, there were no known UBDs within the Rsc6 sequence. 

Some other factors such as Pan1, Lsb5, End3 and Sla1 were involved in the endocytosis 

pathway, which is widely known to involve several types of ubiquitin-binding factors 

(Raiborg et al., 2003) and made an involvement in genome stability unlikely. I therefore 

did not pursue these any further, but decided to concentrate any further analysis on 

Spc25, Etp1 and Rsc6. 

 

As a first step, it was important to confirm the interaction between these factors and 

ubiquitin. The fragment of Spc25 found to interact with ubiquitin in the screen covered 

a C-terminal region of the protein (amino acids 107-221), the fragment of Etp1 also 

covered a C-terminal region (amino acids 458-586) and the fragment of Rsc6 covered a 

central part of the protein (amino acids 94-211). To verify these interactions, I generated 

yeast two-hybrid constructs expressing either full-length protein or the fragments that 

were found to bind ubiquitin as fusions to both the DNA-binding and the activation 

domain of Gal4 (Figure 4.6). The constructs were then analysed in a different reporter 

strain, PJ69-4A, which allows an estimation of interaction strengths by means of 

specific reporter genes. In the PJ69-4A strain, a HIS3 reporter gene selects relatively 

weak interactions, whereas an ADE2 reporter gene was used to identify strong 
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interactions (James et al., 1996). The results showed that the full-length Etp1 protein 

interacted with both Ub
*

4 and Ub
*
4(L) quite strongly, as a positive signal was detected 

from both HIS3 and ADE2 reporters. The C-terminal portion of Etp1 (amino acids 458-

586) also exhibited similar interaction patterns, with an additional interaction observed 

even with monoubiquitin (Figure 4.6). Full-length Spc25 in this experiment was found 

to interact with Ub
*
4(L) strongly because a positive signal was observed with the ADE2 

reporter gene. This was consistent with that fact that Spc25 was only identified to 

interact with Ub
*
4(L) in the screen. The C-terminal fragment of Spc25 (amino acids 

107-221) exhibited a slightly reduced but significant interaction with Ub
*
4(L) (Figure 

4.6). Unfortunately, I was not able to confirm the interaction between Rsc6 and 

ubiquitin because this interaction was negative in one direction of the two-hybrid 

experiment when Rsc6 was fused to the activation domain, and auto-activation of the 

HIS3 reporter was observed when Rsc6 was fused to the DNA-binding domain (Figure 

4.6). To summarise, Spc25 and Etp1 were confirmed to be potential novel ubiquitin-

binding factors based on this two-hybrid experiment. Since Spc25 has been studied for 

its function in the kinetochore, my following study would focus on the role of ubiquitin-

binding of Spc25 in maintaining genome stability.  
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Figure 4.6 Protein-protein interaction analysis of Etp1, Spc25 and Rsc6 with 

ubiquitin in the yeast two-hybrid system 

The open reading frames of the indicated proteins were expressed as fusions to Gal4 

activation (AD) or DNA-binding (BD) domains. The presence of the expression vectors 

in the cells was controlled by growth on plates with selective medium (–LW).  Positive 

interactions were shown as growth on plates without histidine (-HLW), which 

represents weakly selective conditions, and on plates without adenine and histidine (-

AHLW), which represents relatively strongly selective conditions. The coloured bars 

schematically represent the constructs of the different proteins used in this two-hybrid 

interaction assay. (A) The BD domain was fused to ubiquitin and the AD domain was 

fused to the candidate proteins. This orientation is the same as in the original screen, but 

using different reporter genes and a different strain background. (B) The AD domain 

was fused to ubiquitin and the BD domain was fused to the candidate proteins. This 

orientation was not covered by the original screens. 
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4.3 Identification of the Minimum Region in Spc25 Required for 

Ubiquitin Binding 

Spc25 is a subunit of the Ndc80 complex, which is an important complex providing a 

connection between microtubules and inner kinetochore complexes, since Ndc80-Nuf2 

binds microtubules directly (Cheeseman et al., 2006, DeLuca et al., 2006). A number of 

posttranslational modifications have roles in regulating kinetochore function. 

Phosphorylation of Ndc80 by Aurora B kinase has been shown to regulate microtubule 

attachment (DeLuca et al., 2006). A SUMO-interacting motif has been found in 

kinetochore protein CENP-E and is absolutely required for localization of CENP-E to 

the kinetochore, potentially via interacting with other SUMOylated kinetochore factors 

(Zhang et al., 2008). So far, there have been no reports of ubiquitin-binding domains in 

the context of the kinetochore.  Having identified Spc25, a kinetochore protein, as a 

potential novel ubiquitin-binding factor, I decided to characterise further the biological 

function of ubiquitin binding in Spc25.  

 

The first step was trying to identify a minimum region required for ubiquitin interaction.  

Sequence analysis of the SPC25 open reading frame did not reveal any known 

ubiquitin-binding domains. Therefore, a series of truncations were made to represent 

different parts of Spc25 (Figure 4.7A). The N-terminal part of Spc25 (amino acids 16-

77) is a coiled-coil region and the C-terminal part (amino acids 133-221) of the protein 

folds into a tight globular domain together with its dimerisation partner Spc24. A 

flexible and disordered segment (amino acids 117-132) connects the two parts (Wei et 

al., 2006). The globular domain consists of two alpha-helical regions (amino acids 133-

146 and 187-221) and a beta sheet region (amino acids 147-186). Since NMR and X-ray 

crystal structures of the globular domain from yeast Spc25 are available (Wei et al., 

2006), truncations within the globular domain were designed based on this secondary 

structure information. Truncation fragments were again cloned into the two-hybrid 

vectors and analysed for interactions with ubiquitin. It turned out that only the full-

length protein and the C-terminal fragment (amino acids 107-221) showed positive 

interactions (Figure 4.7B). All truncations within the globular domain lost the 

interaction with ubiquitin completely (Figure 4.7B). This result suggested that the 
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globular domain (amino acids 133-221) and a flexible extension from the N-terminus of 

the globular domain were both required for interaction with ubiquitin. 

 

 

 

Figure 4.7 Identification of a minimal ubiquitin-binding region in Spc25 
(A) A schematic view of Spc25 domains. Names of each region and information about 

secondary structure are given above the scheme, and the numbers of amino acids at the 

domain boundaries are labelled below the scheme. A series of black bars represent the 

lengths of the truncation constructs used in panel B. (B) Yeast two-hybrid analysis for 

protein-protein interaction between the series of truncations of Spc25 described in panel 

A and Ub
*
4 (L). The experiment was performed in both orientations as described in 

Figure 4.6. 
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Although my truncations were designed based on secondary structure information to 

minimise any negative impact on the overall structure of the protein, this did not rule 

out the possibility that truncations might cause problems in protein folding and 

therefore abolish ubiquitin-binding. To address this question, Spc24 was introduced as 

an internal control for protein folding. Spc24 forms a heterodimer with Spc25 in vivo as 

part of the Ndc80 complex, and the globular domain of Spc25 tightly associates with 

Spc24 even in the absence of the long N-terminal coiled-coil regions of both proteins. 

Therefore, any truncation constructs that interacted with Spc24 should have maintained 

correct folding. The interaction between Spc24 and all the truncation constructs were 

tested in a yeast two-hybrid experiment. I found that the globular domain alone (amino 

acids 133-221) and a larger C-terminal fragment (amino acids 107-221) both interacted 

with Spc24 (Figure 4.8A), but only the latter construct was able to bind Ub
*
4(L), 

confirming that a complete, well-folded globular domain plus a flexible extension from 

its N-terminus towards the coiled-coil region were required for ubiquitin interaction. All 

truncations within the globular domain lost the ability to bind Spc24. 

 

Because Spc25 forms a stable heterodimer with Spc24 in vivo, it was formally possible 

that Spc24 mediates the interaction between Spc25 and ubiquitin. To address this 

question, I tested whether Spc24 interacts with ubiquitin. In yeast two-hybrid 

experiments no evidence was found to support an interaction between Spc24 and any of 

my ubiquitin constructs, whereas the positive control Spc25 showed an interaction with 

Spc24 (Figure 4.8B). This suggested that Spc24 is unlikely to be directly involved in the 

interaction between Spc25 and ubiquitin. 

 

Taken together, these yeast two-hybrid based interaction data suggest that Spc25 

interacts with ubiquitin, but its dimerisation partner Spc24 does not. The C-terminal 

fragment (amino acids 107-221), which contains the entire globular domain together 

with a flexible extension from the N-terminus of the globular domain towards the 

coiled-coil region, is necessary for ubiquitin binding. 
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Figure 4.8 Yeast two-hybrid analysis of interactions between Spc25, ubiquitin and 

Spc24 

(A) Two-hybrid analysis of interactions between a series of truncations of Spc25 and 

full length Spc24. (B) Two-hybrid analysis of interactions between Spc24 and ubiquitin. 

Interaction between Spc24 and Spc25, Spc25 and Ub
*
4(L) served as positive controls. 

The experiment was performed as described in Figure 4.6. 

 

4.4 The Spc25-Spc24 Complex Binds Ubiquitin Directly 

The yeast two-hybrid analysis indicated an interaction between Spc25 and ubiquitin. 

However, one of the problems with this kind of approach is that the interaction might be 

indirect. In this case, Spc25 is a subunit of the Ndc80 complex, which interacts with 

several other protein complexes in the kinetochore. It is therefore possible that the 

interaction between Spc25 and ubiquitin was mediated by other kinetochore proteins 

that tightly associate with Spc25. To address this question, an in vitro pull-down 

experiment with purified protein components was performed. 
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The first approach was to purify Spc25 (amino acids 107-221) as GST fusion protein. 

The purification was quite successful, however the subsequent pull-down experiment 

did not succeed. Considering that many kinetochore proteins only become soluble when 

they are coexpressed with their binding partners as a complex, indeed Wei and co-

workers obtained a stable sub-complex by coexpressing Spc25 with Spc24 (Wei et al., 

2005). It was most likely that the GST moiety helps to solubilise Spc25, but the 

fragment itself might not fold correctly. I therefore decided to purify the C-terminal 

fragment of Spc25 (amino acids 107-221) and the globular domain of Spc24 (amino 

acids 154-213) together as a complex and perform a pull-down experiment with 

ubiquitin-conjugated Sepharose beads to analyse the interaction. These two constructs 

were named as Spc25(C) and Spc24(G) respectively. The Spc25(C) fragment was 

expressed as an N-terminal GST fusion protein and the Spc24(G) fragment was 

expressed as a fusion protein with an N-terminal 6His-tag in E.coli. Separate 

purification processes were initially attempted; however, 
6His

Spc24(G) precipitated in 

the elution buffer shortly after the purification. Although 
GST

Spc25(C) did remain 

soluble after elution, it was possibly that the GST moiety helped to maintain a folded 

structure. This suggested that Spc24(G) and Spc25(C) might have to be purified 

together to form a correctly folded heterodimer. I therefore expressed both proteins 

separately in E.coli and mixed the lysates during the purification step. After a single 

step of glutathione affinity chromatography, 
6His

Spc24(G) was co-purified with 

GST
Spc25(C) with a stoichiometric ratio around 1:1 as shown on a Coomassie-stained 

gel (Figure 4.9A).  Using the purified preparation, a pull-down experiment was 

performed with ubiquitin-conjugated Sepharose beads to detect if the 
GST

Spc25(C)-
 

6His
Spc24(G) complex could bind ubiquitin. Indeed, the 

GST
Spc25(C)-

 6His
Spc24(G) 

complex was bound to the ubiquitin-conjugated Sepharose beads specifically, whereas 

only a barely-detectable amount of the complex was bound to protein G-conjugated 

beads in a parallel control experiment, and the GST protein alone did not bind to the 

ubiquitin-conjugated Sepharose beads either (Figure 4.9B). This result indicated that the 

Spc25-Spc24 complex was able to interact with ubiquitin directly in vitro.  
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Figure 4.9 In vitro analysis of ubiquitin binding by the Spc25-Spc24 complex 

(A) A Coomassie-stained gel shows co-purified 
GST

Spc25 (107-221)-
His

Spc24 (154-213) 

complex with a stoichiometric subunit ratio around 1:1. After mixing the cell lysates, derived 

from E.coli cultures expressing 
GST

Spc25 (107-221) and 
His

Spc24 (154-213) respectively, a 

single step glutathione affinity chromatography was applied to the lysate and the complex was 

eluted from the column using reduced glutathione. (B) An in vitro pull-down experiment shows 

an interaction between Spc25-Spc24 and ubiquitin. Ubiquitin sepharose beads were used to pull 

down either GST or 
GST

Spc25(C)-
His

Spc24(G) complex. Protein G-conjugated beads were used 

as another control for non-specific binding of the complex to the beads. The bound materials 

were detected by anti-GST Western blots. 5% of the input and 12.5% of the total bound 

materials were loaded on this gel. (C) A Coomassie-stained gel shows purified 
His

Spc25 (107-

221)-
His

Spc24 (154-213) complex with a stoichiometric subunit ratio around 1:1. 
His

Spc25 (107-

221) and 
His

Spc24 (154-213) were coexpressed in E.coli and purified by Ni-NTA affinity 

chromatography. The eluted proteins were then applied to a gel filtration column, and fractions 

corresponding in size to the heterodimeric complex were collected. (D) An in vitro pull-down 

experiment shows interactions between Spc25-Spc24 and monoubiquitin as well as 

tetraubiquitin chains. 
GST

Ub4(L) and 
GST

Ub4 were expressed in  E.coli and purified by 

glutathione affinity chromatography. GST, 
GST

Ub4(L) and 
GST

Ub4 were immobilised on 

glutathione beads. Two different preparations of 
GST

Ub4(L) were tested in this pull-down 

experiment labelled 1 and 2. Bound proteins were detected by anti-His Western blots and 

Ponceau staining of the membrane. 
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The arrangement of ubiquitin molecules on the surface of ubiquitin-conjugated 

Sepharose beads is poorly defined. It is therefore difficult to determine if the 

GST
Spc25(C)-

6His
Spc24(G) complex interacts with monoubiquitin or polyubiquitin 

chains. For this reason, a pull-down experiment was performed with 
GST

Ub or 
GST

Ub4 

immobilized on the glutathione Sepharose instead of ubiquitin-conjugated Sepharose. 

As 
GST

Spc25(C) was not suitable for this kind of experiment, a new expression 

construct was generated to purify Spc25(C) as an N-terminally 6His-tagged protein. The 

6His
Spc25(C)-

6His
Spc24(G) complex was coexpressed in the same E.coli strain and the 

complex was purified by Ni-NTA affinity chromatography. Because both proteins have 

a 6His-tag, the eluted protein complex from the Ni-NTA column was not obtained with 

a 1:1 stoichiometry, and some precipitation was observed after the purification, 

suggesting that one of the two proteins was in excess and then precipitated from the 

solution. Therefore, the eluted proteins were applied to a gel filtration column and the 

fractions representing a dimeric complex of 
6His

Spc25(C)-
6His

Spc24(G) were collected 

and analysed by SDS-PAGE. In the end, a purified dimeric complex of 
6His

Spc25(C)-

6His
Spc24(G) with a stoichiometric ratio around 1:1 was obtained (Figure 4.9C). In a 

pull-down experiment, a small but detectable amount of this protein complex was 

bound to 
GST

Ub, and the amount of bound material greatly increased when 
GST

Ub4(L) 

was used (Figure 4.9D). A similar interaction was observed with 
GST

Ub4. These data 

confirmed the results from the previous pull-down experiment and showed that the 

Spc25(C)-Spc24(G) complex is able to interact with monoubiquitin as well as linear 

tetraubiquitin chains. Further experiments were attempted to determine if Spc25(C)-

Spc24(G) binds to K63- or K48-linked polyubiquitin chains. Unfortunately, the protein 

complex did not show significant binding to either of them. I therefore favoured the 

idea that the Spc25-Spc24 complex interacts mainly with monoubiquitin. The observed 

interaction with linear tetraubiquitin chains could be simply explained by the increase in 

the number of ubiquitin units available for binding. In such case, an enhanced 

interaction would be observed, but would not be an indication of genuine polyubiquitin 

binding.  
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I was interested to quantify the binding affinity of Spc25-Spc24 to monoubiquitin via a 

biophysical approach. The surface plasmon resonance-based BIACORE
®
 technology 

was used to determine the dissociation constant for this interaction. A CM5 chip was 

chemically coupled with anti-GST antibody to immobilize either GST or 
GST

Ub onto its 

surface, and the Spc25(C)-Spc24(G) complex was then injected at varying 

concentrations. The SPR signals detected in the GST sample were considered as 

background and were subtracted from signals obtained with 
GST

Ub. A series of 

concentrations of the Spc25(C)-Spc24(G) complex from 1 μM to 40 μM was used, and 

SPR signals at each concentration were recorded for 300 sec (Figure 4.10A). Because 

Spc25-Spc24 binding to monoubiquitin exhibited fast association and dissociation rates, 

a dissociation constant of 14.2 μM was calculated from the SPR signals at the 

equilibrium state of each sample concentration (Figure 4.10B). Considering that many 

UBDs bind monoubiquitin quite weakly, the observed binding affinity was among the 

relatively strong interactions (Hurley et al., 2006). Finally, yeast two-hybrid showed 

that Spc25 selectively bind Ub
*
4 (L), but in vitro pull-down experiments showed that 

Spc25 bind both Ub
*
4 (L) and Ub

*
4. I therefore analysed the interaction between Spc25 

and both types of tetraubiquitin chains by the BIACORE system. Equimolar amounts of 

GST, 
GST

Ub, 
GST

Ub
*
4 (L) and 

GST
Ub

*
4 were captured on the surface of a CM5 chip, 

which had been divided into four parallel flow cells and chemically coupled with anti-

GST antibody. The Spc25(C)-Spc24(G) complex was injected at 10 μM and the 

sensorgrams were recorded. 
GST

Ub
*
4 (L) was seen to bind the complex best, whereas 

GST
Ub

*
4 showed a weaker binding compared with 

GST
Ub

*
4 (L) (Figure 4.10C). Again, 

this experiment confirmed a positive interaction between Spc25 and both types of 

tetraubiquitin chains, and a stronger interaction with Ub
*
4 (L).  

 

In summary, the purified Spc25(C)-Spc24(G) complex was able to bind monoubiquitin 

directly with relatively strong binding affinity. Whether or not it binds to polyubiquitin 

chains of defined geometries remains unclear. 
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Figure 4.10 Surface plasmon resonance analysis of Spc25(C)-Spc24(G) binding to 

monoubiquitin and tetraubiquitin 

(A) A Biacore sensor chip (CM5) was conjugated with 5000 resonance units (RU) of 

anti-GST antibody, and equimolar amounts of GST or 
GST

Ub were captured on the 

surface of the chip (500 and 673 RU, respectively). 
His

Spc25 (107-221)-
His

Spc24 (154-

213) complex was injected across the sensor chip at the indicated protein 

concentrations. Background signals from the GST sample were subtracted from the 

signals obtained with 
GST

Ub. The experiments were performed in duplicate at each 

concentration, and only one sensorgram per concentration is shown.  Signals between 

the two vertical lines were averaged for each protein concentration and used to calculate 

the dissociation constant. (B) Response units were plotted against the protein 

concentrations for calculation of the dissociation constant (Kd) for the interaction 

between Spc25-Spc24 and ubiquitin. (C) GST, 
GST

Ub, 
GST

Ub
*
4 (L) and 

GST
Ub

*
4 (585, 

706, 1004, and 933 RU respectively) were captured on the surface of a CM5 chip, and 

10 μM Spc25(C)-Spc24(G) complex was injected and the sensorgrams were recorded. 
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4.5 Characterisation of the Interaction Between Spc25 and 

Ubiquitin 

The evidence of a direct physical interaction between Spc25-Spc24 and ubiquitin 

encouraged me to further characterise residues that are important for this interaction, 

ideally even to determine the contact surfaces on both proteins. Most UBDs bind to a 

hydrophobic patch on the β-sheet of ubiquitin around I44, although there are some 

exceptions that UBDs bind to ubiquitin independent of this hydrophobic patch (Beal et 

al., 1998, Hurley et al., 2006). In the case of Spc25-Spc24, bioinformatic analysis did 

not identify any similarities to known UBDs (personal communication with Kay 

Hofmann). I therefore tested if Spc25-Spc24 binding to ubiquitin requires the canonical 

hydrophobic patch. A pull-down experiment with 
GST

Ub and 
GST

Ub (I44A) was 

performed to analyse the interaction with Spc25(C)-Spc24(G) as described previously. 

The experiment showed that 
GST

Ub was able to bind the Spc25(C)-Spc24(G) complex, 

and this interaction was abolished by the I44A mutation in 
GST

Ub (Figure 4.11). This 

result suggested that the Spc25-Spc24 complex interacts with ubiquitin through the 

canonical hydrophobic patch. 

 

Figure 4.11 In vitro analysis of I44A mutant ubiquitin binding by the Spc25-Spc24 

complex 

Pull-down experiment shows that an interaction between Spc25-Spc24 and ubiquitin is 

abolished by an I44A mutation of ubiquitin. 
GST

Ub and 
GST

Ub (I44A) were expressed 

and purified from E.coli using glutathione affinity chromatography. In the pull-down 

experiment, proteins bound to the beads were finally detected by an anti-His Western 

blot and Ponceau staining of the membrane. 
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Identification of residues on Spc25 that are important for ubiquitin interaction was 

achieved by searching for mutations that abolish ubiquitin binding. From the work 

described in section 4.4, it was known that ubiquitin binding requires the entire globular 

domain and the N-terminal flexible extension. Most importantly, the globular domain 

(amino acids 133-221) of Spc25 alone does not interact with ubiquitin, suggesting there 

must be important residues within the region of the flexible extension (amino acids 107-

133) responsible for contacting ubiquitin. To find out the identity of those residues, a 

sequence alignment was performed for Spc25 from different organisms to search for 

evolutionarily conserved residues, particularly within the fragment spanning amino 

acids 107-133. Given that this region of interest represents a flexible linker, I argued 

that any conserved residues in this sequence might be functionally significant. Three 

well-conserved residues were found within that region: L109, L113 and R116 (Figure 

4.12A).  

 

To test whether any of these three residues may contribute to the interaction with 

ubiquitin, the following constructs were generated: Spc25 (3A), in which L109, L113 

and R116 were mutated to alanine, Spc25 (107-133) representing the flexible region 

only, Spc25 (1-133) representing the flexible region plus the N-terminal coiled-coil 

region and Spc25 (117-221) which excludes the conserved residues. Figure 4.12B gives 

a schematic view of all the constructs. If any of these three conserved residues were 

important for ubiquitin-binding, a similar result would be expected from the triple-

mutation construct Spc25 (3A) and the truncation construct Spc25 (amino acids 117-

221). In addition to that, the constructs Spc25 (amino acids 107-133) and Spc25 (amino 

acids 1-133) would help me to answer the question if the N-terminal part of Spc25 

would have something to do with ubiquitin binding since all previous experiments were 

focused on the C-terminal part of the protein. All the constructs were analysed in the 

yeast two-hybrid system for ubiquitin binding along with some previously analysed 

constructs as positive controls.  The result showed that the Spc25 (3A) mutant lost 

ubiquitin-binding in both orientations. This was consistent with results from the 

truncation construct Spc25 (117-221), which lacks the relevant region completely 

(Figure 4.12B). Importantly, both the mutant and the truncated forms of Spc25 were 



Chapter 4. Results II 

 149 

able to interact with Spc24, suggesting that both proteins folded properly (Figure 

4.12B). Furthermore, construct Spc25 (1-133) interacted with Spc24, presumably due to 

the dimerisation of the coiled-coil region. However, Spc25 (1-133) did not interact with 

ubiquitin (Figure 4.12B). These experiments showed that at least one residue among 

L109, L113, and R116 must be important for ubiquitin-binding of Spc25. The fact that 

neither the flexible region alone (amino acids 107-133) nor this region plus the N-

terminal coiled-coil domain (amino acids 1-133) were able to interact with ubiquitin 

suggests a second potential contacting surface, most likely within the globular domain 

of Spc25. 

 

Finally, individual mutations of L109A, L113A and R116A were made to separate their 

contributions to the ubiquitin binding of Spc25. These individual mutant constructs 

together with the triple mutant construct were then analysed in the yeast two-hybrid 

system again. The results showed that the L109A mutation had a dramatic effect: it 

abolished ubiquitin-binding completely in both orientations. L113A had an intermediate 

phenotype, in which ubiquitin-binding was partially reduced in one direction of 

experiment and was not detectable in the other direction of experiment. In contrast, 

R116A mutation did not have any effect on ubiquitin-binding (Figure 4.13). I therefore 

concluded that residue L109 was the primary contact site for ubiquitin interaction. L113 

could be involved in this interaction as a secondary contact site. R116 is not required for 

the interaction. Ideally, in vitro pull-down and BIACORE experiments would be 

performed to confirm and quantify the extent to which the L109A mutation abolished 

the ubiquitin binding of Spc25; such experiments are still waiting to be completed. 

Nevertheless, this result enabled me to use Spc25 (L109A) as a mutant deficient in 

ubiquitin binding in the rest of my study to analyse the biological function of ubiquitin 

binding.  
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Figure 4.12 Identification of ubiquitin-binding residues on Spc25 

(A) A sequence alignment of Spc25 from different organisms including Drosophila 

melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae, 

Schizosaccharomyces pombe and Xenopus laevi. The alignment was generated by 

CLUSTALW2 sequence analysis tool available from EBI (European Bioinformatics 

Institute). The three most conserved residues within the region of interest were 

indicated by red triangles below the alignment. (B) Two-hybrid analysis of the 

interaction between Spc25 truncations or mutations and ubiquitin. The scheme at the 

lower part of the panel summaries the truncations and mutations used in this study. The 

experiment was performed as described in Figure 4.6. 
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Figure 4.13 The impact of individual mutations on the interaction between Spc25 

and ubiquitin 

Two-hybrid analysis of the interaction between Spc25 mutants and ubiquitin. Spc24 

serves as a control for the folding of the mutant proteins. The experiment was 

performed as previously described in Figure 4.6. 

 

4.6 Spc25 Ubiquitin-binding Deficient Mutants Have an Intact 

Spindle Checkpoint  

As introduced earlier in my thesis, Spc25 is a subunit of the Ndc80 complex, which sits 

on the outer kinetochore and connects the microtubule to the inner kinetochore protein 

complexes assembled on the centromeric DNA (Janke et al., 2001, Cheeseman et al., 

2006). Spc25 is an essential protein, such that deletion mutants of Spc25 are not viable. 

Based on that information, the first question to ask is if Spc25 ubiquitin-binding 

deficient mutants are viable. If ubiquitin binding were critical for the proper function of 

Spc25, complete loss of ubiquitin binding would have a severe defect in the protein 

function or even cause cell death. In that situation, mutants that have partially reduced 

ubiquitin binding might still support viability. In order to observe their potential 

phenotypes, spc25 mutant alleles were introduced into diploid yeast cells, followed by 

sporulation. One copy of SPC25 was deleted by replacing it with a HIS3 marker in a 

diploid cell and a copy of the spc25 mutants (L109A, L113A and 3A) was inserted into 

the yeast genome with the URA3 marker to generate heterozygous cells, where one copy 

of Wt SPC25 would support cell survival. The heterozygotes were then sporulated and 

the spores separated by tetrad dissection and tested for genetic markers. Figure 4.14A 
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shows that the HIS
+
-URA

+
 spores carrying mutations of L109A, L113A or a triple 

mutation 3A were viable. In addition to that, there were no differences in colony sizes 

(Figure 4.14A), and mutant cells were not temperature sensitive within 25-37°C (data 

not shown). Overall, this suggested that ubiquitin-binding deficient spc25 mutant cells 

were viable, and the similar colony sizes derived from the germinating spores indicated 

similar growth rates. 

 

Because the ubiquitin-binding deficient mutant did not affect cell viability and did not 

cause any differences in haploid cell growth rate, I was curious to find out the biological 

function of ubiquitin binding in Spc25. Temperature-sensitive mutants of SPC25 show 

defects in chromosome segregation and the spindle checkpoint response (Wigge and 

Kilmartin, 2001, Janke et al., 2001). In addition to that, an interaction between Spc25 

and the spindle checkpoint protein Mad1 had been reported in the two-hybrid system 

(Newman et al., 2000). It is therefore possible that the ubiquitin-binding function of 

Spc25 might be involved in spindle checkpoint control. To test this hypothesis, spot 

assays were performed to analyse the sensitivity towards the spindle poison Benomyl, 

which destabilises microtubules and causes cell cycle arrest at G2/M phase. Mutants of 

spindle checkpoint proteins, which are not able to arrest the cell cycle properly in 

response to mitotic stress, are usually sensitive to these drugs. The result showed that 

none of the ubiquitin-binding deficient mutants were sensitive to Benomyl, suggesting 

that these mutants did not have defects in spindle checkpoint function (Figure 4.14B).  

 

The next question was if ubiquitin binding might be involved in chromosome 

segregation. A plasmid loss experiment was performed to quantitatively analyse the 

difference in maintaining plasmids between Wt and spc25 (L109A). Two different 

plasmids were used: one had a native version of an autonomous replication sequence 

(ARS) and the other contained a shorter ARS, which increases the rate of loss (Henry 

and Silver, 1996). The mutation spc25 (L109A) was introduced into the host strain, and 

the plasmids were transformed into Wt and mutant strains, respectively. The 

transformants were grown in selective-medium to saturation and diluted to low density 
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for another 10 generations of growth in non-selective medium. The final cultures were 

plated on plasmid-selective plates and colonies were counted for quantitative analysis of 

the proportion of plasmid loss in both strains. There was no significant difference 

between Wt and the spc25 (L109A) mutant in the rate of plasmid loss, while an 

increased plasmid loss was observed for the plasmid with a shortened ARS (Figure 

4.14C).  These data indicated that spc25 (L109A) did not have significant defects in 

plasmid segregation, which was consistent with the observation from a previous 

experiment that mutant cells were not sensitive to the spindle poison benomyl. 

Therefore, it is likely that ubiquitin binding is not required for the role of Spc25 in 

chromosome segregation. 

 

In summary, cells harbouring the ubiquitin-binding deficient spc25 allele were still able 

to survive, and the loss of ubiquitin binding did not seem to cause any gross problems in 

spindle checkpoint control or chromosome segregation. 
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Figure 4.14 spc25 ubiquitin-binding deficient mutants do not show spindle 

checkpoint or plasmid segregation defects 

(A) Four viable spores resulted from tetrad dissection of spc25 (L109A), spc25 (L113A) 

and spc25 (3A) heterozygotes. Mutant spc25 alleles (L109A, L113A and 3A) were 

integrated into the URA3 locus in Wt diploid cells after deletion of one copy of SPC25 

by introducing a HIS3 marker, and the heterozygotes were sporulated at 25°C, followed 

by tetrad dissection.  The distribution of markers for surviving spores was determined 

by replicating plates onto –His or –Ura selective plates. The desired spc25 mutant 

spores were selected as HIS3
+
-URA3

+
 and labelled in white squares. Mutants were 

further analysed by sequencing the products from colony PCR of the SPC25 gene. (B) 

Sensitivities of indicated strains to benomyl were determined by spot assays. Two 

different colonies (named *1 and *2) from each strain were analysed here. (C) Plasmid 

loss experiments were performed by transferring saturated overnight cultures carrying 

the indicated plasmids from selective medium into YPD medium for 10 generations and 

plating equivalent numbers of cells on selective and YPD plates. Frequencies of 

plasmid loss were calculated from the number of colonies on selective plates and YPD 

plates. The error bars represent standard deviations derived from a set of triplicate 

experiments. 
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4.7 Components of the Yeast Kinetochore Complex Are 

Ubiquitylated 

The initial approaches to analyse the function of ubiquitin binding in Spc25 were rather 

disappointing, as spc25 ubiquitin-binding deficient mutants had normal growth, a 

normal spindle checkpoint response and proper chromosome segregation. It was 

therefore decided to take a systematic approach to look for ubiquitylated potential 

interactors of Spc25. The ubiquitylated proteins that are recognised by the ubiquitin-

binding domain of Spc25 might most likely be found among other kinetochore 

components that localise in the vicinity of Spc25. A simplified model of yeast 

kinetochore components is shown in Figure 4.15. A list of candidate proteins that 

associate with Spc25 was created to look for ubiquitylation among these candidates 

(Figure 4.15). A number of studies have used different techniques to suggest several 

potential interaction partners for Spc25. The MIND complex (Mtw1, Nnf1, Dsn1 and 

Nsl1) and the COMA complex (Ctf19, Okp1, Mcm21 and Ame1) were proposed to be 

associated with Spc25 from interaction studies based on yeast two-hybrid analysis and 

approaches involving co-purification and mass spectrometry (Nekrasov et al., 2003, De 

Wulf et al., 2003). An in vitro reconstituted KMN (KNL-1/Spc105, Mis12/MIND 

complex and Ndc80 complex) network using purified proteins suggested a direct 

interaction between Spc25-Spc24 and the MIND complex components (Cheeseman et 

al., 2006). The Ndc80 complex itself, and the MAD proteins were also included in the 

list of potential interactors of Spc25 because physical association or functional links 

suggested possible direct interactions between Spc25 and the later (Newman et al., 

2000, Ohkuni et al., 2008, Janke et al., 2001). Several recent reports, where authors 

used fluorescent microscopy to determine the relative positions of many kinetochore 

proteins in nanometer accuracy (Joglekar et al., 2009, Wan et al., 2009), also helped to 

further optimise the list of potential interactors of Spc25. Not all kinetochore 

components shown in Figure 4.15 were included in the list of potential interactors. For 

instance, the Dam1 complex and the CBF3 complex were not included in the initial list 

because there was no evidence to indicate a direct association between these complexes 

and Spc25. Furthermore, some of these complexes were not even included in studies 

using fluorescent microscopy to map relative positions of kinetochore proteins, 

suggesting they are less likely to be closely associated with Spc25 (Joglekar et al., 2009, 
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Wan et al., 2009). The final list of potential interactors of Spc25 contains the 

components of the MIND complex, the COMA complex, the Ndc80 complex and 

Mad1-3. 

 

Figure 4.15 The kinetochore of S. cerevisiae and a list of potential Spc25 

interactors for testing ubiquitylation in vivo 

A model shows our understanding on the structure and composition of the kinetochore 

in S.cerevisiae. CEN: centromere (green bar), MT: microtubule (blue bar); Spc24/Spc25 

subcomplex (green/red crystal structure) is facing towards the centromere and in close 

contact with other central kinetochore proteins. CBF3 complex is shown as blue oval, 

Cse4 nucleosome is coloured in orange. Mif2 is in red; the MIND complex is in brown; 

the COMA complex is in light green; the rest of the Ctf19 complex is in green; the 

Spc105 complex is in purple and the Dam1 complex is in pink. A list of potential Spc25 

interactors includes all candidate proteins tested in subsequent experiments for 

ubiquitylation in vivo.  

 

To find out whether any of these potential Spc25 interactors are ubiquitylated, each 

single protein within the list was directly analysed for ubiquitylation. Taking advantage 

of the TAP-tagged yeast strain library, strains harbouring C-terminally TAP-tagged 

alleles of the respective genes were obtained. An expisomal plasmid expressing His-

tagged ubiquitin under control of the copper-inducible CUP1 promoter was transformed 

into these strains, and total ubiquitin conjugates were isolated by Ni-NTA beads under 

denaturing conditions (Ulrich and Davies, 2009). Finally, the pull-down samples were 
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analysed on western blots with TAP tag-specific antibody. With this approach, the 

sixteen factors were screened, and among those many proteins were indeed found to be 

ubiquitylated, but to different extents (Figure 4.16). First of all, MIND complex subunit 

Dsn1 was found to be strongly ubiquitylated. A band representing the ubiquitylated 

form of Dsn1 in the lane labelled Dsn1 P (pull-down) migrated more slowly than the 

unmodified form in the lane Dsn1 I (input). Based on the observed shift in molecular 

weight, the modified Dsn1 was mainly monoubiquitylated (Figure 4.16A). In contrast, 

the MIND subunits Mtw1 and Nnf1 were only weakly ubiquitylated with the modified 

forms barely visible in the lane of pull-down (Figure 4.16A). Mcm21, Okp1 and Ame1, 

members of the COMA complex, were all polyubiquitylated (Figure 4.16B), but Ctf19 

was not ubiquitylated (Figure 4.16C). Within the complex of Ndc80, only very weakly 

modified species were detected in Spc24, Spc25 and Nuf2 (Figure 4.16C and 4.16D). 

Spindle checkpoint protein Mad1 was strongly ubiquitylated in this experiment; Mad2 

was also ubiquitylated, but not Mad3 (Figure 4.16E). Mps1 was also found to be 

polyubiquitylated (Figure 4.16D). Noticeably, there were some non-specific bands 

shown in the control blot for cells without His-tagged ubiquitin (Dsn1, Okp1, Spc25, 

Ndc80 and Mps1). Similar bands also appeared in the samples from Ni-NTA pull-down 

(P lanes), but the intensity was not comparable with the ubiquitylated species. Those 

bands with molecular weights equivalent to the unmodified form of relevant proteins 

could be results of non-specific stickiness of those TAP-tagged proteins to the beads. To 

summarise, many kinetochore proteins and spindle checkpoint proteins were modified 

by ubiquitin to different levels. 
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Figure 4.16 In vivo ubiquitylation of kinetochore components 

Cells harbouring TAP-tagged alleles of the indicated genes were transformed with 

either a plasmid expressing His-tagged ubiquitin or an empty plasmid. The expression 

of His-tagged ubiquitin was under control of the copper inducible CUP1 promoter, and 

His-tagged ubiquitin was overepxressed by addition of copper to the growth medium in 

those cells. Total ubiquitin conjugates were isolated by Ni-NTA pull-down under 

denaturing conditions, and samples were analysed by Western blot with an anti-TAP 

antibody. Pull-down samples (P) were loaded next to the total cell extract (I) and a shift 

of molecular weight in (P) compared with (I) indicated ubiquitylated forms of target 

proteins. (A)-(E) Western blot analysis for samples from denaturing pull-down of the 

MIND complex, the COMA complex, the Ndc80 complex, Mps1 and MAD1-3. 
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However, these experiments were performed in yeast cells overexpressing His-tagged 

ubiquitin. While these elevated ubiquitylation signals made detection easier, it might 

also introduce some false positive results. The weak modification signals from some 

candidate proteins could be due to these artefacts. Therefore, similar experiments were 

performed to confirm some of the most promising ubiquitylation events in cells with an 

ubiquitin level close to the endogenous level. Dsn1, Mcm21 and Mad1 were first 

analysed because they were strongly ubiquitylated in the initial screen and had the most 

promising physical or genetic interaction data supporting a link with Spc25. For this 

purpose, the CUP1 promoter was not induced, with the result that the basal expression 

of His-tagged ubiquitin in the absence of copper was enough to isolate ubiquitylated 

species via Ni-NTA pull-down, while maintaining an ubiquitin level comparable to the 

endogenous situation (Figure 4.17A). This assay confirmed the monoubiquitylation of 

Dsn1, the polyubiquitylation of Mcm21, but not much modification for Mad1 (Figure 

4.17B). Although there was non-specific binding of unmodified Dsn1 on the beads in 

the pull-down sample, a similar band migrating at the same molecular weight was seen 

in the parallel control experiment, where cells did not contain the plasmid expressing 

His-tagged ubiquitin. However, enrichment of the ubiquitylated form compared with the 

non-specifically binding species indicated that Dsn1 was really monoubiquitylated. 

 

Overall, by this approach, I found that many proteins within the kinetochore complex or 

close to the kinetochore appeared to be ubiquitylated in vivo. I focused on three 

potential targets, Mcm21, Mad1 and Dsn1, whose modification appeared strongest in 

the initial experiments, and further confirmed the observed modifications for Mcm21 

and Dsn1 with a ubiquitin level close to the endogenous one. Because Dsn1 was 

monoubiquitylated and Mcm21 was polyubiquitylated, an overall non-specific 

ubiquitylation as a general modification among the kinetochore components is unlikely. 

Instead, it appears more probable that the modifications are specific regulatory events 

for the respective target proteins. Preliminary immunoprecipitation assays have 

confirmed the association of Mcm21 and Dsn1 with Spc25 (data not shown), and 

previous studies have reported very similar outcomes (Wan et al., 2009, Nekrasov et al., 
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2003, De Wulf et al., 2003). All of those put forth Mcm21 and Dsn1 as very attractive 

candidates with a possible relevance for the function of ubiquitin binding in Spc25. 

 

 

 

Figure 4.17 In vivo ubiquitylation of Dsn1 and Mcm21 at native ubiquitin levels 

(A) Cells harbouring TAP-tagged alleles of the indicated genes were transformed with 

either an empty plasmid or a plasmid expressing His-tagged ubiquitin, and grown in the 

absence of copper. The basal activity of the CUP1 promoter results in residual amounts 

of His-tagged ubiquitin useful for pull-down assays. The total cellular ubiquitin 

conjugates, detected by Western blots with an anti-ubiquitin antibody, indicate no 

significant increase in total ubiquitin levels in the absence of the His-tagged construct. 

(B) Ni-NTA denaturing pull-down as described in Figure 4.16. TAP-tagged proteins 

were detected by Western blots with an anti-TAP antibody. 

 

4.8 SPC25 (L109A) Is Sensitized to Kinetochore Destabilisation 

As Mcm21 was found to be polyubiquitylated in the previous pull-down experiment 

looking for ubiquitylated species, its potential link with the ubiquitin-binding function 

of Spc25 was further investigated. Mcm21 is a subunit of the COMA complex, which 

consists of Ctf19, Okp1, Ame1 and Mcm21 (Ortiz et al., 1999). The COMA complex 

was shown to co-purify with the Ndc80 complex (De Wulf et al., 2003). In an initial 

attempt to confirm an association of Mcm21 with Spc25 in vivo by co-
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immunoprecipitation, it was noticed that a combination of spc25 (L109A) with MCM21-

GFP
 
(Mcm21 tagged with GFP at its C-terminus) caused slow growth of the cells. 

Based on these interesting initial observations, an experiment was performed to monitor 

the growth of strains including Wt, spc25 (L109A), MCM21-GFP and spc25 (L109A) 

MCM21-GFP in parallel. After an overnight incubation of all strains, cultures were 

diluted and the cell density was then monitored spectrophotometrically at OD600. In this 

experiment, spc25 (L109A) or MCM21-GFP alone showed a growth rate almost 

identical to Wt cells. In contrast, introducing the spc25 (L109A) mutation into the 

MCM21-GFP strain significantly reduced the growth rate (Figure 4.18A). This result 

demonstrated that the ubiquitin-binding deficient spc25 allele caused a growth defect in 

a situation where the kinetochore complex was sensitised to destabilisation by a big 

epitope tag such as GFP on a protein within the complex. This result was also consistent 

with an earlier observation that a different SPC25 allele, spc25-7, showed increased 

temperature sensitivity in combination with mcm21Δ (Janke et al., 2001).  

 

Mutants in DSN1, encoding the second ubiquitylation target within the kinetochore 

complex, had already been shown to share some phenotypes with spc25 mutants such as 

the failure of chromosomes to attach one pole and the activation of the spindle 

checkpoint (Nekrasov et al., 2003). Therefore, a potential genetic relationship between 

dsn1 mutants and the spc25 (L109A) allele was examined. Two temperature-sensitive 

alleles, dsn1-7 and dsn1-8 (Nekrasov et al., 2003), were crossed with spc25 (L109A), 

and growth of the resulting double mutants was monitored at different temperatures. 

 

While spc25 (L109A) did not show any temperature sensitivity, the dsn1-7 mutant 

started to show temperature sensitivity at 30°C and completely ceased to grow at 33°C. 

The double mutant of dsn1-7 spc25 (L109A) had a slightly increased temperature 

sensitivity with severe growth inhibition already at 30°C (Figure 4.18B). For the dsn1-8 

mutant, a more dramatic effect was observed. While dsn1-8 alone did not show much 

sensitivity below 35°C, the double mutant dsn1-8 spc25 (L109A) showed impaired 

growth at 31°C (Figure 4.18B). Both results were consistent and together suggested a 
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genetic interaction between DSN1 and the ubiquitin-binding function of SPC25. In this 

case, again dsn1 temperature sensitive mutants represented a destabilized kinetochore 

complex, and under this condition the spc25 (L109A) mutation further sensitised the 

cells. Together with the synthetic growth defect observed with MCM21-GFP 

previously, these data indicate that spc25 (L109A) sensitises a pre-destabilised 

kinetochore complex, suggesting that ubiquitin binding of the Spc25 might positively 

contribute to the stability of kinetochore. 

 

It is formally possible that the L109A mutation might result in destabilisation of the 

protein, which in turn contributes to the observed phenotype that I proposed to be a 

result of ubiquitin-binding defects. To address this concern, the protein levels of Spc25 

(L109A) and Spc25 Wt were analysed. A 9myc-tag was introduced to the C-terminus of 

SPC25 at the genomic locus to detect the protein and Spc25 (L109A)-9myc showed a 

protein level very similar to the tagged Wt protein (Figure 4.18C). Together with the 

fact that Spc25 (L109A) interacts with Spc24, I considered the idea that L109A 

mutation destabilises Spc25 less likely. 
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Figure 4.18 Spc25 (L109A) is sensitised to kinetochore destabilisation 

(A) Growth of the indicated strains was monitored by spectrophotometrically measuring 

cell density at 600 nm. Overnight cultures, grown at 30°C, were diluted to OD600=0.2, 

and growth of the cultures was measured by means of the OD600 plotted against the 

time. (B) Temperature sensitivities of the indicated strains were determined by spotting 

serial dilutions onto YPD plates and incubation for 3 days at different temperatures. (C) 

Protein levels of Spc25 Wt and the L109A mutant were analysed by Western blot with 

an anti-myc antibody. A 9myc-tag was introduced to the C-terminus of SPC25 at its 

genomic locus. 
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4.9 Discussion 

A yeast two-hybrid screen was performed to identify potential interactors of 

polyubiquitylated PCNA and other ubiquitin-binding factors. This screen did not 

identify any proteins specifically associated with polyubiquitylated PCNA, but 

identified Spc25 as a novel ubiquitin-binding factor. The ubiquitin-binding properties of 

Spc25 were further characterised, and a C-terminal region (amino acids 107-221), 

which consists of the entire globular domain preceeded by a flexible extension from the 

N-terminus of the domain, was identified as the minimal region required for interacting 

with ubiquitin. I also found a mutation, L109A, that abolishes ubiquitin binding by 

Spc25. Most interestingly, cells containing the spc25 (L109A) allele were sensitised to 

kinetochore destabilisation. While these observations provided evidences that ubiquitin-

mediated signalling could play a role in the kinetochore, more questions were raised in 

the course of my study and remain to be answered. 

 

4.9.1 The two-hybrid screens did not identify factors specifically 

associated with polyubiquitylated PCNA 

A yeast two-hybrid screen was performed using Ub
*
(3-4) (L)-PCNA

*
 and Ub

*
4 -PCNA

*
 

to identify factors specially associated with polyubiquitylated PCNA. The result was 

rather disappointing, and there are several possible reasons for the failure. First of all, 

PCNA is trimerised and loaded onto DNA in vivo for its proper function during 

replication and post-replicative repair process. For example, PCNA loading onto DNA 

stimulates the SUMOylation reaction of PCNA in vitro and in vivo (Parker et al., 2008), 

suggesting that loaded PCNA presents a conformation different from the unloaded one. 

There are more than twenty known PCNA interaction partners (Moldovan et al., 2007), 

and only Srs2 was found in the parallel control screen, suggesting the screen was not 

effective for identifying PCNA interactors. It is likely that many PCNA interactors do 

not bind PCNA in its monomeric form, which would be localised to DNA through its 

fusion to the DNA-binding domain of Gal4 transcription factor. A second approach 

using 
GST

Ub
*
4 -PCNA

*
 to pull down interactors in total yeast extract was not very 

successful either. More known PCNA-binding proteins were found this time. However, 
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the majority of the known PCNA interactors were still missing. In this case, 
GST

Ub
*
4 -

PCNA
* 

were densely presented on the surface of glutathione beads and it is unknown 

how well the protein would form trimers under these conditions. Secondly, it is also 

formally possible that the constructs do not fully resemble polyubiquitylated PCNA. 

This could be due to the combination of an imperfect chain mimic with an imperfect 

modification site. Although K63-linked polyubiquitin chains are able to support DNA 

damage bypass at the N-terminus of PCNA, this modification site is not physiological. 

Once this imperfect modification site combined with linear ubiquitin chain, an 

imperfect mimic of K63-linked chain, factors normally bind to K63-polyubiquitylated 

PCNA are less likely to bind the fusion constructs. Indeed my genetic analysis in Figure 

3.5 has shown that Ub
*
(3-4) (L)-PCNA

*
 and Ub

*
4 -PCNA

*
 are not functional in the error-

free branch of the RAD6 pathway. Therefore, factors specifically bound to the 

polyubiquitylated PCNA do not recognise the constructs. However, at the time we 

performed the two-hybrid screen, the genetic data from the rescue experiment were not 

available, which would otherwise influence our decision on conducting this screen 

using such imperfect mimics. Nevertheless, Ub
*
(3-4) (L)-PCNA

*
 did function in 

translesion synthesis, yet failed to isolate even factors involved in translesion synthesis, 

suggesting that an inappropriate mimic may not be the only reason for the failure of the 

screen. Theoretically, the best approach would be immunoprecipitating PCNA from 

cells with or without UV irradiation. Co-purified proteins could then be determined by 

mass spectrometry. However, this approach may not be suitable for PCNA because the 

polyubiquitin chains on PCNA are quickly trimmed by deubiquitinases in the cell 

extract during the experiment. Ub
K63*

-PCNA
* 

has been shown to rescue the UV 

sensitivity of rad18 strain by both branches of DNA damage bypass. Isolating Ub
K63*

-

PCNA
*
 in UV treated cells in comparison with Ub

*
-PCNA

* 
may identify some co-

purified factors specific for polyubiquitylated PCNA. The deubiquitylation enzyme 

targeting K63-polyubiquitylated PCNA may not work effectively on polyubiquitylated 

Ub
K63*

-PCNA
*
 and there is high chance to preserve the modification. Alternatively, a 

genetic screen to identify factors that suppress the TLS-independent rescue effect would 

be helpful. Additionally, a recent study showing a split 
Ubi

PCNA with an N-terminal 

fragment (amino acids 1-163) and a ubiquitin moiety fused C-terminal fragment 

(ubiquitin + amino acids 164-258) can self-assemble and function as monoubiquitylated 
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PCNA to support cell viability and translesion synthesis (Freudenthal et al.). This is a 

very attractive tool and it is definitely worth investigating whether a split PCNA with a 

polyubiquitin chain attached to its K164 would support the error-free branch of DNA 

damage tolerance. If that is the case, these constructs would be a great tool to isolate 

factors specifically bound to polyubiquitylated PCNA.  

 

4.9.2 The interaction between Spc25 and ubiquitin  

Spc25 did not detectably interact with monoubiquitin in a two-hybrid experiment 

(Figure 4.6 and 4.7B), but the purified Spc25 C-terminal region (amino acids 107-221) 

together with the globular domain of Spc24 could bind to monoubiquitin in vitro 

(Figure 4.9D and 4.10). This observed discrepancy between two-hybrid based data and 

in vitro data could be due to intrinsic limitations of the experimental methods. The yeast 

two-hybrid system is sometimes not sensitive enough to detect weak interactions. The 

dissociation constant for Spc25 binding to monoubiquitin was determined to be around 

14.2 μM, which was relatively strong compared to various other UBDs, but should still 

be considered as a weak protein-protein interaction. Furthermore, ubiquitin is mainly 

present as a monomer in yeast cells (Xu et al., 2009) and the concentration of free 

ubiquitin in the cell is also within the micromolar range (2-20 μM) (Ikeda and Dikic, 

2008), which makes in vivo detection of monoubiquitin binding quite difficult. In 

contrast to the in vivo situation, the concentration of 
GST

Ub in an in vitro pull-down 

experiment was around 300 μM, which makes the interaction between Spc25 and 

monoubiquitin much easier to detect. Under these conditions a positive interaction was 

indeed detected between tetraubiquitin and Spc25 by two-hybrid analysis because the 

overall apparent affinity towards Spc25 was high. In this case, multiple binding sites 

close to each other on tetraubiquitin may result in an “avidity” effect rather than an 

increase in the individual affinity constants. 

 

Spc25 was initially identified to interact with Ub
*
4(L), but not Ub

*
4 in the yeast two-

hybrid screen and subsequent assays (Table 4.1, Figure 4.6). However, it was capable of 
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interacting with both types of linear tetraubiquitin chains in an in vitro pull-down 

experiment (Figure 4.9D) and an SPR experiment (Figure 4.10C). Furthermore, I was 

not able to detect an interaction between Spc25 and K48- or K63-linked polyubiquitin 

chains in pull-down experiments (data not shown). These observations raised the 

question if Spc25 was able to bind polyubiquitin chains in vivo. In the yeast two-hybrid 

system, Spc25 showed a selective binding to Ub
*
4(L) but not Ub

*
4, which could be due 

to an interaction with Ub
*
4 below the detection limit. Although pull-down experiments 

showed a similar picture for Ub
*
4(L) and Ub

*
4, the BIACORE experiment did reveal a 

stronger binding to Ub
*

4(L) (Figure 4.10C). Therefore, Spc25 interacts with Ub
*
4(L) 

better. The most straightforward explanation is that the linker version of tetraubiquitin 

can be more regarded as a loose collection of four individual monoubiquitin units, and 

the binding of Spc25 to this arrangement is therefore a lot better than to monoubiquitin. 

The linker-less version is more densely packed, and ubiquitin moieties within the chain 

may not be easily accessible by Spc25. In this case, the distal ubiquitin resembles a free 

accessible monoubiquitin, and therefore it can still bind to Spc25.  The pull-down 

experiment with K48-/K63-linked chains was performed with 
GST

Spc25/
6His

Spc24 

immobilised on glutathione beads and specifically linked ubiquitin(2-7) chains free in 

binding solution. This condition was different from the way tetraubiquitin/Spc25 

interaction studies were performed. In such a condition, an experiment testing the 

interaction between Spc25 and monoubiquitin has not been performed either. These 

preliminary data from separate experiments performed in different ways were not 

enough to draw a conclusion. Currently, there is no direct evidence showing that Spc25 

can interact with natural polyubiquitin chains. Therefore, I favour the idea that Spc25 is 

a monoubiquitin-binding protein. 

 

4.9.3 A binding model for Spc25 interacting with ubiquitin 

The ubiquitin-binding region (amino acids 107-221) of Spc25 consists of a complete 

globular domain and a flexible region extended from the N-terminus of the globular 

domain. From two-hybrid based truncation analysis it is clear that the globular domain 

alone (amino acids 133-221) was not enough for ubiquitin binding (Figure 4.8A) and 
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the N-terminus of the protein (amino acids 1-133) excluding the globular domain was 

not sufficient either (Figure 4.12B). Mutations within the flexible region L109A and 

L113A either completely or partially abolished ubiquitin binding, suggesting that this 

region made a direct contact with ubiquitin. Removal of the globular domain of Spc25 

also abolished the ubiquitin-binding but did not interrupt its N-terminal coiled-coil 

region forming a heterodimer with Spc24 (Figure 4.12B), suggesting another yet 

unidentified ubiquitin-contacting surface within the globular domain. Based on that 

information, Spc25 might interact with ubiquitin in a way as shown in Figure 4.19.   

 

Spc24 also appears in the model and its role in ubiquitin binding of Spc25 is likely 

rather indirect. First of all, Spc24 does not bind to ubiquitin in the yeast two-hybrid 

experiment (Figure 4.8), suggesting a direct interaction between these two is less likely. 

During the purification of 
6His

Spc25(C), the protein was not stable in solution without 

Spc24. Therefore it is more likely that Spc24 is required to form a stable heterodimer 

with Spc25 in vitro. However, it is difficult to fully exclude the possibility that Spc24 

may contribute to the ubiquitin binding. A structural study of Spc24/Spc25 in complex 

with ubiquitin could provide further information on if there is any ubiquitin-contacting 

site on Spc24. 

 

The identification of L109 as a crucial residue for ubiquitin binding of Spc25 is quite 

important for further characterisation of the biological function. The initial clue was 

from a sequence alignment analysis of the flexible linker region (amino acids 107-133) 

from different organisms (Figure 4.12A). L109 was one of the most conserved residues 

within that flexible region and the L109A mutation abolished ubiquitin binding of 

Spc25 completely in a yeast two-hybrid experiment (Figure 4.12B). This approach is 

based on the fact that Spc25 is an evolutionarily conserved protein and assumes that the 

ubiquitin binding of Spc25 is also conserved among different species. Therefore, it will 

be important to provide such evidence. hSpc25 (human Spc25) has been cloned and 

tested for ubiquitin binding in yeast two-hybrid analysis, but a positive interaction was 

not detected. Since Spc24 is required to form a stable heterodimer with Spc25, hSpc25 
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alone may not fold properly. In fact, hSpc25 does not interact with yeast Spc24 in a 

yeast two-hybrid experiment suggesting yeast Spc24 could not form a heterodimer with 

hSpc25. To address this problem, hSpc24 needs to be expressed in the same yeast strain 

together with hSpc25 to test for an interaction with ubiquitin. 

 

 

 

Figure 4.19 A model for Spc25 interacting with ubiquitin 

Spc25 (blue) forms a heterodimer with Spc24 (red). Ubiquitin (black filled circle) binds 

to Spc25 through two contacting surfaces indicated with blue and black arrows. The 

first contact site indicated with the blue arrow includes residues L109 and L113. 

 

Many UBDs have been identified so far, and they normally have certain structural 

features that are known to bind ubiquitin, such as α-helical structure, zinc-fingers, the 

ubiquitin-conjugating domains, pleckstrin homology folds, etc (Hurley et al., 2006, 

Dikic et al., 2009). Interestingly, Spc25 is an intriguing example for a flexible 

unstructured region that – together with a compact globular domain – forms an 

interaction site for ubiquitin. The exact nature of the second contact surface within the 

globular domain remains unknown, but the globular domain of Spc25 has several α-

helices and β-sheets, which are known structural features for ubiquitin binding. It is 
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therefore not surprising if any of these contribute to ubiquitin binding within the 

globular domain. It will be interesting to find the second ubiquitin-binding surface 

within the globular domain of Spc25. Because Spc25 is highly conserved among 

different organisms, mutagenesis of conserved residues would not be a smart approach. 

Wei and colleagues determined the NMR structure of the Spc25 globular domain (Wei 

et al., 2006); it should therefore be feasible to determine the ubiquitin-binding surface 

of Spc25 by NMR. Additional information from NMR studies should reveal whether 

the first contact site, which is an unstructured region, would undergo a conformational 

change or become conformationally constrained once ubiquitin is bound to Spc25. 

 

4.9.4 Ubiquitin-binding and ubiquitylation in the kinetochore complex 

Many components of the kinetochore were found to be ubiquitylated to different extents 

in the candidate-based screen aiming to identify ubiquitylated binding partners of 

Spc25. Although the initial pull-down experiments were performed with cells 

overexpressing His-tagged ubiquitin, which may cause some artefacts, not all the 

proteins in the screen were ubiquitylated and the ubiquitylation signals varied from 

monoubiquitin to polyubiquitin chains. For example, three proteins (Mcm21, Okp1 and 

Ame1) within the COMA complex were all ubiquitylated to a similar extent (Figure 

4.16B), but Ctf19 within the same complex was not ubiquitylated (Figure 4.16C). Dsn1 

was monoubiquitylated whereas Mcm21 was polyubiquitylated (Figure 4.16A and 

4.17B). These observations indicated that ubiquitylation might commonly, but 

specifically occur on kinetochore proteins, not just as an isolated event. In fact there 

was an early indication that ubiquitylation machinery may have a role in kinetochore 

structure or function because Ubc4 was found to interact with Spc25 in a two-hybrid 

analysis (Wong et al., 2007). But the function of the modification remains an open 

question. Because those modified kinetochore proteins were not analysed further, both 

proteolytic and non-proteolytic functions for these observed modifications are 

conceivable. In the case of a proteolytic function, it might be involved in regulating the 

stability of those relevant kinetochore proteins. Since the kinetochore is assembled on 

the centromeric region after DNA replication (Santaguida and Musacchio, 2009), the 
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dynamics of kinetochore proteins may require proteasome-ubiquitin signalling as a 

regulating mechanism. Analysis of the cell cycle dependence of these ubiquitylation 

events or the stability of ubiquitylated kinetochore proteins would help us to explore 

this possibility further. The ubiquitylation events could be occurring preferentially in 

response to certain stress conditions. The kinetochore complex is involved in 

microtubule attachment; spindle checkpoint control and many details of these processes 

are not yet fully understood. Ubiquitylation events could play a role in regulating these 

events in response to kinetochore stress or spindle poisons. For this hypothesis, 

identification of the conditions that trigger ubiquitylation would be the first step. On the 

other hand, ubiquitylation might have a non-degradative role. In this case, other 

components of the kinetochore or proteins associated with the kinetochore would have 

ubiquitin-binding domains that specifically bind to the ubiquitylated kinetochore 

proteins. My observation that Spc25 was able to bind ubiquitin supports this scenario, 

and there might be other unidentified kinetochore proteins that also have UBDs since 

ubiquitylation commonly occurs within the kinetochore. A similar observation has been 

reported for SUMO, as SUMOylation and SUMO-interacting motifs play important 

roles in recruiting the SUMOylated motor protein CENP-E to the kinetochore in 

mammalian cells (Zhang et al., 2008). Identification of other ubiquitin-binding factors 

among the kinetochore proteins would help to reveal in much more detail the 

mechanism how ubiquitin binding is involved in kinetochore function. 

 

Although many ubiquitylation targets were observed in the kinetochore complex, not all 

of them may be relevant to the ubiquitin-binding function of Spc25. Further 

characterisation of those targets is essential. The first approach is to identify and mutate 

the sites of ubiquitylation on those targets. Mass spectrometry analysis of purified target 

proteins could help to identify potential ubiquitylation sites. Relevant mutants could 

then be analysed for phenotypes related to the loss of ubiquitylation, and in such a case 

fusing ubiquitin at the N- or C-terminus of the mutant protein may be able to rescue that 

phenotype. In comparison with the phenotypes shown in ubiquitin-binding deficient 

alleles of spc25, a matched phenotype would suggest a link between a target protein and 

the function of ubiquitin binding in Spc25. An epistatic relationship would be expected 
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from a ubiquitylation deficient mutant of target gene and the ubiquitin-binding deficient 

alleles of spc25. Through this approach, it might be possible to find the most relevant 

ubiquitylated protein, which will reveal the function of the ubiquitin-binding domain of 

Spc25. 

 

In the process of characterising the function of the ubiquitin-binding domain in Spc25, I 

did not find any phenotype associated with the spc25 (L109A) single mutant. However, 

the plasmid loss assay is not enough to fully exclude the possibility that spc25 (L109A) 

has defects in chromosome segregation. There are different methods that can measure 

small defects in chromosome segregation. For example, a colony colour assay uses an 

ochre-suppressing form of a tRNA gene, SUP11, as a marker on natural chromosomes 

(Hieter et al., 1985). In diploid homozygous ade2 strains, cells carrying no copy of the 

SUP11 gene are red, those carrying one copy are pink, and those carrying two or more 

copies are white. The SUP11 gene can be integrated into a specific chromosome and the 

loss frequency of that specific chromosome can be determined based on the colour of 

sectored colonies. The rate of chromosome loss events per cell division can be 

calculated. A similar colony colour based assay was also described to monitor mitotic 

stability of minichromosomes (Koshland et al., 1985). Furthermore, Spc25 (L109A) has 

not been sufficiently characterised. Although yeast two-hybrid experiments have shown 

an abolishment of ubiquitin binding for this mutant, the dissociation constant for the 

interaction between Spc25 (L109A) and monoubiquitin has not been measured. It is 

possible that the Spc25 (L109A) mutant only has a partial reduction in ubiquitin 

binding, which would give rise to a binding defect in the yeast two-hybrid system, but 

possibly not in other phenotypic assays. Therefore, a mutant with a stronger defect in 

ubiquitin binding might have to be used, and a clear phenotype might then be observed 

in that mutant. 

 

I also found that spc25 (L109A), was sensitised to the destabilisation of the kinetochore 

(Figure 4.18). Considering the fact that spc25 (L109A) alone did not show any defects 

in cell cycle progression or the spindle checkpoint response (Figure 4.14), an alternative 
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possibility was that ubiquitin binding might have a function to facilitate a stable 

association of the kinetochore complex. The Spc25-Spc24 dimer has been shown to 

associate with the MIND complex (Wan et al., 2009, Cheeseman et al., 2006). In this 

scenario, ubiquitylated MIND complex components would bind to the ubiquitin-binding 

protein Spc25, and my data suggested that Dsn1 is monoubiquitylated (Figure 4.17). 

Consistently, Dsn1 co-purifies with Spc25 as shown by Nekrasov and colleagues 

(Nekrasov et al., 2003) and my Co-IP experiment (data not shown). More interestingly, 

the distance between Spc25 and Dsn1 is around 2 nm, which is the shortest among the 

distances of all the components of MIND complex to Spc25 (Wan et al., 2009). 

Therefore, a working model for this scenario is that Spc25 binds monoubiquitylated 

Dsn1 in two ways, including a direct binding of Spc25 to Dsn1, and a direct interaction 

between Spc25 and the monoubiquitin attached to the Dsn1 (Figure 4.20). The spc25 

(L109A) mutation would only have a minor negative effect on this association and 

therefore would not exhibit any defective phenotype in isolation. A preliminary Co-IP 

experiment was performed to analyse the association of Dsn1 to either wild type or the 

L109A mutant of Spc25 and I did not observe any significant changes (data not shown). 

However, a combination of dsn1 ts mutants and spc25 (L109A) may have a severe 

negative effect on the association of Spc25 and Dsn1 and enhanced temperature 

sensitivity was observed. If this model were true, I would expect to see reduced 

association between Dsn1 and Spc25 in dsn1-8 spc25 (L109A) cells compared with 

dsn1-8 or spc25 (L109A) single mutant cells. In addition to that, the growth defect 

observed when an spc25 (L109A) mutant was combined with C-terminal GFP-tagged 

MCM21 could be a result of accumulation of defects in the kinetochore. This 

observation was also consistent with a genetic interaction that spc25-7 mcm21Δ shows 

increased temperature sensitivity compared with the spc25-7 single mutant (Janke et al., 

2001). Mcm21 is a subunit of the COMA complex. Although the distance between 

Mcm21 and Spc25 is not known, the distance between other COMA complex 

components and Spc25 is around 13-16 nm. The close association of the COMA 

complex with Spc25 would explain the synthetic growth defect and increased 

temperature sensitivity.  
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Figure 4.20 A model for Spc25 interacting with monoubiquitylated Dsn1 

The Spc25-Spc24 dimer (blue and red) associates with the MIND complex (Nsl1, Nnf1, 

Mtw1 and Dsn1). Dsn1 is the subunit closest to Spc25 (Wan et al., 2009, Joglekar et al., 

2009) and is monoubiquitylated (black filled circle). In addition to the association 

between Spc25 and Dsn1, ubiquitin may create an extra binding surface for Spc25. In 

the spc25 (L109A) mutant, the interaction between Spc25 and ubiquitin is abolished 

(yellow cross), but the association between Spc25 and Dsn1 remains stable through a 

direct contact between Dsn1 and Spc25. In the spc25 (L109A) dsn1-8 double mutant, in 

addition to abolished ubiquitin binding, the Spc25-Dsn1 interaction is also reduced 

(yellow crosses). 

 

There are still alternative scenarios that I cannot rule out. First of all, it is possible that 

another ubiquitylated kinetochore protein, rather than Dsn1 and Mcm21, can directly 

bind to Spc25. In this case, an accumulation of general kinetochore stress from loss of 

ubiquitin binding by Spc25 (L109A) in dsn1 temperature sensitive mutant strains or 

cells with MCM21 GFP-tagged at the C-terminus could also result in the phenotypes 

described. To address this issue, it would be necessary to make a number of mutants in 

other kinetochore components in combination with spc25 (L109A). Phenotypic analysis 

of these mutants would allow us to distinguish whether the observed synthetic defects 

are specific for MCM21-GFP and dsn1 ts mutants or more general for anything that 

destabilises the kinetochore. Secondly, although the interaction of Spc25 (L109A) with 
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Spc24 in the yeast two-hybrid assay suggested that the mutation did not affect the 

structure of the protein, I cannot exclude the possibility that this mutation causes a 

partial instability of Spc25, which in turn contributes to the observed phenotypes related 

to kinetochore stability. However, Spc25 (L109A) showed a protein level very similar 

to the Wt Spc25 (Figure 4.18C), suggesting that the mutant protein is unlikely to be 

destabilised. A useful approach to rule out this possibility would be replacing the 

flexible linker domain (amino acids 107-133) in Spc25 (L109A) with another UBD and 

analysing if this could rescue the loss of ubiquitin binding in spc25 (L109A) cells. On 

the other hand, this experiment might not be suitable because Spc25 is an essential 

protein. Although the globular domain and coiled-coil region remain intact, the 

geometry of the new linker may also give phenotypes. The best solution would be a 

biophysical study directly comparing the Wt and L109A mutant forms of Spc24/Spc25 

to rule out any structural defects. 

 

4.9.5 Future directions 

Overall, there are some remaining questions on the interaction between Spc25/Spc24 

and ubiquitin: 1) Where is the second ubiquitin contacting surface on Spc25? 2) Are 

there conformational changes at the flexible region induced by ubiquitin binding? 3) 

Are there potential ubiquitin contacting sites on Spc24? 4) Does Spc25 (L109A) have 

any structural defects? The answers to those questions would come from a structural 

study of Spc25/Spc24 in complex with ubiquitin. NMR would be a most efficient and 

effective approach because the NMR structure of Spc25/Spc24 globular domains and 

ubiquitin are both available. X-ray crystallography is an alternative option, which gives 

a much more refined picture about the interaction at an atomic level, but might take 

longer than the NMR approach.  The structural information would also allow us to 

make a mutant of Spc25 completely defective in ubiquitin binding. Subsequent 

characterisation of phenotypes, which includes all the aspects currently analysed for 

spc25 (L109A), would help to propose a better model showing the function of the 

ubiquitin-binding domain in Spc25.  
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To investigate if ubiquitylation of Mcm21 and Dsn1 is relevant to the ubiquitin-binding 

function of Spc25, identification of the ubiquitylation sites and the E3 ligase responsible 

for the modification would be the first step. For a better understanding of the 

modification, it will be interesting to find out if the ubiquitylation events are 

constitutive, cell cycle dependent, or induced by certain stress conditions. The 

regulation of the ubiquitylation is also important for understanding the actual biological 

function of the modification. Dsn1 is monoubiquitylated and Mcm21 is 

polyubiquitylated, the linkage of the polyubiquitin chain and the identity of the relevant 

DUBs are waiting to be discovered. Mutants in other kinetochore proteins, such as other 

members of the MIND complex or the COMA complex, should also be analysed for a 

synthetic effect when combined with the spc25 (L109A) allele. 

 

Last but not least, it is a very attractive idea that the ubiquitin-binding function of Spc25 

would be evolutionarily conserved in different organisms. An analysis to confirm such 

an interaction in mammalian systems would be the first step. Some preliminary work 

has been done to generate hSpc24, hSpc25 constructs and an interaction with ubiquitin 

can be tested in yeast two-hybrid and in vitro pull-down experiments. If an interaction 

can be confirmed, it will be very exciting to identify its function in the context of 

mammalian cells because despite a high degree of conservation between many core 

kinetochore complex components, their arrangement differs significantly between 

higher and lower eukaryotes. 
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Chapter 5. Discussion 

This thesis has addressed several interesting questions related to different aspects of 

ubiquitin signalling, particularly the recognition of the ubiquitin signal, which includes 

the site of ubiquitylation, the recognition of highly similar polyubiquitin chains and the 

recognition of monoubiquitin. The results have expanded our understanding about 

ubiquitin signalling in two different contexts, the pathway of DNA damage bypass 

governed by PCNA ubiquitylation and the newly discovered ubiquitin-binding 

properties of the yeast kinetochore. In this chapter I will separately discuss the 

importance of this work in advancing our understanding of ubiquitylation sites, 

polyubiquitin chains and monoubiquitin recognition. 

 

5.1 The Importance of the Ubiquitylation Site 

Ubiquitylation, like many other posttranslational modification mechanisms, transfers 

ubiquitin molecules onto specific lysine residues of a target protein. However, it is an 

open question whether the same type of ubiquitin signal on different modification sites 

would generally give the same or different biological consequences.  

 

The function of ubiquitylation needs to be analysed to see whether ubiquitylation at a 

different site would support a common function. Of the many functions that have been 

described to ubiquitylation, protein degradation is the most common one. For example, 

a K48-linked polyubiquitin chain targets substrate proteins for proteasomal degradation, 

and this does not appear to depend on specific modification sites. An N-end rule 

substrate Ub-Arg-βGal is heavily ubiquitylated in vivo and degraded after cleavage of 

the N-terminal ubiquitin moiety (Bachmair and Varshavsky, 1989). The ubiquitylation 

can happen as long as a suitable lysine is available in nearby sequence, within the lacI-

derived linker (Johnson et al., 1990). Similarly, a UFD pathway substrate, Ub (G76V)-

Arg-βGal, a non-cleavable version of the N-end rule substrate, can be heavily 

ubiquitylated directly on the ubiquitin moiety via the K48-linkage and be degraded 
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(Johnston et al., 1995). This suggests that the K48-linked chains at different sites can all 

target the substrate protein for degradation. In fact, ubiquitin shuttling factors like 

Rad23, Dsk2, bind to multiple polyubiquitylated substrates, where the interaction is 

mainly through ubiquitin chains and UBDs. It is therefore less important to have a 

specific modification site. When ubiquitin functions as interaction sites in a situation 

other than protein degradation, it likely depends on the factor that binds to the 

ubiquitylated substrate whether ubiquitin attached to a different site on the substrate 

protein would still have the same function. A mis-attached ubiquitin on the substrate 

protein would result in different surface alteration and in turn affect the interaction 

between ubiquitylated substrate and its binding partner. Some factors are not able to 

tolerant such differences, therefore the interaction would be affected and the outcome of 

the ubiquitylation would not be the same. Finally, ubiquitylation has the potential not 

only to facilitate protein interactions, but also allosterically regulate protein functions. 

For example, ubiquitylation of Josephin deubiquitinase domain in Ataxin-3 activates the 

enzyme (Todi et al., 2009). This activation is thought to involve a conformational 

change that exposes the active site of the enzyme (Mao et al., 2005, Nicastro et al., 

2005, Nicastro et al., 2009, Komander et al., 2009a). This is a special case in that 

ubiquitylation at a special location is required to induce a conformational change in an 

enzyme. Hence, a similar modification on a different site would not have the same 

function. 

 

Among those different situations, ubiquitin sometimes can perform the same non-

proteolytic functions at different sites. A few case reports do exist. Monoubiquitin fused 

with non-ubiquitylatable FANCD2 (K581A) mutant partially rescues cellular defects in 

Interstrand crosslinking repair (Matsushita et al., 2005). Parker and colleagues 

successfully used a linear ubiquitin-PCNA fusion protein (N- or C-terminal fusion) to 

support translesion synthesis in a yeast rad18 background where endogenous PCNA 

cannot be ubiquitylated (Parker et al., 2007). Similar observations of using 

monoubiquitin-PCNA fusions have meanwhile been made in S. pombe and in a 

different background of S. cerevisiae (Pastushok et al., 2010, Ramasubramanyan et al., 

2010). These observations suggest that it is sometimes possible to use monoubiquitin 
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fusions to mimic the function of a naturally monoubiquitylated substrate. I have 

explored this interesting possibility further and tested if polyubiquitylation of PCNA 

requires a defined modification site for its function. By expressing Ub
K63*

-PCNA
*
, 

where the K63 on ubiquitin is available for Mms2-Ubc13 mediated polyubiquitylation, 

the UV sensitivity of a rad18 strain can be rescued via both branches of the DNA 

damage tolerance pathway (Figure 3.4). Consistent with the in vitro observation that 

Mms2-Ubc13 and Rad5 can polyubiquitylate Ub-PCNA efficiently (Parker and Ulrich, 

2009), this result suggests that PCNA polyubiquitylation can occur at the N-terminally 

fused ubiquitin moiety. Although DNA damage induced polyubiquitylation of Ub
K63*

-

PCNA
*
 in vivo was not shown directly, such an experiment could be performed by 

introducing a 6His-tagged Ub
K63*

-PCNA
* 

into a rad18 strain and isolating the fusion 

protein using Ni-NTA pull-downs as described in Figure 3.12. Nevertheless, the genetic 

data still allow us to conclude that the K63-linked polyubiquitin chain attached to the N-

terminus of PCNA supports the error-free pathway with efficiency comparable to the 

K63-linked chain conjugated at the natural modification site K164 (Figure 3.4). While 

this principle may not apply to all cases, this result definitely proves the concept that a 

polyubiquitin chain can function independent of its modification site on a specific 

substrate.  

 

 

Ubiquitylation at different sites leading to the same biological consequence could be 

explained by the way ubiquitin is attached to the substrate and the specific interaction 

that ubiquitin mediates. Ubiquitylation can facilitate protein-protein interaction by an 

interaction between ubiquitin and various UBDs. In this case, the function of the 

ubiquitin moiety is to provide an extra binding surface on the substrate protein for its 

binding partner (Ulrich and Walden, 2010). The monoubiquitylation of PCNA is a good 

example for this. A simulation model based on a crystal structure has proposed a 

possible conformation of monoubiquitylated PCNA in complex with Polη (Freudenthal 

et al., 2010), where the UBZ domain, located at the C-terminal tail of Polη, can easily 

bind the monoubiquitin positioned at the “back” side of the PCNA, the surface opposite 

to that bound by the polymerases (Figure 5.1A). The C-terminal domain of Polη is long 

and flexible enough to allow a polymerase switch mechanism that involves displacing 
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Polδ and moving Polη to the “front” surface of PCNA (Freudenthal et al., 2010). When 

ubiquitin is attached to the N-terminus of PCNA, the molecule is in principle able to 

occupy a similar position at the “back” side of the PCNA ring (Figure 5.1B). Although 

the relative position of the N-terminus is different from K164 (Figure 5.1B), which is 

located on the other end of the PCNA monomer, the long C-terminal domain of Polη 

should still be able to bind the ubiquitin at the N-terminus of PCNA. For 

polyubiquitylated PCNA, the situation is apparently very similar in that K63-linked 

chains at the N-terminus of PCNA also support the error-free pathway. Since the 

molecular mechanism by which the error-free pathway can occur remains unclear, a 

working model cannot be provided. But it is likely that the K63-linked chain at the N-

terminus of PCNA would also recruit some unknown factors or displace some PCNA 

interactors in order to promote the error-free pathway in the same manner that the chain 

at K164 would act.  

 

Figure 5.1 Structural models: monoubiquitin attached to K164 or N-terminus of 

PCNA 

(A) Structure of monoubiquitylated PCNA in complex with Polη. This structure was 

adapted from (Freudenthal et al., 2010). Translesion synthesis polymerase η (yellow) 

interacts with PCNA (grey) via its PIP motif and interacts with ubiquitin (red) via its 

UBZ domain at the end of the C-terminus. (B) A structural model of monoubiquitin 

attached to K164 or the N-terminus of PCNA. Ubiquitin at K164 is presented in 

magenta and ubiquitin at the N-terminus of PCNA monomer (green) is presented in red. 

The image was generated by PyMOL with the PDB file of monoubiquitylated PCNA 

(3LOW) by addition of the N-terminal ubiquitin to the published structure of 

monoubiquitylated PCNA (Freudenthal et al., 2010).  
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Understanding the importance of ubiquitylation sites would allow us to create mimics of 

physiologically ubiquitylated substrate to study the function of these modified proteins 

in vitro and in vivo. Many in vitro experiments have been limited by the amount of 

ubiquitylated protein, which has to be purified from in vitro ubiquitylation reactions. 

Functional ubiquitin fusion protein would therefore greatly accelerate the in vitro work. 

Such concept has recently been proved by using a split version of PCNA, which 

consists of one polypeptide covering a region from the N-terminus to residue 163 and a 

second polypeptide consisting of ubiquitin fused to residue 165 of the C-terminal 

portion of PCNA (Freudenthal et al., 2010). It was lucky in this particular case since 

two separate peptides were able to self-assemble to reconstitute a functional PCNA 

structure. However, this approach is unlikely to work for every substrate at every 

position. Like phosphorylation, ubiquitylation is a reversible modification, but unlike 

phosphorylation, which often allows generating constitutive phospho-mimicking 

mutants, having a constitutively ubiquitylated form of substrate is not straightforward if 

modification at the natural site is required. In an ideal situation, a functional ubiquitin 

fusion allows generating a non-cleavable ubiquitin fusion by making G76V mutation to 

prevent isopeptidase cleavage. This would allow us to study in vivo the consequences of 

constitutive ubiquitylation, the importance of deubiquitylation, and to identify potential 

binding partners. 

 

5.2 The Importance of Chain Linkage 

Linear and K63-linked polyubiquitin chains have been shown to have an almost 

identical structure and many UBDs cannot differentiate them (Komander et al., 2009b). 

Therefore, it was reasonable to speculate that linear ubiquitin chains may substitute 

K63-linked chains to function in the DNA damage tolerance pathway. K63-linked 

chains are able to function at the N-terminus of PCNA to support DNA damage 

tolerance (Figure 3.4). However, two types of linear tetraubiquitin chains did not 

support error-free damage bypass at exactly the same site (Figure 3.5 and 3.6), 

suggesting that the damage tolerance pathway in S. cerevisiae is able to distinguish 

these two highly similar types of polyubiquitin signals (Figure 5.2). This result is 
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consistent with the observation in higher eukaryotes, where the signalling factor NEMO 

is modified by linear ubiquitin chains as well K63-linked polyubiquitin chains, and both 

modifications are important for the activation of NF-κB signalling (Iwai and Tokunaga, 

2009, Skaug et al., 2009). These two highly similar forms of polyubiquitin chains are 

conjugated onto a common substrate, and both of them turn out to be functionally 

important, suggesting that the NF-κB pathway in mammalian cell is able to differentiate 

these two types of chains as well. Specific UBDs play critical roles in recognising these 

similar polyubiquitin chains: a UBAN domain in NEMO prefers linear ubiquitin chains 

over K63-linked chains (Rahighi et al., 2009). However, this differentiation between 

chain types is not always observed. The UBA domain from cIAP1 binds linear and 

K63-linked ubiquitin chains equally well, but does not interact with K48-linked chains 

(Komander et al., 2009b). This observation raises the possibility that linear and K63-

linked chains may be interchangeable in some situations when the UBD of the effector 

protein is not able to differentiate these two modifications. 

 

The potential involvement of the proteasome in the DNA damage tolerance pathway 

downstream of PCNA polyubiquitylation has also been addressed in this thesis. Since 

its identification (Hoege et al., 2002), the possibility that K63-polyubiquitylated PCNA 

may be degraded by the proteasome has never been experimentally addressed, although 

K63-linked chain is not generally considered as a degradation signal. Figure 3.12 

directly illustrates that K63-polyubiquitylated PCNA is not degraded. This result agrees 

with a non-degradative role for K63-linked chains, and is consistent with the fact that in 

yeast total K63-linked ubiquitin conjugates do not accumulate upon proteasome 

inhibition (Xu et al., 2009). Meanwhile, the function of a linear ubiquitin chain as a 

degradation signal has also been extensively assayed. A linear tetraubiquitin chain has 

been shown to target its fusion partner PCNA for proteasome dependent degradation in 

yeast cells (Figure 3.8 and 3.9), and the linear chain alone is sufficient for proteasome 

targeting in vitro (Figure 3.10). Furthermore, linear tetraubiquitin chains can also target 

another model substrate, βGal, for degradation (Figure 3.15), and the process is 

mediated by factors involved in the UFD pathway (Figure 3.16 and 3.18). Despite a 

rather poor efficiency, all experimental systems have so far provided evidence that a 
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linear ubiquitin chain can function as a degradation signal at least on a range of model 

substrates. The situation in vivo is still unclear as suitable factors may bind linear chains 

and divert the substrate away from the proteasome degradation pathway. Nevertheless, 

this study showed two different biological consequences when the highly similar linear 

and K63-linked polyubiquitin chains are attached to the same site of a model substrate, 

PCNA (Figure 5.2). 

 

Figure 5.2 Distinct biological consequences of PCNA modification by linear and 

K63-polyubiquitin chains 

Ub
K63*

-PCNA
* 

(green PCNA modified by a black K63-linked polyubiquitin chain, with 

red linker between PCNA and ubiquitin chain) can be further ubiquitylated by the 

PCNA polyubiquitylation machinery and act as a functional mimic of naturally 

polyubiquitylated PCNA (green PCNA modified by a black K63-linked polyubiquitin 

chain) to support error-free DNA damage bypass. However, linear fusions of 

tetraubiquitin chain to PCNA (green PCNA modified by a black linear polyubiquitin 

chain, with red linker between PCNA and ubiquitin chain) do not support error-free 

damage bypass. Instead, the linear ubiquitin chain is recognised by the Cdc48 complex, 

and targeted to the proteasome via Ufd2, Rad23/Dsk2 for degradation. 
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5.3 Recognition of Monoubiquitin 

Currently known UBDs interact with ubiquitin through several distinct structural 

features. Most UBDs use α-helical structures to bind ubiquitin, and other structural 

features including zinc fingers (ZnFs), ubiquitin-conjugating enzyme-like (UBC) 

domains and pleckstrin homology (PH) folds can also interact with ubiquitin (Dikic et 

al., 2009). UBDs usually recognise monoubiquitin through its hydrophobic patch 

centred around I44, but alternative contacting surfaces are also observed (Figure 1.4). 

The interaction between a polyubiquitin chain and a UBD usually involves several 

contacting surfaces on two ubiquitin moieties as shown in Figure 1.5. UBDs usually 

bind both mono- and polyubiquitin in vitro, but their targets in vivo are depending on 

the ubiquitylation states of a binding partner. 

 

Spc25 was identified as a potential ubiquitin-binding protein in a yeast two-hybrid 

screen (Table 4.1). The result was confirmed in a separate yeast two-hybrid experiment 

(Figure 4.6). Further characterisation identified the C-terminal region (amino acids 107-

221), which consists of its globular domain and an N-terminal flexible extension, as the 

minimal region required for ubiquitin binding (Figure 4.7 and 4.8). Surface plasmon 

resonance-based BIACORE
®
 technology has been used to determine the dissociation 

constant for the interaction between Spc25-Spc24 and ubiquitin (Figure 4.10). Through 

sequence alignment of Spc25 homologues from different organisms, highly conserved 

residues were identified, and by subsequent mutagenesis, the L109A mutation was 

found to abolish Spc25 ubiquitin binding almost completely in yeast two-hybrid 

experiments (Figure 4.12). However, the requirement of the globular domain clearly 

suggests that a second contacting surface exists within the globular domain. 

Interestingly, Spc25 is able to bind monoubiquitin, tetraubiquitin, but does not bind 

K48- and K63-linked polyubiquitin chains in tested conditions (Figure 4.9, 4.10 and 

data not shown). Based on current observations, Spc25 might be a monoubiquitin-

binding protein. Although the exact structural features of Spc25 binding to ubiquitin are 

not clear, the requirement of a globular domain together with a flexible extension has 

not been observed in any other case. Future work needs to be concentrated on resolving 
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the structure of the Spc25 C-terminal domain in complex with ubiquitin. Such a 

structure would bring information about the ubiquitin-contacting surface on Spc25 and 

residues important for this interaction. With the help of this information, it will be then 

clear if the ubiquitin-binding feature of Spc25 is indeed different from those known 

UBDs. As I mention in section 4.9.4, it is possible that spc25 (L109A) mutant allele has 

some residual ubiquitin-binding activity, which causes weak phenotypes. More residues 

could be tested for their contributions towards ubiquitin binding through mutagenesis 

analysis and a spc25 mutant allele completely deficient in ubiquitin binding would be 

good for further phenotypical analysis. 

 

Since ubiquitin-binding proteins usually act as effectors for ubiquitylated targets, a 

systematic approach was performed to search for ubiquitylated Spc25 interactors and 

parallel phenotypic analysis were also focused on those potential candidates. The 

investigation on spc25 (L109A) allele revealed that it strongly sensitises cells when it is 

combined with dsn1 ts mutants or MCM21-GFP (Figure 4.18). Most importantly, Dsn1 

and Mcm21 were both detected to be ubiquitylated (Figure 4.16 and 4.17) and 

associated with Spc25 [(Nekrasov et al., 2003) and (data not shown)]. All of these data 

suggest a functional link between the ubiquitin-binding domain of Spc25 and the 

observed ubiquitylation events of Dsn1and Mcm21.  

 

Despite the fact that only an incomplete picture of a novel ubiquitin-binding protein 

Spc25 is presented in this thesis, it does provide evidence that ubiquitin signalling 

occurs within the kinetochore. Most importantly, many kinetochore proteins are found 

to be ubiquitylated in a target-directed screen aiming to identify ubiquitylated Spc25 

interactors (Figure 4.16 and 4.17). Because not all tested proteins are ubiquitylated and 

some proteins are monoubiquitylated while some others are polyubiquitylated (Figure 

4.16), they are most likely to be specifically regulated events. Ubiquitylation of 

kinetochore proteins has not been studied at all. In order to gain further insight into this 

field, it would therefore be worth systematically analysing all the kinetochore proteins 

for ubiquitylation. In my initial screen, I mainly focused on outer-kinetochore proteins 
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in the vicinity of Spc25. It will be interesting to see if inner kinetochore proteins or 

microtubule-binding factors are also modified by ubiquitin. The fact that many proteins 

within the kinetochore complex are ubiquitylated is quite reminiscent of the PML-

nuclear bodies (PML-NBs) in mammalian cells, which are proteinaceous structures in 

the nucleus that seem to be interconnected by a network of SUMOylation and non-

covalent SUMO interactions (Bernardi and Pandolfi, 2007). Based on our current data, 

ubiquitin binding of Spc25 appears to positively contribute to the stability of the 

kinetochore complex. With many ubiquitylated kinetochore components, it is a very 

attractive speculation that ubiquitylation/ubiquitin-binding domain might play similar 

roles in the kinetochore as the SUMO interaction network in the PML-NBs.  

 

5.4 Ubiquitin Signalling and Genome Stability 

Cells have developed many sophisticated mechanisms to maintain genome stability, and 

ubiquitin signalling has great influences on those processes. Maintaining genome 

integrity is mainly achieved at the DNA level, where DNA damage is sensed and 

properly repaired, and at the chromosome level, where chromosomes are precisely 

segregated. Overall, genomic instability is an important feature of cancer cells and the 

ubiquitin signalling pathway is a very attractive target for developing anti-cancer 

therapy. A better understanding of the function of ubiquitin signalling in maintaining 

genome stability would therefore likely be helpful for the development of future anti-

cancer treatments. 

 

Various pathways operate to repair different types of DNA lesions. In response to 

double-strand breaks (DSBs), a number of different factors including E3 ligases, E2 

enzyme, and ubiquitin-binding proteins are involved in signal amplification and 

transduction. E3 ligase RNF8, in complex with Ubc13, ubiquitylates H2A and H2AX 

(Huen et al., 2007, Kolas et al., 2007, Mailand et al., 2007), which is in turn recognised 

by a second E3 ligase RNF168 via its MIU domain (Stewart et al., 2009, Doil et al., 

2009).  The ubiquitin conjugates at sites of DSBs were reported to be K63-linked chains 
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(Stewart et al., 2009, Doil et al., 2009, Sobhian et al., 2007), and the polyubiquitin 

signals that accumulate at the damage loci finally recruit BRCA1 via RAP80 (Kim et 

al., 2007, Liu et al., 2007, Sobhian et al., 2007, Wang et al., 2007). To repair interstrand 

cross-links (ICLs), the mammalian Fanconi anaemia pathway plays a key role. 

Monoubiquitylation and deubiquitylation of the FANCD2-FANCI complex are 

absolutely required for the repair of ICLs (Matsushita et al., 2005, Ishiai et al., 2008, 

Oestergaard et al., 2007, Nijman et al., 2005). When DNA polymerase is stalled at site 

of lesion, a damage bypass mechanism requires PCNA monoubiquitylation and 

polyubiquitylation at K164 (Hoege et al., 2002). Monoubiquitylated PCNA recruits 

error-prone polymerases to perform translesion synthesis to bypass the lesion 

(Kannouche et al., 2004, Watanabe et al., 2004, Stelter and Ulrich, 2003), whereas 

polyubiquitylated PCNA initiates a yet not fully understood error-free pathway to allow 

replication fork progression through the lesion without introducing mutations. The first 

part of my thesis has provided further insights into this process. K63-polyubiquitylated 

PCNA is not degraded by the proteasome (Figure 3.12). A K63-linked chain still 

supports error-free damage bypass even at the N-terminus of PCNA, but a non-

cleavable tetraubiquitin chain does not have such a function (Figure 3.4, 3.5 and 3.6). 

Further efforts were put on identifying interaction partners exclusive for 

polyubiquitylated PCNA via a yeast two-hybrid screen and pull-down experiments 

(Table 4.1 and Figure 4.5). All of these have taken us a step forward on the way to fully 

understand the mechanism of PCNA polyubiquitylation-dependent error-free damage 

bypass and some of the unsuccessful approaches would also provide valid information 

that future approaches should take into account. 

 

Chromosome segregation is also tightly regulated during mitosis to ensure that each 

daughter cell will receive a complete set of the organism’s genetic information at the 

chromosome level. Ubiquitin signalling has been well studied in regulating the timing 

of chromosome segregation through APC/C mediated ubiquitylation and degradation 

process. Securin is ubiquitylated by APC/C and degraded in metaphase to release its 

binding partner, separase, which cleaves the Scc1 cohesion subunit to allow the 

separation of sister chromatides (Cohen-Fix et al., 1996, Ciosk et al., 1998, Uhlmann et 
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al., 1999, Uhlmann et al., 2000). The second part of my thesis has provided evidence 

that ubiquitin signalling may also regulate the stability of the kinetochore complex and 

thereby positively contribute to genome stability. The Ndc80 complex, an essential 

protein complex for cell survival, was shown to bind microtubules directly (Cheeseman 

et al., 2006, DeLuca et al., 2006). Overexpression of Ndc80, also called Hec1 (Highly 

Expressed in Cancer 1), causes hyperactivation of mitotic checkpoint and formation of 

tumours with significant levels of aneuploidy (Diaz-Rodriguez et al., 2008). Spc25 as a 

subunit of Ndc80 complex was shown to bind ubiquitin (Figure 4.6 and 4.9), and an 

allele deficient in ubiquitin binding sensitises dsn1 ts cells (Figure 4.18). These 

observations suggest that ubiquitin could play a role in maintaining kinetochore 

stability. More interestingly, many components of the kinetochore complex were 

identified as substrates for ubiquitylation, which further supports the significance of 

ubiquitin signalling in the kinetochore. Many questions regarding the details of how 

ubiquitylation and ubiquitin binding mediate kinetochore stability remain to be 

answered. Nevertheless, this work definitely improves our knowledge about the 

involvement of ubiquitin signalling in genome stability. 
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Appendix 1: Yeast Strains 

All yeast strains used in this thesis are listed below in Table 2.1. Relevant genotypes of 

all yeast strains are included in this table and yeast strains from other sources are 

acknowledged. Yeast strains generated by myself were subject to standard genetic 

manipulation as described in section 2.4. YIp128 vectors were integrated into the LEU2 

locus by linearisation with BstEII. YIp211 vectors were integrated into the URA3 locus 

by linearisation with PstI.  

Strain 

Number 
Strain Name Genotype Source 

yHU 1 DF5 Diploid 
his1-1, leu2-3,2-112, lys2-

801, trp1-1, ura3-52 
(Finley et al., 1987) 

yHU 2 DF5 Mat alpha 
his1-1, leu2-3,2-112, lys2-

801, trp1-1, ura3-52 
(Finley et al., 1987) 

yHU 3 DF5 Mat a 
his1-1, leu2-3,2-112, lys2-

801, trp1-1, ura3-52 
(Finley et al., 1987) 

yHU 1745 Y187 

ura3-52, his3-200, ade2-101, 

trp1-901, leu2-3,112, gal4Δ, 

met
-
, gal80Δ, 

URA3::GAL1UASGAL1TATA-

lacZ, MEL1 

Clontech 

yHU 195 PJ69-4A 

trp1-901, leu2-3,112, ura3-

52, his3-200, gal4Δ, gal80Δ, 

LYS2::GAL1-HIS3, GAL2-

ADE2, met2::GAL7-lacZ 

(James et al., 1996) 

yHU 142 rad18 DF5 rad18::TRP (Parker et al., 2007) 

yHU 1878 rad18 ΔTLS 

DF5 rad18::TRP 

rad30::HIS3 rev1::URA3 

rev3::KanMX 

(Parker et al., 2007) 

yHU 5 PRE1 
DF5 pre1::TRP1 + pSE362-

PRE1 

(Seufert and Jentsch, 

1992) 

yHU 6 pre1-1 
DF5 pre1::TRP1 + pSE362-

pre1-1 

(Seufert and Jentsch, 

1992) 

yHU 572 CIM3 S288c background 
(Seufert and Jentsch, 

1992) 

yHU 573 Cim3-1 S288c background cim3-1 
(Seufert and Jentsch, 

1992) 

yHU 2338 
His

POL30 PRE1 
PRE1 Leu2::Yip128-
His

POL30[LEU2] 
This study 

yHU 2339 
His

POL30 pre1-1 
Pre1-1 Leu2::Yip128-
His

POL30[LEU2] 
This study 

yHU 1097 
His

POL30 
DF5 pol30::URA3 

Leu2::Yip128-
(Papouli et al., 2005) 
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His
POL30[LEU2] 

yHU 2336 
His

POL30 ump1 

DF5 ump1::klTRP1 

pol30::URA3 Leu2::Yip128-
His

POL30[LEU2] 

This study 

yHU 2337 
His

POL30 pdr5 

DF5 pol30::URA3 

pdr5::KanMX Leu2::Yip128-
His

POL30[LEU2] 

This study 

yHU 2250 ufd4 DF5 ufd4::KanMX This study 

yHU 591 ufd2 DF5 ufd2::LEU2 (Johnson et al., 1995) 

yHU 2312 UFD2 DF5 UFD2-9myc::klTRP1 This study 

yHU 2319 ufd2(ΔUbox) 
DF5 ufd2(1-883)-

9myc::klTRP1 
This study 

yHU 1987 cdc48-2 S288c ura3-52 cdc48-2 (Moir et al., 1982) 

yHU 1988 NPL4 ura3-52 leu2Δ1 trp1Δ63 (Auld et al., 2006) 

yHU 1989 npl4-1 
ura3-52 leu2Δ1 trp1Δ63 npl4-

1 
(Auld et al., 2006) 

yHU 2249 rad23 dsk2 
DF5 rad23::HIS3 

dsk2::KanMX 
This study 

yHU 2262 spc25(L109A) 
DF5 spc25::HIS3 

ura3::YIp211-spc25(L109A) 
This study 

yHU 2263 spc25(L113A) 
DF5 spc25::HIS3 

ura3::YIp211-spc25(L113A) 
This study 

yHU 2264 spc25(3A) 

DF5 spc25::HIS3 

ura3::YIp211-

spc25(L109A/L113A/R116A) 

This study 

yHU 790 BY4741 
leu2Δ0, met15Δ0, ura3Δ0, 

his3Δ0 

OPEN 

BIOSYSTEMS 

 SPC25
TAP

 BY4741 + SPC25-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 SPC24
TAP

 BY4741 + SPC24-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 NDC80
TAP

 
BY4741 + NDC80-

TAP::HIS3 

OPEN 

BIOSYSTEMS 

 NUF2
TAP

 BY4741 + NUF2-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MTW1
TAP

 BY4741 + MTW1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 NNF1
TAP

 BY4741 + NNF1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 DSN1
TAP

 BY4741 + DSN1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 NSL1
TAP

 BY4741 + NSL1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 CTF19
TAP

 BY4741 + CTF19-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 OKP1
TAP

 BY4741 + OKP1-TAP::HIS3 
OPEN 

BIOSYSTEMS 
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 MCM21
TAP

 
BY4741 + MCM21-

TAP::HIS3 

OPEN 

BIOSYSTEMS 

 AME1
TAP

 BY4741 + AME1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MAD1
TAP

 BY4741 + MAD1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MAD2
TAP

 BY4741 + MAD2-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MAD3
TAP

 BY4741 + MAD3-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MPS1
TAP

 BY4741 + MPS1-TAP::HIS3 
OPEN 

BIOSYSTEMS 

 MCM21
GFP BY4741 + MCM21-  

eGFP::HIS3 

OPEN 

BIOSYSTEMS 

yHU 2385 
spc25(L109A) 

MCM21
GFP

 

DF5 +spc25::HIS3, 

ura3::YIp211-spc25(L109A), 

MCM21-eGFP::KanMX 

This study 

yHU 2375 K699 
ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

(Nekrasov et al., 

2003) 

yHU 2393 spc25(L109A) 

ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

spc25(L109A) 

This study 

yHU 2376 dsn1-7 

ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

dsn1-7 

(Nekrasov et al., 

2003) 

yHU 2392 
dsn1-7 

spc25(L109A) 

ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

dsn1-7 spc25(L109A) 

This study 

yHU 2377 dsn1-8 

ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

dsn1-8 

(Nekrasov et al., 

2003) 

yHU 2494 
dsn1-8 

spc25(L109A) 

ade2-1 trp1-1 can1-100 leu2-

3,112 his3-11,15 ura3 ssd1 

dsn1-8 spc25(L109A) 

This study 

yHU 2341 SPC25
9myc

 
DF5 spc25::HIS3, ura3:: 

klTRP1::YIp211-SPC25
9myc

 
This study 

yHU 2342 spc25(L109A)
9myc

 

DF5 spc25::HIS3, ura3:: 

klTRP1::YIp211-

spc25(L109A)
9myc

 

This study 

Table A- 1 A list of all yeast strains used in this thesis 
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Appendix 2: E.coli Strains 

All the E.coli strains used in this thesis are listed below. 

Name Source  Genotype Application  

Top10 Invitrogen  

F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 

araΔ139 Δ(ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG 

Molecular cloning 

BL21 

Codon 
2+

 
Novagen 

E. coli B F ompT hsdS(rB
-
 mB

-
) dcm

+
 

Tet
r
 gal endA Hte 

Protein purification 

Table A- 2 A list of E.coli strains used in this thesis 
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Appendix 3: Plasmids 

All plasmids used in this thesis are listed in these two tables. Plasmids from other 

sources are acknowledged. Details about the plasmids generated by myself can be found 

in the construction column of the table and in section 2.2.2 and 2.2.3. 

Plasmid number Plasmid name Source 

pHU 66 YIplac128 (Gietz and Sugino, 1988) 

pHU 710 YIp128-P30-PCNA
*
 (Parker et al., 2007) 

pHU 1176 YIp128-P30-Ub
*
-PCNA

*
 (Parker et al., 2007) 

pHU 732 YIp128-P30-His-PCNA (Davies et al., 2008) 

pHU 1533 pGEX- Ub
*
4 Irene Saugar 

pHU 1672 pGEX-UBAN (NEMO) (Komander et al., 2009b) 

pHU 477 Ub-ßGal (Johnson et al., 1995) 

pHU 1036 pGBT9-Ub
*
 Ulrich lab strain collection 

pHU 1035 pGAD424-Ub
*
 Ulrich lab strain collection 

pHU 1623 pGEX-Ub (I44A) (human) 
Roy Anindya (Svejstrup 

Lab) 

pHU 669 pHK110/ pRS426-ADE3 (Henry and Silver, 1996) 

pHU 794 pHT4467Δ (Strasser et al., 2002) 

pHU 308 YEplac181 
Ulrich lab strain collection 

(Gietz and Sugino, 1988) 

pHU 821 YEp181-CUP1-His-Ub Ulrich lab strain collection 

Table A- 3 A list of plasmids that were constructed by others 

 

Plasmid 

number 
Plasmid name Construction Source 

pHU 1647 YIp128-P30-

Ub
*
2(L)-PCNA

*
 

BamHI/PstI fragment from #1441 pGAD-

Ub
*
2(L)-POL30(DMO) clone into 

BamHI/PstI digested plasmid #710 

This study 

pHU 1648 YIp128-P30-

Ub
*
3(L)-PCNA

*
 

BamHI/PstI fragment from #1440 pGAD-

Ub
*
3(L)-POL30(DMO) clone into 

BamHI/PstI digested plasmid #710 

This study 

pHU 1649 YIp128-P30-

Ub
*
4(L)-PCNA

*
 

BamHI/PstI fragment from #1439 pGAD-

Ub
*
4(L)-POL30(DMO) clone into 

BamHI/PstI digested plasmid #710 

This study 

pHU 1650 YIp128-P30-

Ub
*
4-PCNA

*
 

#1444 pGBT-Ub
*
4-POL30(DMO) 

EcoRI/PstI partial digestion, blunt and 

clone into BamHI/PstI digested/blunted 

plasmid #710 

This study 

pHU 1677 YIp128-P30-

PCNA
*
- Ub

*
4 

PCR (oHU1524/1525) from plasmid 

#1529, KpnI/PstI fragment replaces Ub in  

#1177 YIp128-P30-POL30(DMO)-Ub3R 

This study 
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pHU 1678 YIp128-P30-

Ub
K63*

-PCNA
*
 

PCR (oHU500/501) from plasmid #480, 

BamHI/BglII fragment clone into BamHI 

site in plasmid #710 

This study 

pHU 1680 pET28a-His-

Ub
*
4-PCNA

*
 

EcoRI/HindIII and EcoRI/EcoRI fragments 

from plasmid #1651 pGAD-Ub
*
4-PCNA

*
, 

clone into pET28a EcoRI/HindIII sites 

sequentially. 

This study 

pHU 1653 Ub
*
4-ßGal PCR (oHU1240/124) from pGAD-Ub

*
4 

treat with BglII/blunt, clone into SphI/blunt 

#477, plasmid then digested with BamHI 

and religate to remove Ub 

This study 

pHU 1682 Ub
*
-ßGal PCR (oHU500/124) from plasmid #1529 

pGAD-Ub
*
4, isolate Ub

* 
from gel, TOPO 

cloning, BamHI/BglII fragment inserted 

into BamHI site of plasmid #477 gives 

Ub2-ßgal. SphI/BamHI, blunt, religation 

gives Ub(3R)-ßgal 

This study 

pHU 1654 ßGal No.477 Ubi-ßgal digested with 

SphI/BamHI and the vector was first 

blunted and ligated. 

This study 

pHU 1655 Ub
*
8-ßGal PCR (oHU500/1241) from #1529 pGAD-

Ub
*
4, BamHI/BglII fragment put into 

BamHI site in #477 to have Ub5-ßgal. 

(oHU500/501) from #1529 pGAD-Ub
*
4, 

BamHI/BglII digestion and put into BamHI 

site to have Ub9-ßgal. SphI/BamHI, blunt 

and religate to get Ub
*
8-ßgal 

This study 

pHU 1531 pGBT9-Ub
*
4(L) SmaI fragment from plasmid # 1442, clone 

into SmaI site of pGBT9 vector, then take 

out as BamHI, put into pGBD-C2 vector 

This study 

pHU 1532 
pGAD424-

Ub
*
4(L) 

SmaI fragment from plasmid #1442, clone 

into SmaI site of pGAD424 vector 
This study 

pHU 1530 pGBT9-Ub
*
4 

EcoRI/BamHI fragment from plasmid 

#1529 and clone into EcoRI/BglII of 

pGBD-C3 

This study  

pHU 1529 pGAD424-Ub
*
4 

PCR (oHU 902/903) from plasmid #14, 

TOPO cloning, Fragment StuI/MscI 

ligation & digestion with StuI, MscI isolate 

ub4 fragment, TOPO blunt cloning, 

EcoRI/blunt into #191 pGAD-C1 SmaI. 

This study 

pHU 1572 pGBT9-ETP1 

PCR (oHU1160/1161) from yeast gemonic 

DNA, BglII/PstI digestion, clone into 

BamHI/PstI of pGBT9 

This study 

pHU 1579 pGAD424-ETP1 

PCR (oHU1160/1161) from yeast gemonic 

DNA, BglII/PstI digestion, clone into 

BamHI/PstI of pGAD424 

This study 

pHU 1573 
pGBT9-ETP1 

(459-585) 

PCR (oHU1162/1161) amplification from 

yeast genomic DNA, BglII/PstI digestion, 
This study 
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clone into BamHI/PstI of pGBT9 

pHU 1580 
pGAD424-ETP1 

(459-585) 

PCR (oHU1162/1161) amplification from 

yeast genomic DNA, BglII/PstI digestion, 

clone into BamHI/PstI of pGAD424 

This study 

pHU 1684 pGBT9-SPC25 

PCR (oHU1163/1164) from yeast genomic 

DNA, BamHI digestion and clone into 

BamHI site of pGBT9 vector. 

This study 

pHU 1700 
pGAD424-

SPC25 

PCR (oHU1163/1164) from yeast genomic 

DNA, BamHI digestion and clone into 

BamHI site of pGAD424 vector. 

This study 

pHU 1685 
pGBT9-SPC25 

(107-221) 

PCR (oHU1165/1164) amplification from 

yeast genomic DNA, BamHI digestion and 

clone into BamHI site of pGBT9 vector. 

This study 

pHU 1701 

pGAD424-

SPC25 (107-

221) 

PCR (oHU1165/1164) amplification from 

yeast genomic DNA, BamHI digestion and 

clone into BamHI site of pGAD424 vector. 

This study 

pHU 2079 pGBT9-RSC6 

PCR (oHU1166/1167) amplification from 

yeast genomic DNA, BamHI digestion and 

clone into BamHI site of pGBT9 vector. 

This study 

pHU 2080 
pGAD424-

RSC6 

PCR (oHU1166/1167) amplification from 

yeast genomic DNA, BamHI digestion and 

clone into BamHI site of pGAD424 vector. 

This study 

pHU 2081 
pGBT9-RSC6 

(94-211) 

PCR (oHU1168/1169) amplification from 

yeast genomic DNA, BamHI/PstI digestion 

and clone into BamHI/PstI site of pGB9 

vector. 

This study 

pHU 2082 
pGAD424-

RSC6 (94-211) 

PCR (oHU1168/1169) amplification from 

yeast genomic DNA, BamHI/PstI digestion 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1686 
pGBT9-SPC25 

(1-67) 

PCR (oHU1211/1163) amplification from 

plasmid #1700, BamHI/PstI digestion, 

clone 210bp band into BamHI/PstI site of 

pGBT9 vector. 

This study 

pHU 1702 
pGAD424-

SPC25 (1-67) 

BamHI/PstI digestion from plamsid #1686 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1687 
pGBT9-SPC25 

(1-106) 

PCR (oHU1211/1163) amplification from 

plasmid #1700. BamHI/PstI digestion, 

clone both products into BamHI/PstI site 

of pGBT9 vector. 

This study 

pHU 1703 
pGAD424-

SPC25 (1-106) 

BamHI/PstI digestion from plamsid #1687 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1688 
pGBT9-SPC25 

(133-221) 

PCR (oHU1205/1206) amplification from 

plasmid #1700. BamHI/PstI digestion, 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 
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pHU 1704 

pGAD424-

SPC25 (133-

221) 

BamHI/PstI digestion from plamsid #1688 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1689 
pGBT9-SPC25 

(146-221) 

PCR (oHU1208/1206) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 

pHU 1705 

pGAD424-

SPC25 (146-

221) 

BamHI/PstI digestion from plamsid #1689 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1690 
pGBT9-SPC25 

(186-221) 

PCR (oHU1207/1206) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 

pHU 1706 

pGAD424-

SPC25 (186-

221) 

BamHI/PstI digestion from plamsid #1690 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1691 
pGBT9-SPC25 

(107-189) 

PCR (oHU1209/1165) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 

pHU 1707 

pGAD424-

SPC25 (107-

189) 

BamHI/PstI digestion from plamsid #1691 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1692 
pGBT9-SPC25 

(107-146) 

PCR (oHU1210/1165) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 

pHU 1708 

pGAD424-

SPC25 (107-

146) 

BamHI/PstI digestion from plamsid #1692 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1693 
pGBT9-SPC25 

(117-221) 

PCR (oHU1321/1206) amplification from 

plasmid #1700, EcoRI/PstI digestion and 

clone into EcoRI/PstI site of pGBT9 

vector. 

This study 

pHU 1709 

pGAD424-

SPC25 (117-

221) 

EcoRI/PstI digestion from plamsid #1693 

and clone into EcoRI/PstI site of 

pGAD424 vector. 

This study 

pHU 1694 
pGBT9-SPC25 

(1-133) 

PCR (oHU1163/1320) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

vector. 

This study 

pHU 1710 
pGAD424-

SPC25 (1-133) 

BamHI/PstI digestion from plamsid #1694 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1695 
pGBT9-SPC25 

(107-133) 

PCR (oHU1165/1320) amplification from 

plasmid #1700, BamHI/PstI digestion and 

clone into BamHI/PstI site of pGBT9 

This study 
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vector. 

pHU 1711 

pGAD424-

SPC25 (107-

133) 

BamHI/PstI digestion from plamsid #1695 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1696 
pGBT9-SPC25 

(3A) 

PCR mutagenesis with oHU1322/1323 to 

introduce mutation L109A, L113A, R116A 

and amplify with oHU1163/ 1206, 

BamHI/PstI clone into pGBT9 vector. 

This study 

pHU 1712 
pGAD424-

SPC25 (3A) 

BamHI/PstI digestion from plamsid #1696 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1697 
pGBT9-SPC25 

(L109A) 

PCR mutagenesis with oHU 1426/1427 to 

introduce mutation L109A and amplify 

with oHU1163/ 1206, BamHI/PstI clone 

into pGBT9 vector. 

This study 

pHU 1713 
pGAD424-

SPC25 (L109A) 

BamHI/PstI digestion from plamsid #1697 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1698 
pGBT9-SPC25 

(L113A) 

PCR mutagenesis with oHU1428/1429 to 

introduce mutation L113A and amplify 

with oHU1163/ 1206, BamHI/PstI clone 

into pGBT9 vector. 

This study 

pHU 1714 
pGAD424-

SPC25 (L113A) 

BamHI/PstI digestion from plamsid #1698 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1699 
pGBT9-SPC25 

(R116A) 

PCR mutagenesis with oHU 1430/1431 to 

introduce mutation R116A and amplify 

with oHU1163/ 1206, BamHI/PstI clone 

into pGBT9 vector. 

This study 

pHU 1715 
pGAD424-

SPC25 (R116A) 

BamHI/PstI digestion from plamsid #1699 

and clone into BamHI/PstI site of 

pGAD424 vector. 

This study 

pHU 1718 pGBT9-SPC24 

PCR (oHU1228/1266) from yeast genomic 

DNA, BamHI/EcoRI digestion and clone 

into pGBT9 vector. 

This study 

pHU 1719 
pGAD424-

SPC24 

BamHI/EcoRI digestion from plasmid 

#1718 pGBT-SPC24 and clone into 

pGAD424 vector. 

This study 

pHU 1716 
pGEX-SPC25 

(107-221) 

SmaI/SalI fragment from plasmid # 1701 

pGAD-Spc25 (107-221) and clone into 

pGEX4T1 vector 

This study 

pHU 1717 
pET28a-SPC25 

(107-221) 

SmaI/SalI fragment from plasmid # 1701 

pGAD-Spc25 (107-221) and clone into 

pGEX4T1 vector 

This study 

pHU 1720 
pET15b-SPC24 

(154-213) 

PCR (oHU1228/1227) from yeast genomic 

DNA, BamHI/XhoI digestion and clone 

into pET15b vector. 

This study 

pHU 1724 YIp211-SPC25 PCR amplify SPC25 ORF and This study 
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(L109A) promoter/terminator with oHU1432/1433 

and mutagenesis with oHU 1426/1427 to 

introduce mutation L109A, EcoRI/HindIII 

digestion and clone into vector YIp211. 

pHU 1725 
YIp211-SPC25 

(L113A) 

PCR amplify SPC25 ORF and 

promoter/terminator with oHU1432/1433 

and mutagenesis with oHU 1429/1428 to 

introduce mutation L113A, EcoRI/HindIII 

digestion and clone into vector YIp211. 

This study 

pHU 1727 
YIp211-SPC25 

(3A) 

PCR amplify SPC25 ORF and 

promoter/terminator with oHU1432/1433 

and mutagenesis with oHU 1422/1423 to 

introduce mutation L113A, EcoRI/HindIII 

digestion and clone into vector YIp211. 

This study 

Table A- 4 A list of plasmids that were constructed by myself 
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Appendix 4: Oligonucleotides 

DNA oligonucleotides used in this thesis to generate plasmids and yeast strains are 

listed below. All of them were purchased from SIGMA. 

Number Name Sequence Application 

oHU 1011 
UMP1 KO 

up 

TCTTTTCAATGGTTTACGTGA

CAGATGTATAAAGAAATTGA

GAGCAATTTATCGATGAATTC

GAGCTCG 

Deletion of UMP1 

oHU 1012 
UMP1 KO 

down 

AGGGAATGAGTATTAAATAG

ACAAGACCAGAAACAGCCTG

CATACCAACTCGTACGCTGCA

GGTCGAC 

Deletion of UMP1 

oHU 1013 
UMP1 KO 

test 

CATGTTAGCATATAATGGCCA

C 

UMP1 knock-out 

test 

oHU 1147 PDR5 3’ up 
CATGTTAGCATATAATGGCCA

C 

Amplification of 

pdr5::KanMX from 

deletion collection 

oHU 1148 
PDR5 5’ 

down 
TGATTCCGTGGAAAGGTCAG 

Amplification of 

pdr5::KanMX from 

deletion collection 

oHU 1149 
PDR5 KO 

test 
GTGCCACAACATTTTCAGATT 

PDR5 knock-out 

test 

oHU 1551 
UFD2 

tagging up 

GCCTTATTTGATTAGGGTCAA

TTTTGCAATTTATTCTATCACT

TATTCATATCGATGAATTCGA

GCTCG 

PCR-based tagging 

of UFD2 

oHU 1552 
UFD2 

tagging down 

TTTGTTTCAAAAAACAAAAAA

AGGAAGAAGCAAAACATAAA

GCAAGCGAGCGTACGCTGCA

GGTCGAC 

PCR-based tagging 

of UFD2 

oHU 1569 

UFD2 (1-

883) tagging 

down 

AAAGAAAGGCTGATGAAGAG

GAAGATCTTGAGTATGGTGAT

GTTCCTGACCGTACGCTGCAG

GTCGAC 

PCR-based tagging 

of UFD2 (1-883) 

oHU 1555 
UFD2 

tagging test 
TAACAGACAATTCCCCCGG UFD2 tagging test 

oHU 1420 
RAD23 KO 

down 

AACTCCACCTTTAAATCACAG

ATCACACAAAGACAACATAC

AATAGAAAACGTACGCTGCA

GGTCGAC 

Deletion of RAD23 

oHU 1421 
RAD23 KO 

up 

TGAGATTGTAGTAATGTTATG

GCTTGAAGTATCTTCACTTAT

TCTCGACAATCGATGAATTCG

Deletion of RAD23 
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AGCTCG 

oHU 1422 
RAD23 KO 

test 
CTAGGCAAGAAATAGCGACA 

RAD23 knock-out 

test 

oHU 1423 
DSK2 KO 

down 

CGAGAGGCAAATAAGACGGA

TCAAAGACACCGAATCATTCT

AGCACGATACGTACGCTGCA

GGTCGAC 

Deletion of DSK2 

oHU 1424 DSK2 KO up 

GCCGATAGAGTAGGGTAAAA

GTATATAGGTTGCGGCATCTA

GACGTTTATATCGATGAATTC

GAGCTCG 

Deletion of DSK2 

oHU 1425 
DSK2 KO 

test 
GCCATTTAGCGTACGATATA DSK2 knock-out test 

oHU 1576 
MCM21 

tagging down 

TGGATGATTTGGAATTAAAAT

TAAACCATTCTTTCGCGACAA

TATTCAAGCGTACGCTGCAGG

TCGAC 

PCR-based tagging 

of MCM21 

oHU 1577 
MCM21 

tagging up 

AGAGAAAATTAGCTCTATCCT

CTTTCTATAAAGTATATTTTTG

TTAACATATCGATGAATTCGA

GCTCG 

PCR-based tagging 

of MCM21 

oHU 1578 
MCM21 

tagging test 
CTCATGATGACGCCTATT MCM21 tagging test 

oHU 500 
UB down 

BamHI 

CTGGGATCCAAATGCAGATTT

TCGTCAAGAC 

Construction of 

Ub
*
n(L) 

oHU 501 UB up BglII 
CCGAGATCTGAACGACACCTC

TTAGCCTTAGC 

Construction of 

Ub
*
n(L) 

oHU 902 
UB down 

StuI 

GAAGGCCTCATGCAGATTTTC

GTCAAGACTTTGAC 

Construction of 

Ub
*
4 

oHU 903 
UB down 

MscI 

GCCGTGTGGCCACGTAGCCTT

AGCACAAGATGTA 

Construction of 

Ub
*
4  

oHU 1524 
UB down 

SacII 

GGGGTACCGCGGAGATCCAA

ATGCAGATTTTCG 

Construction of 

PCNA
*
- Ub

*
4 

oHU 1525 
UB (ΔGG) 

up PstI 

TAAGCTTGGCTGCAGATCCTC

ATCTTAGCCTTAGCAC 

Construction of 

PCNA
*
- Ub

*
4 

oHU 1240 Ub
*
4 down 

GGGAATTCCATATGTAGCCCT

TCCTCATGCA 

Construction of 

Ub
*
4-βGAL 

oHU 1241 Ub
*
4 up 

GGAAGATCTGTGCGCCCTTCC

ACGTAGC 

Construction of 

Ub
*
4-βGAL 

oHU 1160 
YHL010C 

down 

GGAAGATCTCTATGGATCAAT

TTGAGTATAT 

Amplification of 

ETP1 (ORF) 

oHU 1161 YHL010C up 
TGCACTGCAGTCATTTCCCTG

CTTTTTTATTT 

Amplification of 

ETP1 (ORF) 

oHU 1162 
YHL010C 

459 down 

GGAAGATCTCGAATGTTGAA

AGTTTGAAGAA 

Amplification of 

ETP1 (459-585) 

oHU 1163 SPC25 down 
CGCGGATCCGAATGGCCAGC

ATAGACGCATT 

Amplification of 

SPC25 (ORF) 
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oHU 1164 SPC25 up 
CGCGGATCCTTATAAAGATGC

CAGAAGCATA 

Amplification of 

SPC25 (ORF) 

oHU 1165 
SPC25 107 

down 

CGCGGATCCCGCGCGAGCTG

GACTCGCTGCT 

Amplification of 

SPC25 (107-221) 

oHU 1166 RSC6 down 
CGCGGATCCAAATGGTAACA

CAGACCAATCC 

Amplification of 

RSC6 (ORF) 

oHU 1167 RSC6 up 
CGCGGATCCTTATAGTCTTCC

TTGGGAGTAC 

Amplification of 

RSC6 (ORF) 

oHU 1168 
RSC6 94 

down 

CGCGGATCCCAGCGGACTCA

GGCAAGACTA 

Amplification of 

RSC6 (94-211) 

oHU 1169 RSC6 211 up 
TGCACTGCAGTTATCTCTTGA

TGTCGATACCATCA 

Amplification of 

RSC6 (94-211) 

oHU 1211 
SPC25 106 

up 

TGCACTGCAGTTACGATTGGG

CTGCTAAGGTCGA 

Amplification of 

SPC25 (1-106) 

oHU 1205 
SPC25 133 

down 

CGCGGATCCCGAACGATGCC

GCAGAGGTCGCA 

Amplification of 

SPC25 (133-221) 

oHU 1208 
SPC25 146 

down 

CGCGGATCCCGCAGCTTCGTG

TACTACCCGGA 

Amplification of 

SPC25 (146-221) 

oHU 1207 
SPC25 186 

down 

CGCGGATCCCGCCGGCGCTGG

ACCCCAAGAGT 

Amplification of 

SPC25 (186-221) 

oHU 1209 
SPC25 189 

up 

TGCACTGCAGTTAGTCCAGCG

CCGGGTGAGAGTT 

Amplification of 

SPC25 (107-189) 

oHU 1210 
SPC25 146 

up 

TGCACTGCAGTTACTGCAACA

GCCGTTCGTACAG 

Amplification of 

SPC25 (107-146) 

oHU 1321 
SPC25 117 

down 

CGGAATTCGGTAAAGAGTGT

GTCCAA 

Amplification of 

SPC25 (117-221) 

oHU 1320 
SPC25 133 

up 

TGCACTGCAGTTAGTTACCCG

ACTGCGCAGC 

Amplification of 

SPC25 (1-133) 

oHU 1322 

SPC25 

L109A 

L113A 

R116A down 

CGCGCGAGGCCGACTCGCTG

GCCCAACAGGCTGGTAAAGA

GTGTGTCCAATTACGC 

Mutagenesis of 

SPC25 (L109A, 

L113A, R116A)  

oHU 1323 

SPC25 

L109A 

L113A 

R116A up 

TCTTTACCAGCCTGTTGGGCC

AGCGAGTCGGCCTCGCGCGAT

TGGGCTGCTAAGGTCGA 

Mutagenesis of 

SPC25 (L109A, 

L113A, R116A) 

oHU 1426 
SPC25 

L109A down 

CGCGCGAGGCCGACTCGCTGC

TGCAACAGCGTGGT 

Mutagenesis of 

SPC25 (L109A) 

oHU 1427 
SPC25 

L109A up 

AGCGAGTCGGCCTCGCGCGAT

TGGGCTGCTAAGGT 

Mutagenesis of 

SPC25 (L109A) 

oHU 1428 
SPC25 

L113A down 

ACTCGCTGGCCCAACAGCGTG

GTAAAGAGTGTGTC 

Mutagenesis of 

SPC25 (L113A) 

oHU 1429 
SPC25 

L113A up 

CGCTGTTGGGCCAGCGAGTCC

AGCTCGCGCGATTG 

Mutagenesis of 

SPC25 (L113A) 

oHU 1430 
SPC25 

R116A down 

TGCAACAGGCCGGTAAAGAG

TGTGTCCAATTACGC 

Mutagenesis of 

SPC25 (R116A) 

oHU 1431 SPC25 TCTTTACCGGCCTGTTGCAGC Mutagenesis of 
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R116A up AGCGAGTCCAGCTC SPC25 (R116A) 

oHU 1266 SPC24 down 
CGGAATTCATGTCACAAAAG

GATAACCT 

Amplification of 

SPC24 (ORF) 

oHU 1228 SPC24 up 
CGGGATCCTCACTTTCCTAAT

CTTTCCC 

Amplification of 

SPC24 (ORF) 

oHU 1227 
SPC24 154 

down 

CCGCTCGAGGAAGCAAACGA

AAATATTCT 

Amplification of 

SPC24 (154-213) 

oHU 1432 

SPC25 

promoter 

down 

CGGAATTCCGATCTGCTTTTT

TTCCCTTTT 

Amplification of 

SPC25 (ORF) with 

promoter 

oHU 1433 
SPC25 

terminator up 

CCCAAGCTTGGGTGGATGATG

CCTTTATTTGA 

Amplification of 

SPC25 (ORF) with 

terminator 

oHU 1476 
SPC25 KO 

down 

GATTCAATTAAAACCGCTCAT

ACGTATACAACACATACACAC

ATACAAGACGTACGCTGCAG

GTCGAC 

Deletion of SPC25 

oHU 1477 
SPC25 KO 

up 

TCATCTAAATCATAGGCCCAG

AATAAACTGAACAGATGCGT

ATAAAGGCGATCGATGAATTC

GAGCTCG 

Deletion of SPC25 

oHU 1580 
SPC25 

tagging up 

TCATCTAAATCATAGGCCCAG

AATAAACTGAACAGATGCGT

ATAAAGGCGATCGATGAATTC

GAGCTCG 

PCR-based tagging 

of SPC25 

oHU 412 
POL30 

K127R down 

GATTTCTTAAGAATTGAAGAA

TTACAGTACGACT 

Northern blot 

POL30 probe 

oHU 79 POL30 up 
CCGGATCCTGCAGTTATTCTT

CGTCATTAAATTTAG 

Northern blot 

POL30 probe 

oHU 640 LacZ a ACTGGGTGGATCAGTCGCTG 
Northern blot LacZ 

probe 

oHU 641 LacZ b CGCCAGACGCCACTGCTGCC 
Northern blot LacZ 

probe 

Table A- 5 A list of all DNA oligonucleotides used in this thesis. 
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Appendix 5: Antibodies 

Primary Antibodies 

Name Source  Type, Working Dilution 

Anti-ubiquitin (P4D1) Cell Signaling Technology Monoclonal, 1:5000  

Anti- (yeast) 3-

phosphoglycerate kinase 

(PGK) (22C5) 

Molecular Probes  Monoclonal, 1:5000 

Anti-His (clone His-1) Sigma Monoclonal, 1:5000 

Anti-GST (B-14) Santa Cruz Biotechnology Monoclonal, 1:5000 

Anti-Myc (9E10) Cancer Research UK Monoclonal, 1:5000 

Anti-Myc Santa Cruz Biotechnology Polyclonal, 1:5000 

Anti-GFP (mixture of 

clone7.1 and clone 13.1 
Roche  Monoclonal,1:5000 

Anti-PCNA (5E6, 3B9, 

4E10) 
Cancer Research UK Monoclonal, 1:3000 

Anti-PCNA Ulrich Lab Polyclonal, 1:5000 

Anti-βGal  Promega Monoclonal, 1:5000 

Anti-TAP Cambio Polyclonal, 1:5000 

Table A- 6 A list of primary antibodies used in this thesis. Monoclonal antibodies 

are all derived from mice, and polyclonal antibodies are from rabbit.  

 

Secondary Antibodies 

Name Source  Working Dilution 

HRP-conjugated goat 

polyclonal anti-mouse 
Dako 1:5000 

HRP conjugated swine 

polyclonal anti-rabbit 
Dako 1:5000 

Table A- 7 A list of secondary antibodies used in this thesis 
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Appendix 6: Publication 
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Polyubiquitin chains mediate a variety of biological processes,
ranging from proteasomal targeting to inflammatory signaling
and DNA repair. Their functional diversity is in part due to their
ability to adopt distinct conformations, depending on how the
ubiquitin moieties within the chain are linked. We have used
the eukaryotic replication clamp PCNA, a natural target of lysine
(K)63-linked polyubiquitylation, as a model substrate to directly
compare the consequences of modification by different types of
polyubiquitin chains. We show here that K63-polyubiquitylated
PCNA is not subject to proteasomal degradation. In contrast, linear,
noncleavable ubiquitin chains do not promote DNA damage toler-
ance, but function as general degradation signals. We find that a
linear tetraubiquitin chain is sufficient to afford proteasomal
targeting through the Cdc48-Npl4-Ufd1 complex without further
modification. Although a minimum chain length of four is required
for degradation, a longer chain does not further reduce the half-life
of the respective substrate protein. Our results suggest that the
cellular machinery responsible for recognition of ubiquitylated
substrates can make subtle distinctions between highly similar
forms of the polyubiquitin signal.

DNA damage bypass ∣ polyubiquitin chain linkage ∣ proteasome ∣
protein degradation ∣ UFD pathway

Ubiquitin belongs to a family of posttranslational modifiers
that alter the properties of their targets in various ways,

usually by affecting their interactions, localization, or stability.
Although best known for its role in regulated protein degradation
(1), ubiquitin mediates a variety of nonproteolytic functions (2).
By means of an enzymatic cascade involving an activating enzyme
(E1), a conjugating enzyme (E2), and a ligase (E3) that deter-
mines substrate selectivity, ubiquitin is generally attached to its
targets through an isopeptide linkage between the modifier’s
carboxy (C) terminus and the ϵ-amino group of a lysine (K)
residue within the target (1). Its versatility as a signaling molecule
is at least in part due to its ability to form polymeric chains. These
can adopt a number of different geometries, depending on which
of the seven lysines of ubiquitin is used as an acceptor for chain
formation (3). Downstream effector proteins that selectively
recognize a particular type of chain are believed to mediate
the outcome of the modification.

A polyubiquitin chain whose monomers are linked through
K48 acts as a signal for degradation by the 26S proteasome
(4). K29-linked polyubiquitin chains also mediate degradation,
as shown for the ubiquitin fusion degradation (UFD) pathway
in yeast, which recognizes a single, noncleavable ubiquitin moiety
at the N terminus of a target protein as a substrate for further
modification (5). However, the short K29-linked chains
assembled by the UFD-specific E3 Ufd4 are relatively inefficient
in proteasomal targeting and are therefore extended via
K48-linkage by a dedicated enzyme, Ufd2, also called E4 (6, 7).
Downstream factors responsible for the recognition of the polyu-
biquitin chain and the targeting of the modified substrate to the

proteasome include the escort factors Cdc48, Npl4, and Ufd1
and ubiquitin adaptors such as Rad23 and/or Dsk2 (8).

K63-linked polyubiquitin chains assembled by the heterodi-
meric E2 complex of Ubc13 and the E2-like Uev1/Mms2 feature
prominently in the NFκB-dependent inflammatory response (9)
and also in a system of DNA damage bypass known as the RAD6
pathway (10). Here, the relevant modification target is the eukar-
yotic sliding clamp PCNA, a processivity factor for replicative
DNA polymerases (11). Damage-induced monoubiquitylation
promotes the recruitment of damage-tolerant DNA polymerases
for a process named translesion synthesis (TLS) (12, 13). In con-
trast, modification by a K63-linked polyubiquitin chain activates
an alternative pathway of damage avoidance that allows cells to
overcome replication-blocking lesions in the template strand
in an error-free manner, possibly involving a template switch
(11, 14). The mechanism by which the K63-linked ubiquitin
chains act remains unknown. In the context of NFκB activation,
K63-polyubiquitylation is unrelated to proteolysis, as the chains
appear to act as scaffolds for the assembly of a signaling complex,
but a proteolytic function has not been excluded for the damage
tolerance pathway. When linked to a model substrate in vitro,
K63-linked polyubiquitin chains in fact trigger proteasomal
degradation (15), and recent evidence suggests that they may also
function as a degradation signal in vivo (16).

The picture of ubiquitin chain linkage is further complicated by
the recent discovery of an E3 in higher eukaryotes, LUBAC,
which catalyzes the assembly of linear chains where the ubiquitin
moieties are linked in a tandem arrangement via ubiquitin’s
amino (N) terminus (17). As the latter is spacially very close
to K63, linear chains adopt a conformation almost identical to
that of K63-linked chains (18). Yet, although LUBAC was found
to be important for NFκB signaling as well (19), the function of
the linear chains does not coincide with that of the K63-linked
chains, consistent with subtle differences in their recognition
by the ubiquitin-binding (UBAN) domain of the Iκ kinase subunit
NEMO (18, 20). Moreover, LUBAC can promote the degrada-
tion of a model substrate in vivo, indicating a possible function of
linear chains in proteasomal targeting (17).

These observations raise the general questions as to what
extent linear and K63-linked polyubiquitin chains are inter-
changeable in their functions, and whether or not they act as
degradation signals. PCNA as a natural target of K63-linked
polyubiquitylation has provided us with the unique opportunity
of directly comparing the effects of linear versus K63-linked
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polyubiquitylation of a common substrate. Our results indicate
that—similar to the NFκB pathway—the system of DNA damage
bypass is able to differentiate between linear and K63-linked
polyubiquitin chains.

Results
Linear Polyubiquitin Chains Do Not Promote DNA Damage Tolerance.
In order to directly compare the effects of linear versus K63-
linked chains on a common substrate, we designed linear fusions
of polyubiquitin arrays to the N or C terminus of PCNA (Fig. 1A).
We had previously shown that a single ubiquitin fused to PCNA
successfully complements a defect in monoubiquitylation at the
native site, K164, indicating that the position of ubiquitin on
PCNA is not critical for function in TLS (21). In order to allow
for some conformational flexibility we designed a series of con-
structs containing two to four ubiquitin repeats separated by a
short linker (Ub�nðLÞ-PCNA�), and two constructs in which four
ubiquitin moieties were joined precisely in a head-to-tail arrange-

ment (Ub�4-PCNA� and PCNA�-Ub�4). In order to prevent further
modification, the major acceptor sites for ubiquitin and/or the
small ubiquitin-related modifier (SUMO) on PCNA (K164 and
K127) and ubiquitin (K29, K48, and K63) were mutated to argi-
nine (indicated by an asterisk in our notation), and disassembly of
the chains was prevented by mutation of the C-terminal glycine of
each ubiquitin to valine.

The constructs were expressed from the POL30 promoter in a
rad18 strain, which is unable to ubiquitylate endogenous PCNA,
and the resulting strains were tested for sensitivity to UV radia-
tion and the alkylating agent methyl methanesulfonate (MMS).
Ub�4ðLÞ-PCNA� suppressed the damage sensitivity of rad18 cells
to some degree (Fig. 1B and Fig. S1A). In contrast, the linkerless
versions, Ub�4-PCNA� and PCNA�-Ub�4, did not afford significant
rescue beyond the effect of PCNA� alone (Fig. 1B and Fig. S1B).
Interestingly, all of the linker-bearing fusions, Ub�2ðLÞ-PCNA�,
Ub�3ðLÞ-PCNA� and Ub�4ðLÞ-PCNA�, conferred damage sensitiv-
ities identical to that of the “monoubiquitylated” version,
Ub�-PCNA� (Fig. 1C and Fig. S1A). Moreover, rescue of viability
by these constructs was completely dependent on the presence of
the TLS polymerases, as none of them had any effect on the
sensitivity of a rad18 ΔTLS strain, carrying deletions of the genes
encoding the budding yeast damage-tolerant polymerases
(Fig. S1A). We therefore conclude that the rescue observed with
Ub�nðLÞ-PCNA�

—as with the monoubiquitin fusion—was due to
TLS rather than error-free damage bypass. The failure of the
linkerless constructs to support TLS is intriguing, as it might indi-
cate a steric obstruction of the interaction site for the damage-
tolerant polymerases on the PCNA-proximal ubiquitin moiety
by the head-to-tail linkage.

In order to exclude the possibility that a nonphysiological
location of the ubiquitin chain prevented its function in damage
bypass, we generated a variant of Ub�-PCNA�, named UbK63�-
PCNA� (Fig. 1A). In vitro, this arrangement permits polyubiqui-
tin chain formation on K63 of the ubiquitin moiety (22). In a
rad18 strain, we observed a suppression of the damage sensitivity
that was largely independent of TLS and exceeded the effect of
Ub�-PCNA� considerably (Fig. 1C and Fig. S1C), indicating that
polyubiquitin-dependent damage bypass was functional, even
though the chains were attached to the N terminus of PCNA.
Given that none of the linear constructs was able to support
error-free damage bypass, these data suggest that linear and
K63-linked polyubiquitin chains are functionally distinct.

Linear Polyubiquitin Chains Target PCNA for Proteasomal Degrada-
tion. On Western blots we noticed a dramatic reduction in the
abundance of all fusion proteins bearing tetraubiquitin chains
when compared with the shorter versions or endogenous PCNA
(Fig. 2A and Fig. S2A). The effect was not due to reduced mRNA
levels of the corresponding constructs (Fig. S2B). Given the
notion that the mimimum length of a K48-polyubiquitin chain
for efficient recognition by the 26S proteasome is four ubiquitin
moieties (23), we hypothesized that the linear tetrameric chains
might act as proteasomal degradation signals. In support of this
model, recombinant Ub�4-PCNA�, but not native PCNA�, was
degraded by purified 26S proteasome in vitro (Fig. S3A). In vivo
we observed increased steady-state levels of the tetraubiquitin
fusions in pre1-1 proteasome mutants (Fig. 2B). Moreover, chase
experiments with the translation inhibitor cycloheximide indi-
cated that they were degraded in WT cells, but stabilized in
the pre1-1 mutant (Fig. 2C). As purified Ub�4-PCNA� readily
formed trimers (Fig. S3B), misfolding was unlikely to be the cause
of instability. Hence, these findings suggest that linear polyubi-
quitin chains of sufficient length on PCNA act as proteasomal
degradation signals. Intriguingly, however, the rates of proteolysis
varied considerably between the three constructs and were hardly
comparable to those of some short-lived endogenous proteins or
model substrates (1, 5).

Fig. 1. Linear noncleavable polyubiquitin chains on PCNA cannot substitute
for the K63-linked modification in DNA damage bypass. (A) Schematic view
of the linear ubiquitin-PCNA fusion constructs used in this study. Mutations in
the open reading frames of ubiquitin and PCNA are indicated only once; the
mutant versions are represented as Ub� and PCNA�, respectively. Sequences
of linker peptides are shown below the constructs, and symbols correspond
to those used in B and C. (B) Linear tetraubiquitin fusions to PCNA rescue
the UV sensitivity of rad18 cells to different extents. UV sensitivities were de-
termined for rad18 cells bearing the indicated constructs. (C) The number of
ubiquitin units fused to PCNA� does not affect the extent of rescue. UV sur-
vival assays were carried out as in (B). diamond shape: WT; square shape:
rad18; triangle shape: rad18þvector; circle shape: rad18þPCNA�; square with
an “x”inside: rad18þPCNA�-Ub�

4; solid black triangle: rad18þUb�-PCNA�;
solid black circle: rad18þUb�

4ðLÞ-PCNA�; solid black diamond: rad18þUb�-
PCNA�; solid black square: rad18þUb�

2ðLÞ-PCNA�; upside down solid black
triangle: rad18þUb�

3ðLÞ-PCNA�; *: rad18þUbK63�-PCNA�.
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K63-Polyubiquitylation Does Not Target PCNA for Degradation.
Polyubiquitylation of PCNA by K63-linked chains, triggered by
conditions of DNA damage, does not result in an obvious
decrease in total cellular levels of PCNA (11). However, as
the fraction of PCNA ubiquitylated at any given time is exceed-
ingly small, this does not necessarily indicate a nondegradative
function of the modification. In fact, proteasome mutants were
previously reported to cause DNA damage sensitivity and exhibit
an epistatic relationship with mutants in the RAD6 pathway, thus
possibly linking proteasome activity to PCNA modification (24).
We were therefore interested to directly assess the fate of K63-
polyubiquitylated PCNA. As expected, we observed an accumu-
lation of total ubiquitin conjugates in cell extracts of cultures
treated with the proteasome inhibitor MG132 or mutated in
the genes encoding the proteasome maturation factor Ump1
or the catalytic subunit Pre1 (Fig. 3 A and B). In contrast, the
levels of polyubiquitylated PCNA, observable after treatment
with the DNA-damaging agent MMS, were not increased, but
rather reduced upon attenuation of proteasome activity, and
no high molecular weight species accumulated that could have
indicated a conversion to longer chains (Fig. 3 C and D). There-
fore, it appears that polyubiquitylated PCNA is not normally a
substrate of the proteasome. Instead, the reduction in the amount
of ubiquitylated PCNA in the presence of MG132 and in the pro-
teasome mutants is likely due to the depletion of free ubiquitin
that results from a lack of recycling (25).

A Linear Polyubiquitin Chain Acts as a General Degradation Signal. In
order to generalize our results and exclude potential PCNA-
specific effects on the turnover rate elicited by linear ubiquitin
chains, we constructed an analogous fusion of the head-to-tail
tetraubiquitin chain to the N terminus of β-galactosidase
(Ub�4-βGal, Fig. 4A), a model proteasome substrate whose degra-
dation pattern has been studied in detail (26, 5). Whereas the
protein by itself (βGal) is stable in yeast cells, fusion of a single,
noncleavable ubiquitin moiety to its N terminus (Ub-βGal,
Fig. 4A) renders it extremely short-lived (26). Hence, comparing
the stability of Ub�4-βGal with Ub-βGal and βGal should allow an
estimation of the efficiency of the linear tetraubiquitin chain as a

Fig. 2. Linear noncleavable tetraubiquitin chains target PCNA for degrada-
tion by the 26S proteasome. Protein levels of the ubiquitin-PCNA fusion
constructs and endogenous PCNA were compared by Western blot with
an anti-PCNA antibody. (A) Linear tetraubiquitin chains destabilize the
respective fusion proteins. (B) Steady-state protein levels of tetraubiquitin
fusions to PCNA are increased in a proteasome mutant. (C) Cycloheximide
chase experiments show the degradation of the tetraubiquitin fusion
proteins in PRE1 cells and their stabilization in pre1-1. Exponential cultures
were treated with 100 μg∕mL cycloheximide to inhibit de novo protein synth-
esis, and samples corresponding to equal culture volumes were processed for
Western blot analysis at the indicated time points.

Fig. 3. K63-polyubiquitylated PCNA is not a target of proteasomal degradation. (A) Inhibition of the proteasome by the chemical inhibitor MG132 causes
an accumulation of total ubiquitin conjugates. Exponential cultures of HISPOL30 pdr5 cells were treated with 50 μM MG132 for 2 h where indicated, and
ubiquitylated species were detected in total extracts byWestern blots with an anti-ubiquitin antibody. Detection of phosphoglycerate kinase served as loading
control. (B) Mutants with attenuated proteasome activity accumulate total ubiquitin conjugates. Extracts were prepared from the indicated strains and probed
as in (A). (C) Damage-induced ubiquitylation of PCNA is reduced upon chemical inhibition of the proteasome. HisPCNA was isolated by denaturing Ni-NTA pull-
down from extracts of HISPOL30 pdr5 cells treated with 50 μM MG132 for 2 h and 0.02% MMS for 90 min where indicated, and Western blots were developed
with anti-PCNA and anti-ubiquitin antibodies. (D) Damage-induced ubiquitylation of PCNA is reduced in mutants affecting proteasome activity. HisPCNA and its
ubiquitylated forms were isolated from the indicated strains and detected as in (C). The high-molecular weight signals in (C) and (D) marked with an asterisk are
due to nonspecific isolation of ubiquitin conjugates; they are neither PCNA-reactive nor damage-dependent.
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general degradation signal. Northern blots indicated that the ex-
pression levels of all three constructs were comparable (Fig. 4B).
However, cycloheximide chase experiments revealed remarkable
differences in protein stability (Fig. 4C). Whereas Ub-βGal
was degraded within minutes, the levels of Ub�4-βGal dropped
appreciably over the course of several hours, comparable to the
degradation kinetics of the analogous Ub�4-PCNA�. Unmodified
βGal remained stable over the course of the entire experiment,
and mutation of K29, K48, and K63 in the ubiquitin moiety of
Ub-βGal also afforded complete stabilization (Fig. S4). As
expected, both Ub-βGal and Ub�4-βGal were stabilized in a cim3
mutant, indicating that their degradation is mediated by the
proteasome (Fig. 4C). Thus, the linear noncleavable tetraubiquitin
chain serves as a general, but relatively inefficient proteasomal
degradation signal.

Substrates Marked by Linear Polyubiquitin Chains Are Targeted to the
Proteasome by Components of the UFD Pathway.Given the similarity
between the Ub�4-βGal construct and a polyubiquitylated UFD
substrate, we asked whether degradation of the former would

require factors of the UFD pathway. Ufd4, the E3 responsible
for the initial modification of Ub-βGal, was found to be dispen-
sable for Ub�4-βGal degradation (Fig. S5A), consistent with the
absence of higher modified forms of the fusion protein in WT
cells or proteasome mutants (Fig. 4C and Fig. S5). Interestingly,
the construct was stabilized in ufd2Δ cells (Fig. S5B). However, a
C terminally truncated allele lacking the catalytic U box restored
degradation (Fig. S5C), indicating that the requirement for
Ufd2 was not due to its E4 activity, but rather to its function
in stabilizing the association of the Cdc48-Ufd1-Npl4 complex
with the ubiquitin adaptors Rad23 and/or Dsk2 (8). Accumula-
tion of Ub�4-βGal in cdc48-2, npl4-1, and a rad23 dsk2 double
mutant indeed suggested that the linear chains are recognized
in a manner very similar to K48-linked polyubiquitin chains
(Fig. S5 D–F). In summary, it appears that the pathway by which
the Ub�4-βGal construct is targeted to the proteasome largely
overlaps with the UFD pathway, with the notable exception of
the initial polyubiquitin chain assembly by E3 and E4. Stabiliza-
tion of the analogous Ub�4-PCNA� in the npl4-1 mutant indicated
processing by the same pathway (Fig. S6).

Linear Polyubiquitin Chain Length Is Not a Limiting Factor for Degra-
dation. Our data raised the possibility that the relatively low rate
of degradation of our fusion proteins was due to an inefficient
recognition of the linear tetraubiquitin chain by the proteasome
or its targeting factors. Considering that a K48-linked chain of
four ubiquitin units was found to function as the minimal recog-
nition signal for efficient proteasomal degradation (23), we there-
fore asked whether an increase in chain length could compensate
for a poor recognition and thus accelerate the degradation of
the model substrate βGal. We duplicated the Ub�4 module at
the N terminus of the protein to generate Ub�8-βGal (Fig. 5A).
Degradation of this construct, however, was comparable to that
of Ub�4-βGal (Fig. 5B), indicating that chain length is not a limit-
ing factor for degradation in our system.

Discussion
Why do Linear Chains Not Function in Damage Bypass? A linear
arrangement of ubiquitin molecules adopts an extended confor-
mation identical to that of aK63-linked chain, andmany ubiquitin-
binding domains make no distinction between linear and
K63-linked chains (18). Nevertheless, our fusions of linear tetra-
ubiquitin to PCNA did not rescue a PCNA polyubiquitylation
defect in vivo, despite the notion that a K63-chain attached to
PCNA’s N terminus is functional. We can envision several reasons
for the failure of these constructs to promote damage tolerance.
First, it is formally possible that the instability of the fusionproteins
prevents efficient error-free damage bypass, although we consider
this unlikely because the Ub�4ðLÞ-PCNA� construct is active in
TLS, and the levels of physiologically K63-modified PCNA are

Fig. 4. A linear noncleavable tetraubiquitin chain acts as a general, but
inefficient degradation signal. (A) Schematic view of the βGal constructs used
in this study. The asterisk denotes the ubiquitin mutant (K29/48/63R, G76V).
Ub-βGal was originally described as UbV76-V-eΔK-βgal (41). (B) Northern blot
analysis indicates similar expression levels of all three βGal constructs upon
induction with galactose (GAL). (C) Ub�

4-βGal and Ub-βGal are degraded by
the 26S proteasome with distinct kinetics. After growth in galactose medium
for 2 h, a promoter shut-off (by shift to glucose) was combined with a
cycloheximide chase (100 μg∕mL) to inhibit de novo protein synthesis in
the indicated strains, and samples were processed as in Fig. 2C. The βGal con-
struct served as a stable control protein. Lanes labeled “-“ represent samples
from cultures grown in glucose medium. Note that degradation of Ub-βGal
produces a stable fragment of ca. 90 kDa (26).

Fig. 5. Ubiquitin chain length is not a limiting factor in the degradation of
linear ubiquitin fusions. (A) Schematic view of a Ub�

8-βGal construct. Note that
each of the Ub�

4 modules used to create the octaubiquitin chain is identical to
that used in Ub�

4-βGal. (B) Ub
�
8-βGal is degraded at a rate comparable to that

of Ub�
4-βGal. Promoter shut-off/cycloheximide chase experiments were

performed with the two constructs in a WT strain as described in Fig. 4C.
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naturally very low. Second, we cannot exclude that the noncleava-
ble nature of the chain interferes with correct function. This
may apply if the deubiquitylation step is physiologically relevant
for error-free damage bypass—even though removal of monoubi-
quitin from PCNA is not required for TLS (21). Finally, the linear
chains might not be recognized by a K63-selective downstream
effector protein that mediates the error-free bypass pathway.
On one hand, although the Ub�4 array was bound by the UBAN
domainofNEMO(Fig.S7),whichishighlyselectiveforlinearchains
(18, 20), the G76V mutation might interfere with the recognition
by a PCNA-specific ubiquitin receptor. On the other hand, there
are ubiquitin-binding domains that bind exclusively to K63-linked
chains, such as the C-terminal NZF domain of TAB2 (18, 27). At
present it is difficult to distinguish between these possibilities,
as replacement of our chains with a cleavable version would result
in its processing to monoubiquitylated or unmodified PCNA, and
characterization of a downstream effector will have to await its
identification.

Why Is K63-Polyubiquitylated PCNA Not Degraded? Genetic data
linking DNA damage bypass to proteasome activity have been
indirect and ambiguous. While Hofmann and Pickart (15) used
a lack of synergism between pre1-1 pre2-2 and rev3 mutants
with respect to UV sensitivity as an argument against proteolytic
function in error-free damage tolerance, others postulated a role
of the proteasome in limiting the mutagenic activity of TLS,
based on epistasis and mutation rate analysis (24, 28). We have
finally directly assessed the response of polyubiquitylated PCNA
to variations in proteasome activity and find no evidence for a
degradation of the modified clamp. Our findings instead reflect
the global behavior of K63-linked chains, which do not accumu-
late upon inhibition of the proteasome (29). Hence, the recent
finding that proteasome-dependent processing of the transcrip-
tion factor Mga2 occurs after K63-ubiquitylation by the E3
Rsp5 remains an isolated incident of K63-mediated proteolysis
(16). In that study, contributions of K48-linked chains or chain
editing by means of Rsp5-associated deubiquitylating activity
were not rigorously excluded. Yet, K63-linked chains bind the pro-
teasome with similar efficiency as K48-linked chains (15, 30), and
little selectivity was observed in their affinities for the ubiquitin
adaptors Rad23 and Dsk2 (31). The most straightforward expla-
nation for the inefficiency of K63-linked chains as a degradation
signal on PCNA may therefore be an insufficient chain length.
Whereas the minimal number of ubiquitin moieties in a K48-
linked chain required for efficient recognition by the proteasome
was shown to be four (23), PCNA modifications exceeding the
tetraubiquitylated state are undetectable in vivo, and even the lat-
ter is much less abundant than the mono- and diubiquitylated
forms (32). It remains to be determined how chain length is
limited in vivo, but the use of deubiquitylating enzymes such as
the mammalian Usp1 (33) may represent an effective strategy
for the evasion of degradation.

Linear Polyubiquitin Chains as Degradation Signals. In vitro, the 26S
proteasome is not particularly selective in the recognition of
ubiquitylated proteins (15, 34). It is therefore not surprising
that linear ubiquitin chains competitively inhibit degradation
of K48-polyubiquitylated substrates (23), and a linear noncleava-
ble tetraubiquitin chain fused to a model protein can elicit the
degradation of its fusion partner (35). However, little is known
about the suitability of linear chains as degradation signals in
vivo. Noncleavable tandem arrays of 2–8 ubiquitin units were
shown to confer half-lives of less than 10 min to their fusion
partners in reticulocyte lysates and cell culture (35, 36). When
overexpressed in yeast, they effectively inhibit the proteasomal
degradation of short-lived proteins (37). However, extensive
modification by further ubiquitylation was noted in these cases,
suggesting that the arrays mainly serve as efficient ubiquitin

acceptors. In our system, further modification of the ubiquitin
moieties, for example via K11, is unlikely, as this should also af-
fect the shorter chains to at least some degree. Yet, instability was
observed only for those constructs bearing at least four ubiquitin
moieties, and previous reports had demonstrated chain extension
via K29 and K48 for UFD substrates (5–7). Thus, a linear tetra-
ubiquitin chain appears to be sufficient to induce proteasomal
degradation in vivo.

LUBAC, an E3 that catalyzes linear polyubiquitylation, desta-
bilizes a fusion of ubiquitin to the green fluorescent protein
(GFP) in mammalian cell culture when overexpressed (17). At
the same time, however, linear chains attached by LUBAC to
K285 and/or K309 of NEMO apparently do not promote degra-
dation (19), suggesting that the positioning of the chain on the
target may affect its efficiency as a degradation signal. Similarly,
we found that turnover rates varied significantly between
Ub�4-PCNA� and PCNA�-Ub�4, and degradation of Ub�4-βGal
was quite inefficient compared to an analogous UFD substrate.
These observations initially suggested that inefficient recognition
of the short linear chains by the proteasome might be responsible
for the slow turnover. However, extension of the ubiquitin mod-
ule to eight units did not accelerate degradation, and although
linear chains are somewhat less effective at competing for protea-
some binding than K48-linked chains (23), association of linear
noncleavable tetraubiquitin with the proteasome had been ob-
served in vivo (37). Taken together, these data therefore imply
that inefficient processing rather than targeting is responsible
for the slow degradation. This scenario is supported by the notion
that the proteasome-associated isopeptidase Rpn11 positively
contributes to proteolysis in vivo, presumably by removing poly-
ubiquitin chains en bloc from substrates as they enter the channel
into the proteasome (38, 39). In our system, the noncleavable tan-
dem ubiquitin array needs to be unfolded and degraded along
with the substrate. Considering the tightly folded structure of
ubiquitin, this may present a barrier for proteolysis, in particular
as substrate unfolding is known to affect degradation rates in vitro
(23, 40). Alternatively, prolonged association of the tetraubiqui-
tin module with ubiquitin receptors at the proteasome lid might
delay entry of the substrate moiety into the catalytic cavity. In
either case, variation of the ubiquitin attachment site might
change the way in which the substrate is presented to the proteo-
lytic core, thus ultimately affecting degradation rates.

Whether linearpolyubiquitinchainsnaturallyactasdegradation
signals remains an open question. In higher eukaryotes, dedicated
ubiquitin binding domains specific for linear chains might shield
these from recognition by proteasomal targeting factors, but as
linear chains have not been detected in budding yeast (29), this
organismmight lack relevant receptors, thus resulting in proteaso-
mal targeting through a lack of suitable downstream effectors.

Outlook. The distinct fates of PCNA modified by linear versus
K63-linked polyubiquitin chains highlight the complexity of
ubiquitin signaling that has emerged from numerous recent
studies. Taken together, they indicate that not only the linkage
of a polyubiquitin chain, but also its length, its position on the
substrate and the capability to be edited and processed may
determine the outcome of the modification. It is likely that the
relevant downstream effector proteins responsible for the recog-
nition of a particular chain in the context of its substrate will ex-
hibit distinct interaction properties and will have to be considered
individually in order to explain the choice of biological pathway
dictated by polyubiquitylation.

Materials and Methods
Yeast Strains and Plasmids. Standard procedures were followed for the
growth and manipulation of Saccharomyces cerevisiae. A list of strains is
given in the Supplemental Information (Table S1). Experiments involving
the proteasome inhibitor MG132 were carried out in a pdr5 deletion.
Temperature-sensitive mutants were pregrown at 25 °C, but experiments
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addressing protein stability were performed at 30 °C. Plasmids encoding
linear fusions of ubiquitin to the pol30(K127/164R) open reading frame were
derived from constructs described previously (21), and fusions to βGal from a
galactose-inducible construct originally calledUbV76-V-eΔK-βgal, obtained from
E. Johnson (41). Details about their construction are given in the Supplemental
Information. Fusion proteins were detected by Western blot with a polyclonal
anti-PCNA (42) or a monoclonal anti-βGal antibody (Promega), respectively.

Detection of Ubiquitin Conjugates. Total ubiquitin conjugates in denatured
cell extracts, prepared as described (43), were detected by Western blots
using a monoclonal ubiquitin-specific antibody, P4D1 (Cell Signaling Technol-
ogies). Damage-induced ubiquitylation of PCNA was detected by denaturing
Ni-NTA affinity chromatography and Western blot analysis as described pre-
viously, using PCNA- and ubiquitin-specific antibodies (44). Cells were treated
with 0.02% MMS for 90 min to induce the modification. For inhibition of the
proteasome, MG132 (50 μM) was added 2 h before inducing DNA damage.

Determination of UV Sensitivities. UV sensitivities were determined by plating
defined numbers of cells from exponential cultures onto YPD medium,
irradiation at 254 nm in a UV crosslinker (Stratalinker 2400, Stratagene),
incubation in the dark for 3 days, and colony counting. Graphs represent
averages and standard deviations of triplicate experiments.

Northern Blot Analysis. Total RNA was extracted from yeast cultures using an
RNeasy mini kit (Qiagen). RNA samples were separated on agarose gels in a
buffer containing 30 mM Bis-Tris, 10 mM Pipes, 1 mM EDTA, pH ∼ 6.7, after
denaturation by glyoxal. Blots were hybridized with a 464 bp βGal-specific

probe generated from a polymerase chain reaction (PCR) product by labeling
with Ready-To-Go DNA labeling beads (GE Healthcare). Hybridization was
performed in ExpressHyb solution (Clontech) at 68 °C for 1 h.

Determination of Protein Stability by Cycloheximide Chase. Yeast strains
expressing the relevant PCNA� constructs were grown in YPD medium at
30 °C to exponential phase and treated with 100 μg∕mL cycloheximide to
inhibit global protein synthesis. Aliquots were taken at the indicated time
points, cell lysates were prepared from equal culture volumes as described
(43) and the fusion protein was detected by Western blot with a polyclonal
anti-PCNA antibody, alongwith native PCNA as a loading control. For analysis
of the βGal constructs, yeast cultures were grown overnight in uracil-free
synthetic complete medium containing 2% lactate as a carbon source, and
expression of the constructs was induced by addition of 2% galactose for
2 h. Cells were then shifted to glucose medium containing 100 μg∕mL cyclo-
heximide. Aliquots of equal volume were taken at the indicated time points,
and the βGal constructs were detected in total extracts byWestern blot with a
monoclonal anti-βGal antibody (Promega). Detection of phosphoglycerate
kinase with a monoclonal antibody (Molecular Probes) served as a loading
control.

ACKNOWLEDGMENTS. We thank P. Silver for the npl4-1 and cdc48-2 mutants,
E. Johnson for Ub-βGal, D. Komander for the UBAN construct, J. Uhler for
help with Northern blots and members of the lab for reagents, helpful
discussions and critical reading of the manuscript. This work was funded
by Cancer Research UK.

1. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: Biological
regulation via destruction. Bioessays 22:442–451.

2. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell
33:275–286.

3. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: New molecular signals ‘Protein
Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542.

4. Chau V, et al. (1989) A multiubiquitin chain is confined to specific lysine in a targeted
short-lived protein. Science 243:1576–1583.

5. Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes
ubiquitin as a degradation signal. J Biol Chem 270:17442–17456.

6. Koegl M, et al. (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin
chain assembly. Cell 96:635–644.

7. Saeki Y, Tayama Y, Toh-e A, Yokosawa H (2004) Definitive evidence for Ufd2-catalyzed
elongation of the ubiquitin chain through Lys48 linkage. Biochem Biophys Res
Commun 320:840–845.

8. Richly H, et al. (2005) A series of ubiquitin binding factors connects CDC48/p97 to
substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84.

9. Deng L, et al. (2000) Activation of the IκB kinase complex by TRAF6 requires a
dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.
Cell 103:351–361.

10. Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic
replication clamp PCNA. DNA Repair 8:461–469.

11. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent
DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature
419:135–141.

12. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis
by SUMO and ubiquitin conjugation. Nature 425:188–191.

13. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase η

with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in
response to DNA damage. Mol Cell 14:491–500.

14. Zhang H, Lawrence CW (2005) The error-free component of the RAD6/RAD18 DNA
damage tolerance pathway of budding yeast employs sister-strand recombination.
Proc Natl Acad Sci USA 102:15954–15959.

15. Hofmann RM, Pickart CM (2001) In vitro assembly and recognition of Lys-63 polyubi-
quitin chains. J Biol Chem 276:27936–27943.

16. Saeki Y, et al. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting
signal for the 26S proteasome. EMBO J 28:359–371.

17. Kirisako T, et al. (2006) A ubiquitin ligase complex assembles linear polyubiquitin
chains. EMBO J 25:4877–4887.

18. Komander D, et al. (2009) Molecular discrimination of structurally equivalent Lys
63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473.

19. Tokunaga F, et al. (2009) Involvement of linear polyubiquitylation of NEMO in NF-κB
activation. Nat Cell Biol 11:123–132.

20. Rahighi S, et al. (2009) Specific recognition of linear ubiquitin chains by NEMO is
important for NF-κB activation. Cell 136:1098–1109.

21. Parker JL, Bielen AB, Dikic I, Ulrich HD (2007) Contributions of ubiquitin- and
PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae.
Nucleic Acids Res 35:881–889.

22. Parker JL, Ulrich HD (2009) Mechanistic analysis of PCNA poly-ubiquitylation by the
ubiquitin protein ligases Rad18 and Rad5. EMBO J 28:3657–3666.

23. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the
polyubiquitin proteolytic signal. EMBO J 19:94–102.

24. Podlaska A, McIntyre J, Skoneczna A, Sledziewska-Gojska E (2003) The link between
20S proteasome activity and post-replication DNA repair in Saccharomyces cerevisiae.
Mol Microbiol 49:1321–1332.

25. Xu Q, Farah M, Webster JM, Wojcikiewicz RJ (2004) Bortezomib rapidly suppresses
ubiquitin thiolesterification to ubiquitin-conjugating enzymes and inhibits ubiquitina-
tion of histones and type I inositol 1,4,5-trisphosphate receptor. Mol Cancer Ther
3:1263–1269.

26. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of
its amino-terminal residue. Science 234:179–186.

27. Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D (2009) Two-sided ubiquitin
binding explains specificity of the TAB2 NZF domain.Nat StructMol Biol 16:1328–1330.

28. McIntyre J, Podlaska A, Skoneczna A, Halas A, Sledziewska-Gojska E (2006) Analysis
of the spontaneous mutator phenotype associated with 20S proteasome deficiency
in S. cerevisiae. Mutat Res 593:153–163.

29. Xu P, et al. (2009) Quantitative proteomics reveals the function of unconventional
ubiquitin chains in proteasomal degradation. Cell 137:133–145.

30. Haririnia A, D’Onofrio M, Fushman D (2007) Mapping the interactions between Lys48
and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a. J Mol Biol
368:753–766.

31. Raasi S, Varadan R, Fushman D, Pickart CM (2005) Diverse polyubiquitin interaction
properties of ubiquitin-associated domains. Nat Struct Mol Biol 12:708–714.

32. Windecker H, Ulrich HD (2008) Architecture and assembly of poly-SUMO chains on
PCNA in Saccharomyces cerevisiae. J Mol Biol 376:221–231.

33. Huang TT, et al. (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage.
Nat Cell Biol 8:339–347.

34. Kirkpatrick DS, et al. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1
reveals complex chain topology. Nat Cell Biol 8:700–710.

35. Prakash S, Inobe T, Hatch AJ, Matouschek A (2009) Substrate selection by the
proteasome during degradation of protein complexes. Nat Chem Biol 5:29–36.

36. Stack JH, Whitney M, Rodems SM, Pollok BA (2000) A ubiquitin-based tagging system
for controlled modulation of protein stability. Nat Biotechnol 18:1298–1302.

37. Saeki Y, et al. (2004) Intracellularly inducible, ubiquitin hydrolase-insensitive tandem
ubiquitins inhibit the 26S proteasome activity and cell division. Genes Genet Syst
79:77–86.

38. Verma R, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and
degradation by the 26S proteasome. Science 298:611–615.

39. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation
by the proteasome. Nature 419:403–407.

40. Johnston JA, Johnson ES, Waller PR, Varshavsky A (1995) Methotrexate inhibits
proteolysis of dihydrofolate reductase by the N-end rule pathway. J Biol Chem
270:8172–8178.

41. Johnson ES, Bartel B, SeufertW, Varshavsky A (1992) Ubiquitin as a degradation signal.
EMBO J 11:497–505.

42. Papouli E, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by
recruitment of the helicase Srs2p. Mol Cell 19:123–133.

43. Silver PA, Chiang A, Sadler I (1988) Mutations that alter both localization and produc-
tion of a yeast nuclear protein. Genes Dev 2:707–717.

44. Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD (2008) Activation of ubiquitin-
dependent DNA damage bypass is mediated by Replication Protein A. Mol Cell
29:625–636.

6 of 6 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0908764107 Zhao and Ulrich


	thesis for final submission
	PNAS-2010-Zhao-0908764107

