

Proceedings

Engineering Distributed Objects

(EDO ’99)

ICSE 99 Workshop,
Los Angeles,

May 17-18, 1999

Edited by
Wolfgang Emmerich

Volker Gruhn

Table of Contents

Introduction
 Wolfgang Emmerich and Volker Gruhn

1

Position Papers

A Layered CORBA based Distributed Architecture for the Extraction, Transformation, Load and Query
Processes in a Heavy Loaded Data Warehouse
 Perfecto Marino, Cesar A. Siguenza, Miguel A. Dominguez, Francisco Poza and
 Juan B. Nogueira

3

A Comparison of three CORBA Management Tools
 Bernfried Widmer and Wolfgang Lugmayr

12

Managing Shared Business-Objects
 Chris Salzmann

22

Encapsulation of Protocols and Services in medium components to build distributed applications
 Antoine Beugnard & Robert Ogor

27

Supporting Reliable Evolution of Distributed Objects
 Jonathan E. Cook and Jeffrey A. Dage

34

Progressive Implementation of Distributed Java Applications
 Paolo Borba, Saulo Araujo, Hednilson Bezerra, Marconi Lima and Sergio Soares

40

From Distributed Object Features to Architectural Styles
 Bastiaan Schönhage and Anton Eliens

48

Towards Dynamic Semantic-Directed Configuration Management
 Michael Goedicke and Torsten Meyer

56

Software Engineering of a Distributed Object Architecture for Federated Client/Server Systems
 H. Gomaa and G.A. Farrukh

62

Challenges for Distributed Event Services: Scalability vs. Expressiveness
 Antonio Carzaniga, David S. Rosenblum and Alex L. Wolf

72

On the Role of Style in Selecting Middleware and Underwear
 Elisabetta Di Nitto and David. S. Rosenblum

78

View Programming: Towards a Framework for Decentralized Development and Execution of OO
Programs
 Hafedh Mili, Ali Mili, Joumana Dargham, Omar Cherkaoui and Robert Godin

84

Protocol-Based Runtime Monitoring of Dynamic Distributed Systems
 Andreas Grünbacher and Mehdi Jazayeri

98

Invited Presentations

The Implementation and Evaluation of the Use of CORBA in an Engineering Design Application
 Susan D. Urban, Ling Fu, Jami J. Shah, Ed Harter, Tom Bluhm and Brett Hartmann

106

ClearNet: A Multi-Tiered Infrastructure for Browser-Based Applications
 Naser S. Barghouti and Bill Moss

141

A Software Architecture for A Real Time Data Distributed Objects System
 Neil Roodyn

142

Engineering Distributed Objects (EDO 99)
Introduction

Wolfgang Emmerich
Dept. of Computer Science
University College London

London WC1E 6BT
United Kingdom

w.emmerich@cs.ucl.ac.uk

Volker Gruhn
Informatik 10

Universität Dortmund
44221 Dortmund

Germany
gruhn@ls10.informatik.uni-dortmund.de

1 THEME AND AUDIENCE
This two-day workshop will provide a forum for discussing
principles, methods and techniques for the engineering of
distributed objects. The workshop audience are practition-
ers and researchers in software architecture and distributed
systems. We received 16 position papers out of which we
accepted 13 that are included in this pre-print.

The position papers address various topics related to dis-
tributed objects, including the selection of object middle-
ware, the influence of middleware on software architectures,
testing distributed objects and the relationship between ob-
ject middleware and internet scale event notification.

2 RELEVANCE
Standards for object-oriented middleware, such as OMG’s
CORBA, Java’s Remote Method Invocation and Microsoft’s
DCOM have developed and matured over the last decade.
They facilitate the implementation, execution and commu-
nication of distributed objects. Several products implement-
ing these standards are available now and these products are
being used in many development efforts in industry. A con-
siderable number of projects, however, fail because they do
not consider the differences between designing distributed
objects and building applications based on local objects.

Several research communities in Databases and Distributed
Systems have picked up on the topic. They are organiz-
ing meetings that are concerned with how to efficiently im-
plement middleware, integrate it with databases to achieve
object persistence, and how to administer the resulting dis-
tributed systems. There is, however, no established commu-
nity that is looking at distributed objects from a software en-
gineering perspective. We go a step further and argue that
neither the problem, nor principles, methods and techniques
for the systematic engineering of distributed objects are fully
understood.

3 WORKSHOP GOALS
This workshop will seek to achieve several goals. We want
to develop a better understanding of the differences between
designing local and distributed objects. We believe that these
differences complicate the engineering of distributed objects
and need to be well understood. We want to identify the po-
tential contributions of related research communities to solv-

ing the problems of engineering distributed objects and de-
fine a research agenda that will lead to principles, methods
and techniques for this purpose.

The design of distributed objects is very different from the
design of centralized applications. These differences arise
for many reasons. Firstly, operation execution requests be-
tween distributed objects are by several orders of magnitude
slower than local method calls. Secondly, a method invo-
cation between local objects is synchronous while different
forms of synchronisation are needed for distributed objects.
Thirdly, local objects are active throughout their lifetime,
while distributed objects might have to be deactivated when
not needed for a certain period of time; hence these objects
must be able to store their states persistently. Fourth, ob-
jects whose persistent state is updateable might have to be
integrated with transaction monitors in order to implement
distributed transactions. Finally, object interactions across
public networks might have to be secured against eavesdrop-
ping, tampering and other security attacks. All these differ-
ences complicate the design of distributed objects.

The second workshop goal is the identification of results de-
veloped in related software engineering research disciplines,
most notably software architecture, that can be applied to
the engineering of distributed objects. On the one hand, cur-
rent research in software architecture is rather general. Ar-
chitectural styles and architectural description languages are
defined so that they can accommodate many different imple-
mentations. This generality inhibits the application of these
techniques in practice and renders architectural styles and
architecture specifications less expressive. Moreover, it re-
stricts the number of analysis techniques that can be applied.
On the other hand, the distributed object paradigm is being
used in an increasing number of projects. We believe that
by targeting architectural styles and architectural description
languages towards implementations with distributed objects,
styles and descriptions become more expressive and more
powerful analyses will be enabled. It would in addition be a
powerful route for the transfer of research results into indus-
trial practice and would clearly enhance the state of practice
in engineering distributed objects.

The third goal is the definition of a research agenda that will
eventually lead to the development of industrially applica-
ble principles, methods and techniques for the engineering
of distributed objects. Items on this research agenda may
include

� Relation between requirements and distributed object
architectures.

� Suitable architectural styles for distributed objects.

� Relation between architecture description languages
and the interface definition languages supported by
object-oriented middleware.

� Software processes for distributed objects.

� Differences between distributed and local object design.

� Extensions of object-oriented design methods and nota-
tions for engineering distributed objects.

4 WORKSHOP ACTIVITIES
Industrial case studies have been selected and they will be
distributed to all workshop attendees before the workshop.
The case study include a DCOM based architecture for ex-
change of real-time data feeds at a London Bank, the use of
CORBA management of mechanical and electrical engineer-
ing data at Boeing, and a CORBA architecture for on-line
trading at Bear & Stearns. Papers describing these case stud-
ies will be made available for participants before the work-
shop. Participants will be encouraged to study the papers and
prepare short presentations that indicate how the principles,
methods and techniques they propose for the engineering of
distributed objects can be applied to one or several of these
case studies.

The presentations will be used to kick off extensive discus-
sions. They will be organized in different sessions. Though
the detailed session breakdown will depend on the accepted
papers, we currently foresee sessions on

� requirements engineering for distributed objects,

� architectural styles for distributed objects,

� mapping of architecture description languages to dis-
tributed objects,

� concurrency and distributed objects,

� testing of distributed objects,

� persistence and transaction management of distributed
objects.

5 EXPECTED RESULTS
We hope that workshop will develop a better understand-
ing of the problems that occur when engineering distributed
objects and in particular the differences between designing
local and distributed objects. We would like to identify
routes for the application of software architecture research
to distributed objects and lead to the definition of a research
agenda for the engineering of distributed objects.

We hope that the workshop will become a focal point for a
research community that is interested in distributed objects
from a software engineering point of view. We would ex-
pect that the workshop will be a starting point for continuous
interaction between workshop participants.

The workshop organizers will summarize the result of the
workshop and submit a workshop report to ACM Software
Engineering Notes. The Case study material and the papers
accepted for the workshop will be available from the Work-
shop web site http://www.cs.ucl.ac.uk/EDO99.

6 ORGANIZERS
Wolfgang Emmerich is a Lecturer in the Department of
Computer Science at University College London. His re-
search interests include requirements engineering and dis-
tributed object-oriented software architectures. Wolfgang is
Senior Consultant, Partner and Co-Founder of Z¨uhlke Engi-
neering GmbH. Wolfgang has consulted on several CORBA
projects and given numerous industrial trainings and tutorials
on OMG/CORBA and distributed object technology.

Volker Gruhn is an Associate Professor in the Department of
Computer Science at University of Dortmund. His research
interests are software processes for distributed systems, ar-
chitecture of electronic commerce applications and workflow
management. He has been chief technical officer of a Ger-
man software house called LION from 1992 to 1996. In this
position he was responsible for a software development de-
partment of 150 people.

7 SUMMARY
The workshop covers an important theme of strong interest
to industry. It builds on past ICSE workshops while having
strong innovative content. It is highly complementary to the
main technical programme of ICSE. What is badly needed
in software engineering are ways in which industrial prac-
tice and academic research can be reconciled. This proposed
workshop provides a focal point for such interaction on the
engineering of distributed objects.

EDO 99
ICSE 99 Workshop, Los Angeles

COVER PAGE

TITLE: A LAYERED CORBA BASED DISTRIBUTED ARCHITECTURE FOR THE EXTRACTION,
TRANSFORMATION, LOAD AND QUERY PROCESSES FOR A HEAVY LOADED
DATAWAREHOUSE.

Keywords: Datawarehouse (DW) Architecture, DW processes, Functional Interfaces, CORBA distributed
processing, CORBA Event Service.

Authors:

PERFECTO MARIÑO
Doctor on Telecommunications Engineering from the Polytechnic University of Madrid (Spain 1984). Professor of Electronic
Technology Department (University of Vigo, Spain). Visiting scientist in the Computer Science Department of Carnegie
Mellon University (Pittsburgh, USA 1988). Expert on Information Technology from the Commission of the European
Communities for the SPRINT (Luxembourg 1991) and COPERNICUS (Brussels 1994) programs. Director of Digital
Communications Division from the Applied Electronics Institute (University of Vigo, Spain). Member of IEEE. e-mail:
pmarino@uvigo.es

CESAR A. SIGÜENZA
Telecommunications Engineer from the Industrial and Telecommunications Engineering University (Vigo, Spain 1995).
PhD researcher of Digital Communications Division from the Applied Electronics Institute (University of Vigo, Spain). e-
mail: csiguenza@uvigo.es.

MIGUEL A. DOMINGUEZ
Telecommunications Engineer from the Industrial and Telecommunications Engineering University (Vigo, Spain 1993).
Researcher of Digital Communications Division from the Applied Electronics Institute (University of Vigo, Spain). e-mail:
mdgomez@uvigo.es

FRANCISCO POZA
Electronic Engineer from the Industrial and Telecommunications Engineering University (Vigo, Spain 1986). Full Professor
in the Electronic Technology Department (University of Vigo, Spain). Researcher of Digital Communications Division from
the Applied Electronics Institute (University of Vigo, Spain). e-mail: fpoza@uvigo.es

JUAN B. NOGUEIRA
Telecommunications Engineer from the Industrial and Telecommunications Engineering University (Vigo, Spain 1993).
Associate Professor in the Electronic Technology Department (University of Vigo, Spain). Researcher of Digital
Communications Division from the Applied Electronics Institute (University of Vigo, Spain). e-mail: nogueira@uvigo.es

Name and address for correspondence:

Perfecto Mariño
E.T.S. Ingenieros Industriales
Departamento de Tecnología Electrónica (Universidad de Vigo)
Apdo. Oficial
36200 Vigo SPAIN

Tel: +34-986-812162 Fax: +34-986-469547
 +34-986-812223 e-mail: pmarino@uvigo.es

Submission to EDO 99, ICSE 99 Workshop, Los Angeles

A Layered CORBA Based Distributed Architecture for the Extraction,
Transformation ,Load and Query Processes for a Heavy Loaded Datawarehouse.

KEYWORDS: Datawarehouse processes, Layers, Functional Interfaces, CORBA distributed processing.

I. ABSTRACT.

The authors are involved in the implementation of a real Datawarehouse (DW) of a half terabyte of data on
a Telco corporation. Firstly the driving forces in a DW are explained, and following design issues founded
in this implementation are stated like different scenarios.

The discussion of these scenarios allows to authors proposing an architecture in order to overcome the
founded big challenges. After introducing CORBA as a powerful tool for implementing this architecture,
conclusions about achieved results and future works are stated.

II. DATAWAREHOUSE DRIVING FORCES.

Nowadays there is a proliferation of DW tools in the market ready to install and solve any problem
encountered but sometimes they overlap giving the chance to solve one problem in many places. This
increases the noise in the sense that it is not always clear where to touch to change a process.

There should always be in mind that the main driving force in a DW is the Final User. His needs are
mapped into the DW as table structures, functional transformations and so on until we reach the data
source that we can not control in the sense that we can not introduce changes to fit user needs. With this in
mind, if a DW can not follow the changes imposed by the user needs: the DW will not be useful anymore

1. A snapshot of a DW

Analyzing the code that supports the studied DW, we have found some useful concepts for the
representation of DW related problems. The context of a DW can be seen in figure 1. There are five
different parts.

The Real Observed Systems (ROS)
They exist independent of the DW. From the DW point of view they are pure data sources, but not ready
to be read.

Data Sources
Generally the data consumed by a DW is being stored into an already existing data store who lives inside a
control system not designed to answer complex queries on large volumes of historical data. Sometimes
they are called ‘Operational Data Stores’ (ODS). From the DW point of view they are just accessible data
sources. They also live independent of the DW. Frequently the data store formats have a high impedance,
in terms of performance of the user queries, so they must be preprocessed before going up to the DW data
store.

The DW
Two interfaces can be found. The first one is towards user access tools. The DW must know the ways the
user is going to manage that data. This Information is transformed into structures and functional
transformations into the DW system, in such a way that if the user needs changes, the DW will need them
too. We can also include here the user makeup’s that make more readable the final answer like changing a
decimal code by a textual description.

The second interface is towards the data source, involved in three matters.

First, it must handle all the source related problems, like:
• Extraction with proprietary query-languages from the data source,
• Transport when data must be networked,
• Cleansing like the elimination of duplicated or out of range values (data validation process). A tool like

‘Syncsort’ [SYN96] simplifies this kind of work.

Second, it must make transformations like aggregation or summarization of data, and the more elaborated
cross-referenced mappings with data coming from different data sources, in order to decrease the user-
queries impedance and improve performance. On small volumes of data this process is implemented using
stores procedures in the database, but when performance becomes a bottleneck this transformations must
be done with file processor tools like ‘Prism’ [PRI97].

Read &
Transport

Write &

Delete

Read &
Transport

Present

Data

Read

Query

DW Access
Tool

Data
Source

Real
Observed
Systems

Temporal
Storage

Query
Processors

DW
Storage

Load &
Functional
Processsors

Extraction
Processors

User Interface
Processors

Temporal
Storage

Historical Data Read

Read &
Transport

Figure 1. Context of a DW.

And third, it must load the transformed data into the database tuned structures.

It should be clear that the processes involved on the user side are absolutely different from the ones living
at the data source side. The arriving of queries from the user is unpredictable, but the arrival of data from
the data source is usually periodic.

User Access Tools
They can be custom (not a good idea if they are hard to modify at user-changes speed) or market tools in
the segment of DSS, like ‘BusinessObjects’[BO96]. They usually have their own temporal storage (a
buffering strategy that decreases user-latency time and avoids congestion at the database server side).
These tools provide a wonderful interface to the DW in such a way that if something changes, the tracking
and adaptation takes minutes.

The Final User
Is the most important part of the puzzle and the driver of the system. From the DW point of view an user
is defined by the data he wants to get, the date time window he is going to look at and the latency time
between the query and the response (a matter of performance). There is another variable that a DW must
manage: the number of simultaneous users loading the system. There are different strategies to avoid
bottlenecks, not seen here. From the user point of view, if latency time increases or the data is
inconsistent, the DW is not worthless anymore, so there is a thin line between defeat or success.

2. Some Different Scenarios

Once you decide one strategy to build a DW, you build it and if it works fine, changes in the specifications
from the user to the data source will start to appear. Let’s see a few forces that demand instant changes to
the DW. Sooner or later one of those circumstances will appear.

CASE1: The user needs a new data view

This seems to be innocent but imagine the complications when the data that you already have in the DW
does not match user needs. For example, suppose that the new backup window (the range of historical
data) is greater than the one you keep at the moment. Do you change the original Backup window and
affect previous systems (10 views for example) or you make a new table (the eleventh view) that must be
filled by the same processes that fill other structures? there are many factors that trade off between those
solutions. Different solutions drive to different parts to be changed in the system. The best one will be the
one who survives to the changes. If the changes can be made on different places with no functional
difference take for sure that performance may have something to say, and that someday it will be critical.

Without an architecture it’s not easy to manage changes due to cross references between pieces of code if
behavior is spread inside them. A better code tracking is needed to allow impact analysis.

CASE2: More users for the same query

One day arrives a new user and the system collapses. You decide to denormalize the relationships between
tables, but you can’t do that because there are one hundred joins pointing to your tables. And what is
worse: you don’t know which ones because this kind of metadata is implicit in your SQL statements. It i
not easy to answer the request :‘Let me know how many processes read this table’.

This kind of relationships are more important as the system grows. Improved manage of metadata is
needed.

CASE3: Format changes on the data source

File formats of version upgraded systems are always compatible in such a way that some code must be
redesigned to fit inconsistencies. The changes could be minor but enough to blow up the hypothesis stated
about a file structure. The consequence is that a new functional preprocessor must be designed in a very
short time. There are worst cases, for example when data fields fit the same type but their locations in the
old and new files are swapped. As the error is semantic, not syntactic, it propagates through the system
increasing the noise without notice.

The use of uniform interfaces between processors will allow to test if data still meets trusted hypothesis.
The identification of modifications will be easier and the propagation of lateral effects are removed from
the system.

CASE4: The data source load window

Usually the data of a DW is refreshed periodically during the ‘Load window’ period. Suppose that one day
some data source begins to generate more data than expected, this will mean more time for processing,
time that can fall out of the Load window. Data will not be loaded. Some strategies solve this problem
improving the performance of that process, but this has a limit. A variant approach is to move the
functional to a different machine, generating an exception to the maintenance team. This is not easy to
track over time.

The CORBA bus can be used to solve this problem eliminating transport problems between hosts reducing
maintenance effort.

CASE5: Broken sequence re-launching of data source processors

This is very typical. Suppose that you need to summarize data provided by nine independent data sources
and one fails or gets late. Data will not be loaded. If your system is better designed, it will let you launch
the execution of parts of the whole chain, but this means new information to be recorded because you must
be sure to be in the same state at each step of the processing algorithm as when the system executes
normally (if not, you can process garbage). This implicit sequences must be made explicit and recorded
somewhere to be read by a sequencer who reads this information to decide to wait, skip or resume.

There are many behaviors that can be better modeled with an component model. It is necessary to register
information state. A finite state machine like a sequencer will improve performance and will allow the
system to load slices of data on demmand.

The CORBA Event Service can be used to improve performance as allows the sequencer to synchronize
the arriving of data with the execution of their functional processors. The distribution of congestion on the
load window can be controlled.

III. PROPOSED ARCHITECTURE. Part I: The Interfaces

The origin of this architecture comes from an reengineering process [HAM+94][RUM95]of all the
processes involved in a real DW [INM93] of a half terabyte of data on a Telco corporation. We first heard
the problems the system was offering. Then we analyzed the processes in search of patterns
[GAM+95][FOW97][SHA96][TAY95]. It was found that functionality was spread all over the code on
different systems, and this complicated the systems with no benefit.

Cleansing

Make-up

Load

Transform

Business DS
Inteface

Transformed
DS Interface

Clean
DS Interface

Data Source

Proposed Functional Architecture

DW Data Store

USER DSS
TOOL

DW

User Side

Load Side

Figure 2. Proposed functional architecture.

Patterns were found where data flowed through quite similar operations but never in the same order, and
there was no reason for that. The idea we propose is to identify and group the kind of operations that can
be done on each of the layers created by the interfaces. reducing the kind of problems that can be found
into each layer.

The great advantage of using interfaces is that it creates a point of reference for the input /output formats
of data between layers. This makes code more easy to reuse as you can take for sure that once a piece of
data reaches an interface, it fulfills some hypothesis that can be used to eliminate operations on upper
layers. This avoids damage , and improves consistency of data, besides defining a place where to detect
what kind of problem without having to navigate into a sea of code. That’s the main idea. Besides,
developers reduce the size of the code and as the interfaces are well defined it’s more easy to define
debugging or test tools for the interfaces instead a test for each kind of data that arrives to the system.

Developers also have the chance to design and document [MUL97][POW98][FOW97b] with a few
statements with improved semantics, because the kind of operations that can be done on each layer are
reduced and more related.

This architecture needs a sequencer, not shown in the figure. This joins explicitly all the information about
when to call all the processors and manages all the trigger conditions. Another benefit is that splitting the
code encapsulating functional parts it’s far easy to make with out cross-references to execution matters. A
sequencer helps to monitor and control the load of a DW from the data sources, a huge effort for the DW
team when something goes wrong.

We have studied almost 2000 of pieces of code and searched for patterns inside them. The first behaviors
permitted us build some components that substituted efficiently lots of almost similar but different code.
We identified the general cases and build some components that gathered that critical information that was
not so easy to record on an unique place. In this architecture we propose names to some entities. Those
names improved the communication between team members.

This implicit metadata formed by the relations between files, tables and functional transformations, and by
the sequencing logic it’s a first order matter to deal with in a DW. The distinction between functional
transformation and sequencing logic simplified the model .

The design processes involved in the solution of a new user request can be linked following the next
proposed methodology (in the test phase):

1. Record user needs in terms of data selected, scanning fields and latency time.
2. With the data identified, try to find them in the accessible data sources.
3. If they are found, design the DW data store taking into account performance needs
4. Design the extraction and transport processes
5. Design the functional transformations
6. Design the makeup transformations (this reduces the amount of processing on user-tool side). this can

be done after or before the user queries the DW.

As soon as data is ready (on any step) a feedback to the user must be made in order to track changing user
needs. We have found, as the concurrent engineering practices states, that some information found on
earlier stages of the design affects later stages and the order proposed in the methodology allows fast
detection of problems.

IV. PROPOSED ARCHITECTURE. Part II: The CORBA solution

The CORBA bus can be used to make code transparent to transport concerns between heterogeneous data
sources. This simplifies code and reduces maintenance. As a result and with the use of functional
interfaces, performance can be improved by moving processor to different hosts.

The target DW has one central node as a collector. This node receives data from more than 50 data
sources, each with different protocols, etc. Sometimes the recollection of data must be initiated by the
system and other times data comes asynchronously from the remote system. Sometimes some code must
be installed in the source that communicates with matched code at the central site. This kind of
heterogeneous situations result in easy lost of control. It should be better to define one interface at the
central site and then create agents at the source side with the proper logic.

The distribution of behaviour in the data sources gives us a chance to simplify the code at the congested
side in a N to 1 relation . This could be done developing CORBA objects serving any client code, running
on the remote data source , collecting data for the DW. Even more, some functional preprocessing can be
moved to the source if needed without breaking the architecture. The feedback that something goes wrong
is detected very fast and problems can be arranged involving less people and less machines.

The CORBA Event Service can be used to improve performance on execution of the functional
transformations. As soon as data arrives to the system. [SIE96][ORF+96] data can be processed if the
adequate functional processor is activated. There also could be a smart scheduler deciding whether to
launch a process or not depending on loading needs to avoid deadlocks, for example.

We have made an emulation of this behavior with some code launched periodically who detected the
arrival of files, cleaned it up and triggered the functional processor. Visibroker from Visigenic and
OrbixWeb from IONA are being tested. Our preliminary results show that CORBA can be one solution to
those problems.

V. RESULTS

Up to date we have identified a DW as a general component with two main behaviors on the load side: The
load of periodic data and the elimination of obsolete time-slices of data on each of the tables of a DW. The
execution of those processes was spread all over the system with a specialized process for each table. We
detected some patterns on those behaviors and eliminate 40% of the existing code needed to handle one
table in the DW by constructing a general handler of such a process. A major benefit was to find how
structural information such as the size of the Backup window for each table, relayed gathered into a table
in a natural place improving the reaction time to changes in this matter. With this little change we have
reduced the time to develop code and increasing the tracking over the systems. this is very useful on
impact analysis when analyzing possible design decisions.

The next step in this way is to identify all those structural information and the source/consumer processes
that use it, and follow this line.

We have been emulating an event service with some data structures and some “daemons” to detect flaws
on conceptual design. The results are better than before, allowing processes to finish inside the Load
Windows, pointing out that the CORBA Event Service can be a great chance to use standard
functionality. The benefits met are: improved tracking, reduced coding with reduced maintenance, and
improved reaction design time when the system manages structural information on an explicit way.

VI. CONCLUSIONS

The problems surrounding a DW are always related with changes on specifications. We proposed an
architecture with layers and interfaces that pretend to isolate those problems as soon as they appear and as
near to the data source as possible, to avoid error propagation through the system. We introduced DW
concepts useful to identify needs on market tools and to improve communication between team members.

This architecture is beeing tested on a real DW of up to a half terabyte of data and almost 50 data sources.
The data bases are implemented in ‘Sybase’ and ‘Sybase IQ’ and the hardware is a Sun Sparc 10.000.

The main benefits are:
• Improved design flexibility as interfaces allow functional parts to be moved between hosts on demand.
• Reduced design time because it is easier to find patterns to match with because each one has its own

semantic and it is easy to identify the kind of operations that are being made to data. Reuse is possible.
• Improved tracking
• Execution on demand for processing broken pipes.
• Reduced code size and less maintenance by using components.

Future work deals with the implementation of CORBA as stated, pretending to simplify even more the
code supporting the whole architecture.

VII. ACKNOWLEDGEMENTS

This work was made from three R&D projects sponsored by the following entities: R&D NATIONAL
SECRETARY AND CICYT, Ref. TIC97-0414, CENTRAL GOVERNMENT (MADRID, SPAIN);
UNIVERSITIES GENERAL OFFICE, Ref. 64502I802, AUTONOMOUS GOVERNMENT
(GALICIA, SPAIN); and RESEARCH VICE-CHANCELLORSHIP, Ref. 64102I710, UNIVERSITY
OF VIGO (SPAIN).

VIII. REFERENCES

[BO96] Business Objects: Business Objects for windows user’s guide, Part number 310-10-400-01, 1996.
[FOW97b] Fowler, M.:UML distilled. Addison Wesley, 1997.
[FOW97] Fowler, M.:Analysis Patterns: Reusable object models. Addison Wesley, 1997

[GAM+95] Gamma, E., Helm, R., Johnson, R., & Vlissides, J.:Design Patterns. Elements of reusable Object Oriented
Software. Addison Wesley, 1995.

[HAM+94] Hammer, M., & Champy, J.:Reingenieria de la empresa, 1994.
[INM93] Inmon, W.:Building the Datawarehouse. John Wiley, 1993.
[MUL97] Muller, P.:Modelado de Objetos con UML. Eyrolles, 1997.

[ORF+96] Orfali, R., Harkey, D., & Edwards, J.:The essential Distributed Object Survival guide. John Wiley, 1996
[PRI97] Prism solutions Inc: Prism Warehouse Executive v1.5 user’s guide, Doc Number PWE15UG, 1996,1997.

[POW98] Powell, B.: Real time UML. Adisson Wesley, 1998.
[RUM95] Rummler, G., & Brache, A.: Improving Performance. How to manage the white space on the

organization chart. Jossey-Bass, 1995.
[SHA96] Shaw, M., & Garlan, D.:Software Architecture. Prentice Hall, 1996.
[SIE96] Siegel, J.: CORBA fundamentals and programming. John Wiley & Sons, 1996.

[SYN96] Syncsort incorporated: Syncsort Reference guide, 1996.
[TAY95] Taylor, D.: Business Engineering with Object Technology. John Wiley & sons, 1995.

A Comparison of three CORBA Management Tools

Bernfried Widmer and Wolfgang Lugmayr

Technical University of Vienna, Distributed Systems Group
Argentinierstraße 8/184-1, A-1040 Vienna, Austria, Europe

{bwidmer, lugmayr}@infosys.tuwien.ac.at

Abstract
Distributed architectures show complex
dependency relationships between application
components on the one hand and between
application components and components of
the underlying system on the other hand.
Management of such systems requires means
to monitor and control the behaviour and
relationships of these application components.
The CORBA specification does not provide
such management support but proprietary
developments fill that gap. We evaluated three
tools that focus on management of distributed
applications based on the Orbix C++ CORBA
implementation: Orbix Manager, Corba
Assistant and Object/Observer. We
investigated the capabilities of these tools and
identified the benefits and shortcomings of
these according to criteria such as overhead,
ease of instrumentation, management
configuration capabilities and integration with
standard management frameworks.

11 IInnttrroodduuccttiioonn

The Common Object Request Broker
Architecture (CORBA) has been receiving an
growing industrial acceptance as the middleware
solution for distributed object systems during the
last years. These systems typically comprise
multiple distributed components that have to
cooperate in order to fulfil a certain function. The
number of involved components and their complex
interdependency relationship require specific
management support in order to detect faults or
performance bottlenecks, to guarantee system
availability, to predict the impact of changes in the
configuration and to support other administrative
tasks.

The CORBA specifications do not define any
built-in management support. Systems management
is currently treated at the facilities layer within the
Object Management Architecture (OMA) [19],
which is the framework of CORBA. The
specifications so far called Common Management
Facilities (XCMF) [15] focus on support for policy-
driven objects. To date, low level management
support, such as the performance instrumentation
[4] specified for the OSF Distributed Computing
Environment (DCE) is missing (see [21] for
discussion). It is therefore up to ORB vendors and

application developers to what extent they supply
their products with management support.

We evaluated and compared three management
tools for the management of Orbix1 based systems.
These tools require extending the source code of
CORBA processes with specific management
instrumentation in order to enable management.
These tools are:
• Orbix Manager2 (Version 1.0c) is a

management tool developed by IONA to
provide management support for their Orbix
ORB implementation. Its architecture strongly
adheres to common systems management
models as the management application queries
processes on demand for management
information. Moreover, the instrumented
processes may emit unsolicited events when
CORBA exceptions occur. The CORBA
processes may also be accessed through an
SNMP gateway.

• Corba Assistant3 (Version 1.2) is a third-party
tool that adheres to network management
principles. Instrumented processes are inquired
on demand or periodically. It allows to monitor
individual CORBA object instances in addition
to CORBA processes.

• Object/Observer4 (Version 1.1) is not a
management tool in the common sense. It
rather adheres to distributed software testing
tools. It enables to monitor CORBA requests
including parameter and return values. A setup
editor enables to select the methods and
parameter values to be monitored as well as the
monitor points (client or server and incoming
or outgoing). The monitored requests may be
recorded to files in the background and
inspected by a parser tool.

We used the following criteria for the
evaluation: capabilities, user interface and
documentation, overhead, instrumentation effort,
management configuration control capabilities,
resource management, integration with
management standards, openness, built-in security,
and measurement accuracy.

1 Orbix is a widely deployed CORBA implementation. It is a
trademark of IONA Technologies PLC (http://www.iona.com).
2 Orbix Manager is a trademark of IONA Technologies PLC.
3 Corba Assistant is a trademark of Fraunhofer-IITB
(http://tes.iitb.fhg.de).
4 Object/Observer is a trademark of Black&White Software
(http://www.blackwhite.com).

The paper is organized as follows: Section 2
describes the evaluation criteria. In Section 3 we
describe the testbed environment as well as
measurement tools and applications used for the
evaluation. Moreover, each tool is assessed
according to the presented criteria and an overview
comparison is given. A discussion on common
approaches of the different tools concludes the
section. In Section 4 we draw some conclusions.

22 EEvvaalluuaattiioonn CCrriitteerriiaa

This section describes the evaluation criteria for
the tool assessment.

2.1 Capabilities

Leinwand and Fang [8] describe how network
management tools are and their capabilities. They
describe a classification, which uses the functional
breakdown of management capabilities into Fault,
Configuration, Accounting, Performance, and
Security (FCAPS) of the OSI Systems Management
framework. Moreover, it distinguishes between
simple, more complex, and advanced tools. The
more complex tool extends the functionality of the
simple tool, and the advanced tool extends the
complex tool subsequently. The following outline is
used to classify the evaluated tools.

2.1.1 Fault Management

• A simple tool indicates the existence of a
problem.

• A more complex tool detects faults. Recall
that a fault is the cause of a failure or problem.

• An advanced tool detects and corrects faults.

2.1.2 Configuration Management

• A simple tool provides a central storage for
configuration information and a search
function on the stored data. The storage has to
be maintained by the administrator.

• A more complex tool automatically gathers
configuration information and stores it at a
central site. Additionally, the tool is able to
detect deviations between the stored and the
actual configuration. Based on this information
it allows changing a managed object’s
configuration.

• An advanced tool stores the configuration
information in a database, thus providing
extensive search functionality and queries.

2.1.3 Accounting Management

• A simple tool: allows monitoring for a metric
that exceeds a quota.

• A more complex tool: provides billing based
on given billing domains and automatically
collected accounting information.

• An advanced tool: uses metric data and quotas
to forecast the need for resources.

2.1.4 Performance Management

• A simple tool: provides real-time information
about utilization, preferably in graphical form.

• A more complex tool: allows setting
thresholds and reports if a threshold is
exceeded. Additionally, it provides histories of
performance information, which are useful for
diagnostics.

• An advanced tool: supports the administrator
in detecting performance bottlenecks. The tool
may use historical and topical information
suggesting improvements and potential future
bottlenecks.

2.1.5 Security Management

• A simple tool: graphically shows the security
configuration of a system.

• A more complex tool: monitors the system
and sensitive areas in particular. It sends
notification on access to sensitive data and on
potential intrusions. Logging is a central
service of this tool.

• An advanced tool: helps to predict the impact
of security measures on a system concerning
performance and related issues.

2.2 Overhead

The management systems should affect the
performance of the managed entity to a minimum
degree. In the network management area, a useful
rule of thumb is that “the absolute maximum
allowable bandwidth consumption by management
operations should be 5 percent.” [20]. Similarly the
overhead of OSF DCE performance
instrumentation is limited to 20 percent CPU time
overhead [4]. The latter seems appropriate to
CORBA management overhead.

2.3 Resource Management

There is usually a trade-off between
performance and resource accounting. The
instrumentation can be kept small and fast in
moving the burden of calculating measures and
storing data to persistent memory to a parallel
process. Brunne [1] calls this pattern Application-
based Agent in contrast to the Library-based Agent

where instrumentation and agent reside within the
same address space (see Figure 1).

CORBA IIOP

Data
Enhancement

User Application
Component

Manager

Library-based Agent

Instrumentation

Agent

User Application
Component

Application-based Agent

Instrumentation

CORBA IIOP

Data
Enhancement

Agent

CORBA IIOP

Manager

Figure 1. Library-based vs. Application-based Agent

2.4 Measurement Accuracy

Management information accuracy mainly
concerns performance management. The
management instrumentation should ideally not
affect the timing measures. The possibility of
information loss is another topic for the
classification of accuracy of collected management
information. Information loss can occur due to
several reasons including unreliable transmission,
process shutdown, and maliciously tuned storage
policies.

2.5 Degree of Integration

The “degree of integration into managed
resources” or into the application in particular [3] is
the amount of modifications of a resource required
for instrumentation. Three levels are identified:
• Low: unaware to the resource. No changes

have to be done to the resource. The resource
itself is unaware of the instrumentation. This is
the ideal case and may be done by modifying
the underlying system.

• Medium: linking/minor source code
modifications. This level ranges from simply
linking the program with additional libraries to
small source code modifications. The source
code changes at this level require no
knowledge or understanding of the program’s
source code and only basic knowledge of its
programming language. The changes comprise
few lines of code at a single component, source
file or class.

• High: major source code modifications. This
level requires programming language
knowledge and comprehension of the source
code of the program. An example is the OSF
DCE instrumentation that requires to insert
instructions (probes) at appropriate points in
the source code.

There is usually a relationship between
overhead and degree of integration. Low degree of
integration usually implies a higher computation
overhead, as the instrumentation has to cope with
unstructured data types such as message buffers or
byte streams. The instrumentation has to parse these
structures for the required information, which in
turn requires meta information about the data
structures.

2.6 Management Configuration
Capabilities

Management imposes additional load on the
system. It is therefore important to be able to
configure the amount of management related load
or to turn management instrumentation off
completely. Significant for the workload is the
point of configuration in the management
information data flow. Turning the management
information gathering process off at the
management application would in general not stop
it at the agent or the managed resources themselves.

Another issue is the granularity of the
configuration. We define the level of granularity by
the count of configuration setting permutations i.e.
the total count of different configuration settings.
The lowest granularity level is to turn management
on and off.

Moreover, the ease of configuration is
considered. We identified three levels:
• Level 0: configuration at runtime. An

example is a CORBA object implementation
providing proper methods to change the
management configuration. A client can then
bind to the object implementation and change
the configuration through the object’s interface
at runtime.

• Level 1: stop/restart configuration. The
software must be stopped and restarted in order
to change its management configuration. An
example for this level specifies the
configuration through command line
arguments.

• Level 2: recompilation. In this case, the
management configuration requires changes in
the source code of the managed object.

2.7 Integration into Standard
Management Frameworks

The benefits from integrating CORBA managed
systems into management standards are the
preservation of investments in these standards. The
user can use the standard management application
to access the CORBA managed system. Moreover,
CORBA is just part of a system and depends on
other system components. The objective is to
provide a common management view of a system
and not to force the user to access each domain
using a different application or even access policy.

The integration into or inter-working with
standard management frameworks is covered in
detail in [21].

2.8 Openness

Users should be able to integrate a management
solution into their architecture and to extend the
functionality according to their requirements. In
addition, since distributed systems show very
dynamic behaviour openness is a key requirement
in order to be able to accommodate environmental
changes.

In general, openness is achieved by specifying
and documenting the key software interfaces of a
system and publishing them [2].

2.9 Built-In Security

Whereas security management capabilities of a
management application provide security
monitoring and controlling for the managed system,
built-in security deals with security management of
the management application itself and the access to
management information in particular. Two major
security threats are identified:
• Access to Sensitive Data. An attacker could

gain access to sensitive data by reading
management information. Management
information can be directly or indirectly
sensitive. Indirectly sensitive information
covers information, which isn’t sensitive, but in
conjunction with other non-sensitive
information allows drawing conclusions about
sensitive information. Such security threads are
usually encountered in database security area
commonly referred to as inference control [9].
More severe, management information may
contain sensitive data in the clear.

• Access to Management Instrumentation.
Unrestricted access to management
instrumentation is a potential threat even if no
sensitive information is revealed. An attacker
could use the management system to load work
on a system. This may considerably affect
performance and could result in the shutdown
of critical services.

Therefore, the management tool should provide
encryption and authentication support. In fact,
today’s standard protocols such as the Simple
Network Management Protocol (SNMP) provide
both [18, 20].

2.10 User Interface and Documentation

User interface and documentation are the
significant factors regarding the cost of learning
process for users. After all, management systems
aim to support administrators in their task by
providing common means to monitor and access
application behaviour. Undocumented features are
simply unknown to the user and are subsequently
not used.

33 TTooooll EEvvaalluuaattiioonn

This section describes the environment and
assessment of each tool according to the criteria
described in Section 2. A more detailed description
of this evaluation can be found in [21].

3.1 Testbed Environment

3.1.1 Hardware and Software Platforms

Orbix Manager and Corba Assistant were
evaluated on a Sun SPARCstation 5 equipped with
64 MB RAM running Solaris5 2.5. Orbix Manager
required Orbix multi-threaded (MT) version 2.3
C++ mapping, whereas Corba Assistant ran on
Orbix MT version 2.2. The GUIs were located on a
remote machine.

Object/Observer was tested on a PC architecture
equipped with two Intel Pentium6 90 Mhz
processors and 128 MB RAM. Windows NT7

Server 4.0 was installed, running Orbix MT version
2.3 C++ mapping.

All performance related measurements were
performed locally.

3.1.2 Overhead Measurement Policies

The different agent patterns as shown in Section
2.3 imply two different measures. First, the request
latency overhead is measured. This quantity
provides a user centred measure and is affected by
all parts of the management environment. Second,
the CPU time is measured. This quantity is more
reliable and focuses on the overhead of the
instrumentation within the process. The
multithreaded environments imply high variances
for both measurements due to different influences

5 Solaris is a trademark of Sun Microsystems
(http://www.sun.com).
6 Pentium is a trademark of Intel Corporation
(http://www.intel.com).
7 Windows NT is a trademark of Microsoft Corporation
(http://www.microsoft.com).

such as synchronization overheads and thread
waiting times [7].

Overhead is measured on a per-method basis.
The relative overhead imposed by the management
instrumentation depends on the operation’s total
execution time. However, it is difficult to define an
average computation time for an operation due to
the variety of application domains. Therefore, the
overhead measurement is restricted to
communication time by implementing methods that
return immediately without performing any
computations. The definition of communication
time in this context is the time consumed by the
transmission of a message as perceived at the
application layer. Thus, it includes the time
consumed by the data marshalling on the sender
side as well as the time consumed by data
demarshalling and target object unmultiplexing on
the receiver side in addition to the actual message
transmission delay [5].

The overhead to be expected is therefore in
general considerable lower depending on the server
side computation time of the operation.

3.1.3 Measurement Functions

Windows Solaris
Latency MicroTimer gethrtime()
CPU GetProcessTimes() times()

Table 1. Measurement Functions

The timing measurement on the Windows
platform was accomplished by an implementation
of the MicroTimer class [10], which uses high
resolution performance timer provided by the
Windows32 API. The CPU times were measured
using the GetProcessTimes() Windows32 API
function as described in [17].

On the Solaris platform timing measures were
performed with the gethrtime() system call
available on SunOS. The system call expresses time
in nanoseconds from an arbitrary time in the past. It
is very accurate since it does not drift.
Measurements of CPU time were made with the
times() system call that returns the CPU cycles
distinguished by user and kernel mode since
process startup. The actual CPU time was then
computed using the CLK_TCK constant that defines
the clock ticks per second and is located in the
limits.h C++ header file.

3.1.4 Evaluation Applications

The applications used for evaluation comprise
two typical two-tier architectures. The first
application performs the various method invocation
policies that are supported by CORBA [11]. These
are: static and dynamic one-way invocations
(notifications), static and dynamic two-way
invocations (interrogations) as well as deferred two-
way and deferred multiple two-way invocations
(multicast). The second application performs the

overhead measurement by invoking a series of 1000
method requests. Both simple and user defined
parameter types (unbounded string sequence) were
used. The measurements of the second application
were repeated several times, which delivered
satisfactory results as the mean values of these
repetitions deviated by 1 to 3 percent.

3.2 Evaluation Results

This section provides an overview of the
evaluated management tools according to the
criteria described in Section 2. Each tool is treated
in more detail in the following.

3.2.1 Orbix Manager

Orbix Manager requires an implementation of
the Common Object Service (COS) naming service
[12] as managed processes register at a naming
hierarchy. Orbix Names8 version 1.3c was used for
evaluation. This naming schema allows to group
hosts into managed domains. A managed domain is
controlled by a single management service that
provides the agent functionality (intermediary
entity between management application and
managed processes).

One of the main benefits of the Orbix Manager
is its notification facility where process startup and
termination, unexpected server shutdown and
CORBA exceptions are reported. Exception reports
can be assigned to severity levels on exception type
basis, which allows filtering these accordingly.

Each managed process can be queried for
configuration information. This information
comprises merely Orbix related configuration
options such as communication ports and Orbix
optimization as well as Orbix environment
variables. Orbix specific configuration settings such
as connection timeout can be changed at runtime
via the management instrumentation. Moreover, all
active connections to and from a process are shown.
Orbix Manager further allows to assign user
specific properties to each process, whose values
can be set at runtime. The properties are stored by
server name at the management service.
Subsequently, whenever a process starts up with
this server name the property values are available.

Orbix Manager enables to monitor the
performance of servers graphically at runtime. The
provided information includes number of requests
received and sent, number of exceptions, and
throughput in bytes per second.

The tool does not support accounting and
security management.

The request latency overhead of the Orbix
Manager instrumentation is about 60 percent per
process. This means that if both client and server
are instrumented the overhead is doubled. The CPU
time overhead shows a doubles invocation time.

8 Orbix Names is a trademark of IONA Technologies PLC.

The Orbix Manager shows accurate
management information, but eventually processes
may fail to remove themselves from the naming
hierarchy when they terminate. Consequently, these
processes stay registered but not accessible. The

user has to remove these entries manually in order
to establish a consistent view of managed
processes.

Object/Observer Corba Assistant Orbix Manager

 (Capabilities)

Fault

Configuration

Accounting

Performance

Security

more complex

0-simple

N/A

0-simple

N/A

0-simple

simple

simple

simple-more complex

N/A

simple-more complex

simple

N/A

simple

N/A

(Average Communication
Overhead of one process)

Latency

CPU

- 1

- 1
45 %

70 %

60 %

100 %

(Resource Management)

Components

Instrumentation

7 – 16 MB

(+ 600 kB)

6.5 MB

(+ 600 kB)

12 – 28 MB

(+ 1600 kB)

Degree of Integration medium medium (high) 2 medium

Built-In Security N/A N/A N/A

Integration into Standard
Frameworks

N/A N/A SNMP

Openness emphasized 3 supported N/A

(Configuration)

Location

Degree

Granularity

Managed Object

runtime

fine

Management Application

runtime

fine

Management Application

runtime

coarse

GUI & Documentation ++/++ ++/+ +/0 4

Accuracy

View of running processes

Performance quantities

++

- 5
++

++

+ 6

++
1Performance has been measured on another platform and can therefore not directly be compared to those of the other tools. The overhead
strongly depends on the used parameter types.
2 If object implementations are instrumented in addition to processes, the degree of integration is high and the Corba Assistent can be used
with the utmost efficiency.
3 The Object/Observer user guide gives a detailed description on how to build user specific components for Object/Observer.
4 The GUI is well designed but shows annoying bugs, which shorten the capabilities. On average, the Orbix Manager documentation is good
but the SNMP integration is described insufficiently.
5 Measures are influenced by the instrumentation and times are significantly higher than that of the uninstrumented processes.
6 Processes eventually do not deregister at the naming service and are subsequently shown in GUI although not active.

Table 2. Tool Evaluation Overview

The instrumentation extended a process’
memory footprint by about 1600 kilobytes. The
management product typically requires 12 MB of
memory, the multiple GUI tools increase the
memory accounting up to 28 MB.

The instrumentation requires to instantiate a
C++ class in the process’ main() function. This
corresponds to the medium degree of integration.

The amount of management information
gathered is not configurable. However, due to the
polling mechanism the information is only
requested if a process is selected in the GUI.

Orbix Manager provides a gateway to SNMP.
Consequently, the managed process can be
accessed by an SNMP management application.
Exception notifications are mapped to SNMP traps,
and managed processes are defined by a SNMP
table.

The tool does not provide any interface
definitions and is therefore not extensible by the
user. Built-in security is not supported either.

The three GUI tools that come with Orbix
Manager, the main GUI, the event viewer, and the
performance graph viewer are easy to handle, but
show several bugs. These are quite annoying as it is
not possible to query managed client processes. The
documentation is generally good, but the SNMP
integration manual is scanty.

3.2.2 Corba Assistant

The Corba Assistant extends the process
management view to CORBA objects. It shows
therefore two principal types of managed objects:
processes and CORBA objects. These managed
objects emit events on object creation and
destruction to a COS event service channel
implementation. A so-called living object service
uses this information source to provide a topical
view of active managed object references. The
management application called orbas uses these
references to query the managed objects for vital
management information.

The provided information includes process
information as well as developer and version
related information. The latter has to be supplied by
the developer. In the case of client processes
referenced CORBA object types are visualized,
which provides valuable information for
configuration management. On the server side, each
object instance can be queried for management
information if instrumented. Since CORBA servers
may contain multiple object type implementations
and multiple instances of each, this information
allows to configure an application on a finer
granularity than on the process level. The Orbix
specific timeout mechanism can be controlled at
runtime for each client.

 Moreover, each server gathers accounting
information on a per-user basis. For each user the
amount of requests, bytes read, and bytes written is
available.

The major benefit of the Corba Assistant is seen
in performance monitoring. Total and average
requests and bytes measures are provided, extended
by response time measurement on client side. The
average quantities may be viewed graphically using
a well-designed graph viewer tool. The
performance measures on per-object basis enable
the user to enhance load balancing on a more fine-
grained level.

Neither security management nor built-in
security are supported by this tool.

The Corba Assistant shows the lowest overhead
of the evaluated tools. The overhead for one
process is about 45 percent, whereas the measure is
doubled to 95 percent if both client and server are
monitored. The instrumentation of both server and
contained object implementations showed no
significantly higher overhead. The overhead could
slightly be lowered by increasing the monitoring
polling interval and reducing the amount of
requested information. The CPU time measurement
indicated an overhead of 70 percent, whereas the
more complex parameter types showed a slightly
higher overhead.

The accuracy of the performance measures are
very good and seem not to be affected by the
instrumentation. Disappointing in this context is
that the quantity named “average response time” is
obviously computed by (min+max)/2. Since the
statistical distribution function of request latencies
is not symmetric and shows high outliers, this
quantity is usually times higher than the statistical
mean value.

The instrumentation extends a process’ memory
footprint by about 600 kilobytes. The whole
management tool requires just 7 MB of memory.

 Process instrumentation requires to instantiate a
C++ class in the main() function. The object
instrumentation requires to extend the object
implementation and to add a C++ macro to each
object instance creation within the source code. The
C++ macros ease these tasks, but the user
nevertheless has to know where the objects are
instantiated and where the C++ object declarations
are situated. Thus, the degree of integration is
medium, increased to high if objects are
instrumented in addition to the processes.

The amount of management information as well
as the polling interval are configurable on a fine-
grained basis. However, this affects only the
request to the process and not the instrumentation at
the process itself.

The evaluated version of Corba Assistant
provides no integration support to any management
standard, but makes the interface definitions of its
component available to licensees. The user may
therefore integrate these components and services
to her specific needs.

Orbas provides a single GUI for the complete
functionality. A drawback is that almost every
information is shown in a new frame. The
documentation is sufficient but could be structured

better. Especially, the GUI description would be
more useful if structured based on task orientation.

Corba Assistant is planned to be extended with
a Common Management Information Protocol
(CMIP) gateway, which will enable access to the
CORBA managed domain from the OSI Systems
Management (OSI SM) standard. OSI SM is widely
adopted in the telecommunication sector.

3.2.3 Object/Observer

The objective of Object/Observer differs from
the other tools as it intends to provide a means to
test Orbix-based applications. It provides a tracing
service rather than general management support.
However, monitoring is a crucial functionality for
management.

The key element of the Object/Observer is the
OSMObserver process, which serves as a
registration point for instrumented processes.
Moreover, it provides an agent-like functionality, as
it functions as information dispatcher in both
directions. On the one hand, it gathers request
traces from the instrumented processes and
forwards them either to the viewer GUI or to a data
recorder that stores the information to files. This
tool is the only one of the evaluated ones that
provides some sort of logging support. On the other
hand, it forwards configuration requests from the
viewer GUI to the corresponding process. The
monitoring configuration of processes is
conveniently created by a GUI that connects to the
CORBA interface repository. The user can select
which parameter and return values of which
methods of which object types should be
monitored. Moreover, the user can specify the
monitoring points i.e. client sending, server
receiving, server sending or client receiving. The
configuration is saved to files and can be assigned
to instrumented processes at runtime.

The tool generates request reports including the
parameter and return values as well as reports for
CORBA exceptions. Its primary benefit according
to management capabilities is therefore fault
management. The user gets informed about requests
and exceptions and may for instance trace a failure
back to a wrong parameter value in a request.

The tool comprises a parser for the log files.
The parser computes request latency measures from
the timestamps of the request reports and thus
provides some fundamental performance measures.
Moreover, as each request report contains the issuer
and the target process, it allows detecting
dependency relationships.

Object/Observer does not support accounting
and security management.

The tool showed some overhead. The major
reason is that Object/Observer in contrast to the
other tools has to parse the message buffers
completely in order to retrieve and reconstruct the
parameter and return values of the requests.

 The instrumentation is fairly small and
increases a process’ memory footprint by about 600
kilobytes. The processes require typically 7 MB of
memory, all processes and GUI tools consume up
to 16 MB of memory.

Similarly to the other tools comprises the
instrumentation procedure comprises few lines of
code, consisting merely of the instantiation of two
C++ classes.

The monitoring can be configured at the
instrumented processes themselves at a fine-grained
level.

The tool does not provide support for any
management standard. The OMG IDL interfaces of
the components are available and their usage is well
documented. Object/Observer is therefore open to
user specific changes.

The three GUIs, the viewer tool, the file parser,
and the setup editor are well-designed and easy to
use. Especially the viewer tool proved its
robustness during overhead measurement, because
it managed to display about 4000 request reports at
a rate of tens per second. The documentation is
good and describes all features well. The usage of
Object/Observer is therefore well documented and
convenient.

3.3 Discussion

The evaluation of the three tools shows common
approaches and solutions.

The tools provide management on a process
basis. Each tool has equipped the instrumentation
with an OMG IDL interface to make it accessible to
the management application. Subsequently, each
tool has to provide some means to find these
CORBA objects. Crucial to this service is that only
processes that are effectively running are accessed.
This is of increased importance as Orbix
automatically launches a registered server if it is not
active at a client’s request [6]. The instrumentation
therefore registers and deregisters itself at a
common service: a certain server process in case of
Object/Observer, via an event channel at Corba
Assistant and via the naming service at Orbix
Manager. The latter two approaches are far more
flexible solutions, especially the use of the naming
service is often used in the context of CORBA-
based implementations of management standards
[13, 16].

Instrumentation procedure is common to all
tools and requires to instantiate a certain C++ class.
This instrumentation class is based on the
interceptor concept that is new to the 2.2 release of
the CORBA specification [11]. An interceptor is
called by the ORB and enables to interfere a
CORBA request unaware to the application itself.
Orbix does not yet conform to this specification
release but already provides a comparable
functionality called Filter and Transformer (see
[21] for further discussion).

The architecture of the Orbix Manager most
adheres to common systems management standards.
Managed objects are inquired on demand whereas
the managed objects emit notifications about certain
events when they occur. The filtering mechanism is
crucial in order to reduce overhead and to avoid
distracting information.

The logging mechanism of Object/Observer is a
fundamental service that is missing from the other
tools. Orbix Manager stores properties per server
name and collects notifications but this information
gets lost with the termination of the GUI.

However, missing features and shortcomings
described in this paper may have already been fixed
in subsequent releases of these tools.

44 CCoonncclluussiioonn

The evaluated CORBA management tools focus
on fault and configuration management. The
manageable units are commonly CORBA
processes. The instrumentation requires the source
code of an application but is done with few lines of
code. Each tool accesses the instrumentation
through a CORBA object interface whereas only
Object/Observer enables to control instrumentation.
The Object/Observer’s main benefit is fault
management and is the only tool that provides
detailed request reports including parameter values.
Moreover, it is the only tool that supports persistent
storage of management configuration and collected
information. Orbix Manager and Corba Assistant
strongly adhere to systems management principles
of which Orbix Manager is the more advanced tool.
It provides extensive process related information
and is equipped with a exception notification
facility. Moreover, it is the only tool that is
integrated into a management standard.
Nevertheless does Corba Assistant outstrip it in
performance management support. Furthermore,
Corba Assistant is the only tool that extends the
management view to CORBA objects and thus
provides more detailed measures.

The tools provide valuable support for
management of CORBA-based applications. Orbix
Manager further indicates the advent of systems
management support by ORB vendors, others are
expected to follow. Considerations on revising the
OMA [14] indicate a growing awareness at the
OMG itself. It is thus likely that system
management interfaces will be integrated into the
CORBA specification.

55 AAcckknnoowwlleeddggeemmeennttss

We thank Siemens PSE Austria for the support
of this study, IONA Technologies for providing us
the fundamental Orbix MT releases for Solaris and
the Orbix Manager, Black & White Software and
the Fraunhofer-IITB for the possibility of
evaluating their products.

66 RReeffeerreenncceess

[1] Hajo Brunne, “Principle Design Patterns for
Manageable Object Request Brokers”. In
Proceedings of the International Workshop
on CORBA-Management at the OMG TC
Meeting at Dublin, 22–26 September 1997,
Dublin, Ireland.

[2] G. Coulouris, J. Dollimore, T. Kindberg,
Distributed Systems: Concepts and Design,
Addison-Wesley, Wokingham, England,
1994.

[3] M. Debusmann, R. Kröger, C. Weyer,
“Towards an Automated Management of
Distributed Applications”. In Proceedings
of the IFIP International Working
Conference on Distributed Applications
and Interoperable Systems (DAIS’97), BTU
Cottbus, 30 September - 2 October 1997.

[4] R. Friedrich, S: Sunders, G. Zaidenweber,
D. Bachmann, S. Blumson, Standardized
Performance Instrumentation and Interface
Specification for Monitoring DCE-Based
Applications, OSF DCE-RFC 33.0, July
1995.

[5] A. Gokhale, D. C. Schmidt, “Evaluating
CORBA Latency and Scalability Over
High-Speed ATM Networks”. In
Proceedings of the 17th International
Conference on Distributed Systems (ICDCS
97), 27-30 May 1997, Baltimore, USA.

[6] Iona Technologies PLC, Orbix
Programmer’s Guide, October 1997.

[7] M. Ji, E. W. Felten, K. Li, “Performance
Measurements for Multithreaded
Programs”. In Proceedings of ACM
SIGMETRICS/IFIP WG7.3
SIGMETRICS/PERFORMANCE ’98, 22-26
June 1998, Madison, Wisconsin, pp. 161-
170.

[8] A. Leinwand, K. Fang, Network
Management: A Practical Perspective,
Addison-Wesley, Reading, Massachusetts,
1993.

[9] Dennis Longley, Michael Shain, Data &
Computer Security: Dictionary of
standards, concepts and terms, Macmillan
Publishers, UK, 1989.

[10] Microsoft Corporation, Windows Developer
Journal, February 1996.

[11] Object Management Group, The Common
Object Request Broker Architecture and
Specification, Revision 2.2, February 1998.
OMG Document Number: formal/98-02-01.

[12] Object Management Group, CORBA
services: Common Object Services
Specification, November 1997. OMG
Document Number: formal/97-12-02.

[13] Object Management Group, CORBA-Based
Telecommunication Network Management
System, OMG White Paper, May 1996.

OMG Document Number: telecom/96-07-
01.

[14] Object Management Group, Reference
Model Extension Green Paper, April 1998.
OMG Document Number: ormsc/98-04-01.

[15] The Open Group, Systems Management:
Common Management Facilities, CAE
Specification, October 1997. The Open
Group Document Number: C423.

[16] J. Pavón, J. Tomás, Y. Bardout, L.-H.
Hauw, “CORBA for Network and Service
Management in the TINA Framework”,
IEEE Communications Magazine, vol. 36,
no. 3, March 1998, pp. 72-79.

[17] Jeffrey Richter, Advanced Windows,
Microsoft Press, Redmond, 1995.

[18] Marshal T. Rose, The Simple Book: An
Introduction to Internet Management.
Prentice Hall, Englewood Cliffs, NJ, 1994.

[19] R. M. Soley, C. M. Stone, Object
Management Architecture Guide, Revision
3, Object Management Group, June 1995.
OMG Document Number: ab/97-05-05.

[20] William Stallings, SNMP, SNMPv2, and
CMIP: The Practical Guide to Network-
Management Standards. Addison-Wesley,
Reading, Massachusetts, 1993.

[21] Bernfried Widmer, Management of
CORBA-Based Distributed Object Systems,
Master’s Thesis, Technical University of
Vienna, November 1998.

Managing Shared Business-Objects {

Position Paper

Chris Salzmann�

Institute for Informatics
Munich University of Technology

80290 M�unchen, Germany

salzmann@in.tum.de

February 12, 1999

Abstract

Modern component architectures extend the range of reuse from the data-model level towards the level
of functionality. In modern distributed object architectures di�erent clients share a set of so called
business objects for representing encapsulated functionality or certain entities. One of the advantages
of this approach is, that several applications can share one instance of such a business object. The
advantages of sharing resources are well known: higher reliability, compact code and lower costs, just
to mention a few. However, in large distributed systems, that share objects instances the e�ort for
managing and con�guring those systems increase rapidly.
In this position paper we give the bene�ts of that approach and we sketch out what facilities a systems
has to provide to maintain and manage those shared objects.

Keywords: Software Engineering, Administration of Distributed Objects, Con�guration Management, Dis-

tributed Systems, Business Objects and Software Architecture

Workshop Goals: Contact to other people working in the area of managing distributed object systems as

well as sharing experiences.

1 Introduction

In large distributed system the level of reuse is raised from the classical data-model reuse (client/server)
to a partly reuse of application logic, so called business objects [EE98, HMS99]. The purpose seems
obvious: higher reuse, therefore lower costs and shorter product cycles. However, a further remarkable
aspect of independent components, that represent a reusable unit of application logic, is the opportunity
of sharing that component-instance between several software-programs.

Although one can argue, that sharing is just another kind of reusing, the advantages of sharing the same
instance of a component (i.e. the object) does not lie in the bene�ts mentioned above (i.e. lower costs,
shorter product cycle etc), but in more e�ciency of maintaining and con�guring the software system (so is
the functionality encapsulated in one instance and only this has to be modi�ed). Modern enterprise-wide
application systems that are coming up these days like IBM's SanFrancisco [IBM, HMPS98] framework or
the CORBA ORB ComponentBroker [IBM98] have a special emphasis on this maintenance and con�gu-
ration aspect by o�ering high exibility in recon�guring a business application in its framework. Together
with BMW we were evaluating the actual approaches of business object frameworks and realized, the the
issue of maintenance of shared, distributed object systems gets new weight [HMPS98].

It is the goal of this position paper to list some of the advantages of shared business objects and discuss
some of the di�culties that a system bring with for managing such shared object-architectures.

2 Three Tier Architecture

In this section we want to start with a brief introduction of the scenario and give some de�nitions of
terms we use in this position paper.

�This work was supported in part by the FORSOFT consortium of the Bayerische Forschungsstiftung and the BMW
AG.

Application A Application B
Application A Application B

Data Tier

Presentation
 Logic Tier

Business
 Logic Tier

C
LI

E
N

T
S

E
R

V
E

R

Redundancy

Figure 1: Client/server vs. 3T architecture: raising the level of reuse

The classical client/server architecture (C/S-architecture) separated the data-model from the presentation
and eventually the applicational logic. The result was an (eventually) fat client, that shared its separated
data model with other clients (see �gure 1). So what C/S-architecture brought in advantage to the older
monolithic architecture was reuse on the data-model layer.

Nowadays, new architectures are gaining ground in the commercial wold: so called \three-tier-architectures"
(3T) [BMW98] claim to raise the level of reuse and lower the costs of large scale distributed application
systems. The 3T-client exists only of presentation-logic and (eventually) some application logic that is
that speci�c on the needs of the client that it's not reusable. Other application logic is encapsulated in
special, sharable objects, that reside on the middle layer { so called business objects. The data-model
stays the same as in the C/S-architecture. So the 3T-architecture raises the level of reuse form the
data-model layer to the applicational logic layer. The shared application logic on the middle layer we call
business logic (see �gure 1).

2.1 Shared Business Objects

The main advantage of encapsulating application logic in independent objects is the �ner granularity and
functional grouping of reusable code. Beside the reuse of code in succeeding versions of a software system
the mutual sharing of software particles is another aspect of reuse. In �gure 1 the classical C/S-model
is mapped to a 3T-architecture. Where in the C/S case the two applications A and B had a certain
amount of redundancy, the conjoint using of application logic resources lowers the redundant code. In
our example the conjoint used objects are marked in a dark gray.

This conjoint using of given resources brings up a strong dependency between applications: was in the
C/S case application A only dependent from B via the data model, we now get additional dependency via
the three shared business objects. An upgrade or modi�cation caused by one of the applications would
force all the dependent ones to shut down for the time of modi�cation. Therefore { to keep the advantage
of commonly used applicational logic { a more exible management and con�guration facility is needed.

3 Con�guration of Shared Business Objects

As mentioned above, the con�guration, meaning the restructuring and modi�cation of an existing dis-
tributed application (adding/dropping objects and adding dropping links between them) gains more
importance the larger the systems get. We are �rst explaining how modern business frameworks already
ease the con�guration by static structures, following with an explanation why this is not enough and why
we need more exible dynamic con�guration for those systems.

3.1 Static Con�guration

By static con�guration we mean the modi�cations of the structure and architecture that take place on the
source code level. For this the complete system must be { obviously { shut down, must be restructured,
recompiled, relinked and booted. For a system that is highly decentralized and linked, this way is
inappropriate, since for changing one shared object, all dependent (i.e. this resource using) applications
or objects must be shut down.

concreteFactory1 concreteFactory2

A <− getObject(); A’ <− getObject();

getObject();

ObjectFactory

Client

allocate A;

Figure 2: Semi-Dynamic Con�guration: Instantiation Factories

3.2 Semi-Dynamic Con�guration

Semi-dynamic con�guration management is already realized as a promising target and systems like IBM's
SanFrancisco framework support the system manager by using mechanisms like instantiation factories.
Factories { a pattern, well known from [G+94] { encapsulate locally the instantiation and allocation of
objects (see �gure 2). So for the case, that instead of an object A an object A0 should be instantiated
every time an object A is allocated in the source code, the system manager needs only to change one line
of code (in the factory object) instead of tracking all allocation occurances in the source. The change can
even take place at runtime, if the system supports dynamic linking facilities. This saves a lot of e�ort
and raises the exibility. SanFrancisco uses almost for every business object factory structures to ease
the con�guration.

However, semi-dynamic con�guration changes only the instance, allocated in the future. The already
existing instances remain the same and must be handled separately.

3.3 Dynamic Con�guration

The advantage of shared business objects is easy to see: higher reuse, higher semantical grouping and
concentration as well as lesser code and costs. However, with more sharing and more e�cient use of
components there come also higher dependencies. If an little shared component is only responsible for
a small amount of applications, an e�cient shared one is responsible for a large amount of applications
(just think of a component that represents the task \book order" in a company). Therefore it also may
often be the case, that a component has to be extended or modi�ed for one of its applications. By raising
the amount of shared resources and therefore lowering the redundancy, we are also raising the amount of
dependencies between applications. If a business object is shared by a large amount of applications (see
�gure 3 a change of the object, caused by one of the applications, needs all the depending applications
to be shut down for recon�guration. So we get an indirect dependency between all applications that are
linked via a shared business object.

It is obvious, that the bene�t of the reuse would be worthless, if for every modi�cation of a component
that is needed by one of its applications all applications have to get shut down. Therefore dynamic
con�guration management of those shared components is needed, that allows to modify the structure
of the system during runtime and therefore lower the stagnation time of the system to a minimum. So
with dynamic management only the dependent instances (or applications) have to be transformed into
a special state, that allows modi�cation. This state depends on the category of dependency (what is
related to the changed object and in what way) and the category of consequences (what has to be done
to transform the dependent instances into a consistent state).

We started to elaborate the principal problems and issues of dynamic con�guration of distributed systems
on an abstract, formal basis [Sal99] and are going to extend it to di�erent application domains.

The complexity of the modi�cation process depends on several parameters: the target of change (gets a
component changed or a connection), the source of change (is the stimulus caused by the state of the
system or by the external environment), the time of modi�cation (design time, linking time, runtime),
the constraints of the modi�cation (a certain state of the system, an ring structure of the components etc.)
and last but not least the nature of the component. So di�erent levels of complexity as well as di�erent
types of change and di�erent types of dependency will lead to di�erent categories of consequences for
the system. It is essential , for example, to know on which processes of the system (i.e. the usecases or
the business processes) a change of structure or component might have impact. So if one recon�gures
a business object o for example, we want to know in advance which 'backbone-processes' and which
functionality is a�ected in which way.

To develop a practical usable shared object management we have to watch the following issues:

� De�ne the categories of dependencies (i.e. direct, indirect etc).

application j application k application lapplication i

business object b

direct
dependency

indirect
dependency

Figure 3: Raising the Level of Dependency by Sharing Objects

� De�ne the categories of consequences (i.e. change the interface, change the data-model etc.).
� De�ne the relations to usecases and functionality.
� Determine which dependencies causes what consequence.
� Map it to existing middleware.

There is already a large amount of research done in the area of recon�guration - static [Ins84] and even
some constrained dynamic [MDEK95, Med96]. However, in this special context of business objects in
wide area systems and mission critical applications (one might think of the logistics systems of large
companies like BMW) a close speci�cation to the requirements is needed.

4 Consequences

The previous section illustrated, that modern object-sharing architectures o�er a wide variety of advan-
tages but need a bigger emphasis on dynamic behavior. Especially the management of the con�guration
and versioning brings up some new questions. A range of open problems and consequences keeps unsolved
and asks for discussion. Some of the fundamental needs are:

� an infrastructure that supports dynamic con�guration and management of shared objects.

� support of the dependency management (i.e. disbanding of dependencies) in the object architecture.

� tool support to design and manipulate those structures using the o�ered management facilities.

� tool support that illustrates the relations between change and usecases/functionality.

� a methodology that helps identifying and designing shared components in a software �eld.

We think that research results in the area of con�guration and management of shared resources must be
combined and adapted for the concrete needs of distributed object architectures to bring up satisfying
results.

5 Conclusion and Position

With the ongoing net-centralization of IT-systems (i.e. inter- and intra-net applications) the structure of
software gets by far more decentralized and distributed as we know it from classical client/sever structures.
Those systems distinguish themself by a highly dynamic behavior in their structure and topology.

We think that a methodology for developing such systems with high-level dynamics is needed, as well
as a framework for managing and maintaining such systems. Both have to emphasize the aspect of
dependency and dynamic con�guration of the system. We are therefore working on an abstract system
model, based on [BDD+92] to describe the scenarios and dependencies, outlined here. This shall lateron
serve as a foundation for a methodology and a framework to design and manage such highly dynamic
systems.

Acknowledgments I want to thank my colleagues, especially Sascha Molterer and Wiebe Hordijk for
fruitful discussions.

References

[BDD+92] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner, and Rainer Weber.
The design of distributed systems - an introduction to focus. Technical Report TUM-I9202, Technische
Univerit�at M�unchen, 1992.

[BMW98] BMW AG. BMW Architecture Blueprint, 1998.

[EE98] Wolfgang Emmerich and Ernst Ellmer. Business objects: The next step in component technology ? In
CBISE 98, Pisa, Italy, 1998.

[G+94] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1994.

[HMPS98] Wiebe Hordijk, Sascha Molterer, Barbara Paech, and Chris Salzmann. Working with business ob-
jects - a case study. In D. Patel, J. Sutherland, and J. Miller, editors, Business Objec Design and
Implementation II, Heidelberg, 1998. Springer Verlag.

[HMS99] Wiebe Hordijk, Sascha Molterer, and Chris Salzmann. On the reuse bene�t of business objects.
Technical Report Not yet published, Munich University of Technology, 1999.

[IBM] IBM. IBM SanFrancisco Extension Guide.

[IBM98] IBM. The component broker connector overview redbook, 1998.

[Ins84] British Standarts Institution. Con�guration management of computer-based systems. BSI, 1984.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architectures. In
Proceedings of 5th European Software Engineering Conference (ESEC 95), Sitges, Spain, September
1995, 1995.

[Med96] Neno Medvidovic. A classi�cation and comparison framework for software architecture describtion
languages. Technical Report UCI-ICS-97-02, University of California, Irvine, 1996.

[Sal99] Chris Salzmann. An abstract model for dynamics in wide area computing. working paper, 1999.

3RVLWLRQ�SDSHU

(QFDSVXODWLRQ�RI�SURWRFROV�DQG�VHUYLFHV�LQ�PHGLXP

FRPSRQHQWV�WR�EXLOG�GLVWULEXWHG�DSSOLFDWLRQV

Antoine Beugnard, Robert Ogor
ENST Bretagne1

BP 832, 29285 Brest Cedex
{Antoine.Beugnard,Robert.Ogor}@enst-bretagne.fr

,QWURGXFWLRQ
Distributed applications are usually built using two main strategies. The first one requires the
knowledge of mechanisms dedicated to communication and protocols usually using explicit
message passing. The standardization of protocols plays a fundamental role, but the their
proliferation requires wide knowledge and skills on the part of the designer (software
architect). The second strategy tries to abstract totally the communication with the aim of
building distributed applications, as "easily" as non-distributed applications. This usually
leads to the development of middleware such as Corba [2] or Linda [7] that attempts to
reduce the communication to a single and abstract way of communicating. Sometimes, this
single communication means leads to rebuilding protocols over it and can be considered as
constraining. We propose something intermediate.
Since the component architecture of software seems to be becoming a promising way of
building classical applications, we want to consider communication as a component. These
components, called mediums, encapsulate various protocols and communication paradigms.
A medium component is intermediate in the sense that it offers a single architectural
abstraction, the component, but numerous protocols at different levels. We can imagine a
Corba medium to make distributed objects communicate, but also an asynchronous point-to-
point communication between processes, or a component that ensures the synchronous
broadcast of messages among a set of objects.
As for classical component-based applications, a medium-based distributed application is
developed in two phases. The first one consists in assembling (with a visual composer tool) a
medium with classical components. Once the application is described, the second phase
generates the application, in our case, all the parts of the distributed application.
In the first section we describe the overall architecture and the proposed life cycle of
medium-based applications. Then, a very simple distributed application illustrates the
concepts of communication components (medium). We conclude with a comparison with
other approaches such as Corba [2] (for middleware strategy), BAST [4, 5] (for the OSI-
protocol layer strategy) and Connectors [6] (for a centralized equivalent of mediums).

$UFKLWHFWXUH�DQG�GHYHORSPHQW�OLIH�F\FOH

0HGLXP�GHILQLWLRQ
We propose to use special components, called "mediums", as a means to define and
capitalize various communication protocols and distributed services required by a distributed
application. Considering a communication means as a component enables various protocols
to be used and handled easily by non-specialists of distributed application architectures. Like
a classical component, a medium offers a unique and uniform interface that, thanks to

1 This work is partially granted by "la région Bretagne".

introspection, simplifies its manipulation through visual assembling tools. A medium offers
the following services:

1. An interface to this communication means, (protocol entry points)
2. Communication services, (protocol implementation)
3. Dedicated services such as configuration, quality of service, etc. (protocol

configuration)
For instance, a consensus protocol could simply be encapsulated in a medium as shown in
figure 1. The entry points are propose() for a component to propose a value, and
decide() for the medium to warn the components about the decision2.

Figure 1: An external view of a medium

An application is built with many standard components (ActiveX, Beans). Usually (in a
centralized application), these components are connected through local adapters that are
generated once the assembly is finished. The connection is often limited to a point-to-point
method call. Mediums are a generalization and a reification of such connections. To build a
distributed application, a designer would have access to a set of mediums that could be used
to inter-connect the standard components according to the designer’s communication needs.
Here is a list of potentially useful mediums: channel (point-to-point asynchronous), broadcast
(asynchronous), causal order broadcast (asynchronous with delivery order guarantee),
consensus, failure detection, data flow broadcasting (with QoS), voting protocol, blackboard,
distributed shared memory, bus, etc…
To summarize, the life cycle of mediums consists of the following two steps:

1. Use by an application architect to assemble the components
2. Automatic application generation from the "map" elaborated by the architect

The second step is beyond the scope of this position paper. We will just give an idea of the
internal structure of mediums and concentrate on the architect's point of view. The step
consisting in the design of the medium is also disregarded; it is tightly related to the second
step where the internal structure of mediums enables the application generation.

0HGLXPV�DQG�FRPSRQHQW�DVVHPEOLQJ

The distributed application architect has many components at his disposal. To build the
application he has only to connect usual components through mediums that are adapted to
the communication needed. In a simple case, a point-to-point medium would replace the
standard local connector, but a medium could also offer a service of synchronized and
ordered multicast of messages among a set of receivers or act as a software bus. Figure 2
illustrates the connection of 5 standard components by way of two different mediums.
Mediums do not compel the architect to adopt a single way of communicating, but allow
him/her to use different protocols at the same abstraction level, depending on the actual
needs. From the protocol designer's point of view, mediums are a way to capitalize and offer
a unified vision of the numerous ways of communicating.
Being at different abstraction levels may appear confusing. But, in the real world do not we
use very different ways of communicating, from radio or TV, optical broadcasting, telephony,
electronic mail, news, newspapers, etc? The important point is to use a common interface:
our senses. In the case of mediums, we would like to propose a single abstraction: a
communication component. Thus, building a distributed system results in assembling
components according to our needs.

2 This is a simplified consensus protocol.

Consensus
Propose()

Decide()

Figure 2: Application level: connections of standard components and mediums

2YHUYLHZ�RI�WKH�LQWHUQDO�PHGLXP�DUFKLWHFWXUH
The internal architecture of mediums resembles usual protocol stacks. We prefer to use the
name "chain" instead of "stack", because the implementation is more like a chain. In fact, the
medium hides at least as many chains as there are components connected to it. The
extremities of each chain are an object interface and a network connection. Between them
are implemented the algorithms and services delivered by the medium.

Figure 3: Internal architecture of a medium

The current internal architecture is described in [1]. It is under-optimized. We are focusing on
the architectural aspects of mediums not on performances. We can imagine an optimized
version of mediums with pre-compiled chains.

&XUUHQW�PHGLXP�LPSOHPHQWDWLRQ
To evaluate the concept of mediums, we have already implemented two very different
communication means that could be considered to be at different abstraction level. The first
one is a simple asynchronous point-to-point channel; the second is a distributed shared
memory based on the Linda model. We intend to develop a medium for synchronous
message dispatching, a medium with QoS management for multimedia data transfer, etc.
For simplicity and portability reasons the prototype is implemented in Java over a classical
TCP/IP protocol. This results in a framework of classes named Covadis [1]. We are currently
trying to increase the variety of mediums and underlying protocols thus testing the
adaptability of the framework.

6WUDWHJLHV�IRU�WKH�JHQHUDWLRQ�RI�PHGLXPV

The distributed application having been assembled in the first stage, the second phase
consists in generating the codes for all the different sites. This generation could rely on many
different variants. For instance the same abstract communication means called a shared
memory can be implemented in at least two ways: a centralized memory on one unique site

Site 1

Site 2

Site 3

Component2

Component1

Component3

Component4

Component5

Medium1

M
edium

 bus

Network
connection

Service implementations

Object interface

Site 4

and access protocols on others, or a distributed memory on all sites including the access
protocols. The generation variations could be related to the algorithmic or to the supporting
underlying protocol (IP, ATM, and why not Corba). A medium is a component, and as such,
owns certain properties, including an implementation strategy used to choose the variants3.
Mediums are handled by two categories of developer: distributed applications architects and
medium designers. This paper concentrates on the former. The internal architecture and the
medium designer constraints are detailed in another document [1]. We can simply say that,
from now on, the medium architecture does not support any "composition" operator that
could create a new medium from the assembly of others; a medium has a flat internal
structure.

$�VLPSOH�DSSOLFDWLRQ
In order to illustrate the use of mediums in the development of a distributed application, we
can imagine having access to pre-defined mediums such as:

1. A video-stream broadcast (one-to-many) medium using the RTP protocol for
instance

2. A voting medium that collects yes/no answers to a question and produces an
accepted/refused output

We can imagine an interactive film being broadcast and from time to time the audience being
asked a question to know whether they want such or such an alternative. Then the film
continues according to the poll results.

Figure 2: An interactive film application

This architecture requires some comments. Firstly, it seems to have a single spectator. In
fact, some medium could be connected to an a priori unknown number of components.
Secondly, the connection between the VOD and the Controller seems local. This could be
the case if the controller and the VOD were on the same site, but, if needed, a more
sophisticated medium could be used. Special attention is required at the interface level.
Mediums, like normal components, need to have instrospection facilities to be able to list the
services it offers to the application architect. For instance, the Poll medium offers the
following "standard" interface:

in Propose(String question) : boolean on the Controller side
out Proposed(String question), in Accept() and in Refuse() on the Voter side

As with classical components, the visual assembler tool should be able to generate some
glue to adapt the medium interface to that of its client’s. But this glue is local and depends
only on the introspection abilities of components.

3 Classical components could use a generator strategy if implementation variants exist.

VideoOnDemand

Controller

SpectatorInterfaceVideo
Broadcaster

Poll

&RPSDULVRQ�ZLWK�RWKHU�DSSURDFKHV
What are the current classical approaches to distributed software development? The main
trend relies on the use of middleware such as the general purpose CORBA, DCOM or the
more specific ibus [8], javaspace. But, the good old method of using layers of protocols
(socket, alternate-bit, etc) is still being used. To organize the jungle of protocols BAST [4, 5]
proposes a classification - in the sense of an object classification - that improves the re-
usability and composition of protocols. We compare the mediums to these approaches.
Then, we describe another work related to the reification of the communication, the
connectors [6] currently used for centralized applications but whose author intends to adapt
to distributed ones.

&25%$�DQG�UHODWHG�VRIWZDUH�EXV�DSSURDFKHV
Making distribution a main issue requires interoperability. The OMG defined and adopted the
standard CORBA [2] architecture (Figure 4) as a very pragmatic and operational tool to
guarantee the interaction of different programs running on various OS, written in various
languages, and even for pre-existing applications. Once this pre-requisite is available, the
OMG improved and is continuing to improve the "software bus" by the addition of many
services.

Figure 4: CORBA, interoperability through IIOP

But the level of communication protocol is unique; an object sends a request to another one.
Objects need references to communicate. This basic protocol allows more abstract
communication means to be built, but these have to be implemented, and are not really
encapsulated. So, except for CORBA extensions of the IDL, we do not see how the current
point-to-point communication protocol could be extended (for instance in the stubs and
skeletons) in a broadcast protocol.
To avoid the need for object references, architectures such as buses were implemented to
allow anonymous objects to join the bus and communicate with other objects connected on
it. This simple and abstract principle offers point-to-point communication when references are
known, and when it is not the case, broadcasting is used. Two drawbacks emerge:

1. The component should be adapted to the bus, and therefore should be specifically
developed or adapted.

2. This generality could drastically reduce performances

The bus approach shows the need for several communication means and protocols. This is
what the mediums are offering. Behind a single, abstract and easy-to-use component the
medium developer can deliver various communication strategies including CORBA-like or
bus-like ones. And although performances were not our goal, the use of different mediums
for different communication means would certainly allow a kind of specialization and
optimization. We are currently working on a medium implementing a Corba bus. One of the

Smalltalk C C+ Ada Java Cobol C+ Ada Other

IDL IDL

Client Server

Software Bus IIOP

"mapping"

main issues is to encapsulate the instrospection capabilities of Corba (Repositories) into a
medium.

%$67

The BAST framework [4, 5] is a very interesting classification of protocols. Special attention
was given to the two ways of using protocols according to the user’s point of view: the
protocol designer and the application architect (the protocol user).
This work leads to the classification of figure 5.

unreliable message passing

reliable message passing

reliable
multicast failure detection

uniform consensus

dynamic terminating multicast

Figure 5: The BAST Classification of protocols

As shown by the protocol hierarchy of figure 5, BAST offers a very good way of re-using
protocols of the lower level (the topmost) to derive protocols of a higher level. Relations
between protocols are very efficiently pointed out. The protocol use by an architect remains
difficult, because of the lack of a single way of interfacing objets to the framework.

&RQQHFWRUV

One great challenge using objets is their reusability. A trade-off between generality and
usefulness must be found. The bigger an object is, the more useful, but the less general it is.
As shown by the long experience of Smalltalk, a powerful system of objects must generate a
lot of small, reusable objects in order to build a large hierarchy of objects. Objects are very
often a mix of "pure" objects and application dedicated glue, integrated in the normally
protected and consistent syntactic structure called the class.

Figure 6: A connector example from [6]

CarDriver Cashier

Jack

John

Susan

PaymentConnector
Roles:
 Customer 1..n
 Cashier 1..m

Rules:
 Customer paying implies…

aPaymentConnector

Manuel Günter proposes in [6] to separate these two notions and to consider objects as
primary entities with no (or reduced) communicating means. Then, he defines an application
as the grouping of such primary objects with other objects, connectors, acting as glue for the
application, linking the objects together. Figure 6 illustrates these two kinds of objects in a
very simple application. The small, primary entities so defined are reusable directly in
another context, by simply changing the connectors.
Connectors are high level objects that are able to observe and trigger events in the objects
connected to them. The implementation uses the meta-programmation facilities of Smalltalk
to achieve this. Connectors are generic objects programmable through a connecting
language that describes the ways objects interact.
In a way, connectors and mediums come from the same idea: communication reification, the
former in a centralized context, with a language-defining-the-protocol (the rules, see figure 6)
specification of communicating components, the latter in a distributed context with built-in
protocols.

&RQFOXVLRQ

Reification is one of the most powerful idioms for structuring and reusing parts of complex
systems. Various design patterns [3] rely on reification (Strategy, State, Factories, …). We
would like to check this new reification attempt with mediums against true applications and
case studies.
Connectors [6] and mediums [1] are similar in essence. They try to encapsulate
communication to make objects connected to it more reusable, putting communication issues
into special objects. The communication being encapsulated makes it simple to use through
the interface of a classical component. Mediums are components, but the way they are used
- to interconnect other components - and their internal architecture make them specific
enough to be considered as special software objects.
Up until now, we have implemented various levels of protocols into mediums to illustrate the
wide spectrum of potential encapsulated protocols. It seems feasible to hide Corba [2] or
even connectors in special mediums in order to show the generality of this approach. The
goal is to build a wide range of mediums so that distributed application architects can choose
the communication means ideally suited to their requirements.

%LEOLRJUDSK\

[1] Eric Carriou, Covadis : un framework pour la conception visuelle d’applications
distribuées, rapport de stage de fin d'étude, ENST Bretagne, France, octobre 1998

[2] OMG, Corba, http://www.omg.org
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-Wesley, 1995.
[4] Benoît Garbinato. Protocol Objects & Patterns for Structuring Reliable Distributed

Systems. PhD thesis, Swiss Federal Institute of Technology, Lausanne (EPFL), May
1998. http://lsewww.epfl.ch/bast/

[5] Benoît Garbinato, Rachid Guerraoui. Flexible Protocol Composition in Bast. In
Proceedings of the 18th International Conference on Distributed Computing Systems
(ICDCS-18), Amsterdam (The Netherland), May 1998.

[6] Manuel Günter, Explicit Connectors for Coordination of Active Objects, Master's
Thesis, University of Berne (1998).

[7] A. Rowstron and A. Wood, An efficient Distributed Tuple Space Implementation for
Networks of Heterogeneous Workstations, 1996,
http://www.cs.york.ac.uk/linda/new_linda.html

[8] M. Silvano, IBus - The Java Intranet Software Bus, 1997,
http://www.olsen.ch/export/proj/ibus

Supporting Reliable Evolution of Distributed Objects

Jonathan E. Cook Je�rey A. Dage

Department of Computer Science

New Mexico State University

Las Cruces, NM 88003 USA

fjcook,jdageg@cs.nmsu.edu

Abstract

Distributed object systems o�er a foundation for systems to be highly malleable and con�gurable, even

after deployment. While this malleability o�ers many bene�ts and opportunities for creating novel systems,

it also becomes a potential source of problems. This is because, unfortunately, new versions of objects can

introduce new errors and break existing, depended-upon behavior.

We believe that for this move towards distributed, component-based systems to not have a negative impact

on system reliability, the middleware frameworks must allow and support the composition, manipulation,

and execution of multiple versions of components. Doing so will ensure that the move towards distributed,

component-based software systems does not lessen, but rather provides opportunities to enhance, the reliability

that software will achieve through the next century.

Introduction

Recently, system construction has moved away from monolithic systems and towards more component-based
architectures, with distributed object frameworks being an example of this move. These frameworks provide
a separation between the components that make up a system, where individual components can be replaced
relatively independent of one another. This ability means that systems, even after they are deployed, are now
more malleable than ever. Much recent work has revolved around the basic support necessary for enabling
this malleability [4, 5, 6, 8, 12].

On one hand, malleability is good, since the system can be tailored to a speci�c task, or a failing
piece can be selectively upgraded. Unfortunately, a component that has been modi�ed to �x one defect
may inadvertently break some other existing functionality, or the modi�ed system composition might violate
assumptions made by individual versions of the components. Indeed, a recently held workshop on dependably
upgrading critical systems [3] noted many of the fundamental reliability concerns that still need to be
addressed in this �eld. These concerns are still open, since the frameworks have thus far been focussed on
basic enabling mechanisms, and not on support for ensuring system reliability.

A strong argument has already been made that the architectural description of a system should take into
account the versions of the components [11]. This aids in ensuring that valid compositions of components are
made during deployment, and that the engineers make explicit the version dependencies amongst components.

We take a di�erent tack and focus on the situation where versions of components are expected to be
\interchangeable". That is, a subsequent version of a component is created, perhaps to �x a bug or add an

This work was supported in part by the National Science Foundation under grant CCR-9804067 and the Department of

Education under grant P200A70303-97. The content of the information does not necessarily reect the position or the policy

of the Government and no o�cial endorsement should be inferred.

Main System

Version 1

Arbiter

invoke
component

receive
results

Constraint
Evaluator

Version N...

Figure 1: The Hercules Framework.

enhancement, but where this new version is intended to replace the old version. It is in this situation that
reliability can be compromised by a faulty new version breaking existing functionality that was depended
upon by the users.

If, however, one was able to keep both versions active in the system, and knew what the intended
di�erences between them were, system integrity could be maintained by selectively using one version or the
other. Middleware, such as distributed object systems, provides an excellent opportunity to build exactly
that type of support for system evolution. Since components can be swapped in and out during run-time,
there is no reason to simply ignore the version history of a component when it comes time to upgrade it.

Indeed, it is our position that support for the composition, manipulation, and execution of multiple
versions of components is imperative if we are to enhance the reliability of component-based systems through
the next century. In [2] , we present a framework, Hercules, that is a �rst step in this direction. In the
rest of this paper, we briey present this framework and outline how it can be utilized in the evolution and
testing of distributed object systems.

The Hercules Framework

The Hercules framework, shown in Figure 1, is focussed on managing versions of a component throughout
the component upgrading process. Thus, it is focussed on supporting the evolution of the system.

Between the external system that uses a component and the component versions, we place an Arbiter that
acts to present to the system the image of a single component. The Arbiter invokes each of the component
versions when the system requests it, and sends the selected result back to the system. The Arbiter also
contains component management facilities. The middleware frameworks that implement distributed object
systems are natural places to implement an Arbiter.

To select a result, the Arbiter uses a Constraint Evaluator (CE), providing the invocation parameters
and component state information to the CE. The CE evaluates the formal speci�cations of each version's
addressed domain, and decides which version of the component will produce the correct result. The Arbiter
then selects this result to send back to the external system, and logs statistics on which versions produced
this same (presumably correct) result.

The constraints on each version indicate the domain(s) that it speci�cally addresses. When a new version
of a component is created, it is meant to address speci�c conditions (a domain) where the existing version(s)
failed. By specifying these conditions formally using a constraint expression, we can detect at run-time when

Create New
Version

Test New
Version

Specify Version
Domain

Install New
Version

Run System +
Gather Statistics

Evaluate
Statistics

Modify Domain
Constraints of

a Version

Remove Version
as Obsolete

Remove Version
as Faulty

Figure 2: The Component Upgrading Process.

those conditions occur. When they do, the new version of the component is assumed to be producing the
correct answer rather than the existing version, and the result given to the external system is the result
from the new version. If for some invocation, however, the conditions that the new component speci�cally
addressed are not true, and the new version produces a result di�erent than the existing version, then it is
assumed that the new version has broken some correct behavior of the existing version, and the result given
to the external system is that produced by the existing version, not the new version.

In this manner, system reliability is increased throughout the upgrade process. Note that we are not
evaluating the correctness of the result of the component with regard to some speci�cation. We are only
deciding which version of the component is assumed to be correct, based on the domain it is meant to
address. This version is called the authoritative version for that particular invocation. Any other version
that produces that same result as the authoritative version is also correct, for that invocation.1 By logging
the number of times each version produces a correct result, we can at some point decide that the new version
is reliable, and then take the old version o�-line.

The Component Upgrading Process

Distributed object systems, and other component frameworks, have enabled the malleability of deployed
systems, but so far they have not explicitly supported it. Without some level of support, systems will be
(and are now) actually less robust than previous monolithic systems. It is our position that middleware must
de�ne and embrace a process for evolving a deployed system, and that by enabling version management, this
process can enhance system reliability throughout evolution.

Figure 2 shows the overall process of component upgrading that we envision. A new version of the
component is created and tested, and given a speci�c domain. This domain may be speci�ed before the
version is constructed, as part of the change order speci�cation, but we place it after testing because the

1Deciding when results are the same is not always a trivial equality comparison; some data types and problem domains need
more expressive tests for deciding when two values are equal (e.g., oating point numbers).

domain may change after testing, if it is decided that the version as constructed operates on a di�erent
domain than was originally speci�ed. Initial techniques we have used to specify constraints are similar to
language-based self-checking, or assertion, methods [1, 7, 9, 10].

The new version is then installed into the running system, and the system runs and gathers statistics
on all running versions. At chosen points in time, an engineer will inspect the statistics for all versions of a
component, and may choose one of four di�erent actions (besides doing nothing):

� An existing version is removed as faulty.

� An existing version is removed as obsolete (the statistics show that its descendants correctly implement
all of its own behavior).

� The domain constraints of a version are modi�ed, because it is decided that it is operating correctly
over a larger domain or that it is failing in some part of its own domain.

� A new version of the component is created and installed.

With this process, the system reliability is increased throughout the evolution of its components, and
the engineer takes an active role in maintaining the con�guration of the system while it is running. An
important note is that this framework and process allow for future capabilities in automation. Some of
the statistics evaluation can be moved onto the running system, and by using rule/action speci�cations,
automated decisions can be made about when a component is faulty enough to remove or when it is obsolete,
and actions can be speci�ed that do not require human intervention.

Performance Issues

With such a framework as ours, performance concerns naturally arise. Rather than having direct execution
of a single component version, we have introduced an Arbiter, a Constraint Evaluator, and the execution of
multiple versions of a component. These additions certainly change the expected performance of the system.
In a distributed object system, where network delays mandate a well-designed partitioning of the system,
these extra delays may not be as much a concern as for say, a single-processor embedded system.

However, we have not overlooked this issue, and our framework allows for taking advantage of multiple
processors to execute multiple versions, for delaying execution of non-authoritative versions, and for limiting
the number of versions executed, due to time or space constraints.

Supporting Testing

While we have presented this framework as supporting the evolution of malleable component-based systems,
it also applies to certain activities in the testing phase. Indeed, this framework might be most bene�cial
during the alpha and beta test phases, where a system might undergo many rapid changes which would
ideally be deployed to the testers as soon as they are available. The Hercules framework would better
isolate the multiple changes to di�erent components, and would provide better test results because the
overall system would be isolated from incidental change mistakes, and because the statistics that are logged
regarding each component version would give clear indication as to the reliability of speci�c versions.

Alternatively, for a system where many variants are delivered, our methods may ease the burden of
testing many di�erent compositions of the system, and by allowing multiple versions of components to run
during testing, feedback as to which con�gurations will be reliable is obtained.

Conclusion

Distributed object systems are only an example of the type of malleable, component-based systems that are

here now and will be even more so in the future. So far, these frameworks have merely focussed on enabling

malleability, but not supporting it in the sense of providing mechanisms to ensure that the overall system

remains reliable.

It is our position that for these frameworks to do so means that they must embrace the management

and manipulation of multiple versions of the components. It is not enough to simply allow a new version

to be deployed, nor even to be able to rollback to a previous version. The engineering knowledge of how

the versions di�er can be used to manage multiple versions simultaneously, and to increase overall system

reliability.

We have summarized Hercules, the framework representing our preliminary investigation into reliable

component upgrading. In this work we demonstrated the basic foundations of specifying version domains,

using an arbiter to select a version at the time of invocation, and gathering statistics to understand version

reliability. This investigation has shown that reasoning about component versions enhances the knowledge

that an engineer can bring to bear during system maintenance and change, and that it appears feasible to

extend the use of version information to run-time issues such as component upgrading.

We believe that there is great potential for new techniques such as these to provide users with highly

reliable, yet still dynamic, systems.

References

[1] J. Cook. Assertions for the Tcl Language. In Proc. 5th Annual Tcl/Tk Workshop '97, pages 73{80. Usenix, July
1997.

[2] J. Cook and J. Dage. Highly Reliable Upgrading of Components. In Proceedings of the 1999 International
Conference on Software Engineering, May 1999. To appear.

[3] D. Gluch and C.B. Weinstock, eds. Workshop on the State of the Practice in Dependably Upgrading Critical
Systems. Technical Report CMU/SEI-97-SR-014, Software Engineering Institute, Aug. 1997.

[4] K. Goudarzi and J. Kramer. Maintaining Node Consistency in the Face of Dynamic Change. In Proceedings of
the Third International Conference on Con�gurable Distributed Systems, pages 62{69. IEEE Computer Society
Press, May 1996.

[5] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change Management. IEEE Transac-
tions on Software Engineering, 15(11):1293{1306, Nov. 1990.

[6] M. Little and S. Shrivastava. Using Application Speci�c Knowledge for Con�guring Object Replicas. In Proceed-
ings of the Third International Conference on Con�gurable Distributed Systems, pages 169{176. IEEE Computer
Society Press, May 1996.

[7] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[8] N. Rodriguez, R. Ierusalimschy, and R. Cerqueira. Dynamic Con�guration with CORBA Components. In
Proceedings of the Fourth International Conference on Con�gurable Distributed Systems, pages 27{34. IEEE
Computer Society Press, May 1998.

[9] D. Rosenblum. Automated Monitoring of Component Integrity in Distributed Object Systems. In Advanced
Topics Workshop of the 3rd USENIX Conference on Object-Oriented Technologies and Systems. USENIX Asso-
ciation, June 1997.

[10] D. S. Rosenblum. A Practical Approach to Programming with Assertions. IEEE Transactions on Software
Engineering, 1995.

[11] A. van der Hoek, D. Heimbigner, and A. Wolf. Software Architecture, Con�guration Management, and Con�g-
urable Distributed Systems: A M�enage a Trois. Technical Report CU-CS-849-98, University of Colorado, Jan.
1998.

[12] I. Warren and I. Sommerville. A Model for Dynamic Con�guration which Preserves Application Integrity.
In Proceedings of the Third International Conference on Con�gurable Distributed Systems, pages 81{88. IEEE
Computer Society Press, May 1996.

Progressive Implementation of Distributed Java Applications

Paulo Borba� Saulo Ara�ujo Hednilson Bezerra

Marconi Lima S�ergio Soares

Departamento de Inform�atica

Universidade Federal de Pernambuco

1 Introduction

In this position paper we overview on-going research work aimed at de�ning, formalizing, and
validating a method for the systematic implementation of distributed object-oriented applica-
tions. In particular, this method supports a progressive approach for object-oriented imple-
mentation, where distribution, concurrency, and persistence aspects are not initially consid-
ered in the implementation process, but are gradually introduced, preserving the application's
functional requirements and semantics.

By initially abstracting from those subtle aspects, engineers can, for example, quickly de-
velop and test a local, sequential, and non-persistent application prototype useful for capturing
and validating user requirements. As requirements become well understood and more stable,
that prototype can be used to derive a structured and functionally complete prototype, which
is then progressively transformed into the �nal distributed, concurrent, and persistent version
of the application, by carefully dealing with the aspects mentioned above, one at a time.

In this way we can signi�cantly reduce the impact caused by requirements changes during
development, since most changes will likely occur before the functionally complete prototype is
transformed into the �nal version of the application, which is larger and much more complex
than the prototypes. Furthermore, the progressive approach naturally helps to tame the
complexity inherent to distributed systems, by supporting the gradual testing of the various
intermediate versions of the application. For example, problems in the business logic layer can
be isolated from problems in the persistence and communication layers.

Of course, a central assumption to our method|the Progressive Implementation Method
(Pim)|is that it is possible to initially abstract from distribution and concurrency aspects.
In fact, Pim considers that there are di�erences between the implementation of local and dis-
tributed objects, but that local objects can be gradually transformed into distributed ones.
However, this might not be possible when distribution or concurrency is inherent to the ap-
plication objects. Indeed, we believe that our method is not useful for all kinds of distributed
applications, but it has been proven specially useful for the implementation of distributed
information systems, which are usually distributed and concurrent for performance and fault
tolerance reasons only.

As Pim is just an implementation or coding method, it should be integrated to design
and testing methods in order to be used in practice. However, Pim relies on the use of
speci�c architectural and design patterns for structuring object-oriented applications, so that
it imposes constraints on design methods chosen for integration. Fortunately, those constraints

�Supported in part by CNPq, grant 521994/96{9. WWW: http://www.di.ufpe.br/~phmb. Electronic mail:
phmb@di.ufpe.br. Telephone: +55 81 271 8430, extension 3323. Fax: +55 81 271 8438.

basically correspond to the use of simple or well known patterns useful for supporting the
progressive introduction of distribution, concurrency, and persistence aspects.

This paper is organized as follows. We �rst explain how we formalize and justify Pim's
activities and key tasks1. We then discuss in separate sections the introduction of distribution
and concurrency aspects, in that order. Persistence aspects are not considered here for scope
and space reasons. Examples are used to illustrate several aspects of Pim, including some
re�nement laws and the constraints imposed on design methods. The current version of Pim
is speci�c to Java [4] and RMI [7], so that we use them throughout the paper. At the end we
discuss the current status of this work and its limitations.

2 Laws of Progressive Implementation

Most tasks of Pim are just informally described and illustrated by examples. However, key
tasks are formalized by semantic preserving re�nement laws, which basically indicate that a
class, a command, or a program can be safely replaced by another. Those laws are essential
for precisely determining subtle constraints and code modi�cations associated to a given task.
Moreover, the laws justify the soundness of Pim, assuring that the �nal version of a given
application preserves the semantics of its functionally complete prototype, as long as database
and distribution services work properly; for example, database and network connections are
not inde�nitely down.

As in [2], here we represent and formalize the laws by using class operators for building
classes from smaller pieces, as if we were de�ning an algebra for classes. For example, the
\h � � i" operator constructs classes so that

hA � M � Ii

denotes the class formed by the private attributes2 in A, the methods inM , and the initializers
(constructors) in I . The \
" operator puts attributes together, so the expression

hA
B � M � Ii

denotes the class formed by the attributes in A and in B, besides the methods and initializers3

respectively in M and I .
Using those operators, we can concisely formalize re�nement laws. For example, consider

methodsm andm0 having the same signature. Then, provided thatm is re�ned bym0, denoted
m v m0, we have that

hA � M �m � Ii v hA � M �m0 � Ii

This law basically indicates that method re�nement implies class re�nement. The same nota-
tion is used to formalize the laws of Pim, precisely indicating how the classes of application
prototypes should be progressively transformed to consider distribution, concurrency, and per-
sistent aspects.

3 Introducing Distribution

One of the constraints that Pim imposes on design methods is the use of the Facade design
pattern [3]|which provides a uni�ed interface for all services of a subsystem|in order to
structure applications. Hence Pim assumes that the functionally complete and local prototype
has business facade classes such as the following:

1For simplicity, we consider that a method just consists of activities, which are described by a group of tasks.
2Hereafter we consider that classes have only private attributes; so we omit the word \private" for brevity.
3Usually called \constructors" in Java.

class MyBusinessImplementation implements MyBusiness {

private CustomerFile customers;

private ProductList products;
...

void addCustomer(Customer customer) {

customers.add(customer);

}

void setPrice(ProductCode code, double price) {

products.setPrice(code,price);

}

}

where the classes CustomerFile and ProductList provide services for the insertion, updating,

querying, and deletion of customer and product records4.
The objects of business facade classes are precisely the ones that should be distributed or

available for remote access. So Pim also assumes that the functionality of those objects is

abstracted by corresponding business facade interfaces :

interface MyBusiness {

void addCustomer(Customer customer) throws CommunicationException;

void setPrice(ProductCode code, double price)

throws CommunicationException;
...

}

which explicitly indicate that subsystem services might not be available due to problems in

the communication or distribution infrastructure and basic services. This is necessary because
business facade interfaces abstractly represents the services of a subsystem, which might be

local or remote to the clients of those services.
Fortunately, in order to transform the local prototype into a distributed one, we do not

need to change the business facade classes and interfaces. Pim simply suggests the use of object
adapters [3] for them. The adapters basically encapsulate the RMI code that is necessary for

allowing the distributed or remote access of business facade objects. In this way, the business
logic layer becomes totally independent from the RMI communication layer, so that changes

in the latter layer do not impact the former layer.
There are two kinds of adapters: source adapters and target adapters. Roughly, the latter

wrap business facade objects in the places where they are located, and the former represent

those objects in remote locations. In a typical client-server system, user interface objects
would request the services of a source adapter located in the client machine. The source

adapter would then request the services of a corresponding target adapter located in the
server machine. Finally, the target adapter would request the services of a business facade

object also located in the server side.

3.1 Target Adapters

A target adapter contains a reference to a MyBusiness object|likely a business facade object|

and methods that simply invoke corresponding methods on that object. For example, the
following is a target adapter classs for any class that implements MyBusiness:

4For brevity, we omit the \public" quali�er from type and method declarations. We also assume that the

illustrated methods raise no exceptions.

class MyBusinessTargetRMIAdapterImplementation

extends UnicastRemoteObject implements MyBusinessTargetRMIAdapter {

private MyBusiness myBusiness;
...

void addCustomer(Customer customer)

throws CommunicationException, RemoteException {

myBusiness.addCustomer(customer);

}

}

where the code inherited from the RMI class UnicastRemoteObject allows target adapters
to be remotely accessed, and RemoteException is raised by RMI to notify communication or

con�guration problems during the call of a remote method [7].
As target adapters shall be used as remote objects, we must also have an interface with

the same signature as the target adapter class:

interface MyBusinessTargetRMIAdapter extends Remote {

void addCustomer(Customer customer)

throws CommunicationException, RemoteException;
...

}

where Remote is an RMI interface used to identify remote object types; in particular, Remote
is indirectly implemented by UnicastRemoteObject [7].

Note that the methods of target adapters may indirectly raise CommunicationException

because they invoke methods of MyBusiness objects, instead of a particular implementation
of that interface. This gives an extra exibility, as discussed later.

3.2 Source Adapters

A source adapter contains a reference to a target adapter and basically calls the methods of the
second, catching RMI speci�c exceptions and replacing them by CommunicationException.
For example, observe the following source adapter class for any class that implements the

interface MyBusiness:

class MyBusinessSourceRMIAdapter implements MyBusiness {

private MyBusinessTargetRMIAdapter myBusiness;
...

void addCustomer(Customer customer) throws CommunicationException {

try {

myBusiness.addCustomer(customer);

} catch (RemoteException exception) {

throw new CommunicationException(exception.getMessage());

}

}

}

This class implements MyBusiness so that source adapters e�ectively represent the services
provided by their corresponding business facade objects. For instance, user interface classes

typically declare variables of type MyBusiness. In the functionally complete and local pro-
totype, those variables are instantiated with MyBusinessImplementation objects. In the

distributed prototype, those variables are instantiated with source adapters.

In fact, note that a target adapter might refer either to a business facade object or to a
source adapter. This gives us extra exibility in such a way that a source adapter sa1 might
refer to a target adapter ta1 that refers to a source adapter sa2 and so on, until we �nally
have that tan refers to a business facade object. In this way we can easily support various
con�gurations for a distributed system.

3.3 Distribution Tasks

In summary, Pim's tasks for transforming a local prototype into a distributed prototype include
the following: create speci�c source and target adapter classes; replace, where appropriate,
instances of business facade classes for source adapters; con�gure and execute target adapters
as server processes; properly handle communication exceptions raised by source adapters. Fur-
thermore, as RMI remote method calls actually copy argument and result objects, we must
declare the parameter types and result types of remote methods as subtypes of Serializable,
a Java interface that guarantees class serializability. In addition, we must insert update oper-
ations in order to guarantee that updates to object copies are reected in the original objects.
For example, clients of MyBusiness typically write code such as the following:

Customer customer = myBusiness.fetchCustomer(customerId);

customer.setName(: : :);

customer.setAddress(: : :);

But, if myBusiness holds a reference to an RMI source adapter, customer will not hold a
reference to an original customer. So, in order to reect the changes in the original customer,
we should add the following method call at the end of that code:

myBusiness.updateCustomer(customer);

where the MyBusiness method updateCustomer is responsible for fetching and updating the
original customer with the attribute values of its argument.

4 Dealing with Concurrency

After performing the tasks presented in the previous section, the business facade objects are
ready to be distributed, but are not ready for concurrent access, which likely comes as a
consequence of distribution. In fact, the concurrent access to the methods of business facade
objects might generate a vast range of undesirable interferences, since the distributed prototype
code uses no synchronization mechanisms.

In order to avoid undesirable interferences and preserve the semantics of the original func-
tionally complete prototype, Pim suggests tasks for bridging the gap between Java applications
developed to be used in sequential and concurrent environments [1]. Those tasks are based
on practical guidelines for safely introducing, moving, and removing synchronization mecha-
nisms without leading to deadlock, livelock, or to undesirable interference. Such guidelines are,
for example, derived from common design patterns for structuring concurrent object-oriented
programs [6].

Pim's synchronization laws (see Section 2) formalize those guidelines. Each law typically
helps to correctly increase either liveness or safety. For example, a useful law for increasing
liveness establishes that we can remove the Java synchronized quali�er5 from a method as
long as some constraints are satis�ed:

5The methods quali�ed as synchronized cannot be executed while there is another synchronized method
being executed in the same object [4].

hA
 b � M � synchronized(m) � Ii v hA
 b � M �m � Ii

provided that

� body(m) is in the form \b.n(e)", where name(b) is b, n is any method name, and e is
an arbitrary list of expressions formed only by variables and constants6; and

� type(b) is a fully synchronized class|its methods are all synchronized, and it has no
public instance variables [6].

Roughly, this law establishes that it is sound to remove synchronization from a method m

that simply invokes another method that is accessed in a serial way. The justi�cation is that
m will be serially accessed anyway.

Pim's tasks for transforming a sequential prototype into a prototype adapted to be used
in a concurrent environment are roughly the following: using synchronization laws, intro-
duce synchronized quali�ers to the methods of business facade classes, and also to the
methods of business collection classes such as CustomerFile; whenever possible, remove the
synchronized quali�ers from the methods of business facade classes, using the law illustrated
in this section, for example; apply other synchronization laws to further improve liveness.

By using Pim, the business facade class presented in the previous section would �rst receive
synchronized quali�ers:

class MyBusinessImplementation {

private CustomerFile customers;

private ProductList products;
...

synchronized void addCustomer(Customer customer) {

customers.add(customer);

}

synchronized void setPrice(ProductCode code, double price) {

products.setPrice(code,price);

}

}

which can be safely introduced without leading to deadlock because this facade class satis�es
some constraints. In fact, we can guarantee that the objects of the class above are safe; they
have the same observational [8, 9] behaviour no matter if executed in a sequential or concurrent
environment. Moreover, this behaviour is equivalent to the behaviour of the original business
facade objects (de�ned on Section 3) when they are executed in a sequential environment.

After achieving safety, we could bene�t from the synchronization law presented in this
section for optimizing MyBusinessImplementation. The synchronized quali�ers would be
safely removed, assuming that the classes CustomerFile and ProductList serialize the inser-
tion, updating, querying, and deletion of customer and product records.

5 Conclusion

We have given an overview of the Pim method for the systematic implementation of distributed
object-oriented applications. Pim supports the progressive transformation of an structured
and functionally complete application prototype into a distributed, concurrent, and persistent

6We assume that method bodies are well typed, so that we do not need to impose further constraints on b,

n, and e.

version of the application. We have concentrated here on distribution and concurrency aspects
because of scope and space reasons. Persistence aspects are considered elsewhere [10].

Pim's progressive approach can signi�cantly reduce the impact caused by requirements
changes during development, since most changes likely occur before distribution, concurrency,
and persistence aspects are introduced to the application. Furthermore, Pim naturally helps
to tame the complexity inherent to distributed systems, by supporting the gradual testing of
the various intermediate versions of the application. In this way, we can, for example, isolate
problems in the business logic layer from problems in the persistence and communication
layers.

Pim is not useful for any kind of application. It is only useful when concurrency and
distribution are not inherent to the application, but are necessary for performance and fault
tolerance reasons only. For example, Pim has been quite useful for the implementation of dis-
tributed information systems in di�erent domains. In particular, Pim has been partially used
to implement the following applications: a customer management system for a telecommuni-
cations company; a retail store system; and a mobile dairy sales management system. From
our limited practical experience so far, managers and engineers are initially skeptical about
the method, mainly because it implies rework on some classes. However, after using Pim they
usually get convinced of its bene�ts.

As Pim is just an implementation or coding method, it should be carefully integrated to
design and testing methods in order to be used in practice. In the experiences reported above,
Pim has been integrated either to the Rational's Objectory process [5] or to ad hoc processes.
Also, besides fully describing the method, we should provide tool support (via component
and IDE wizards) for Pim, since most tasks are tedious and can be largely automated. The
current version of Pim is speci�c to Java and RMI, but we intend to generalize it so that we
can support other middleware technologies such as CORBA and DCOM.

References

[1] Paulo Borba. Systematic development of concurrent object-oriented programs. In US{

Brazil Joint Workshops on the Formal Foundations of Software Systems, volume 14 of
Electronic Notes in Theoretical Computer Science. Rio de Janeiro, Brazil, 5-9th May,
1997, and New Orleans, USA, 13-16th November, 1997.

[2] Paulo Borba. Where are the laws of object-oriented programming? In I Brazilian Work-

shop on Formal Methods, pages 59{70, Porto Alegre, Brazil, 19th{21st October 1998.

[3] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[4] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-Wes-
ley, 1996.

[5] Ivar Jacobson. The Uni�ed Software Development Process. Addison-Wesley, 1999.

[6] Doug Lea. Concurrent Programming in Java. Addison-Wesley, 1997.

[7] Sun Microsystems. Remote Method Invocation Speci�cation, 1998.

[8] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[9] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[10] Euric�elia Viana and Paulo Borba. Integrando Java com bancos de dados relacionais. In

III Brazilian Symposium on Programming Languages, submitted, 1999.

From Distributed Object Features
to Architectural Styles

Bastiaan Schönhage1;2 and Anton Eliëns1;3

1 - Vrije Universiteit
Department of Mathematics and Computer Science

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
email: bastiaan, eliens@cs.vu.nl

2 - ASZ Research & Development
P.O. Box 8300, 1005 CA Amsterdam, The Netherlands

3 - CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Distributed object oriented software is gaining interest. Nevertheless, developing distributed
systems is inherently more difficult than creating single-machine applications. Middleware
solutions and distributed object frameworks are intended to help developers in building dis-
tributed software. Deciding on which distributed technology to deploy, however, is not straight-
forward.

In this paper, we will introduce three architectural styles to classify distributed OO soft-
ware. The styles differ in the dimensions of data location and object migration. In addition to a
description of the styles we will give examples, discuss guidelines for their usage, and indicate
which technologies can be deployed to implement the styles. Thus, by classifying and cata-
loging distributed OO software in architectural styles and providing guidelines for their usage,
we are trying to give some guidance for the development of distributed software.

1 Introduction

Software engineers, both academic and in business, are increasingly interested in Software Archi-
tectures. The software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the externally visible properties of those components,
and the relationships among them [1]. An important aspect of software architectures is the fact that
they force us to think about the quality requirements of a system in addition to the functional-
ity. Moreover, software architectures allow for an evaluation of software systems early in the
development cycle.

Architecture-based development promises, amongst others, high-level reuse and separation of
concerns. But what we are mainly interested in here is that, while traditional approaches are
primarily concerned with functionality, software architectures are concerned with the interaction
and communication of components [3].

Whereas software architectures describe or prescribe one particular system, Shaw and Clements [8]
and Shaw and Garlan [9] classify groups of software architectures in architectural styles. Archi-
tectural styles are descriptions of component types and a pattern of their runtime control and/or data

1

transfer [1]. Architectural styles are often, as in our case, based on practical experience. By mak-
ing design decisions and considerations explicit by means of styles and guidelines, we are able
to transfer this important knowledge to other similar software development projects.

In Section 2, we will start with an object-feature-space to classify objects in distributed OO soft-
ware. However, software architects are not so much interested in object features per se but more
in the behavior of the system as a collection of collaborating objects. Therefore, Section 3 presents
three architectural styles. The distributed objects, dynamically downloaded classes and mobile
objects architectural styles are all based on distributed OO technology but differ in the dimen-
sions of data location and object migration. Section 4 illustrates the application of architectural
styles in practice. It shows how the styles are deployed in a visualization application support-
ing collaborative decision making. As a conclusion, we will evaluate the architectural styles and
provide some rules-of-thumb for deploying them in Section 5.

2 Distributed Object Feature-space

In the following classification we will examine some features of objects that comprise a software
system. This is not intended as a classification of distributed software architectures. Instead, we
will look at properties of single objects and illustrate which features are supported by different
technologies. The discussed feature-space will later-on be used as the basis for the architectural
styles.

When objects are remotely callable it means that methods of the objects can be invoked remotely
by objects residing on other machines. By downloadable we mean that object-code (classes) can
be dynamically downloaded to clients where the objects are instantiated. When components are
mobile, objects migrate taking functionality, data and status along. Thus, mobility implies that
the object (instance) is moved as-is whereas downloadable objects are newly created objects based
on classes available at a server.

An object is inter-operable if it can be employed by other objects written in different languages,
running on a multitude of platforms. Hence, inter-operability is the combination of language,
operating system, and network independence.

When an object contains meta-information, other objects can retrieve information about the ob-
ject. We distinguish two types of meta-information: weak and strong. When an object contains
weak meta-information, it contains syntactical information about its methods and attributes.
Strong meta-information is a semantical description of the methods and attributes that are part
of an object. This semantical description can be specified in a formal specification language or
informally in text.

Table 1 shows the classification of some (distributed) object technologies according to the above
mentioned features. The illustrated technologies are: OMG’s CORBA [10], an agent ORB (such
as Mole3.0 [2] and Voyager [5]), Microsoft’s DCOM and ActiveX [4], and Java with RMI (Remote
Method Invocation) [11] and JavaBeans.

Although Table 1 is illustrative to make commonalities between object technologies clear, it is
limited to features of single objects. The classification is useful to characterize the components of
a style: the architectural styles discussed in the remainder of the paper are partly determined by
a subspace of the object-feature space given above.

3 Distributed OO Architectural Styles

An interesting question arises: how to get from technology and object features described in the
previous section to architectural styles? One answer is by experimenting with the influence of
technology and (quality) requirements on software architectures. Based on our experience we

2

remotely inter- meta-information
callable downloadable mobile operable weak strong

CORBA + – – + + –
Agent ORB + – + – + –

DCOM + – – + + –
ActiveX + + – + + –

Java RMI + + – – + –
JavaBeans – + – – + +

Table 1: A classification of distributed OO technology

have used the features remotely callable, downloadable and mobile as the determinants for ar-
chitectural styles. We have chosen these features because they describe three distinct ways to
make objects collaborate in a distributed environment. And, as stated in the introduction, we are
in this paper mainly interested in the interaction and communication, in short collaboration, of
components.

The first style, the distributed object architectural style comprises software architectures which
consist of software components providing services to client applications or other service com-
ponents. Each object is located at a single, fixed place. Objects on different machines are being
connected by an Object Request Broker (ORB) that abstracts from the used network and program-
ming language.

The constituent objects are remotely callable. Because distributed objects only expose their inter-
face via an ORB they are inter-operable. Example technologies supporting this architectural style
are CORBA and DCOM.

The second architectural style is the dynamically downloaded classes style. Here classes are
downloaded to and run on client machines, as illustrated in Figure 1(a). The dissimilarity be-
tween distributed objects and dynamically downloaded classes architectures is that while func-
tionality is fixed at one place in the former, it is transported when needed in the latter. Ob-
jects, which are running on client-machines, are instantiated from classes which are dynamically
downloaded from a server. This implies that client applications are always using the latest ver-
sion of the available classes, alleviating the job of maintaining a large number of client applica-
tions.

In terms of the object-feature space of Section 2, the objects in this style are dynamically down-
loadable. Additionally, they have to contain (preferably strong) meta-information because the
client application has to know how to use the newly downloaded object. Example technologies
supporting this style are Java applets, JavaBeans and ActiveX.

A third style is the mobile objects architectural style. Mobile objects migrate from host to host,
taking both functionality and data while they move, as illustrated in Figure 1(b). Consequently,
mobile objects communicate with local objects at the host they currently reside on. This means
that mobile objects are a perfect means to implement agents, which wander through a network
while collecting information, negotiating with other agents and reporting back to the user who
launched the agent.

Mobile objects are, obviously, mobile and contain weak (or even strong) meta-information. Ad-
ditionally, mobile objects are often remotely callable, e.g. to invite an agent to your machine.
Technologies supporting the mobile objects architectural style are agent ORBs such as Voyager
and Mole.

3

Internet

Server

Server

ClassClass

ClassClassClassClass
Client

Object
Object

Object

Static classes (code only)
migrate from Server to Client

Client applications are
built of locally
instantiated objects Internet

Host

Host

AgentAgent

AgentAgentAgentAgent

Client

Agent
Agent

Agent

Active objects (or agents) reside on Hosts.
They may transfer to other hosts.
Additionally, they can move clones to other hosts

Client applications are
open to host or dock agents
coming from remote hosts

Agents contain both
functionality and status

a) Dynamically downloaded classes architectural style b) Mobile objects architectural style

Figure 1: Two architectural styles for distributed OO software

4 Application of Architectural Styles in Practice

To illustrate the architectural styles described above, we will now show how the styles are de-
ployed in a practical setting. The application under consideration is an information visualization
system. The distributed visualization architecture (DIVA) is being used at the Gak (social secu-
rity provider in the Netherlands) to experiment with business visualization to support decision
making [7, 6].

This paper focuses on one particular aspect of DIVA to illustrate the styles, namely, extending the
functionality of the system. The system’s goal is to support multiple users in visualizing shared
information. During a visualization session, users can come up with new visualization primitives
which show the information from a different perspective. For example, one of the users discov-
ers an elegant way to display relevant information that otherwise remains hidden. This new
perspective must then be shared with other users to support collaboration of the participants.
The remainder of this section shows how each style solves the ‘problem’ of adding functionality
(a new visualization) to the system.

Distributed objects architectural style In case our system is based on the distributed objects ar-
chitectural style, the only way people can add functionality is by adding a new distributed object
to the runtime system. Figure 2(a) illustrates the process of adding a new visualization perspec-
tive. On the left we see a user who has created a new visualization which is made available by
means of a distributed object; on the right hand side is one of the users who wants to take a look
at the new visualization perspective. At the bottom of the image we see the shared information
which is updated periodically.

Once somebody announces that a new visualization primitive is available, other users can con-
nect to the distributed object and request for a visualization of information (1). Consequently,
the object retrieves the information from the shared information server and creates a new visu-
alization (2). Finally, the resulting visualization is sent to the requesting client (3). Whenever the
information is updated, visualizations will be updated by the distributed object and transmitted
to all users (update).

4

User with
new perspective

Shared Info

User
Distributed

object

1

2

3

update

User with
new perspective

Shared Info

Class

1

2

3

update

User

Object

User with
new perspective

Shared Info

Agent

1

2

update

User

Agent

a) Distributed objects b) Dynamically downloaded classes c) Mobile objects

Figure 2: Architectural styles in Diva

Dynamically downloaded classes architectural style When we base the visualization applica-
tion on an architecture that conforms to the dynamically downloaded classes architectural style,
users who have created the new visualization perspective provide a class that can be downloaded
to other users’ machines. As Figure 2(b) illustrates, a user connects to the server that contains the
class of the new perspective (1). This server can be the user’s machine, or a shared server to
which the class has been uploaded. After that, the class is downloaded to the client’s machine
and instantiated as a new visualization object in the local visualization application (2). Finally,
the information is retrieved from the shared information server and accordingly visualized (3).
Because each user contains the functionality to present information at her own machine, updates
have to be sent to all client machines.

Mobile objects architectural style The third architectural style, based on mobile objects, is in
some respect similar to the dynamically downloaded classes architectural style. In both cases
functionality —how we visualize information— is downloaded from a server onto the client ma-
chine. However, a mobile object keeps its current status. In Figure 2(c), we see that a user requests
an agent from the user with the new perspective (1). Consequently, the display agent clones it-
self and moves the clone to the requesting user’s machine (2). The clone, which contains all the
knowledge the originating agent has, does now have to contact the shared information server to
show the visualization on the user’s display. Updates of the shared information have to be sent
directly to all clones of the original display agent.

5 Evaluation and Discussion

The goal of describing and classifying the distributed objects, dynamically downloaded classes
and mobile objects architectural styles in the previous sections is to provide a basis for deciding
on the right type of architecture when creating a distributed object oriented system. In this section
we will examine features of the discussed styles and, additionally, give some rules of thumb for
choosing which style to deploy in particular cases.

Feature-based classification

Table 2 contains a feature-based classification of the architectural styles discussed. The con-
stituent parts describe the primary building blocks of architectures: components and connectors.
The location issues determine where objects are created and where they are located during their
lifetime. The functionality issues determine whether the functionality of the overall system or
parts of the system is fixed or extensible.

5

Constituent parts Location issues Functionality issues

Style Components Connectors Place of object Object location Funct. of Client Server

creation during lifetime system application application

Distributed object ORB server server extensible �xed extensible
objects

Dynamically object various client client extensible extensible �xed
dowloaded (class at
classes server)

Mobile object/agent procedure any any extensible extensible extensible
objects call

Table 2: Feature classification

The location issues are the main discriminators of the architectural styles discussed. The dis-
tributed objects architectural style can add new objects at the server side of the system, where
objects are staying for the remainder of their lifetime. Dynamically downloaded classes archi-
tectures are complementary: they create fixed-place objects at the client side of the distributed
system. Architectures based on mobile objects are more flexible in this aspect because objects can
be created anywhere and, additionally, can be migrated through the complete system.

The functionality issues state that software based on any of the architectural styles is extensible
at run-time: new functionality can be added without recompiling or restarting the system. The
distinction between the styles, however, is the location of this extensibility. Systems based on
distributed objects architectures extend the functionality of systems at the server side, while dy-
namically downloaded architectures achieve this by extending the client components. Because
in the mobile objects architectural style objects can migrate to other hosts both client and server
parts are extensible.

Rules of thumb

Distributed objects are often regarded as the object oriented variant of client–server. However,
distributed objects are more than that: distributed objects are namely both client and server at
once. Rules 1 and 2 illustrate when it is useful to deploy the distributed objects architectural
style. Because inter-operability is a key feature of distributed objects, this style allows the wrap-
ping of dedicated hardware and legacy software into a heterogeneous distributed system (1).
Additionally, distributed objects only expose the interface and do not give away the implementa-
tion. This allows for its usage in systems where software is not allowed to ‘leave’ a server because
of strategic or security reasons (2).

Nr When to use Style

1 Dedicated hardware or legacy code Distributed objects
2 Strategic or even secret code (you do not trust to give away) Distributed objects

3 Lots of users expected, resulting in overloaded servers Dyn. downloaded classes
4 Often new versions of software (maintainability) Dyn. downloaded classes

5 A lot of communication and/or negotiation between the compo-
nents

Mobile objects

Table 3: Rules of thumb

When a large amount of clients is expected to be running applications on a single server, the
server can easily become overloaded —imagine what would happen when all Java applets would

6

be running on the server instead of on the client’s machine. In this case moving the processing
to the client, by deploying dynamically downloaded classes, is the natural solution (3). Addi-
tionally, when (parts of) applications are updated often, for example because of changing legisla-
tion, architectures based on dynamically downloaded classes are much easier to keep up to date.
Clients are automatically using the latest version of the available software (4).

Rules 3 and 4 for dynamically downloaded classes also hold for the mobile objects architectural
style, because in this style functionality is downloaded to the client’s machine too. However,
when multiple objects have to negotiate, for example to vote on something, the amount of com-
munication between objects can be very high whereas the result is only a small answer: ‘yes’ or
‘no.’ When the communication can be done locally by moving all mobile objects to the same host,
the performance of the system can be improved dramatically (5).

6 Conclusion

This paper started with the presentation of an object-feature-space to classify (distributed) ob-
ject technologies. The features, such as mobility and inter-operability, appeared to be useful to
characterize properties of single objects. Additionally, they determine to a large extend the archi-
tectural styles in this paper.

Based on our experiences in developing (distributed) OO architectures we have presented three
architectural styles for distributed object oriented systems: the distributed objects, dynamically
downloaded classes and mobile objects architectural style. The discriminating feature of the
styles is whether data and functionality are fixed at one place or migrating through the dis-
tributed environment. Not surprisingly, we discovered that no best style existed. However,
particular styles are better suited to meet specific requirements than others. The discussed ‘rules
of thumb’ are a first direction into deciding which style to deploy in particular situations.

References

[1] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. SEI series in
Software Engineering. Addison-Wesley Publishing Company, 1998.

[2] J. Baumann, F. Hohl, K. Rothermel, M. Schwehm, and M. Strasser. Mole 3.0: A Middleware
for Java-based Mobile Software Agents. In Proceedings of Middleware’98, pages 355–370, 1998.

[3] Paul C. Clements. Coming Attractions in Sofware Architectures. Technical report, Software
Engineering Institute, 1996.

[4] Microsoft. DCOM Architecture - white paper, 1998.

[5] ObjectSpace. Voyager Core Technology 2.0 User Guide, 1998.

[6] S.P.C. Schönhage, P.P. Bakker, and A. Eliëns. So Many Users — So Many Perspectives. In Pro-
ceedings of ”Designing effective and usable multimedia systems”, 9-10 September 1998, Fraunhofer
Institute IAO, Stuttgart, Germany. IFIP, 1998.

[7] S.P.C. Schönhage and A. Eliëns. A flexible architecture for user-adaptable visualization. In
David S. Ebert and Charles K. Nicholas, editors, Workshop on New Paradigms in Information
Visualization and Manipulation ’97, Conference on Information and Knowledge Management, 10 -
14 November 1997, Las Vegas, USA. ACM Press, 1997.

[8] Mary Shaw and Paul Clements. A Field Guide to Boxology: Preliminary classification of
architectural styles for software systems. In Proceedings of COMPSAC, Washington, D.C.,
1997.

7

[9] Mary Shaw and David Garlan. Software Architecture: perspectives on an emerging discipline.
Prentice Hall, 1996.

[10] J. Siegel. CORBA Fundamentals and Programming. John Wiley & Sons, 1996.

[11] Sunsoft. Java Remote Method Invocation - white paper, 1998.

8

ABSTRACT
A major challenge in designing contemporary distributed
systems based on interacting objects is dynamic
accommodation of evolutionary change by adding or
removing objects during runtime. This implies that semantic
information about the constituent objects has to be available
in order to check the correctness of adding a new or changed
object. In CORBA, for example, this kind of information is
simply represented as a list of keywords. In contrast to this
simple way we present an approach to achieve semantics
directed configuration of object-based software systems in
such a way that objects organize themselves on the basis of a
richer representation of their semantics concepts.

1 INTRODUCTION AND RELATED WORK
Building and evolving complex distributed software systems
requires careful consideration of managing change. While in
deploying modern distributed systems on platforms like
CORBA many low level interoperability problems are going
to be solved soon, the problem of architectural mismatch [6]
still persists. As discussed in [6] this problem can be
overcome by stating explicitly all assumptions regarding the
required context for using a specific (new or changed)
component. One approach is to choose a suitable
representation for defining a wide range of architectural
properties of a given system at design time. Various
approaches like ACME [5], Π [9], or UniCon [17, 1] are
proposing such schemes helping the designer to state desired
architectural properties during design time.
However, in the context of distributed systems deployed on a
large scale, e.g. over the Web/Internet, the architectural
mismatch problem reemerges in another variant. In such a
case it is even more difficult as discussed above since a
system has to be extended or changed during runtime. In
addition, in many cases it is not possible to change or even
look into the operational details of the component
infrastructure on which the change or extension has to take
place. In order to enable a correct and robust change
management in such a setting semantic information
regarding the services of software component is essential [8].
This allows to check to which degree a request to include a
new / changed component can be accommodated by a given
set of components.
In this contribution we present an approach for dynamic
configuration of distributed systems based on semantic
properties of its constituent components. Our approach uses
a prominent model for dynamic change developed at

Imperial College, provides it with a formal foundation based
on distributed graph transformation (a well-known graph
rewrite approach developed at the Technical University of
Berlin) and extends it towards semantics-directed system
configuration.
In the following we give a brief account from where we draw
our basic techniques and other related work. In chapter 2 we
will emphasize the application development, using a
CORBA environment as a foundation and introducing
semantics descriptions as distributed graphs. Then in chapter
3 we will investigate dynamic configuration management
based on semantic-directed component interactions. Finally,
we will present the structure of a negotiation protocol.
We have presented an approach to realize configurable
distributed systems based on semantic-directed component
interaction with the help of graph transformation techniques
in [8]. This work investigates in detail the basic
functionalities of checking and changing semantics
descriptions and can be seen as a prelude to the actual paper
which emphasizes the negotiation aspect.
Prominent work related to configurable distributed systems
is done at the Imperial College, London. In [12] J. Kramer
and J. Magee propose a basic model for dynamic change
management which separates structural issues from
application specific ones, thus distinguishing change rules at
the architecture configuration level and change actions at the
component level. An example for this dynamic change
model is given in [11]. In [13] self-configuring architectures
are investigated and in [4, 14] a graphical user interface and a
notation for component configurations based on the
architecture description language REGIS/DARWIN [15] are
presented.
We use the basic change model [12] as a foundation for our
approach. We extend it towards semantic-directed system
configuration and provide it with an underlying formal
representation based on distributed graph transformation. In
[18] we have compared the realization of the change model
using DARWIN and distributed graph transformation in the
light of the example introduced in [11] and presented the
benefits our approach provides.
The concepts as well as the formal definition of the graph
transformation approach used here - distributed graph
transformation - are introduced in [19]. It is based on
algebraic graph transformation [2].

Towards Dynamic Semantic-Directed Configuration Management

Michael Goedicke and Torsten Meyer
Specification of Softwaresystems

Department of Mathemantics and Computer Science
University of Essen

D - 45117 Essen, Germany
+49 209 183 - 3481 / 2168

{goedicke,tmeyer}@informatik.uni-essen.de

2 APPLICATION SPECIFICATION
In this chapter we will sketch how the architecture of
distributed software systems can de designed such that
interaction with dynamic configuration management
(presented later in this contribution) is enabled and
configurable distributed systems can be realized.

CORBA
Our approach is based on the Object Management Group’s
standard CORBA [16, 22]. CORBA defines a higher level
infrastructure which enables distributed computing using
object-oriented technology. Integration of heterogeneous
systems is defined by the Object Management Architecture
OMA, the industry standard reference model for object
technology. The aim of this paper is to sketch how dynamic
configuration of CORBA objects based on semantic
properties can be realized on top of the CORBA Dynamic
Invocation Interface (DII). While basics wrt. the DII can be
found in [16, 22] and first ideas how the DII can be used
within this context are presented in [8], this paper focuses on
the negotiation aspect. Thus a software component diagram
comprising an export section (services that are made public
by OMG IDL), an import section (used services which are
provided by other objects registered to a CORBA
environment), and a body section (the object
implementation) shall suffice to abstract from further
CORBA details (cf. figure 4).

Component Semantics
For representing semantic properties we propose to connect
a graph to each component. For checking semantic
conditions of a server component before a service may be
executed we propose to match a graph representing semantic
requirements with the server component’s semantics graph.
Finally, for dynamic evolution of semantic graphs we use
graph transformation techniques. These choices are justified
by the following reasons:
• for realizing dynamically configurable systems represen-

tation of component semantics by text-based means such
as keyword lists or simple name/value pairs does not suf-
fice,

• graphs combine intuitive usability and formal basis,

• compliance tests and dynamic changes can be repre-
sented well by graph rewrite rules,

• power and parameterizability of the used rewrite
approach (distributed graph transformation, see below).

In the following we will use a specialized graph
transformation approach developed at the University of
Berlin which allows to handle distribution and
modularization aspects: distributed graph transformation
[19, 20].
Distributed the graph transformation is graph transformation
at two abstraction levels - the network and the local level.
The network level contains the description of a system’s
network topology by a network graph and its dynamic
reconfiguration during runtime by network rules. The
combination of the network graph structure and the local
object structures is specified by distributed graphs in order to
describe distributed object structures. A distributed graph
consists of a network graph where each network node is

equipped with a local graph describing a local system state.
Each network edge is equipped with a relation on local
graphs defining used data and object structures in that way.
Each node in a distributed graph may typed and attributed by
further data types (cf. [8, 20] for more details to attribution
of graphs and distributed graphs).

Communication between local systems takes place via
export and import interfaces. In export interfaces, local
systems present data and objects accessible for other local
systems and import interfaces contain data and objects from
remote export interfaces. Network nodes being the source of
a network edge may be interpreted as interfaces. Figure 1
shows an example of a distributed graph where import and
export graphs are distinguished by different gray shades of
local graph elements. In all examples use relations are unam-
biguously presented by obeying compatibility with labels.

While graphs are a suitable means for representing semantic
properties of software components, checks and changes to
semantic graphs can be realized by graph rewrite rules. They
are used to transform graphs in a rule based manner: if a
certain structure exists then it may be transformed into a new
one. At an abstract level a graph rewrite rule consists of a left
hand side rule graph L and a right hand side rule graph R.
Within a graph rewrite step the occurrence of L in a working
graph is replaced with R. A detailed description of this graph
rewrite approach called double pushout can be found in [2,
8].
In order to realize a graph rewrite step we also need a notion

NETWORK
LEVEL

LOCAL LEVEL

network graph

local graphs distributed
graph relations

network nodes

distr ibuted network
edges

1

2

3
4

5

1

2

3 2

3

A

DC

B

A
B

D

C

Figure 1 This example of a distributed graph shows a local view of
the system A. In this and in the following distributed graphs body
elements of local graphs are depicted in medium gray, exported
graph elements are depicted in light gray, imported graph elements
are depicted in black, and common parameters graph elements (i.e.
graph elements which are imported and exported) are depicted in
mixed light gray / black. Relations between local graph elements are
not explicitly depicted, we assume a mapping between graph
elements with identical labels.

of graph matching. Graph matching is essential for checking
semantic properties represented by graphs. A graph match
from a left hand side rule graph into a working graph is a
structure preserving mapping between these graphs. It is
checked whether nodes and edges, respectively, match by
comparing their labels. A formal introduction to graph
matches and morphisms can be found in [8, 2].
In the next section we will present a sample semantics
description of a software component.

Example
Now let us consider a WWW search engine for software
components within the Internet. The information involved
with a service offer is not only text or text-based HTML
code, but more realistically it is comprised of a variety of
different and complex knowledge representations - from
diagrams, audio and video data to even Java appletts. Thus
representation of component semantics by text-based,
pseudo-semantic means like simple keyword lists or name/
value pairs (as realized within the CORBA trader) does not
suffice.
In the following example we will search for a software
component implementing a diagram editor. First the
syntactic description of our desired component is obvious:
we are looking for operations for adding and deleting
bubbles and arrows as well as an operation for printing the
diagram.
Since the search result for this generic type of diagram editor
would be very large and unstructured, we introduce an actual
requirement to the diagram editor object’s semantics: the
desired kind of diagrams have to be Petri-Nets. This
semantic property of a server object can be represented by a
graph easily but nearly impossible with textual means. As an
example for a class of graphs especially suitable to represent
the semantics of a software component we will consider so-
called Component Model - graphs. They are defined
formally in [10] and are used for describing semantic
properties of specification and programming languages.
Figure 2 shows an exemplary distributed CM-graph for a
diagram editor component. A client application may check
this Petri-Net requirement via a graph matching before
invoking a request to a diagram editor component.
In the next section we will sketch how the interaction with
the configuration management can be realized on top of such
an application.

3 SEMANTICS NEGOTIATION AND DYNAMIC
CONFIGURATION MANAGEMENT
First we will sketch how a component can be found with the
help of semantic checks. Then we will discuss how this
component can be integrated into a system dynamically.

Semantic Checks and Change Actions
As described above we use a special class a graphs - CM-
graphs with graph rewrite rules in their body subgraphs - to
represent semantic properties of components. Then semantic
requirements can be modeled by the left hand side rule graph
L of a semantic check rule. The semantic condition
represented by L can either check for desired semantic
properties (semantic correctness check) or for semantics
which are to be avoided (semantic inconsistency check).
If a graph match from the left hand side rule graph L into a

source graph representing a components’s actual semantics
exists, the graph rewrite rule can be applied to the source
graph. By replacing the subgraph of the source graph
corresponding to L by the right hand side rule graph R, a
change in the semantics graph can be achieved. Also a
correctness check representing only a consistency/
inconsistency condition and no change action can be
described by a graph rewrite rule. For these graph rewrite
rules L = R holds; the graph matching from L into the source
graph checks for a special semantic state in the source graph
and no replace action is performed.
An important part of the approach is the strategy how
semantic properties of distributed components are
negotiated, i.e. how the various results from semantics
checks are achieved and how they are exploited. Basically
there exists a wide range of possible protocols. On the one
end negotiation could be done by “fixing” apparent
inconsistencies when an object reference is established. On
the other end a full check of semantic properties beforehand,
i.e. answering the question what are the semantic properties
of a service in principle, is also desirable in some
circumstances.
Wrt. semantic checks we will distinguish between ‘hard’
correctness checks and ‘soft’ compliance checks.
Within a correctness check the client components’s semantic
requirements have to be satisfied by a potential server
component exactly. Thus the existence of an exact graph

Figure 2 This example of a distributed CM-graph defines Petri-Net
semantics of a diagram editor component. For representation of its
interface the CM-graph contains export and parameter nodes for
offered services as well as context nodes for used (import)
components. Edges only serve as connections between nodes and are
not attributed. The export, parameter and import nodes are included
in the distributed graph’s export and import graph, respectively. In
the body subgraph it is shown that bubbles are either places or
transitions, thus the operation for adding bubbles is splitted into an
operation for adding places and one for adding transitions. The
semantics of these operations are given by graph rewrite rules which
are part of the body subgraph.

Diag
Ed

...

expor t node

paramete r node

con tex t node

componen t node

node represen t ing body subgraph

add place

R
p

add start place

L R
t

add place after transition

add transition

L
pt

L R
tpt

L R
t

add transition after place

ptp
L R

t

add transition before place

ptp

add bubble

Body

in Bubble b
inout DiagEd de

add bubble

in Bubble b
inout DiagEd de

delete
bubble

arrow

bubble

...

match is required. If no graph match exists from a client’s
left hand side rule graph into a potential server component’s
semantics graph, the server component may fulfil syntactic
requirements but does not satisfy the semantic ones.
While correctness checks demand that the server component
semantics description match the client’s requirements
exactly, compliance checks represent an approach more
realistic in open and evolving systems. Compliance checks
identify common parts of the client’s semantic requirements
and the server’s semantic properties and allow to use server
components which match not exactly while trying to manage
or tolerate inconsistencies. A compliance check especially
relevant within this context is partial correspondence, where
a match from a subgraph of the client’s left hand side rule
graph into the server’s semantics graph exists. This means
that the server component satisfies only a part of the client’s
semantic requirements. One way to handle this inconsistency
is that the usage of the server object is permitted and the
client is informed that it has to find additional server objects
realizing the missing functionality. On the other hand, the
server component may act autonomously and recursively
become a client for searching the missing bits of
functionality.
A simple protocol for negotiating semantic properties of
components at an abstract level is sketched in figure 3.
Especially partial semantic compliance is important within
this context.

Semantics Insertion/Deletion and Dynamic Connections/
Unbindings
After a semantically corresponding component has been
found, the new component has to be integrated into the
system dynamically and relations between its semantics
graph and the graphs of the other system components have to
be established. In [18] we have shown how distributed graph
transformation can be used as an underlying formalism of
the original change model. We have sketched how the
application can be specified by local graphs and local graph
rewrite rules, how the change management’s functionalities
of dynamic component insertion and deletion can be realized
by graph transformation at the network level, and finally how
the interaction between both application and change

management can be modeled by distributed graph
transformation. This paper, however, has a different
intention: it is not about specifying the entire application by
graph transformation, but it assumes a CORBA architecture
in terms of distributable components and component
connections as a foundation. Distributed graph
transformation is used here for describing and checking
semantic properties of components. The configuration
management activities of dynamic insertion and deletion do
not refer to the components themselves, but to the semantic
descriptions of a component. Thus distributed graphs
representing component semantics are not isolated entities,
but also the dependencies between semantics descriptions
are modeled.

EXAMPLE
Figure 4 sketches the negotiation protocol steps wrt. the
diagram editor example:
1. Step 1 begins with an unactualized import at the CORBA

level: a client component searches for services realizing
the diagram editor functionality as well as simulation
functionality (i.e. representation of firing transitions).

2. Then the graph rewrite rule depicted within step 2 checks
for syntactic correctness, this is done via export CM-
graphs of potential server components.

3. Step 3 shows a graph rewrite rule checking for semantic
correctness, its left hand side rule graph contains descrip-
tions of the Petri-Net and the simulator requirements as
introduced above.

4. If no component can be found which meets the entire
requirements, the graph rewrite rule depicted within step
3 is splitted into graph rewrite rules for every operation
within step 4.

5. Assuming the existence of components DiagEd and
PNsim the rules for adding places and transitions are pro-
vided by DiagEd while the rules for firing transitions and
accessing tokens are provided by PNsim. The connected
CM-graph structure is sketched within step 5.

6. The final establishment of the connection at the CORBA
level is depicted within step 6.

4 CONCLUSION AND FURTHER WORK
In this contribution we showed an approach to represent
semantic information of a component within a distributed
software system (based on CORBA). Since this kind of
information is expected to be available with such
components during their entire lifetime, search for a partially
specified component and automatic (re-)configuration of a
component configuration based on such semantic
information is enabled.
Our approach is based on a graph representation of semantic
component properties and graph transformations are used to
describe the check for compatibility between a request for a
specific component and the available components. We
consider various levels of correspondences and describe the
way a given level can be established using a special protocol.
In our example here we used a representation of
functionality - a diagram editor which is extended stepwise
by additional means to represent and simulate Petri Nets.
Although this kind of semantic information is essential it is
only a part of the semantic properties we would like to

Figure 3 This diagram shows a general negotiation protocol. The
starting point is issuing a service request at the CORBA level. First
the syntactic description of the requested service is checked. This
can be done either at the CORBA level or at the CM-graph level by
inspecting the export and import graphs of a potential server CM-
graph. The assumption for semantic checks is that the syntactic
check has been passed. If the server component does not meet the
requirements for semantic correctness, it is checked for semantic
compliance.

service request
(CORBA level)

syntactic
correctness

semantic
correctness

semantic
compliance (partial

correspondence)

dynamic CM-graph
connections

service reject
(CORBA level)

connection
establishment and
service execution

(CORBA level)

No

Yes

Yes

No

No

Yes

represent. Other kinds of important properties are e.g. safety
and quantifiable performance. In the area of performance we
have established concepts and methods [7] to assess and
influence the design process of an software architecture
under evolution. These findings will be included in the
ongoing work. The challenge which lies in here is to
consider global system properties e.g. performance and the
modular structure of components of our approach presented
here.
In order to execute the various checks in form of graph
transformations, we currently implement with the group of
Hartmut Ehrig (Technical University of Berlin) a distributed
graph transformation system [21, 9] which will help to make
the approach presented here more practically.

ACKNOWLEDGEMENTS
The original change model on which our approach is based
was developed by J. Kramer and J. Magee. Their inspiration
and support is gratefully acknowledged. We would like to
thank B. Sucrow and G. Taentzer for their helpful
inspirations regarding graph transformation and distributed
graph transformation.

REFERENCES
1. Allen, R. and Garlan, D. Formalizing Architectural Con-

nection. Proc. of the 16th International Conference on
Software Engineering (Sorrento, Italy, 1994).

2. Corradini, A., Montanari, U., Rossi, F., Ehrig, H.,
Heckel, R., Löwe, M. Algebraic Approaches to Graph
Transformation. In Rozenberg, G. (ed.), Handbook of
Graph Grammars and Computing by Graph Transforma-
tion, Vol. 1 Foundations (1997), World Scientific, Sin-
gapore, 163 - 245.

3. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L.,
and Goedicke, M. Viewpoints: A Framework for Inte-
grating Multiple Perspectives in System Development.
Int. Journal of Software Engineering and Knowledge
Engineering vol.2/1 (1922), 31-57.

4. Fossa, H. and Sloman, M. Implementing Interactive Con-
figuration Management for Distributed Systems. Proc.
3rd International Conference on Configurable Distrib-
uted Systems (Annapolis, U.S.A, 1996), IEEE Computer
Society Press, 44-51.

5. Garlan, D., Monroe, R. T., Wile, D. ACME: An Architec-
tural Description Interchange Language. Proc. CASCON
(1997).

6. Garlan, D., Allen, R., and Ockerbloom, J. Architectural
Mismatch -or- Why it's hard to build systems out of exist-
ing parts. Proc. 17th International Conference on Soft-
ware Engineering (Seattle, USA, 1995).

7. Goedicke, M., Meyer, T., and Piwetz, C. On Detecting
and Handling Inconsistencies in Integrating Software
Architecture Design and Performance Evaluation. Proc.
13th IEEE International Conference on Automated Soft-
ware Engineering (Honolulu, USA, 1998), IEEE Com-
puter Society Press.

8. Goedicke, M. and Meyer, T. Dynamic Semantics Negoti-
ation in Distributed and Evlving CORBA Systems: Figure 4 A sample negotiation protocol.

in Bubble b
inout DiagEd de

add bubble

in Bubble b
inout DiagEd de

delete
bubble

in Arrow a
in Bubble from
in Bubble to
inout DiagEd de

add arrow

in Arrow a
inout DiagEd de

delete
arrow

in Bubble b

set
token

L

Bodyadd bubble

add place

R
p

add start place

L R
t

add place after transition

add transition

L
pt

L R
t

add place before transition

pt

L R
t

add transition after place

ptp
L R

t

add transition before place

ptp
L R

t

fire transition

p 1 p 2 m 2tp 1 m 1 p 2

L R

set token

p mp

L R

delete token

p m p

set token

fire transition

delete token

R
p

add start place

L R
t

add place after transition

L
pt

L R
t

add place before transition

pt
L R

t

add transition after place

ptp

L R
t

add transition before place

ptp
L R

t

fire transition

p 1 p 2 m 2tp 1 m 1 p 2

L R

set token

p mp

L R

delete token

p m p

L L L L

LL LL

add arrow
delete
bubbleadd bubble

delete
bubble

fire
transition set token

in Bubble b

delete
token

in Bubble b

fire
transition

delete token in Bubble b
inout DiagEd de

add bubble

in Bubble b
inout DiagEd de

delete
bubble

in Arrow a
inout DiagEd de

delete
arrow

in Arrow a
in Bubble from
in Bubble to
inout DiagEd de

add arrow

in Bubble b

fire
transition

in Bubble b

set
token

in Bubble b

delete
token

Client

PNsim

DiagEd

distributed graph relation

distributed
graph relation

2: syntax check

3: semantic correctness

4: partial semantic correspondence

5: connection establishment CM-graph level

Export

Import

Body

 services add bubble ,
delete bubble, add arrow,
delete arrow , fire transition,
add token, delete token

1: service requests / open import CORBA level

Export

Import

Body

 services add bubble , delete
bubble, add arrow, delete
arrow, fire transition, set
token, delete token

6: service executions / connection establishment CORBA level

Export

Import

Body

 services add bubble ,
delete bubble, add arrow,
delete arrow

Export

Import

Body

 services fire transition,
set token, delete token

client component

client component

component DiagEd component PNsim

L

Towards Semantics-Directed System Configuration.
Proc. 4th International Conference on Configurable Dis-
tributed Systems (Annapolis, U.S.A, 1998), IEEE Com-
puter Society Press.

9. Goedicke, M. and Meyer, T. WWW-based Software
Architecture Design Support for cooperative Representa-
tion and Checking. Proc. 3rd International Software
Architecture Workshop (Orlando, USA, 1998), ACM
Press.

10. Goedicke, M. On the Structure of Software Description
Languages: A Component Oriented View. Habil. Thesis
(1993), Dept. of Computer Science, University of Dort-
mund, Germany.

11. Kramer, J. and Magee, J. Analysing Dynamic Change in
Software Architectures: A Case Study. Proc. 4th Interna-
tional Conference on Configurable Distributed Systems
(Annapolis, U.S.A, 1998), IEEE Computer Society
Press.

12. Kramer, J. and Magee, J. The Evolving Philosophers
Problem: Dynamic Change Management. IEEE Transac-
tions on Software Engineering SE-16 11 (1990), 1293-
1306.

13. Magee, J. and Kramer, J. Self Organizing Software
Architectures. Proc. SIGSOFT Workshops (1996), ACM
Press, 35-38.

14. Magee, J. and Kramer, J. Dynamic Structure in Software
Architectures. Proc. 4th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, (San Fran-
cisco, U.S.A., 1996), ACM Press.

15. Magee, J., Dulay, N., and Kramer, J. Regis: A Construc-
tive Development Environment for Distributed Pro-
grams” IEE/IOP/BCS Distributed Systems Engineering
Journal 1/5 (1994), 304-312.

16. Object Management Group, Inc., “The Common Object
Request Broker: Architecture and Specification”, revi-
sion 2.1, 1997.

17. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., and Zelesnik, G. Abstractions for Software Archi-
tecture and Tools to Support Them. IEEE Transactions
on Software Engineering Vol.21 No.4 (1995).

18. Taentzer, G., Goedicke, M., and Meyer, T. Dynamic
Change Management by Distributed Graph Transforma-
tion: Towards Configurable Distributed Systems.
Accepted for 6th International Workshop on Theory and
Application of Graph Transformations (Paderborn, Ger-
many, 1998).

19. Taentzer, G. Parallel and Distributed Graph Transforma-
tion: Formal Description and Application to Communica-
tion-Based Systems. PhD thesis (1996), Dept. of
Computer Science, Technical University of Berlin,
Shaker.

20.Taentzer, G., Fischer, I., , Koch, M., and Volle, V., “Distributed
Graph Transformation with Application to Visual Design of
Distributed Systems”, in Rozenberg, G. (ed.), Graph Grammar
Handbook 3: Concurrency & Distribution, World Scien-
tific,1999.

21. Taentzer, G., Ermel, C., and Rudolf, C. AGG-Approach:
Language and Tool Environment. To appear as article in
Rozenberg, G. (ed.), Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. 2 Specifica-
tion and Programming (1998), World Scientific, Sin-
gapore.

22. Vinoski, S., “CORBA: Integrating Diverse Applications
Within Distributed Heterogenous Environments”, IEEE
Communications Magazine (Feb. 1997), IEEE Computer
Society Press, 1997.

Software Engineering of a Distributed Object Architecture
for Federated Client/Server Systems

H. Gomaa
Department of Information and Software Engineering

George Mason University
Fairfax, VA 22030-4444

 +1 (703) 993 1652
hgomaa@isse.gmu.edu

G.A. Farrukh
Booz Allen and Hamilton Inc.

1725 Jefferson Davis Hwy, # 1100
Arlington, VA 22202
+1 (703) 872 4145

gafarrukh@hotmail.com

1. Introduction

This paper describes the software engineering of a software architecture, composed of distributed
objects, for a federation of client/server software systems. The architecture is specified in the
Darwin architecture description language (ADL) [10,11] and implemented on the Regis
distributed environment [12]. The architecture is composed of reusable domain specific black box
architecture patterns [1,7] and extensible domain specific white box architecture patterns. The
implementation of this architecture is a framework [8], which can evolve and be configured to
allow new clients or servers to join the federation.

2. Federation of Client/Server Systems

Many information systems take the form of client/server applications, e.g., banking systems.
Frequently, legacy information systems in the same application domain need to cooperate in order
to provide an enhanced service to their customers. Rather than individual client/server systems
having to wrestle with interfacing to each other, all information systems that are interested in
cooperating together form a federation of client/server systems, which provides an agreed set of
services. For each federation service, there will be a corresponding federation transaction type to
support it, usually consisting of a client request and server response. Federation transactions are
sent using a standard federation protocol for transmitting this information. It is assumed that
individual client and server members of the federation have their own local transaction format,
which in the general case is different from the federation format. A federation service is therefore
provided to translate local transactions to/from federation transactions.

A Federation Interface Manager (FIM) is a software subsystem that mediates each member
information system’s interface to the federation. The goal is to allow each information system’s
clients and server to be integrated into the federation with the minimum amount of software
modification. There are logically two kinds of FIMs, client FIMs and server FIMs. As new

members of the federation can be added after the federation is operational, it is also necessary to
decouple clients from servers through the use of object brokerage services. A high level view of
the federation is shown in Fig. 1.

The goal is to have FIMs that are reusable by each member of the federation. However, each
member of the federation is likely to need a different variation of the FIM, since each FIM will
need to reflect the characteristics of the individual client or server that it is interfacing to, as well
as the characteristics of the federation, which are common. Thus a FIM has some aspects that are
common to all members of the federation, and other aspects that are specific to each individual
member of the federation, such as translation from the individual member’s local transaction
format to federation transaction format. In addition, federation services can be split into those
that are domain independent, e.g., object brokerage services, and those that are domain specific,
e.g., banking services in an electronic commerce domain.

Client Brokerage
Request/Response

Brokerage
Services

Client FIM

Server FIM

Server Brokerage
Request/Response

Federated
Client

Request

Federated
Server

Response

Client

Server

Client
Request

Client
Response

Server
Request

Server
Response

Figure 1: Federation of Client/Server Systems

3. Architecture of Federation Interface Manager

The approach described in this paper uses the Darwin Architecture Description Language (ADL)
[10, 11] to specify the architecture of the federation of client/server systems. In this paper,
distributed components types and architecture patterns are specified using Darwin, which is part
of the Regis configuration environment [12,18] for parallel and distributed programming. The
Regis environment uses the Darwin ADL for the external specification of each component type,
while the internals of component types are implemented in C++.

Darwin components are mapped to corresponding implementation components in the Regis
environment. These components can be instantiated at different nodes within the distributed
environment. The instantiation can either be static or dynamic.

The Regis environment supports a variety of ways to bind components including first party
binding, third party binding, and dynamic invocation binding. Also it supports safe unbinding of
components. These services are critical to the design of dynamic distributed systems and are used
in the research.

The Regis environment also supports a variety of synchronous and asynchronous communication
mechanisms. One-way messages are sent and received by port interfaces, messages with reply are
handled by entry interfaces, and broadcasts are handled by event interfaces.

4. Overview of Distributed Object Architecture

The FIM architecture operates at three different levels of reuse: federation, domain, and
application. At the Federation Level, the architecture is most abstract and can be used for any
application domain. The overall structure of client FIMs, server FIMs, and object brokerage
services, is defined (Fig. 1). The architecture is defined in terms of the interfaces and
interconnections of the component types, and is specified in the Darwin ADL. The
implementation of the component types providing federation level services is also domain
independent.

At the Domain Level, domain specific functionality is defined. In particular, domain level
transactions are defined, e.g., for electronic commerce, which define the type of service provided
for the domain, transaction requests containing service requests and parameters, and transaction
responses, are defined.

At the Application Level, functionality for individual applications (clients and servers) is added.
For example, for an ATM client, its transaction types and translation mechanisms are defined. At
this level, individual clients and servers extend and instantiate their respective FIMs and become
members of the federation.

The FIM architecture is a reusable and extensible software architecture for a family of systems,
also referred to as a product line architecture. The FIM architecture along with its C++
implementation represents a framework [8], which is composed of three architecture patterns
(defined in the Darwin ADL) and component types implemented in C++. An architecture pattern
[7] is defined in this paper to be a set of interconnected components specified in an ADL in terms
of their interfaces and interconnections. Each architecture pattern is the realization of a domain
feature [7]. The patterns are micro-architectures for the Client FIM, Server FIM, and object
brokerage services. The object brokerage services form a black-box architecture pattern, which is
reused without adaptation. There is one instance of this pattern for a given federation. The Client
FIM and Server FIM are white-box architecture patterns, which need to be extended before they
can be used. There are several variant implementations of the white-box architecture patterns in a
given federation.

5. Description of Federation Interface Manager

The overall architecture of the federation interface manager consists of three major subsystems:
client FIM, server FIM, and object brokerage services. The FIM architecture allows clients and
servers to join a federation and to interface with each other. In addition, the FIM architecture can
be extended by adding and removing clients and servers after the federation is in operation.

5.1 FIM Object Brokerage Services

The FIM architecture object brokerage services are used to decouple clients and servers so that
clients and servers can interact with each other and that new clients and servers can join (or leave)
at any time. For this purpose, the Federation Registration Server is used. Server FIMs register
with Federation Registration Server for that federation and Client FIMs can query it for services.
The Federation Registration Server is responsible for maintaining a database of active servers and
their addresses. There is one instance of the Federation Registration Server per federation, which
is referred to as the Brokerage Services component in Fig. 1.

The Federation Registration Server component is responsible for maintaining a database for all
servers in the federation. The database contains the server ids and addresses of servers. In every
federation, there must be exactly one instance of the Federation Registration Server component
type. Both the Client FIM and the Server FIM communicate with Federation Registration Service
component via Regis entries [12]. The Darwin component for the Federation Registration Server
is shown below.

component Federation_Registration_Server
{

provide FRS_Request <entry FrsClass, FrsClass>
}

The above component has one incoming interface, FRS_Request. This interfaces is of entry type,
which is used for synchronous message communication with reply. This interface is used by both
client FIMs and server FIMs. A server FIM uses it to register and de-register its services with the
Federation Server Router, while a client FIM uses it to request a service from a specific server
FIM.

5.2 Client FIM

A Client FIM is responsible for translating client transactions into federation format and routing
them to the server FIM. It is also responsible for receiving server responses from a Server FIM,
translating them back to the client format, and sending them to its client. One instance of the
Client FIM is needed for every client in a federation. The software architecture diagram for the
Client FIM is shown in Fig. 2, using a graphical representation of the Darwin ADL. The dotted
lines show run-time binding via Regis components [12] using the Federation Registration Server
(FRS). It is important to note that each Client FIM can be instantiated at different nodes within
the distributed federation of client/server systems. The Client FIM components are briefly
described as follows:

Server
Response
Validation

Federation
To Client

Translation
Services

(variant)

Federation_
Client_

Response

Valid_
Server_

ResponseClient
Interface

(variant)

Translated_
Server_

Response

Client To
Federation

Router

Client To
Federation
Translation

Services
(variant)

Client
(wrapper)

(variant)

Local
Server
Router
(variant)

Translated_
Client_
Request

Client_
Request_To_
Federation_

Server

Server_AddressInvalid_Request

Request_
From_
Client

Response_
To_Client

FRS_Request FRS_Request

Federation_
Client_
Request

(FedClass)(ClientClass)

C1

C2 C3 C4

C5
C6C7

C8

(ClientClass)

(ClientClass)
(ClientClass) (FedClass)

(FedClass)

(FedClass)

(FrsClass) (FrsClass) Figure
2: Software Architecture Diagram for Client FIM

The Client component is a client specific wrapper for an actual client and is responsible for
sending client requests to the Local Server Router in client format (ClientClass).

The Local Server Router is a variant component responsible for routing valid client requests to
appropriate servers and rejecting invalid requests. It queries the Federation Registration Server
for the address of the server and forwards valid transactions. The Local Server Router
component is shown below using the Darwin language syntax.

component Local_Server_Router
{

provide Request_From_Client <port ClientClass>;

require FRS_Request <entry FrsClass, FrsClass>;
require Invalid_Request <port ClientClass>;
require Client_Request_To_Federation_Server <port ClientClass>;

}

This component has one provide interface and three require interfaces. The provide interface,
Request_From_Client, is used to receive client requests from client component as shown in Fig.
2. FRS_Request interface is used to send messages to the Federation Registration Server
component and check if the server FIM to which this message is sent actually exists within the
distributed federation. If the request is found to be invalid, this component sends a message to the
Client Interface component via the Invalid_Request port (Fig. 3). If the request is send to be
valid, it is forwarded to the Client To Federation Translation Services component via the
Client_Request_To_Federation_Server port for further processing and transmission to the server
FIM. All insterfaces in the Local Server Router component are bound statically. This task is

performed when component instances of the Client FIM are put together. Examples of these
bindings are shown below using the Darwin language followed by the

bind
Cli.Request_From_Client -- LSR.Request_From_Client;
LSR.FRS_Request -- FRS.FRS_Request;
LSR.Invalid_Request -- CI.Invalid_Request;
LSR.Client_Request_To_Federation_Server -- CTFTS.Client_Request_To_Federation_Server;

In the above code example, Cli is an instance of Client component, LSR is an instance of Local
Server Router, FRS is an instance of Federation Registration Server component, CI is an instance
of Client Interface component, and CTFTS is an instance of Client To Federation Translation
Services component. These statements show how instances of the Local Server Router
component are bound with instances of other components in a Client FIM. These instances must
be bound to communicate with each other.

The Client To Federation Translation Services component is responsible for translating client
requests from client format to federation format (FedClass). An abstract class,
ClientFederationTranslator class, is defined, which is later specialized to address the translation
needs of a given client.

The Client To Federation Router is a domain independent component, as it deals entirely with
transactions in federation format, which it sends to the server FIM. It queries the Federation
Registration Server for the address of the server and sends the transaction to the server. Fig. 2
shows that instances of Client To Federation Router component send client requests to server
FIMs. The binding for this communication is not done statically. This binding is done at run-time
with information obtained from the Federation Registration Server. This is an important element
in the design of federation interface manager, which allows communication with potentially
unlimited number of servers. This de-coupling approach between clients and servers is a key
factor allowing dynamic addition of clients and servers to the federation. Similarly, clients and
servers can leave a federation after fulfilling existing requests and denying any new requests.

The Server Response Validation component is also domain independent. It receives responses
from Server FIMs and passes them on for translation.

The Federation To Client Translation Services component is responsible for translating federation
format responses into client format responses.

Client Interface. This is a client specific component, which is responsible for passing server
responses to clients.

5.3 Server FIM

A Server FIM receives client requests from a Client FIM, translates them to server format from
federation format, and sends them to its server. It is also responsible for translating the local
format of a response from the server to federation format and route it to the Client FIM. Once

instance of the Server FIM is needed for every server in a federation. The software architecture
diagram for Server FIM is shown in Fig. 3. The architecture of the Server FIM is similar to that
of the Client FIM and the Server FIM components are briefly described as follows:

a) Client Request Validation. This is a domain independent component type and is responsible for
registering its address with the Federation Registration Server component so it can receive clients
requests. An instance of this component type receives a client request, as FedClass message, and
passes it on to the Federation To Server Translation Services component in federation format. As
an example, the Client Request Validation component is shown below in Darwin:

component Client_Request_Validation
{

provide Federation_Client_Request <port FedClass>;

require FRS_Request <port FrsClass>;
require Client_Address <port PortAddress>;
require Valid_Client_Request <port FedClass>;

}

This component has one provide interface, Federation_Client_Request, and three require
interfaces, FRS_Request, Client_Address, and Valid_Client_Request. Fig. 3 graphically depicts
the relationship of each of these interfaces. The most interesting interface in this component is the
Federation_Client_Request interface, which is used to received client request from client FIMs.
This interface is bound to the sending client FIM’s require interface dynamically. This is depicted
with dotted lines in Fig. 3.

Client
Request

Validation

Federation
To Server

Translation
Services

Federation_
Client_
Request

Valid_
Client_
RequestServer

Interface

Translated_
Client_
Request

Server To
Federation

Router

Server To
Federation
Translation

Services

Server
(Wrapper)

Local
Client
Router

Translated_
Server_

Response

Remote_
Server_

Response

Client_Address

Response_
From_
Server

FRS_Request

FRS_Request

Federation_
Server_

Response

Request_
To_

Server

(ServerClass) (FedClass)

S1S2S3

S4

S6

2

S8S7

(ServerClass)

(ServerClass)

(ServerClass)

(FedClass)

(FedClass)

(FedClass)S5

Figure 3: Software Architecture Diagram for Server FIM

b) Federation To Server Translation Services. This is a variant component type, and is
responsible for translating a federation format transaction into a server format transaction. An
instance of the Federation To Server Translation Services component receives a client request, as
FedClass message, and translates it into a client request of ServerClass message type. The
ServerClass type defines the server transaction format. This component uses translator classes for
performing actual format translation.

c) Server Interface. This component type is variant. Instances of this component type deal only
with ServerClass message type. Server Interface component receives client requests from
Federation To Server Translation Services and passes them on to the Server component.

d) Server. The Server component type is a wrapper for the actual server. The server component
receives client requests from the Server Interface component. It processes those requests and
sends a response to the Local Client Router component.

e) Local Client Router. This component type is variant. An instance of the Local Client Router
component type receives server responses from Server and passes them on to the Server To
Federation Translation Services component.

f) Server To Federation Translation Services. This component type is also variant and is
responsible for translating server responses from server format to federation format. An instance
of the Server To Federation Translation Services component type translates server responses from
server format (ServerClass message) to federation format (FedClass message). The translated
responses are sent to the Server To Federation Router component.

g) Server To Federation Router. This component type is responsible for sending a server
response to client FIM. An instance of the Server To Federation Router component type receives
server responses in federation format (FedClass) and it sends them to Client FIM.

6. Comparison with Object Broker Approaches

There are a number of similarities between the approach described in the paper and object broker
approaches such as CORBA [17]. In particular, object brokers allow client objects to
transparently make requests and receive responses from server objects located locally or remotely.
The client is unaware of the mechanisms used to communicate with, activate, access or store
information at the server objects. In the federated architecture described in this paper, the
brokerage services shown in Fig. 1, and described in Section 5.1, provide a similar service to a
CORBA object broker. The four domain independent components, which deal with routing of the
federation transactions, provide services equivalent to those in the object broker infrastructure.
These are the two client side components, Client To Federation Router and Server Response
Validation, of the Client FIM (Fig. 2) and the two server side components, Server To Federation
Router and Client Request Validation, of the Server FIM (Fig. 3).

Instead of using the CORBA Interface Definition Language (IDL), the federated architecture
approach uses the Darwin Architecture Description Language (ADL) [10,11] for specifying

component interfaces separately from their implementation. A CORBA solution provides the
added advantage of being heterogeneous in both target platform and target language. The Regis
distributed configuration environment [12] described in this paper is target platform independent
but not target language independent as the target language has to be C++. The approach in this
paper uses a dynamic binding approach, similar to CORBA’s dynamic invocation interface, as the
specific server component that a client communicates with depends on the particular client
transaction and is thus determined at run time. Darwin also provides additional capabilities for
dynamic architectures [18], which were not used in this research.

The other parts of the federated architecture are federation specific, domain specific or application
specific, and thus would use the object broker services and not be part of them. For example, the
client/federation and federation/server translation services, domain specific transactions, etc. are
all specific to the federation architecture. Thus, the federated architecture described in this paper
could be built on top of a CORBA infrastructure, with the Client and Server FIMs using the
object brokerage services provided by CORBA.

7. Conclusions

This paper has described the software engineering of a software architecture, composed of
distributed objects, for a federation of client/server software systems. The architecture is
specified in the Darwin ADL and implemented on the Regis distributed environment. The
architecture is composed of reusable domain specific black box architecture patterns and
extensible domain specific white box architecture patterns. The architecture is extensible, allowing
it to evolve after it has been deployed. As part of our current research into reusable and
extensible software architectures, we are developing an object-oriented UML [15] based analysis
and design method for distributed product line architectures composed of use cases [16] mapped
to distributed architecture patterns.

8. Acknowledgements

The authors gratefully acknowledge several valuable discussions with J. Kramer and J. Magee on
using Regis for this research. This research was supported in part by NASA Goddard Space
Flight Center, the Virginia Center of Innovative Technology, and DARPA.

9. References

 [1] Gamma E., Helm, R., Johnson R., and Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.
[2] Gomaa H., "A Reuse-oriented Approach for Structuring and Configuring Distributed
Applications", Software Engineering Journal, March 1993.
[3] Gomaa H., "Reusable Software Requirements and Architectures for Families of Systems",
Journal of Systems and Software, April 1995.
[4] Gomaa H., et. al. "A Knowledge-Based Software Engineering Environment for Reusable
Software Requirements and Architectures," J. Automated Software Engineering, Vol. 3, Nos. 3/4,
August 1996.

[5] Gomaa H. and Farrukh, G.A., “An Approach for Configuring Distributed Applications
from Reusable Architectures, Proc. IEEE International Conference on Engineering of Complex
Computer Systems, Montreal, Canada, Oct. 1996, pp. 442-449.
[6] Gomaa H. and Farrukh, G.A., “Automated Configuration of Distributed Applications from
Reusable Software Architectures”, Proceedings IEEE International Conference on Automated
Software Engineering, Lake Tahoe, November 1997.
[7] Gomaa H. and Farrukh, G.A., “Composition of Software Architectures from Reusable
Architecture Patterns”, Proc. IEEE Internatl. Software Architecture Workshop, Orlando, October
1998.
[8] Johnson, R.E., “Frameworks = (Components+Patterns)”, CACM, Vol. 40, No. 10,
October 1997, pp. 39-42.
[9] Kang K.C. et. al., "Feature-Oriented Domain Analysis", Technical Report No. CMU/SEI-
90-TR-21,
Software Engineering Institute, November 1990.
[10] Kramer,J., Magee, J., Sloman, M., and Dulay, N., "Configuring Object-based Distributed
Programs in REX", Software Engineering Journal, March 1992.
[11] Magee, J., Dulay, N., and Kramer, J., “Structuring parallel and distributed programs,”
Software Engineering Journal, March 1993, pp. 73-82.
[12] Magee, J., Dulay, N., and Kramer, J., "Regis: A Constructive Development Environment
for Parallel and Distributed Programs", J. Distributed Systems Engineering, 1994, pp. 304-312.
[13] Parnas, D., "Designing Software for Ease of Extension and Contraction", IEEE
Transactions on Software Engineering, March 1979.
[14] Shaw, M. and Garlan, D., Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.
[15] Fowler, M. and Scott, K., "UML Distilled", Addison Wesley, Reading MA, 1997.
[16] Jacobson, I., Object-Oriented Software Engineering, Addison Wesley, Reading, MA,
1992.
[17] Mowbray T. and W. Ruh, “Insider CORBA – Distributed Object Standards and
Applications”, Addison Wesley, Reading MA, 1997.
[18] Magee, J. and Kramer, J., “Dynamic Structure in Software Architecture”, Proceedings
ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM Software
Engineering Notes, Vol. 21, No. 6, Nov. 1996.

Challenges for Distributed Event Services:
Scalability vs. Expressiveness

Antonio Carzaniga† David S. Rosenblum‡ Alexander L. Wolf†

†Dept. of Computer Science
University of Colorado

Boulder, CO 80309, USA
{carzanig,alw}@cs.colorado.edu

‡Dept. of Info. and Computer Science
University of California

Irvine, CA 92697-3425, USA
dsr@ics.uci.edu

1 Introduction

The event-based style is a very promising approach for the development and integration of distributed ob-
jects. An event notification service (or event service) is the glue that ties together distributed components in an
event-based architecture. An event service implements what is commonly known as the publish/subscribe
protocol: components publish events to inform other components of a change in their internal state or to
request services from other components; the event service registers the interest of components expressed
by means of subscriptions and consequently dispatches event notifications. In practice, the event service
mediates and facilitates the interaction among applications by filtering, aggregating, and delivering events
on their behalf. Because of this decoupling, an event service is particularly suitable for supporting hetero-
geneous distributed objects.

The functionality of an event service is characterized by two conflicting requirements: scalability and
expressiveness. Scalability means that the service must be available over a wide-area network populated
by numerous components each one producing and consuming many events. Expressiveness demands a
rich subscription language that gives applications a flexible and fine-grained selection mechanism to describe
precisely those events or combinations of events in which they are interested.

This tension between scalability and expressiveness is evident in all the recently proposed technologies.
The ones that provide an event service facility (e.g., the CORBA Event Service [4], the JavaTM Distributed
Event Specification [8], iBus [7], JEDI [2], Keryx [10], Elvin [6], and TIBCO’s TIB/RendezvousTM [9]), as well
as other, more mature technologies not explicitly targeted at this problem domain (e.g., the USENET news
infrastructure and IP multicast), represent potential or partial solutions. One problem with some of these
technologies (CORBA, Java Events, iBus, USENET News, and IP multicast) is that they offer only a limited
selection capability, typically based on a predefined set of “channels” or equivalent multicast addresses,
that greatly reduces their potential use as a generic event service. On the other hand, the systems that offer
a better data model and better event filtering adopt either a classical centralized architecture (Elvin) or a
simple extension of the centralized architecture in which the distributed components are connected in a
hierarchical structure (JEDI, Keryx and TIB/Rendezvous). While this latter approach is relatively simple
and effective in many cases, we argue that it has some fundamental shortcomings when scaling up to wide-
area networks. In particular, it introduces unnecessary message traffic, it overloads higher nodes in the
hierarchy, and it has a single point of failure in every node.

We believe that the successful integration of distributed objects by means of events depends on both
the scalability and the expressiveness of the event service. Here we propose a research approach to this
problem that we pursued with our SIENA project [1, 5]. In particular, we focus on how to realize scalable
true content-based routing of events over a distributed event service with a generic topology.

1

2 Conceptual model for a Distributed Event Service

2.1 Event Model and Subscription Language

Events are represented by a data structure that we call a notification. The data model or the encoding
schema of notifications is what we call an event notification model or simply event model. The event model
defines what information can be communicated by means of events, or at least how that information must
be encoded. Most of the existing event-based systems adopt a record-like structure for notifications, while
others allow more sophisticated modeling by exploiting features akin to an object-oriented language.

Tightly related to the event model is the subscription language that defines the form of the selection ex-
pressions submitted with subscriptions. Two aspects of the subscription language are crucial to the expres-
siveness of an event service:

• the scope of the selection predicates: the part of the event model that is visible within subscription
expressions. In some cases, events have an articulated structure that allows the encoding of much
information, but only a limited and/or simple part of that structure can be used as a selection criteria
in subscriptions.

• the expressiveness of the selection predicates: determines the sophistication of subscriptions. In prac-
tice, a subscription language is expressive if it has various basic selection predicates and the ability to
combine predicates for the selection of one single event at a time as well as for grouping events into
higher-level abstractions.

In terms of scope, most existing technologies limit the selection to a single well known element of a notifi-
cation usually called a “channel” or “subject”. A few systems allow filtering based on the content of the
whole notification. In terms of expressiveness, the simplest models allow a single equality test (channel),
while the most sophisticated ones allow for other predicates and conjunctions of predicates.

scope of subscriptions
one field

(not structured)
multiple fields
(structured)

ex
pr

es
si

ve
ne

ss simple
equality channel-based simple

content-based
other predicates
and expressions subject-based content-based

multiple
events

subject-based
+ patterns

content-based
+ patterns

Table 1: Classes of Subscription Languages.

Table 1 gives a classification of subscription languages. Note that the difference between “content-
based” and “subject-based” is that a channel allows only a straight equality test (e.g., channel = X) whereas
the subject subsumes richer predicates like wild-card string matching (e.g., subject=“A∗B”). In both cases,
the filter applies to one single (unstructured) element.

2.2 Architecture of an event service

Usually, an event service is realized with one or more components called event servers (or brokers or dis-
patchers). The implementation of an event server can be anything from a library to an operating system
service to a separate process on the same host or on a remote host. At this point we are not interested in
distinguishing these cases. The architecture of an event service is determined by the number of servers, by
the topology of connections among them, and by the kind of server-to-server communication protocol. By
“communication protocol”, we refer to the type and amount of information that event servers exchange.
This protocol is obviously implemented on top of some communication mechanism that could range from

2

shared memory to application-level network protocols such as SMTP or HTTP. At this level, standard en-
coding and/or tunneling techniques can be used, so we do not discuss the details here.

Most existing technologies that have a distributed architecture adopt a hierarchical topology to connect
their servers. In this topology every server may be connected as a common client to a “master” server.
The protocol that connects two servers is thus the same one that connects clients and servers. So, except
for notifications, which can flow from servers to clients and from servers to other lower-level servers, any
other information may flow upward in the hierarchy.

Other technologies, such as IP multicast, have an underlying peer-to-peer network with a generic to-
pology. In this architecture, two connected routers (event servers) exchange routing information (subscrip-
tions) and data (notifications) as peers in both directions.

2.3 Classification Framework

We can use the subscription language, which determines expressiveness, and the architecture, which influ-
ences scalability, as our classification metrics. Values for the subscription language are: “channel”, “sub-
ject”, “content”, and “content + patterns”. For the architecture, we have the values “centralized”, “hierar-
chical”, and “generic peer-to-peer”. Table 2 positions several technologies that are related to event-based
infrastructures, including our system SIENA, with respect to these two metrics.

architecture

centralized hierarchical
generic

peer-to-peer

su
bs

cr
ip

ti
on

la
ng

ua
ge channel

CORBA, Java
Field CORBA, Java

IP multicast,
iBus

subject ToolTalk,
NNTP,

JEDI, TIBCO

content Elvin Keryx

content+patterns
Yeast, GEM,

active database SIENA

Table 2: Classification of Event-Based Infrastructures.

3 SIENA: Multicast Routing Revisited

3.1 Nature of the Event Service: A Routing Problem

In IP multicast [3], a datagram may be addressed to a host group—a “virtual” address that refers to a set
of “physical” addresses. Hosts can send a datagram with the usual IP send primitive. Hosts can also join
(or leave) a group at any time using the special control primitive JoinHostGroup (or LeaveHostGroup). The
job of multicast-enabled routers is to forward every incoming datagram to one or more of their neighbor
routers according to (1) destination (and source) address of the datagram and (2) the group membership
information, i.e., whether or not a group has members in one of the attached networks. In IP multicast, a
special group membership protocol disseminates group membership information among routers.

It is quite evident that, in a distributed event service, the task of an event dispatcher is substantially
equivalent to the one of a multicast router. Subscribing corresponds to joining a group and sending a
datagram corresponds to publishing an event. Notice how in a channel-based event service these operations
are exactly isomorphic. Depending on the type of event service, however, there might be some fundamental
differences.

3

3.2 A Fundamental Difference: Content-Based Addressing

In order to understand the new challenges of an event service, we must examine the routing problem in a
bit more detail. In very simplistic terms, routing a datagram D means computing the function next-hops =
r(destinationD, routing-info). Similarly, managing the routing information in response to a control request
C (e.g., a JoinHostGroup) is done by updating the routing table routing-info′ = c(groupC , hostC , routing-info),
possibly forwarding that information to other neighbor routers.

In the case of IP multicast, routing-info can be as simple as a table that associates next-hops (interfaces) to
group addresses. So, r(destinationD, routing-info) is simply a table lookup routing-info(destinationD). Group
membership maintenance is also easy because groupC is a key in the routing-info table, so when a host joins
a group groupC , either groupC is the routing table or it is not. In this latter case, the router propagates the
new membership information, while in the first case the propagation is stopped.

This simplification is possible thanks to the fact that, in IP multicast as well as in a channel-based
event service, there is a one-to-one mapping (in fact, the identity function) between destination addresses
(destinationD) and group addresses (groupC). In other words, a datagram/event is explicitly addressed to
one specific group/channel.

Content-based addressing is rather different. The correspondence between the “destination address” of
a notification, which is in fact its entire content, and a “group address”, determined by a subscription, is
not as simple to compute and, more importantly, it is not a one-to-one relation, since a notification might
well match more than one subscription and vice-versa. Similarly, when propagating new subscriptions
(membership information) in content-based addressing, we can no longer rely on the fact that a subscription
is a key in the subscriptions table since two different subscriptions might define partially overlapping sets
of notifications. In this case, it is crucial to be able to compare the new subscription against the old ones to
see if there exist one that covers the new one completely so that the new one will not need to be propagated.

3.3 The SIENA Event Service

In SIENA we combine a content-based subscription language with a distributed realization based on a
generic topology of servers.

The event model is a record-like structure consisting of a set of named attributes, similar to a struct
in C. A simple subscription is a conjunction of filters, each one specifying a condition for an attribute. For
example, stock = “DIS”, gain > 10, gain < 20 would select all the events having an attribute named “stock”
whose value is “DIS” and an attribute named “gain” whose value is between 10 and 20. SIENA is also
capable of observing compound events (or patterns), i.e., sequences of events. A compound subscription is
simply an expression whose elementary terms are simple subscriptions.

SIENA extends the well-known publish/subscribe protocol by introducing another primitive called ad-
vertise. An advertisement is a meta-publication in the sense that it announces the classes of events that an
object intends to publish. Advertisements are the dual of subscriptions in that subscriptions declare the
intention of receiving notifications, and thus they define the “destination address” of notifications in the
routing tables, while advertisements define the “source address” of notifications. Advertisements do not
just serve to make the interface complete and symmetrical. The information provided by advertisements
can be used to disseminate routing directions more efficiently, thus making the event service more scalable.

3.4 Content-Based Routing in SIENA

The routing of notifications in SIENA is based on a generalization of the correspondence between virtual
addresses as defined by notifications, subscriptions, and advertisements. We call these correspondences
covering relations.

A subscription covers a notification when its filter condition is satisfied by the notification. This relation
in SIENA embodies the semantics of subscriptions described above and thus involves the evaluation of a
conjunction of simple predicates. The covering relation between subscriptions and notifications is used in
the routing function. In particular, notifications are forwarded along the paths put in place by subscriptions.

A subscription x covers another subscription y when every notification that is covered by y is also
covered by x. This relation is used in propagating subscriptions to set up the appropriate routing infor-

4

mation. When a server receives a new subscription y it looks for a previously registered subscription x
that covers y. If such a subscription does not exist, the server propagates an equivalent subscription to
its neighbors thereby setting up a forwarding path for future notifications. The covering relation between
subscriptions is sensibly more complex than the covering between subscriptions and notifications since it
includes a universal quantifier over the set of notifications. However, because SIENA allows only a fixed
set of “well-behaved” operators (including the usual relational operators such as =, <, and ≤, plus some
simple wild-card string match operations), it is still quite efficient to compute.

Similar covering relations exist between advertisements and subscriptions, as well as between differ-
ent advertisements. These relations can be used as the basis for a dual routing strategy that floods the
network with advertisements and forwards subscriptions only along the paths set up by advertisements.
Propagating advertisements is also necessary to realize a distributed observation of patterns of events.

3.5 Trading Expressiveness for Scalability

As we have seen, the covering relations play a fundamental role in the observation and dispatching of
notifications. Many optimization strategies that can be applied to the dispatching algorithms rely on the
covering relations as well [1]. Note that since they are an essential part of any basic routing operation, their
relevance goes beyond the implementation of SIENA and extends to any event service.

For the sake of scalability it is therefore necessary that these relations be efficient to compute. On the
other hand, the features of the subscription language heavily affect the complexity of the covering relations.
As we have seen, in IP multicast they are reduced to equality tests between 32-bit numbers, while in SIENA
they entail the evaluation of simple predicates and simple first-order logic expressions.

It is easy to show that adding only a little more expressive power to the subscription language makes
some of the relations not computable at all. For example, if we allowed user-defined operators in subscrip-
tions, we would still be able to match notifications against subscriptions, but we would lose the ability to
reason about the implications among subscriptions. Thus, we would not be able to verify the covering
between subscriptions and, as a consequence, we would be forced to broadcast every new subscription.

4 Conclusions

We envision a wide-area event service as an effective platform for the integration of distributed heteroge-
neous objects. However, in the realization of such an infrastructure we see two major conflicting challenges,
namely scalability and expressiveness. The fact that these two are conflicting features is shown by a pattern
in current event-based technologies: some of them offer rich selection mechanisms, but with a centralized
architecture, while others adopt a more scalable distributed architecture, but they give scarce accuracy in
filtering events. We know of no event service besides SIENA that features a scalable architecture and a
fine-grained selection and aggregation mechanism.

By analyzing the functionality of an event service and by comparing it to the well-known problem
of routing, we found that the trade off between scalability and expressiveness is not really specific to any
implementation, but rather it is intrinsic to the problem domain. In this paper we also sketched some design
solutions that we adopted for SIENA. In particular, we have formulated an event service that combines an
expressive API with a generic distributed architecture. The dispatching algorithms that implement the
SIENA event service are based on the generalization provided by our analysis.

Acknowledgments

We would like to thank Gianpaolo Cugola, Elisabetta Di Nitto, Alfonso Fuggetta, Richard Hall, Dennis
Heimbigner, and André van der Hoek for their considerable contributions in discussing and shaping many
of the ideas presented in this paper.

5

References

[1] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area Networks. PhD thesis,
Politecnico di Milano, Milano, Italy, Dec. 1998.

[2] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop complex
distributed systems. In Proceedings of the 20th International Conference on Software Engineering (ICSE ’98),
Kyoto, Japan, Apr. 1998.

[3] S. E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford University, Dec. 1991.

[4] Object Management Group. CORBAservices: Common object service specification. Technical report,
Object Management Group, July 1998.

[5] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation and notifi-
cation. In Proceedings of the Sixth European Software Engineering Conference, Zurich, Switzerland, Sept.
1997. Springer–Verlag.

[6] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
quenching. In Proceedings of AUUG97, Brisbane, Queensland, Australia, Sept. 3–5 1997.

[7] SoftWired AG, Zurich, Switzerland. iBus Programmer’s Manual, Nov. 1998.
http://www.softwired.ch/ibus.htm.

[8] Sun Microsystems, Inc., Mountain View CA, U.S.A. Java Distributed Event Specification, 1998.

[9] TIBCO Inc. Rendezvous information bus.
http://www.rv.tibco.com/rvwhitepaper.html, 1996.

[10] M. Wray and R. Hawkes. Distributed virtual environments and VRML: an event-based architecture.
In Proceedings of the Seventh International WWW Conference (WWW7), Brisbane, Australia, 1998.

6

On the Role of Style in Selecting
Middleware and Underwear

Elisabetta Di Nitto David S. Rosenblum

CEFRIEL � Politecnico di Milano
Via Fucini, 2

20133 Milano, Italy
dinitto@elet.polimi.it

University of California, Irvine
 Dept. of Information & Computer Science

Irvine, CA 92697-3425 USA
dsr@ics.uci.edu

Abstract

Middleware infrastructures are becoming a pervasive part of many distributed
software systems. Wileden and Kaplan argue that middleware, like underwear,
should not be the center of attention but should instead be kept hidden from
public view, and it should never constrain or dictate what is publicly visible.
These are admirable goals, yet the architects of distributed software systems
must nevertheless recognize and account for the intimate relationship between
middleware and the systems that use them. In particular, it is useful to view
middleware infrastructures as inducing architectural styles, in the sense that
they embody structural and behavioral constraints imposed on the systems that
use them. Defining these styles and identifying the important relationships
between them will allow architects to exploit the styles in a way that helps them
defer as long as possible those architectural decisions that limit middleware
choices, and to develop architectures that can accommodate the widest range of
middleware. Otherwise, unattractive middleware choices may creep up on an
architect in an annoying way.

1 Introduction
Software developers are beginning to make extensive use of middleware infrastructures to
facilitate component interoperability in large-scale distributed systems. There is an increasingly
large number of middleware infrastructures from which to choose, including systems based on
middleware standards such as CORBA [6] and Enterprise JavaBeans [7]; proprietary commercial
middleware products such as TIBCO�s TIB®/RendezvousTM publish/subscribe software and
Talarian�s SmartSockets® middleware; and research systems such as JEDI [3] and SIENA [2].
The fact that middleware plays a key role in facilitating interoperability means that it ends up
being a critical and pervasive element of any system it supports, fundamentally affecting the
architecture, implementation and evolution of the system.

Wileden and Kaplan recently argued that middleware should be treated like underwear [8].
In brief, they said that middleware, like underwear, should not be the center of attention but
should instead be kept hidden from public view, and it should never constrain or dictate what is
publicly visible. We agree that this is an admirable ideal to strive for, yet as a practical matter
one cannot deny the existence of an intimate relationship between middleware and the systems
that use them. Middleware, like underwear, must be well matched to the things that clothe it. A
particular middleware, like a particular item of underwear, has certain properties, imposes certain

constraints, and achieves certain effects that make it well-suited for some situations and ill-suited
for others. Indeed, Wileden and Kaplan note that

[N]o one style can be expected to meet all needs. Just as football uniforms and
tuxedos are best worn with different styles of underwear, different software
applications have different middleware needs [8].

We note further that while the football player must make his or her underwear choices before
suiting up, middleware is often not the first item selected to outfit a software system. Other
application elements and properties may be decided upon first, with the choice of middleware
postponed to the final stages of implementation development. There are numerous sound
engineering reasons for postponing middleware decisions, such as maintaining a high level of
abstraction and a separation of concerns in early stages of design. But there is no guarantee that
an arbitrarily chosen middleware will be tailor-made for the system and will be slipped on with
ease. Even if the middleware is selected at the outset of a project (perhaps for economic reasons,
or to maintain compatibility with an existing system), the architecture must develop in a way that
allows it to tastefully accommodate the middleware.

There arises then a tension between the architectural properties and constraints of an
application under development and the properties and constraints of the middleware that will be
selected for the application. In other words, a middleware induces a particular architectural style
in the systems that use it, imposing a variety of structural constraints on the configuration of
system components and behavioral constraints on the interactions that take place through the
middleware. As more and more decisions are explicitly made about the architecture of a system,
more and more choices are implicitly made about the middleware that will be selected.

We have begun studying the notion of middleware-induced architectural styles and the ways
in which they can be defined and exploited in distributed system development [4]. In this paper
we discuss some of the issues we are addressing in our work.

2 An Example: A Pipe-and-Filter Application
The following example shows how the design of an architecture can conflict with the selection of
a specific middleware. The architecture that we consider is shown in Figure 1 and is an
instantiation of the pipe-and-filter style as it is defined in [1]. The first component of the
architecture, the Source, generates some data and sends them to Filter 1. Pipe 1 is in charge of
managing the communication between the two. Both Filter 1 and Filter 2 receive data from the
component on their left, perform some computation and produce new data that is forwarded to the
component on the right through the connecting pipe. Finally, the Sink consumes the data received
from Filter 2. There are several variations of the pipe and filter style that concern the
communication mode between components. In particular, components can produce output data
incrementally or all at once. Moreover, the communication can proceed according to a pull
model, in which the producer always initiates communication, or a push model, in which the
consumer always initiates it.

Source Filter 1Pipe 1 Filter 2Pipe 2 SinkPipe 3

Figure 1. A pipe and filter architecture.

To demonstrate that the choice of the middleware infrastructure is not independent of the
architecture of the system to be implemented, let us compare the implementation we would obtain
if we used CORBA as middleware to the implementation we would obtain if we used JEDI.
CORBA provides the mechanisms to support point to point communication through remote
method invocation. Its main component, the ORB, allows the elements of a system to abstract
from the physical location of their counterparts. JEDI is an event-based middleware developed
according to the publish/subscribe approach. Components can publish events, and they can
subscribe for patterns of events and receive all the events that match their patterns, independently
of the source that has published them. An event dispatcher is in charge of managing the
dispatching of published events.

By using CORBA, the architecture in Figure 1 is implemented by defining as CORBA
objects the Source, the two filters, and the Sink. The pipes are simply implemented as remote
method invocations between objects. If we use a push communication model between
components, the Source acts as the initiator of a computation by invoking a method PushData
provided by Filter 1. In turn, Filter 1 invokes the method PushData provided by Filter 2, which,
finally, invokes the method PushData provided by the Sink. In this case, therefore, Filter 1, Filter
2, and Sink act as CORBA servers, and they define an IDL interface containing the method
PushData.

If components communicate according to a pull model, the structure of the system is fairly
similar. The difference is that the CORBA servers in this case are the Source and the two Filters
while the Sink acts as a client.1 The IDL interface provided by the CORBA servers consists of the
method PullData.

Notice that since in both cases all the components that act as CORBA servers share the same
interface, the system can be easily reconfigured. The actual attachments between components can
be defined when the system is started by passing as a parameter to each component the name of
the next component.

Let us try to implement the same architecture using JEDI. As in the CORBA case, the two
filters, the Source, and the Sink are implemented as JEDI components. The JEDI event dispatcher
acts as a pipe between components. The data transmitted between two components are
encapsulated in events, and each component must subscribe to the events carrying the data in
which it is interested. Figure 2 depicts a UML collaboration diagram representing an interaction
scenario between Filter 1 and Filter 2. As shown in the figure, the choice of JEDI as a
middleware infrastructure completely transforms the topology of the architecture of Figure 1.
Indeed, if we look at the details of the way the communication is managed, the difference
becomes even more evident. In this scenario we assume a pull model of communication, and we
focus on the interaction that occurs between the two filters when Filter 2 decides to pull data from
Filter 1. Filter 2 simulates a data request by generating the event ReadyToGetData and by
subscribing to the event Data that will carry the data produced by Filter 1 (see Figure 2).
However, Filter 1 must subscribe to the event ReadyToGetData before Filter 2 generates it. Since
the event-based communication is one way, the relationship between events ReadyToGetData and
Data is not managed explicitly by the infrastructure, but instead must be managed directly by the
components. This places many additional requirements and constraints on the components that
were not reflected in the initial choice of pipe-and-filter for the system�s architectural style.

In summary, the implementation of the pipe-and-filter architecture in CORBA is
straightforward, since CORBA provides direct support for the characteristics of point-to-point

1 In both the push case and the pull case, Filter 1 and Filter 2 act as both client and server.

and synchronous communication underlying the style itself. If more complex pipes are needed
(e.g., buffered pipes), they would also be defined as CORBA objects and inserted into the chain
of inter-object method invocations. The implementation in JEDI, however, requires the
architecture to be modified to the point where it no longer resembles a pipe-and-filter
architecture. Indeed, the components interact only with the Event Dispatcher, and they must
carefully manage synchronization issues in order to simulate the effect of pipe-and-filter style
interaction.

In other words, CORBA induces an architectural style that is compatible with the explicitly
chosen pipe-and-filter style, while JEDI induces an architectural style that is incompatible (or
difficult to reconcile with) the pipe-and-filter style.

3 Defining and Exploiting Middleware-Induced
Styles

As shown in the previous section, because of the pervasiveness of middleware, every explicit
decision made in developing the architecture of a system potentially introduces, at least in the
case we considered, an implicit decision about the middleware that will be used to implement the
architecture. As the structural and behavioral aspects of the architecture become defined, the
range of middleware choices becomes increasingly limited. How then should the effects of such
decisions be made known to the architect? We believe that decisions must be guided by
knowledge about the different architectural styles induced by different middleware:

• Middleware-induced styles should be explicitly defined and made available to the
community of software designers. These styles, in fact, would provide a valuable help in
the definition of the architecture of a system, so that the architecture can be easily
implemented with a selected middleware infrastructure.

Filter 1 Filter 2

Event Dispatcher

1: Subscribe
ReadyToGetData(Filter 2)

4: Publish
Data(Filter 2, actual data)

3: Publish
ReadyToGetData(Filter 2)

2: Subscribe Data(Filter 2, *)

Source Sink

Figure 2. Implementation of the pipe and filter architecture using JEDI.

• Middleware-induced styles should also be related to the middleware-independent
architectural styles that have been defined so far in the software architecture
community [1]. We envisage the definition of a style map, where one or several style
specialization hierarchies are defined. For instance, one specialization hierarchy could be
rooted by a middleware-independent event-based style and could contain all the styles
induced by specific event-based middlewares. Definition of an architecture would begin
with the style at the root of one of these hierarchies. As architectural decisions are made,
the architect would gradually transit the hierarchy toward the leaves. An important
design guideline would be to defer making transitions in the hierarchy as long as
possible, and to remain as close to the root of the hierarchy as possible, so as to offer the
widest possible choice at the time the middleware is to be selected. With such
hierarchies, one could determine how significant a design decision is in terms of the
effect it has on limiting middleware choices. For instance, it might turn out that selecting
between synchronous and asynchronous interaction places greater limitations on
middleware choices than selecting between topologies that separate components
structurally and those that separate components through data subtyping.

• The styles and style map should be formally described in an architecture description
language (ADL) [5]. ADLs are being conceived as languages for specifying architectures
and architectural styles. The formal definition of middleware-induced styles in a suitable
ADL could provide substantial advantages to the architect. In particular, the architect
could exploit the features of the ADL to define an architectural model as an instance of a
particular style. The architect could then formally check the model for consistency with
the properties of the style as the model is refined toward an implementation.

 In a recent paper we evaluated a number of architecture description languages (ADLs) on
their ability to support the definition and exploitation of middleware-induced
architectural styles [4]. We found that no one ADL provides all the necessary
capabilities and features, and hence new ADLs are needed that can support middleware-
based architectural development. Hence, new ADLs are needed to support development
of systems according to our vision of middleware-induced styles.

4 Conclusion
In this paper we have discussed the pervasive nature of middleware infrastructures and the
architectural styles they induce in software systems. We have also touched upon a number of
issues we are exploring in our study of middleware-induced styles.

Wileden and Kaplan argued that middleware should never constrain or dictate the
architecture of a system, just as underwear should never constrain or dictate the rest of one�s
clothing. We feel that it is nevertheless useful to provide ways of informing architects about the
consequences of their design decisions with respect to middleware choices, without restricting
their freedom of movement. In this way it may be possible to avoid having unattractive choices
of middleware creep up on an architect in an annoying way.

Acknowledgments
Authors would like to thank Professor Alfonso Fuggetta for his useful comments and suggestions
on the issues discussed in this paper and Fabio Lomazzi and Laura Sfardini who have been
working at the implementation of the pipe and filter architecture we have used as example.

This effort was sponsored by the Defense Advanced Research Projects Agency, and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-
97-2-0021; by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-98-1-0061; and by the National Science Foundation under grant
number CCR-9701973. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Air Force Research Laboratory, Air Force Office of
Scientific Research or the U.S. Government.

References
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Reading, MA: Addison

Wesley, 1998.

[2] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, �Design of a Scalable Event Notification Service:
Interface and Architecture�, Department of Computer Science, University of Colorado at Boulder,
Boulder, CO, Technical Report CU-CS-863-98, September 1998.

[3] G. Cugola, E. Di Nitto, and A. Fuggetta, �Exploiting an Event-Based Infrastructure to Develop
Complex Distributed Systems�, Proc. 20th International Conference on Software Engineering ,
Kyoto, Japan, pp. 261�270, April 1998.

[4] E. Di Nitto and D.S. Rosenblum, �Exploiting ADLs to Specify Architectural Styles Induced by
Middleware Infrastructures�, Proc. 21st International Conference on Software Engineering, Los
Angeles, CA, May 1999.

[5] N. Medvidovic and R.N. Taylor, �A Framework for Classifying and Comparing Architecture
Description Languages�, Proc. 6th European Software Engineering Conference/5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Zurich, Switzerland, pp. 60�
76, September 1997.

[6] J. Siegel, CORBA Fundamentals and Programming. New York, NY: Wiley, 1996.

[7] A. Thomas, �Enterprise JavaBeansTM Technology: Server Component Model for the JavaTM

Platform�, Patricia Seybold Group, Boston, MA, white paper prepared for Sun Microsystems, Inc.
December 1998.

[8] J.C. Wileden and A. Kaplan, �Middleware as Underwear: Toward a More Mature Approach to
Compositional Software Development�, Digest of the OMG-DARPA-MCC Workshop on
Compositional Software Architectures, Monterey, CA, January 1998.

View Programming: Towards a Framework for
Decentralized Development and Execution of OO Programs

Hafedh Mili, Ali Mili*, Joumana Dargham, Omar Cherkaoui, and Robert Godin
Département d’Informatique

Université du Québec à Montréal
Case Postale 8888, Station Centre-Ville

Montréal, Québec H3C 3P8, Canada
*Institute for Software Research

1000 Technology Drive, Suite 1000
Fairmont, WV 26554, USA

{Hafedh.Mili@,dargham@larc.info,Omar.Cherkaoui@}uqam.ca
amili@cs.wvu.edu

Abstract
There has been a lot of interest recently in the problem of building object-oriented
applications by somehow combining other application fragments that provide
their own overlapping definitions or expectations of the same domain objects. We
propose an approach based on the split objects model of prototype languages
whereby an application object is represented by a varying set of instances-- called
views-- that implement different parts of its domain behavior but that delegate its
core functionalities to a core instance: an object’s response to a message depends
on the views currently attached to its core instance. Our approach is not purely
prototype-based in the sense that core instances and views are members of classes.
Further, we recognize that the behavior inherent in views (classes) is often an
adaptation of a generic behavior to the domain object at hand, and define view-
points as parameterized class-like algebraic structures to embody such a generic
behavior. In this paper, we first describe view programming from the perspective
of the developer. Next, we sketch a semi-formal model of view programming, and
describe the steps needed to implement it in a class-based statically typed lan-
guage, for instance, C++. Third, we look at the challenges and opportunities pro-
vided by view programming to support safe, robust, and efficient distributed
applications.

1. Introduction
As object-oriented systems scale-up from desktop applications to enterprise-wide information
systems, developers are faced with the problem of supporting a myriad of functional areas within
the same object model. While the objects manipulated may refer to the same real-world objects,
each functional area may have its own data requirements, nomenclature, and classification. Tradi-
tionally, this problem has been handled in information modeling by modeling the data required by
the functional areas separately, normalizing them, integrating them into a unique complete model,
and re-deriving the partial views needed by the functional areas from that model (see e.g. [Ull-
man 82]). Notwithstanding the difficulties inherent in programming and manipulating objects
through separate data views, this process works best in the context of a centralized and pre-
planned development activity. In practice, centralized and pre-planned development are neither

practical, nor always possible, and may not even be desirable.

The concept of views in OOP was first introduced by Shilling and Sweeny [Shilling & Sweeny,
1989] as a filter of a global interface of the class, but the views are not separable or separately
reusable (see also [Marcailloux et al., 1994]). Harrison and Ossher proposed subject-oriented
programming as a way to build integrated “multiple view” applications by composing application
fragments, called subjects, which represent compilable and possibly executable functional slices
[Harrison & Ossher, 1993]. In principle, independently developed programs/subjects can be com-
posed a-posteriori, making it possible to decentralize ownership and development of OO applica-
tions. In practice, the code of subjects must adhere to specific programming guidelines to make
subjects composable [Ossher et al., 1995]. Further, subjects cannot be composed dynamically.

In our approach, an application object consists of a core object, to which we can add and remove
functional slices, or views, reflecting the changing roles of the object during its lifetime. The set
of views “attached” to an object determine the messages to which it can respond, and the way it
responds to them. We introduce the concept of viewpoint as a generic template that is mapped to
domain objects to yield views. Viewpoints abstract functional behavior in a domain-independent
way, and are developed independently of the classes to which they apply. This supports the
decentralized development of integrated OO applications, and removes many of the visibility and
ownership dependencies that create development bottlenecks and that reduce the reusability of
the resulting applications. Further, to the extent that views embody different functional areas,
there is every expectation that the underlying data reside, and/or be owned, in different sites, and
the aggregation inherent in view programming appears to provide a reasonable boundary with
regard to data distribution. Such a naive scheme would probably be inefficient because of the
high traffic between the core object and views, and we show various optimizations that can help
reduce the overhead.

In the next section, we present view programming scenarios, and introduce some of the basic
structural and behavioral mechanisms. A formal model of viewpoints, views, and viewable
objects is introduced in section 3. In particular, we discuss a number of issues related to typing,
and briefly describe a tool set aimed at supporting view programming in C++. We discuss distri-
bution issues in section 4, and conclude in section 5 by highlighting directions for future research.

2. Programming with views

2.1 Basics
Typically, we assume that each object of the application domain supports a set of core functional-
ities that are made available, directly or indirectly, to all the users of the object, and a set of inter-
faces that are specific to particular uses, and which may be added or removed during run-time.
The interfaces may correspond to different types of users with similar functional interests or to
different users with different functional interests. We would like client programs to be able to
access several functional areas or views simultaneously, provided that the views are not mutually
exclusive. We would also like to have a consistent and unencumbered protocol to address objects
that support several views simultaneously. Existing approaches to view programming do not sup-

port the run-time addition and removal of functional views; all of the views that a user (program-
mer) might wish to address are «declared»/attached at compile time.

Figure 1 shows an aggregation/delegation-based implementation of this idea. The core object
includes two state variables, and supports two operations. The view objects, which point to the
core object, may add state (view 1 and view 2), behavior (all three), or simply redirect existing
behavior (all three). In this case, upon invoking the operation f() on view 1, the request is for-
warded to the core object, and the operation f() is executed in the context of the core object. The
same is true for references to the shared state variables (‘a’ for view 2, and ‘b’ for view 3). Practi-
cally, there will be a single copy of such variables, stored in the core object, and read/write
requests will be forwarded to the core object. Our approach to sharing state variables is consistent
with delegation, but our approach to behavior sharing (methods) is different from the typical del-
egation or prototype-based approaches where the operation in the object being delegated to is
executed in the context of the delegator [Malenfant,1995]. In our case, we have a purely forward-
ing mechanism.

2.3 Lifecycle behavior
We look at three aspects of an object’s manipulation: 1) object creation, 2) view attachment and
removal, and 3) behavior invocation on objects. We will distinguish between two kinds of situa-
tions, (i) the case where we use a single view on an object, and (ii) the case where several views
are used simultaneously. This distinction is important because we want single-view programming
to “reduce” to regular programming, with no overhead for the developer. We illustrate our
approach using an example in C++ to identify the issues that will have to be addressed in the con-
text of a statically typed language such as C++.

We consider a merchandising organization that manages a fleet of trucks. The finance department
views trucks as assets which are amortizable over a certain period of time. The operations depart-
ment, which operates merchandise deliveries, views trucks as allocatable time-exclusive
resources. It also views them as machinery that requires parts, scheduled maintenance, and inci-
dental repairs. Let Truck be the interface of the core object (see Figure 2). We will refer the
financial, operations, and maintenance views as FTruck , OTruck , and MTruck , with the C++-
like interfaces (see Figure 2 for FTruck). These interfaces show one way of implementing behav-
ior forwarding, whereby each view points to the core object (data member _truck in classes
FTruck, OTruck, and MTruck). Similarly, the core objects refers to the active views through a col-
lection instance variable called _views.

2.3.1 Object creation

The lifetime of an application object is bounded by that of its core instance; the lifetimes of the
views are included within those bounds. For the case of single view programming, the developer
need only see the definition of the view class, and should be able to create instances of the appli-
cation object through the view. The following excerpts illustrate what we mean:

(0) #include <ftruck.h>
(1) FTruck* anFtruck = new FTruck(123);

The line (0) includes the file that contains the definition of the view class (FTruck). In line (1),

we “bring about” the application object with Id 123, and that supports the functionalities of
FTruck . The idea here is that, behind the scenes, if an instance of Truck with Id 123 existed
already, either in persistent storage, over the network, or in main memory, then ‘anFtruck’ is
attached to it, and is used to access it functionalities; if no such instance of Truck existed, then
one is created. This behavior can be obtained if we make sure that all view classes have a one
argument constructor that calls some sort of a “core object broker”.

For the case of multiple views, developers are aware of both the core object class and of the view
classes, and they have to instantiate the core object explicitly, and ‘construct’ view instances for
that core instance. This is illustrated in the following code excerpts:

(0) #include <truck.h>
(1) #include <ftruck.h>
(2) #include <otruck.h>
(3) #include <mtruck.h>
(4) Truck* myTruck = new Truck(id);
(5) FTruck* myFTruck = new FTruck(myTruck);

In this case, we include the core class as well as the view classes. Line (5) shows a way of attach-
ing a view to a core instance using the one argument constructor. View attachment and detach-
ment is discussed below.

2.3.2 View attachment and removal

For the case of single view programming, view creation and attachment is indistinguishable from
“object creation” since the same operation does both. With several views, view creation is a sepa-
rate operation. Our intent is to make the behavior embodied in a view available to the core object
as long as the view is attached, but also to be able to switch that behavior on and off during the
lifetime of the object. Because views may maintain independent state variables, we distinguish
between view creation and attachment, on one hand, and view activation on the other, and
between view desactivation, on one hand, and view detachment and removal on the other. Within
a given application, we might have several requests to create a view of a particular object; a single

a: int;
b: float;
f(x: int): int;
g(y:float): int;

Core object

c: int;
f(x: int): int;
h(y:float): int;

View 1

b: float;
k(x: int): float
g(y:float): int;

View 3

d: float;

j(x: int): int;
g(y:float): int;

View 2

i(z: char): bool;

f()

g(), d

g(), b

a: int;

Figure 1. A model of objects with views.

view should be created, independently of the number of requests to create such a view, where the
first request creates the view, and the subsequent ones return the existing view.

Figure 2. The core class and financial view of a truck.

2.3.3 Behavior invocation

With single view programming, developers see only the interface of the view class, and all the
behavior in that interface is available. Behind the scenes, some of the methods that are “callable”
from the view are actually delegated to the core object. For example, “getSerialNumber()” is
available in the FTruck interface, but its implementation forwards to Truck:: getSerialNumber().
When we have several views, messages are sent primarily to the core object. If one of the views
that are currently attached supports the requested behavior, the request is satisfied. Otherwise, the
request is denied. In a reflective language such as Smalltalk, this behavior can be accomplished
by modifying the dispatching mechanism [Mili & Dargham, 1997]. In a typed and (mostly) stati-
cally bound language such as C++, this behavior can be obtained by performing the appropriate
compile-time code transformations. Consider the following program excerpts.

#include <truck.h>

class Truck:... {
public:

...
SNumType

getSerialNumber();

MakeType getMake();
Year getModelYear();
Date getPurchaseDate();
float getLoad();
static Truck* getTruck-

WithId(IdType anId);
protected:

void setSerialNumber(
SNumType);

void setMake(MakeType);
...

private:
IdType _id;
List<View> _views;
static Dict<IdType,Truck>

 _registeredTrucks;
...

}
// The core class

class FTruck {
public:

FTruck(IdType anId);
...
SNumType

getSerialNumber();
Date getPurchaseDate();
float getResidualValue();
static float

getAmortPeriod();
static float

getAmortRate();
float getActPurchVal();

protected:
void setActPurchVal(float);

private:
Truck* _truck;
float _actPurchaseValue;
float _purchaseValue;
....

}
// The financial view

#include <ftruck.h>
#include <otruck.h>
#include <mtruck.h>

(1) Truck* myTruck = new Truck(id);
(2) FTruck* myFTruck = new FTruck(myTruck);
(3) OTruck* myOTruck = new MTRuck(myTruck);
(4) Date t0 = myTruck->getDateNextMaintenance();
(5) myTruck->releaseOn(t3);

In line (4) the programmer invoked a behavior that is available in the MTruck view on the
instance of Truck, without referring explicitly to the view instance. The underlying mechanism is
a pre-processor that replaces line (4) with the following line:

(4’) Date t0 = myTruck->getView(‘MTruck’)->getDateNextMaintenance();
because it knows that ‘getDateNextMaintenance()’ is available in the view class MTruck [Mili &
Dargham, 1997], but it does not know for sure that at the time that the call is made, an MTruck
view is attached and active1, and we cannot sort this out at compilation time.

Assume now that the method ‘releaseOn(Date)’ (see line (5)) is supported by the operations view
(OTruck) and the maintenance view (MTruck). We adopted the approach advocated by Harrison
& Ossher [Harrison & Ossher, 1993] which consists of composing the various method implemen-
tations. Our approach relies on a universal composition view which is automatically generated to
contain default implementations for the all the multiply defined methods:

class __Truck_CompositionView {
public: ...

void releaseOn(Date t){
_truck->getView(‘OTruck’)->releaseOn(t);
_truck->getView(‘MTruck’)->releaseOn(t);}

...
Developers can edit it to conform it to their intent (see e.g. [Ossher et al., 1995]); the actual
mechanics of composition views are slightly more complex [Mili & Dargham, 1997].

By using a code rewriting approach, we strove towards making view programming as natural and
transparent as possible. There are, however, some implicit assumptions that developers usually
make when dealing with a class hierarchy, that would be violated because of delegation [Mili &
Dargham, 1997]. In terms of visibility and access properties, it is useful to think of the relation-
ship between a view and a class as the private subclass relationship in C++2 where one has to
think explicitly of what to export through the subclass relationship. The distinction between the
core class hierarchy (Truck) and the view class hierarchy (FTruck)-- which is transparent to the
single view user-- manifests itself when we want to extend the view class FTruck : that extension
should not break the forwarding mechanism. This leads to a number of more or less easily
enforceable guidelines, which compelled us to forbid view extension, but use viewpoint special-

1. The actual code substitution is more fault tolerant and allows for a graceful degradation in case no such
view is currently attached.
2. Intuitively, A is a private subclass of B, if the knowledge of the subclass relationship is private to A’s
methods, i.e. only A’s methods can refer to (non-private) data and function members of B

ization to the same effect [Mili & Dargham, 1997].

2.4 Viewpoints: «horizontal reuse» of functional slices

We recognize that the functionality provided by a view such as the financial view above may be
useful for other kinds of objects/assets and propose to define some sort of a template of a func-
tional view that is parameterized by the elements of the required interface of the core object. This
template, called viewpoint, can then be instantiated for different types of assets, be they trucks or
buildings or machines or computers. For example, the _serialNumber attribute is seen as a special
case of a general inventory ID, and may be replaced by other domain object specific identifiers.
Using viewpoints, views may be seen as the mapping between a view and a domain object. The
use of viewpoints provides an additional reuse dimension, one for the developers of views.

3. Implementing viewpoints and views in C++

3.1 A framework for viewpoints and views

A viewpoint is a parameterized type VP[TH], where TH is a theory describing the type of the
domain object to which VP may be mapped. We illustrate the syntax through an example:

VIEWPOINT FinancialAsset
REQUIRES CapitalAssetTheory [AgeType -> Year,

PurchaseValueType -> CurrencyType]
EXTENDS
void setPurchaseDate(Date d) after

{setAmortizationPeriod(Year(Date::today() - d)); }
PROVIDES
variables

Year _amortizationPeriod;
CurrencyType _residualValue;

operations
CurrencyTypegetResidualValue () {return residualValue;}

void setAmortizationPeriod(Year y){_amortizationPeriod = y;}
...

END VIEWPOINT
Figure 3. A viewpoint definition.

The requirements on the (type of) objects to which the viewpoint may be applied are described in
the requires clause. In this example, we specify such a requirement in terms of a previously
defined theory, CapitalAssetTheory, whose sort or type parameter AgeType was bound to the type
Year, and whose sort PurchaseValueType was replaced by the sort CurrencyType. The extends
clause allows us to specify blocs of code that are to be executed by the generated view before
(before) or after (after) the specified core object methods (which must be part of the requires
interface), in much the same way method wrappers work in CLOS. Other syntactic flavors for the
specification of viewpoints have been provided, including the in-line specification of new theo-

ries, or in-line extensions of existing ones [Mili & Dargham, 1997].

A view V is generated by instantiating a viewpoint VP[Th] for a type T that satisfies the theory
parameter Th for a given correspondence Σ, i.e. T=>Σ Th, and we write V = Vp [Th ->Σ T]. The
one-to-one correspondence Σ maps names of sorts, variables, and operations of the theory to the
corresponding constructs in the type (e.g. class interface). In C++, we may write:

V = T as VP [s1 ->Σ(s1),..., v1 ->Σ(v1),..., op1 ->Σ(op1),...];
where the “clauses” ‘x -> Σ(x)’ represent the various substitutions to replace the component con-
structs of the theory (e.g. sorts or variables) by the corresponding constructs in the type T. The
reader will notice that the code for the extends and provides methods of the viewpoint is aggre-
gation-unaware. hence, in addition to the aforementioned substitutions, view generation will
transform references to required (or extended) variables and methods to delegated references1.
For example, if f is a method that is part of the provides clause, and if f calls the require’d
method “getPurchaseDate()”, then its code:

void f(...){...
Date d = getPurchaseDate();
...}

will be transformed into:

void f(...) {...
Date d = _truck->getPurchaseDate();
...}

where _truck is a variable of type Truck* that is automatically added to the view2. References to
require’d variables are handled the same way [Mili & Dargham, 1997]. In both cases, we have to
make sure that the required variables and methods are somehow accessible to the generated view
class3. We won’t expand further on view generation; the reader is referred to [Mili & Dargham,
1997] for a more complete catalog of transformations and outstanding problems.

3.2 Typing issues
With view programming, there are various hierarchical (symmetric, transitive) relationships
between the various constructs with different implications on reuse, behavioral substitutability,
and the like. We examined three kinds of relationships:
1. The specialization/subsumption of viewpoints, as a way of incrementally specifying and

reusing viewpoints,
2. Subtyping, and more generally, behavioral substitutability of views derived from hierar-

1. This choice is motivated by our desire to repackage existing code where several views are implicitly
merged with the core object functionality, into viewpoints (see [Mili & Dargham,1997] and section 4.1).
Also, we want our model of viewpoints to be independent of the implementation mechanism-- in this case,
aggregation.
2. In reality, there are two possible code transformations, the one shown above, and one to _truck->getCom-
positionView()->getPurchaseDate(...) so that the view code gets to use whichever version of getPurchase-
Date(...) is available to the truck at the time of the invocation, including one (or several) view versions. In
effect, using getCompositionView(...) is like opting for dynamic binding. Most approaches to delegation use
the latter interpretation. We choose to also support the former mode in case views correspond to different
access rights/privileges.
3. In C++, they have to be public members of the core class, or else, the view must be a friend of the core
class [Mili & Dargham,1997]

chically related viewpoints, or from views derived from the same viewpoint, but for hier-
archically related core classes, and

3. Dynamic subtyping, and more generally, behavioral substitutability of hierarchically
related core objects, to which we attach views, possibly generated from hierarchically
related viewpoints.

For the purposes of this paper, we will be content to highlight the major issues raised by our
framework:
• The multiple specialization of viewpoints raises the issue of combining before and after

methods (our solution: using defaults, that can be overridden),
• Identifying conditions under which the application of two hierarchically related view-

points to a class yields two hierarchically related (from a typing perspective) view classes,
• Supporting pure1 dynamic typing in a statically typed language in a way that strikes the

right balance between flexibility and safety, or at the very least, graceful degradation.
There is a host of other issues discussed in [Mili & Dargham, 1997].

Implementation-wise, we are interested in statically typed languages to be able to perform rela-
tively type-safe code transformations; we chose C++ because it is widely used. Our approach
consists of adding non-ambiguous syntactic constructs to the C++ language to define views and
viewpoints, and putting programs that use these constructs through a bunch of pre-processors that
ultimately, generate standard C++ code. Our tools are being developed with flex and yacc (bison),
and we keep discovering unsuspected joys of dealing with C++ semantics.

4. View programming and distribution

4.1 Issues
View programming supports the decentralized development of applications that span a variety of
functional domains because viewpoints and viewpoint hierarchies can be developed indepen-
dently from core classes, and the generation of views for a particular class does not require own-
ing the definition of the class. In this section, we are more interested in the distributed
implementation of an object with several views. Figure 4 shows a possible distribution scenario
involving the same object of Figure 1. we make the distinction between two kinds of “distribu-
tion”. First, we have the case where a given site sees (and “believes”) a single view, or a subset of
views, and is not aware of the existence of the other views. Second, we have the case where a site
knows of all the views, but hosts only one, or a subset thereof. The two situations raise different
sets of issues. We assume in this example that site 3 is not aware of the existence of a core object
behind the view, or of View 1 and View 2, and the behavior of these should not be available to it,
except indirectly as a side effect of methods called on the core object (e.g. through the before and
after methods). For the case of sites 1 and 2, they know about view 1 and view 2, but don’t know
about view 3, and any behavior invoked on the core object should only invoke the methods that
are explicitly provided by view 1 and view 2 (or as side effects of such behaviors).

1. this is not just of matter of picking the right implementation for a signature that was known at compile
time, in principle, we don’t even know which signatures an object will support at run-time because of the
dynamic attachment and removal of views.

4.2 A model of distribution
We address our model of view programming from the perspective of a CORBA/RMI-like model
where a single state-holding copy of an object is available over the network whereas different
proxies/stubs route requests to that object through ORBs. Figure 5 illustrates such a model. We
assume for simplicity that a single ORB manages requests on behalf of all sites. The issues to
consider in this model are:
1. where to put the distribution boundaries, and which objects to replicate, if any, and
2. re-evaluating the code transformations implemented to support message forwarding in

light of the performance factors of a distributed implementation.
Having a single system-wide copy of any object and stubbing all the objects that are not local to a
given site, may have severe performance problems. Consider the code excerpts shown earlier.
Assume that the core class Truck , and the view classes OTruck and MTruck reside on sites 0, 1,
and 2, respectively, and that we are writing an application on site 1, that uses both views1. We
assume that the invocation of the constructor of the Truck stub will do the right thing, i.e. either
locate a live object with identifier ‘id’, and return a reference to it, or invoke the lifecycle service
to create or reanimate such an object from site 0.

#include <truck.h>
#include <otruck.h>
#include <mtruck.h>

(1) Truck* myTruck = new Truck(id); // remote
(2) OTruck* myOTruck = new OTruck(myTruck); // local & remote
(3) MTruck* myMTruck = new MTRuck(myTruck); // remote
(4) Date t0 = myTruck->getDateNextMaintenance(); // remote
(5) myTruck->releaseOn(t3); // remote & local

1. We assume that the client versions of Truck and MTruck are also called Truck and MTruck.

a: int;
b: float;
f(x: int): int;
g(y:float): int;

Core object

c: int;
f(x: int): int;
h(y:float): int;

View 1

b: float;
k(x: int): float
g(y:float): int;

View 3

d: float;

j(x: int): int;
g(y:float): int;

View 2

i(z: char): bool;

f()

g(), d

g(), b

a: int;

Figure 4. A distributed object with views.

Site 3

Site 0

Site 2

Site 1

Line (2) involves both local and remote access: the creation of the view is local but the connec-
tion to the core object is remote. Line (3) involves two remote accesses, one to create (or reacti-
vate, or return reference to an existing) OTruck view, from site 1 to site 2, which passes the ORB
reference of the core object to the view in site 2, and from site 2 to site 0, to connect the remote
view to the remote core object. Line (4), when transformed, becomes:

(4’) Date t0 = myTruck->getView(‘MTruck’)->getDateNextMaintenance();
Under this transformation, we need a first remote access to get an ORB reference to the MTruck
instance (through the “getView(’MTruck’)” call), and then a remote method invocation of ‘get-
DateNextMaintenance’ on that instance. It is clear in this case that the remote call to “get-
View(...)” is somewhat redundant since instruction (3) has already fetched a reference to that
object. A more efficient transformation would yield:

(4”) Date t0 = myMTruck->getDateNextMaintenance();
Generally speaking, the view pre-processor can generate variables that will contain references for
the views, which will be initialized on the first call, and used thereafter.

Because the method “releaseOn(...)” is provided by two views, line (5) is replaced by:

(5’) myTruck->getCompositionView()->releaseOn(t3);
Here again, the code pre-processor could save an ORB reference to the composition view in a
local variable to save one remote call. Using the default implementation, i.e.:

void __Truck_CompositionView::releaseOn(Date t){
_truck->getView(‘OTruck’)->releaseOn(t);
_truck->getView(‘MTruck’)->releaseOn(t);}

Using the normal processing mode, the execution of ‘‘__Truck_CompositionView::release-
On(...)” will invoke the following remote calls:
1. One remote call to invoke __Truck_CompositionView::releaseOn(...) from site 1 to site 0,

Site 1 Site 2

Object 1 Object 2

Messages and results

Messages and results

Object 1

Site 1

Object 1

Object 2

Site 2

ORB

Request

Result

Object 2
stub

stub

Request

Request
ResultResult

Figure 5. A CORBA-like distribution model.

2. One remote call to invoke OTruck::releaseOn(...) from site 0 back to site 1, and
3. One remote call to invoke MTruck::releaseOn(...) from site 0 to site 2.
Because the composition view holds no state, having duplicates carries no overhead, and thus, we
can duplicate it in all the sites. This will obviate the need for the first remote call. By explicitly
storing pointers to the attached views (rather than going through the core object), the call to
OTruck::releaseOn(...) becomes local, and that to MTruck::releaseOn(...) still requires a single
remote call. We have thus saved two remote invocations out of three, notwithstanding any remote
invocations one of the two methods might make to the core object’s methods.

5.3 Further optimizations
A common problem in distributed application design is to identify the recurrent patterns of com-
munication inherent in the application code to help optimize the distribution of data and process-
ing (see e.g. [Purao et al., 1998]). In our case, we assume that data are “owned” by the sites in
which they reside, and cannot be moved elsewhere for optimization purposes. Thus, any further
optimizations will have to come from duplication. Referring back to the example of Figure 4, we
consider the case of the sites S1 and S2, both of which are “aware” of the core object and the
views View 1 and View 2. For the sake of simplicity, we ignore the before and after methods,
which create indirect call relations between views. Any method of the combined interface will
give rise to a call graph with the first call made to the composition view. The level 1 calls will go
either to:
• the core object: in case the operation is supported by the core object. Subsequent calls will

remain local1 to the core object’s site (site 0),
• a view: in case the operation is supported by a view. Subsequent calls will involve either

local calls within the view, or calls to the core object, with subsequent calls remaining
within the core object’s site.

• a combination of the above, in case the operation is supported by both.
In the end, each call to a method of the combined interface (core object + view 1 + view 2) may
ultimately require access to parts of the core object.

We can reduce communication costs by finding a way of limiting the number of hops we need to
make across the network for any method call, to one hop. A brute force and not very efficient
method consists of duplicating the entire core object everywhere, considering that the duplicates
will need to be updated whether the view at that site needs the updated variable or not. A more
efficient solution will try to pinpoint exactly those parts of the core object needed by a particular
view, and creating copies of those parts near the views that need them. We need to address two
questions. First, how to find the slice of a core instance that is needed by a view, and second, how
to manage inter-copy consistency in a safe and yet efficient way. Roughly speaking, the answer to
the first question is the transitive closure of the required interface of the corresponding view-
point, through the call relationship. Depending on the language, this can be a fairly difficult prob-
lem, and the difficulty translates into conservative algorithms which tend to identify (many) more
calls than necessary [Grove et al., 1997].

As for the second question, a solution that guarantees that no variable/function member is dupli-

1. This assumes the “secure” generation of view code, in which views call the core object’s versions of
methods, ignoring any other versions supplied by views; see section 3.

cated at a site where it is not needed may be constructed by organizing the view induced slices in
a Galois lattice [Godin et al., 1998] using the “requires” relationship between views and core
object members. Consider the following example where we numbered the members of the core
class m1through m6 and assume that we have three views V1,V2, and V3 which require access to
{ m1, m2, m4}, { m2,m3,m4,m5}, and {m3,m4,m6}, respectively. The resulting Galois lattice is
shown in Figure 6-a. Each node consists of a pair of sets, the first being the set of views that share
the members included in the second set. The nodes are maximal in the sense that for each
<SV,SM>, no view other than those in SV accesses the members that are in SM, and no member that
is not in SM is accessed by all the views in SV. From this lattice, we can identify the minimal frag-
ment of core class that has to be duplicated across any set of views. Starting from the bottom, we
know that m4 is accessed by all three views, and hence that part should be duplicated. Moving up
the lattice to node <{V1,V2},{ m2, m4}>, we know that m2 is shared by V1 and V2, and only V1 and
V2, and should be duplicated between V1 and V2; we need no longer worry about m4 which was
dealt with at the lower levels of the lattice. And so forth. Figure 6-b shows the various slices that
reside in each site/with each view.

There are two ways to distribute the slices. One way would follow the scheme in Figure 6-b, and
relate the different slices to each other using aggregation: to view 1, the core object looks like an
object with data member m1 and two other objects-- assuming that objects are the unit of replica-
tion-- embodying the data members m2 and m4, respectively. While the impact of the update of
any given data member is reduced to a minimum, a view method that updates several data mem-
bers may end up updating far more than n duplicates, where n is the number of sites. An alterna-
tive would duplicate the entire core object in all sites, but would use the scheme of Figure 6-b as
a way of targeting those duplicates that must be invalidated; a view whose duplicate of the core
object has been invalidated will update the duplicate from one master copy (see e.g. work on par-
titioned objects in [Ben Hassen et al., 1996]).

We could perform a finer analysis based on the access patterns of individual methods of the com-
bined interface of an object. Such an analysis could establish, for a given program, which
approach to take, i.e. updating or invalidating selected individual fragments, versus entire objects
for all sites. We are in the process of designing experiments that will help us establish whether

<V2,{m2,m3,m4,m5}> <V3,{m3, m4, m6}>

<{ V1,V2},{ m2, m4}> <{ V2,V3},{ m3, m4}>

<V1,{m1, m2, m4}>

<{ V1,V2,V3},{ m4}>

m3 m3

m4 m4 m4

m2 m2

m1 m5 m6

S1/V1 S2/V2 S3/V3

Figure 6-b. Data replication
scheme

Figure 6-a. Galois lattice of data usage

such an analysis is generally worthwhile.

6. Conclusion
Our work addresses the problem of supporting several functional domains within the same appli-
cation, by composing at will functional fragments developed by independent third parties. Those
same situations that require, or could use, decentralized development of functional domains also
require distributed ownership of the functional domain data, and distributed execution of the
resulting programs. View programming seems like a perfect fit to the extent that we have resolved
most of the issues dealing with the uniqueness of object reference, and the multiple dispatch of
methods (i.e. methods supported by several views). There remain a number of issues dealing with
optimizing the implementation of distributed view programming which we continue to explore,
both theoretically and empirically.

Acknowledgments: We thank William Harrison and Harold Ossher whose work subject-oriented programming
and subject-composition helped us identify (and sometimes solve) some of the issues discussed in this paper. This
work was sponsored by Nortel, DEC, IBM, CAE Electronics, Teleglobe, and Machina Sapiens, within the context of
the SYNERGIE industry-university initiative (Quebec), by NSERC (Canada), and by YAGO Technologies.

References
• [Ben Hassen et al., 1996] Saniya Ben Hassen, Irina Athanasiu, and Henri E. Bal, “A Flex-

ible Operation Execution Model for Shared Distributed Objects,” ACM SIGPLAN
Notices, vol. 31, no. 10, OOPSLA'96 Proceedings, San Jose CA, October 1996, pp. 30-50.

• [Godin et al., 1998] Robert Godin, Hafedh Mili, Guy Mineau, Rokia Missaoui, Amina
Arfi, and Thuy-Tien Chau, “Design of Class Hierarchies Based on Concept (Galois) Lat-
tices,” Theory and Practice of Object Systems, vol 4, No 2, pp. 117-134, 1998.

• [Grove et al., 1997] David Grove, Greg De Fouw, Jeffrey Dean, and Craig Chambers,
“Call Graph Construction in Object-Oriented Languages,” ACM SIGPLAN Notices, vol
32, no 10, OOPSLA'97 Proceedings, Atlanta, GA, October, 1997, pp. 108-109.

• [Harrison & Ossher, 1993] William Harrison and Harold Ossher, “Subject-oriented pro-
gramming: a critique of pure objects,” in Proceedings of OOPSLA’93, Washington D.C.,
Sept. 26-Oct 1, 1993, pp. 411-428.

• [Malenfant, 1995] Jacques Malenfant, “On The Semantic Diversity of Delegation-Based
Languages,” Proceedings of OOPSLA’95, Austin, TX, pp. 215-230.

• [Mili & Dargham, 1997] Hafedh Mili and Joumana Dargham, View Programming in
C++: A co-reference based approach, rapport technique, département d’informatique,
Décembre 1997.

• [Ossher et al., 1995] Harold Ossher, Matthew Kaplan, William Harrison, Alex Katz, and
Vincent Kruskal, “Subject-oriented composition rules,” in Proceedings of OOPSLA’95,
Austin, TX, Oct. 15-19, 1995, pp. 235-250.

• [Purao et al., 1998] Sandeep Purao, Hemant Jain, and Derek Nazareth, “Effective Distri-
bution of Object-Oriented Applications,” Communications of the ACM, vol. 41, no. 8,
August 1998, pp. 100-108.

• [Shilling & Sweeny, 1989] John Shilling and Peter Sweeny, “Three Steps to Views,” Pro-
ceedings of OOPSLA’89, New Orleans, LA, pp. 353-361, 1989.

• [Ullman 82] Jeffrey D. Ullman, Principles of Database Systems, C S Press, 2nd ed., 1982.
• [Van Hilst & Notkin, 1996] Michael Van Hilst and David Notkin, “Using Role Compo-

nents to Implement Collaboration-Based Designs,” in Proceedings of OOPSLA’96, San-
Jose, CA, 6-10 October, 1996, pp. 359-369.

Protocol-Based Runtime Monitoring of
Dynamic Distributed Systems

Work in Progress

Andreas Gr¨unbacher and Mehdi Jazayeri
Information Systems Institute, Distributed Systems Group

Technical University of Vienna
fa.gruenbacher, m.jazayeri g @ infosys.tuwien.ac.at

March 24, 1999

Abstract

Many systems are built today from components that communicate using standard
protocols. Monitoring the communication among these components helps in analyzing
and debugging the behavior of such systems. We are trying this approach for a category
of Web-based systems.

Keywords

Monitoring, distributed debugging, standard protocols.

1 Introduction

Reuse has been a popular keyword throughout the software engineering community for
many years; yet many enabling technologies such as components, component frameworks
and middleware have only recently found widespread acceptance. Another rapidly emerg-
ing area of computing has been the World Wide Web. Taken together, these technologies
enable an entirely new approach to building software systems. At the core of many such
systems is the World Wide Web with its simple client/server architecture.

The combination of Web browsers as clients and server components such as HTTP and
database servers yields powerful distributed systems. We call them dynamic distributed
systems (DDS).

Due to the complexity that is caused by the distributed nature and heterogeneity of such
systems, the development and maintenance of dynamic distributed systems is extremely de-
manding. This shows up especially when an application is running. Usually, it is anywhere
from hard to impossible for the developers to just observe what events occur in the system.
Our approach to facilitating DDS development and maintenance is to monitor systems at
runtime. This includes the tasks of data collection, analysis and visualization. Usually, the
components of a distributed system are modified to collect data for debugging. In a dis-
tributed system, a lot of information is already contained in the communication protocols
between components. We believe that by analyzing these protocols, enough information
about a system can be revealed for debugging at a reasonably high level of abstraction.
For protocol-based runtime monitoring (PBRM), the approach described in this paper, we
require standard protocols between (at least some of the) components. PBRM is intended
to complement, not replace, conventional debugging.

The data obtained from tracing the communication between components will consist
of a large set of events, even for small systems. A way to reduce the amount of informa-
tion presented to the developers is needed, unless they explicitly request the details. Sev-
eral abstraction techniques have been described in the literature [Basten 93] [Basten 94]
[Summers 92]. We are considering to adapt a scheme for hierarchical event abstraction,
similar to the one used for the Poet visualization tool1 [Poet 97].

Structure of this document. Section 2 gives an example of a dynamic distributed system
that was recently built in our group, discusses the problems encountered, and suggests how
runtime monitoring can help us improve this situation. In Section 3 we discuss issues of
protocol-based runtime monitoring. Section 4 outlines the architecture of our prototype
monitoring system. In Section 5 we describe the current status of this project. Finally, we
summarize our key points in Section 6.

2 Dynamic Distributed Systems

Dynamic distributed systems consist of components that communicate using different
mechanisms in order to achieve the overall goal of the application. These include rather
low-level protocols such as HTTP, middleware such as CORBA, COM, RMI, but also more
task-specific protocols such as ODBC and JDBC. Depending on the task at hand, com-
munication mechanisms at different abstraction levels are used. In general, higher level
protocols support the extraction of more abstract information from the protocol trace.2

A good example system is 3DSoftVis3 [Jazayeri 98], a dynamic distributed system that
was recently built by our group. 3DSoftVis deals with visualizing software release histo-
ries. It displays software release data as three-dimensional models. The data are stored in
a database. The user interface consists of several Web pages, Java dialogs, and a VRML
plug-in that handles the actual displaying of the three-dimensional model. All the compo-
nents on the client machine run inside a Web browser. Figure 1 shows the user interface of
this application.

The logical component structure of our example is shown in Figure 2. 3DSoftVis con-
sists of a Web server, a Web browser, and a database server. The Web browser uses a VRML
plug-in. The Web server and Web browser talk HTTP to each other. The Web browser and
the database server talk JDBC. The VRML plug-in and the Web browser talk EAI.4

Figure 3 shows the basic pattern of interaction with 3DSoftVis, as seen by the user.
From the Workspace window, the user can display a number of Visualizer windows to view
different three-dimensional models.

At the level of detail shown in Figures 2 and 3, the system looks simple. However, describ-
ing in full detail the complicated interactions between the Web server, the Web browser, the
Java components and VRML is quite challenging, and involves hundreds if not thousands
of events. Tracing errors in the application is difficult, because the interactions between the
components are not visible.

3DSoftVis is based on coarse-grain reuse. This allowed us to build a complex visualization
system in a short time. Had we tried to develop a system like that from scratch, the 3D
rendering engine alone would have exceeded our time frame by far.

1Seehttp://www.shoshin.uwaterloo.ca/poet/index.html .
2The task of monitoring a distributed system becomes easier in a restricted framework. Version 2.2 of

Corba, for example, allows so-called interceptors to be inserted into the invocation path of CORBA meth-
ods. These can conveniently be used to record all method invocations and parameters in a CORBA-based
system. One product that is constructed along similar lines is Object/Observer by Black&White Software,
http://www.blackwhite.com . Our experience shows that most systems don’t exclusively use a frame-
work like CORBA, however. Therefore, we are looking at how to support a broader range of systems.

3An online demo is available athttp://www.infosys.tuwien.ac.at/˜riva/vis/ .
4The External Authority Interface (EAI) is an interface between Java and VRML.

Figure 1: 3DSoftVis: User interface.

Web browser Web server

Database
server

HTTP

JDBC

VRML
plug−in

EAI

Figure 2: 3DSoftVis: Physical structure.

Workspace window

Visualizer window

display (multiple)

Figure 3: 3DSoftVis: Basic interaction pattern.

PBRM is aimed to help the developers of systems such as 3DSoftVis. Had we been able to
monitor our example system, bug tracking would have been a lot easier.

A future monitoring system would take a high-level architectural model of the target
system as input and automatically match all actions in the system against that model. This
would have the added benefit of always having an up-to-date high-level model of the sys-
tem. Such an approach is beyond our current aims, however.

3 Protocol-Based Runtime Monitoring

Our approach of PBRM is based on protocol event traces. It does not require components
to be modified. Most approaches to distributed system debugging discussed in the litera-
ture limit the type of systems by either enforcing a common application framework, or by
requiring the systems to be augmented by instrumentation code, to make sufficient infor-
mation available to the debugger [Widmer 98]. In the case of dynamic distributed systems,
sufficient information about a system is available to the debugger by examining only the
communication between components. In particular, middleware standards such as CORBA,
COM, RMI, task-specific protocols such as ODBC and JDBC, but also standard protocols
such as HTTP enable us to obtain enough information for in-depth understanding. Further-
more, since dynamic distributed systems often use existing components, modifying these
components for the purpose of debugging is not an option.

Unlike traditional debugging environments, we do not consider other types of events
such as starting and termination of components. We also do not consider the concurrency
model of components.

The user of a monitoring system is generally not only interested in which events occur,
but also in the dependencies among them. The precedence relation between events has
been formulated by Lamport [Lamport 78]. Using this partial order relation, the events that
happen during the execution of a dynamic distributed system can be presented to the user
in a meaningful way.

In distributed systems, the precedence relation between events cannot be easily com-
puted from protocol event traces, however. The local clocks of the machines participating
in the computation cannot be used as a reference for time-stamping events. This would re-
quire perfectly synchronized clocks, a property which is not achievable in practice. A total
order between events also cannot be introduced. This would require a central component
that sequences events. Central components don’t scale with the size of distributed systems,
and therefore limit overall performance. In addition, such a centralized component would
probably introduce artificial dependencies between events [Fidge 96]. A vector clock algo-
rithm [Fidge 91] is another popular approach to detect causal dependencies between events.
While this is a correct and general approach, it would require changing the components as
well as the protocols they use. Usually, protocols don’t support adding meta-information
like timestamp vectors to messages.

Our current approach is to explicitly record those dependencies between events that
can be detected at the protocol-understanding level, and to accept that some dependencies
are not detected. The advantage of this approach is that it can be implemented efficiently,
without the need to change either components or protocols.

Our goal in this project is to investigate the usefulness of protocol-based runtime monitor-
ing. In particular, we would like to answer the following questions:

� Which information is lost in comparison to other debugging approaches?

� Which kind of information can we still obtain? Which information can we recon-
struct or guess?

� Which analyses are possible based on the data collected?

� Which problems do low-level protocols such as HTTP pose, and how can these be
overcome?

The following three sections describe requirements for PBRM. We break up the monitoring
process into the three phases data collection, analysis and visualization.

3.1 Data Collection

The monitoring system traces the communication between components.

Events. The monitoring system is based on protocol event traces. At the protocol level,
a lot of information is available. This includes the type of event (e.g.,Request, Reply),
and associated data. Since it is not known a priori what data the user is interested in,
the monitoring system shall allow the user to record arbitrary data in addition to the data
required by the monitoring system itself.

Causal dependencies. Causal dependencies between events need to be recorded during
the data collection phase. Since a vector clock algorithm cannot be used in our scenario,
we need to model dependencies explicitly. A unique identifier is generated for each event.
Dependent events then refer to the events they depend on by these identifiers.

Performance. The amount of data produced in a debug session can get quite large. The
data collection processes should therefore provide the option to record only the minimum
amount of data necessary for monitoring itself.

Probe effect. The modification of system behavior by monitoring is called probe effect
[Fidge 96]. Monitoring can hide existing errors, as well as introduce new ones. With our
approach, it is impossible to completely avoid influencing the target system.5 The probe
effect can be minimized, however, by keeping the overhead of monitoring small. The
data collection processes also need to be implemented carefully. They are not allowed to
synchronize on the same resources as the target system, since this would introduce spurious
dependencies.

3.2 Analysis

From the data collected during the data collection phase, several properties of the monitor-
ing system such as performance, latency, and causal dependencies between events can be
analyzed.

Our current focus is on causal dependencies. Additional data in the event stream such
as session identifiers and transaction numbers can allow us to reconstruct additional causal
dependencies. It might be interresting to note that the causal dependencies we obtain from
protocol event traces arereal causal dependencies, as opposed topotentialcausal depen-
dencies, which we would get from a vector clock algorighm.

Dependency analysis can be performed at two levels. Intra-protocol analysis can be
used to group events within a protocol. This is cheaper than inter-protocol analysis, which
groups arbitrary events.

Patterns of causally related events are used to hierarchically structure primitive
events into abstract events. The notion of convex abstract event sets as introduced in
[Black et al. 93] is one promising approach we are considering to implement. We also
need an algorithm that detects these event patterns in the event stream.

3.3 Visualization

Process-time diagrams (also known as time-space diagrams) are commonly used to visu-
alize distributed systems. The Poet visualization tool [Poet 97] extends process-time dia-
grams for primitive events to diagrams for primitive as well as abstract events with simple,

5Different form physics, influence-free monitoring is possible in software (see [Diaz 94] for an example).

intuitive semantics. We are also considering a textual display with the possibility to expand
and collapse abstract events as required, similar to a directory browser.

4 Implementation of a PBRM System

Our implementation is based on the introduction of aproxyfor each communication chan-
nel that is to be monitored. The proxies forward messages back and forth between the
communicating partners. In addition to that, they identify those messages that lead to sig-
nificant state changes at the communicating partners (i.e., events). The proxies forward
event data to aHub. The Hub stores these data, and acts as a common access point for
Monitors, which analyze and visualize them.

Figure 4 shows the components of 3DSoftVis, omitting the VRML part. Figure 5 shows
the same system, now attached to the monitoring environment.

Web
server

Web
browser

Database
server

HTTP JDBC

Figure 4: Architecture of a dynamic distributed system.

HTTP proxy

Web
server

Web
browser

Database
server

JDBC proxy

Hub

Monitor

Events

HTTP JDBC

Events

Monitoring
Environment

Dynamic
Distributed
System

Figure 5: Architecture of a dynamic distributed system being monitored.

5 Current status

We have tried the proxy approach for HTTP. While implementating an HTTP proxy took
longer than expected, largely due to complexities in the HTTP/1.1 protocol specification,
the results are promising. Our next step is to add JDBC. With these two protocols, we hope
to gain more experience with PBRM.

We have identified the following “hard” problems:

� An interaction between an HTTP client and server usually spans several Web pages.
Such sessions seem to be difficult to identify. The obvious choice to use the client
machine’s IP address as a unique identifier fails for machines behind a firewall. Even
the process identifier of the browser, were it available to the monitoring system,
would not be enough, since one browser may display multiple windows, each con-
taining a seperate session. Our initial hope that Cookies would resolve this problem
turned out to be false as well.

� One of the goals for proxies is transparency: The communicating components should
not be aware of the presence of the proxy, at least as far as the communication pro-
tocol is concerned. Unfortunately, this goal cannot be completely met. Especially,
errors can result in modified behavior. Consider, for example, a HTTP request to a
non-existent host. In the original system, no connection will ever be established. In
the monitored system, the client connects to the proxy. Only then does the proxy find
out that the destination host doesn’t exist, and sends an error reply back to the client.

6 Summary

We have described protocol-based runtime monitoring as a new approach for debugging
dynamic distributed systems. We are currently implementing a tool to assess the usefulness
of PBRM. We have described some of our design decisions and current open problems in
our project.

Acknowledgments

This work was supported by the ARES ESPRIT Project 20477. We would like to thank
Claudio Riva for implementing 3DSoftVis and explaining its inner workings to us.

References

[Basten 93] T. Basten.Hierarchical Event-Based Behavioral Abstraction in Interactive
Distributed Debugging: A Theoretical Approach.Eindhoven University of Technology,
August 1993.

[Basten 94] T. Basten, T. Kunz, J. P. Black, M. H. Coffin, D. J. Taylor.Time and the Or-
der of Abstract Events in Distributed Computations.Eindhoven University of Technol-
ogy, Department of Mathematics and Computing Science, Eindhoven, The Netherlands.
Computer Science Note number 94/06. February 1994.

[Black et al. 93] J. P. Black, M. H. Coffin, D. J. Taylor, T. Kunz, A. A. Basten:Linking
Specification, Abstraction, and Debugging.CCNG Technical ReportE-232, Computer
Communications and Networks Group, University of Waterloo, November 1993.

[Diaz 94] Michael Diaz, Guy Juanole, Jean-Pierre Courtait:Observer—A Concept for For-
mal On-Line Validation of Distributed Systems.IEEE Transactions on Software Engi-
neering, December 1994, Vol 20, No. 12.

[Fidge 91] C. J. Fidge:Logical time in distributed computing systems.IEEE Computer,
August 1991, Vol. 24, No. 8, pp. 28–33.

[Fidge 96] Collin Fidge:Fundamentals of Distributed System Observation.IEEE Soft-
ware, November 1996, Vol. 13, No. 6, pp. 77–83.

[Jazayeri 98] Mehdi Jazayeri, Claudio Riva:Developing Native World Wide Web Applica-
tions.Technical Report, Distributed Systems Group, Vienna University of Technology.

[Lamport 78] Leslie Lamport:Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, July 1978 / Vol. 21, No. 7, pp. 558–565.

[Poet 97] T. Kunz, J. P. Black, D. J. Taylor, T. Basten:Poet: Target-System-Independent
Visualisations of Complex Distributed-Application Executions.In Proceedings of the
30th Hawaii International Conference on System and Science. Volume 1, Maui, Hawaii,
USA, pages 452–461, January 1997.

[Summers 92] J. A. Summers:Precendence-Preserving Abstraction for Distributed De-
bugging.Master’s Thesis, Dept. of Computer Science, University of Waterloo, Ontario,
1992.

[Widmer 98] Bernfried Widmer:Management of CORBA-Based Distributed Object Sys-
tems.Master’s Thesis, Information Systems Institute, Technical University of Vienna,
Vienna, 1998.

1

THE IMPLEMENTATION AND EVALUATION OF THE USE OF
CORBA IN AN ENGINEERING DESIGN APPLICATION

Susan D. Urban, Ling Fu
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406

s.urban@asu.edu

Jami J. Shah
Department of Mechanical and Aerospace Engineering

Arizona State University
Tempe, AZ 85287
Jami.shah@asu.edu

Ed Harter, Tom Bluhm, Brett Hartman
Boeing Defense and Space Group

Engineering Computing
P. O. Box 3999, MS 4A-19

Seattle, WA 98124-2499

ABSTRACT
Many computer applications today require some form of distributed computing to allow different
software components to communicate. Several different commercial products now exist based on the
Common Object Request Broker Architecture (CORBA) of the Object Management Group. The use of
such tools, however, often requires the modification of existing systems, rather than the development of
new applications. The objective of this research has been to integrate the use of a CORBA tool into an
existing engineering design application for the purpose of 1) evaluating the amount of re-engineering that
is involved to effectively integrate distributed object computing into an existing appliations, and 2)
evaluating the use and performance of distributed object computing in an engineering domain, which
often requires the transfer of large amounts of information. The results of this work demonstrate that
CORBA technology can be easily integrated into existing applications. The ease of the integration as well
as the efficiency of the resulting system, however, depends on the degree of modification that developers
are willing to consider in the re-engineering process. The most transparent approach to the use of
CORBA requires less modification and generally produces less efficient performance. The less
transparent approach to the use of CORBA can potentially require significant system modification but
produce greater performance gains. This work outlines issues that must be considered for the partitioning
of functionality between the client and the server, development of an IDL interface, development of client
and servers sider wrappers, and support for concurrent, multi-user access. In addition, this work also
provides performance and implementation comparisons of different techniques for the use of wrappers
and for the transfer of large data files between the client and the server. Performance comparisons for the
incorporation of concurrent access are also presented.

KEYWORDS: distributed object computing, engineering design, software re-engineering, efficient file
transfer, client/server performance analysis.

2

1. INTRODUCTION
Many computer applications today require some form of distributed computing to allow different

software components to communicate. Engineering design applications provide such an example, where

product design efforts of large manufacturers require that designers must cooperate very closely. These

designers, however, may be physically distributed at different locations, using varied types of computers

and network operating systems, as well as different software packages. Manufacturers need to provide

environments that allow designers to work together in efficient and flexible ways at distant locations.

In order to build such sophisticated distributed applications, the concept of distributed object-

oriented computing has evolved. Distributed objects are software components that can be located at

physically different sites within a network of computers. These objects contain properties and methods,

which generally provide a set of predefined services to client applications. The use of distributed object

computing concepts involves the definition of how and when distributed objects communicate with one

another.

The Object Management Group (OMG) was formed as a means of standardizing the way that

distributed objects communicate [1]. In particular, OMG has defined what is known as an Object Request

Broker (ORB) [2]. An ORB serves as the middleware between a server and a client. An object sends a

request to an ORB, which then locates the appropriate server object to receive the request. The server

executes the request and then gives the response back to the ORB. The ORB finally forwards the response

back to the original client object. The concept of an ORB has been extended into the Common Object

Request Broker Architecture (CORBA) [1]. CORBA is a specification for an application-level

communication infrastructure. CORBA permits objects written in different programming languages to

communicate. Furthermore, the communication between a client and a server in CORBA occurs in a

transparent manner.

Several different commercial products now exist based on CORBA, such as Orbix from IONA

[3]. The use of such tools, however, often requires the modification of existing systems, rather than the

development of new applications. The objective of this research has been to integrate the use of a tool

such as Orbix into an engineering design application for the purpose of:

1) evaluating the amount of re-engineering that is involved to effectively integrate distributed object

computing into an existing application, and

2) evaluating the use and performance of distributed object computing in an engineering domain, which

often requires the transfer of large amounts of information.

This research has been performed in the context of the Integrated Product Data Environment

(IPDE) [4], which is part of the Rapid Design Exploration and Optimization (RaDEO) research project at

Arizona State University. The project is supported by the Defense Advanced Research Projects Agency

3

(DARPA), with ASU serving as a subcontractor to the Boeing Defense and Space Group. The purpose of

IPDE is to provide a data storage facility that supports the exchange of data between different computer-

aided design and analysis (CAD/CAA) tools [5]. The IPDE provides an interface to the system, known as

the Domain Access Interface (DAI). The DAI communicates the transfer of product data to the Shared

Data Manager (SDM), which controls access to the integrated product database (IPDB) and establishes

relationships between the different types of data stored in the IPDB. The IPDB was developed using

object-relational database technology.

In the first version of the IPDE, DAI’s were compiled together with the IPDE as a part of one

large monolithic application. In practice, however, DAI’s must be distributed to support multi-user access

from different locations, with a need to transfer large files (sometimes as large as 100M bytes) between

the DAI and the IPDB. This research has transformed the IPDE into a distributed application, where

DAI’s communicate with the IPDE using CORBA technology to achieve application integration. The

specific tasks of this research were to [6]:

1) redesign the current DAI/IPDE interaction into a client/server architecture, and evaluate the redesign

effort,

2) modify the IPDE to support multiple DAI access to the IPDE with the client/server architecture,

3) implement and evaluate different techniques for the transfer of large files between DAI’s and the

IPDE, and

4) evaluate the overall effectiveness and efficiency of the use of CORBA technology in a multi-user

engineering application, such as the IPDE.

The results of this work demonstrate that CORBA technology can be easily integrated into

existing applications. The speed of the integration as well as the efficiency of the resulting system,

however, depend on the degree of modification that developers are willing to consider in the

reengineering process. The most transparent approach to the use of CORBA requires less modification

and generally less efficient performance. The less transparent approach to the use of CORBA can

potentially require significant system modification but greater performance gains. This work outlines

issues that must be considered for the partitioning of functionality between the client and the server,

development of an IDL interface, development of client and server side wrappers, and support of

concurrent, multi-user access. In addition, this work also provides performance and implementation

comparison of different techniques for the use of wrappers, and for the transfer of large data files between

the client and the server. Implementation consideration and performance comparisons for the

incorporation of concurrent, multi-user access are also presented.

The remainder of this paper is organized as follows. Related work on distributed computing with

CORBA is presented in Section 2. Section 3 then presents a detailed description of the IPDE architecture,

4

while Section 4 addresses the redesign of the IPDE system for client/server distribution with CORBA.

This section specifically addresses the different design issues that were investigated as part of the

redesign process. Section 5 provides an evaluation of the effectiveness and efficiency of using CORBA

with the IPDE environment. Lastly, Section 6 provides a summary of the research results and suggestions

for future research.

2. RELATED WORK
CORBA specifications set by the Object Management Group have the express purpose of

allowing distributed object computing to take place transparently in a multi-vendor, multi-platform

network environment [1]. The main focus of CORBA is the concept of objects. For software, an object

refers to a software component. For an enterprise, an object refers to real-world entities. One of the

characteristics of an object is that an object can send messages to other objects with requests for service.

Objects send messages back to the requesting object with their response.

The CORBA paradigm follows the distributed client/server methodology, which is based on

message passing found in most UNIX systems [7, 8, 9]. Objects, by themselves, are servers responding to

message requests. We distinguish between objects that live on the server-side or on the client-side.

Server-side objects offer services and resources. Client-side objects request services and resources.

Client-side and server-side objects inter-operate as in all object-oriented systems, with the caveat that the

requester and provider may live on separate machines within the network.

Objects in a distributed environment generally adhere to concepts found in object-oriented

programming. As a result, distributed objects typically support [10, 11]:

1) Encapsulation— the attributes (state) of an object are only accessible through methods of the object.

2) Inheritance— a new (specialized) class can be defined by reusing a previous (generalized) class while

adding additional behavior or attributes.

3) Polymorphism— one message can cause different behaviors according to the actual type of the object.

In order for objects to plug and play together, clients have to know exactly what they get from

every object for a service. In CORBA, the services that an object can provide are expressed as an

interface using the Interface Definition Language (IDL) [1, 2, 12]. The interface defines the format of

messages that can be called to request services. The communicating infrastructure can translate data

formats when it is necessary to provide transparent connections between the sender and receiver. Each

object needs a unique handle that a client can pass to the infrastructure to route a message to it. This

handle, however, is not an address. When the object moves from one location to another, the handle is the

same. CORBA therefore provides the basic model of a networked computing environment. The nodes in

the network are objects having their own interfaces, where each object is identified by a unique handle

5

[2]. A message can be sent from one object to another object by formatted messages into an interface

known to the system.

The CORBA standard has been implemented as numerous products from different companies,

including Orbix by IONA [3], HP Distributed Smalltalk [13], SUN Network Enabled Objects (NEO) [14].

Researchers from industry and universities as well as users are developing distributed system applications

with CORBA. Two engineering projects with the use of CORBA are presented below.

The Version and Integration Control System (VICS) [15] is a project developed by the Applied

Research Laboratory at the University of Texas (ARL:UT). VICS is a multi-user distributed application

that has been built using the World Wide Web (WWW) Common Gateway Interface (CGI). In the CGI

approach, the graphical user interface (GUI) layout control of hyper-text marking language (HTML)

forms is very simple. The server is invoked only when the client asks for an HTML form or a CGI

program. It treats the requirements as individual ones, but does not treat the requirements from the same

client process as one sequential group. In this way, the server then can’t keep track of the status of each

client.

The VICS project indicated a need for a more typical client-server approach. They chose to use

CORBA to avoid the direct use of sockets. VICS also uses JAVA to keep the WWW’s biggest advantage:

automatic download of the client user interface. After re-implementing the VICS project using CORBA,

the group at ARL:UT also compared the new approach against CGI in terms of how well each approach

supports the development, maintenance, and execution of multi-user distributed applications. First of all,

while the GUI and remote operation definitions are coupled in HTML forms in CGI, the Java/CORBA

approach defines the GUI and remote operations separately. The client in the Java/CORBA approach also

has more flexibility in managing the UI and invoking remote operations while CGI’s client could only

display the GUI and invoke remote operations. With respect to responsiveness, a single GUI update in the

CGI approach requires downloading a new HTML file. The client is also single-threaded in the CGI

approach, while in the Java/CORBA approach, the GUI updates are handled by the client applet. Remote

invocations may be handled by an already executing server process, and the client can exploit multi-

threading. This project concluded that CORBA provided several advantages. First of all, client and server

programs can exploit both multi-threading and the continuous execution state. CORBA also reduced the

complexity of the server-side software. The interaction between the client and the server also occurred

through the ORB which carried structure types and classes in the remote method argument, while the CGI

could only carried string types.

The project TAMGRAM [16] is in the distributed telecommunications area. This application

performs a multimedia communication service, which has been designed to essentially enable the

exchanges of audio and video data between a group of participants. CORBA is adapted to provide the

6

interoperability among the distributed telecommunication applications on a variety of hardware platforms

including SUN’s and Windows personal computers. The developers were also able to take advantage of

object-oriented design, since the object is able to represent continuous flows of data of which the actual

data structure e.g., information in audio or video types, can be of no interest. An object-oriented

construction of objects also provides the reusability of designed computational objects.

In addition to these two examples, many manufacturers and companies are also using CORBA to

provide interoperability as well as adaptability [17] among distributed applications on different hardware

platforms. For example, Boeing has adopted CORBA to integrate applications across different operating

systems and different hardware. The project involves the use of 70 sites with 45,000 users [18]. Oracle’s

Network Computing Architecture (NCA) is using CORBA as its backbone, with other Oracle primary

tools also using Java/CORBA [19]. Other examples of projects using CORBA include the Legacy System

Integration with Object-Oriented Methods (LIOM) Project, which is a metadata modeling project for

healthcare applications in a federated database system [20], and the Dresdner Bank Frankfurt project

which is a CORBA-based data transfer project for financial risk management [21].

This research has used Orbix [3], which is a relatively complete implementation of CORBA.

With Orbix, programmers can develop distributed applications using object-oriented client-server

technology. Programming can also use object technology to compose new applications from existing

components and subsystems. Orbix provides a C++ language binding and also a JAVA language binding

for CORBA and is supported on most platforms [3].

Orbix provides most of the functionality presented in the CORBA specification:

1) Orbix provides an Interface Definition Language (IDL) to collect client and server code.

2) Orbix supports a Dynamic Invocation Interface (DII) to compose requests and do dynamic type

checking without prior knowledge of operation signatures.

3) Orbix provides a Basic Object Adaptor that provides the interface to Orbix for servers, and controls the

mapping of the objects to the system processes.

4) Programmers have control over ‘proxies’/’surrogates’. Proxies are local representatives for remote

objects.

5) Orbix provides co-location of client and server code.

6) Orbix provides process level filters. Programmers can develop their own filter code for incoming and

outgoing messages for both clients and servers, which facilitates integration of thread packages.

7) Orbix also supports most of the existing platforms and OS’s: Solaris, HP-UX, AIX, DEC, SGI, NT,

W95, OS/2, Mac, VMS, MVS.

This research has adopted the C++ language binding to remain compatible with the current

implementation environment. The DAI’s in the IPDE environment were initially implemented using

7

UIM/X [22, 23], a visual X-windows user interface tool. UIM/X is specifically designed to interface with

Orbix. Since the DAI’s and the current SDM interface are implemented in C++, the Orbix implementation

in this project has also used C++.

3. OVERVIEW OF THE RADEO PROJECT
Since this project is based on the use of the IPDE of the RaDeo project, this section provides an

overview of the IPDE. Section 4 will describe how we used the IPDE as part of this research.

3.1 Architecture of the IPDE
As described in the introduction, the purpose of the IPDE is to provide a database environment to

support the exchange of large data files between CAD tools that are used in the engineering design and

analysis process. Figure 1 provides an architectural overview of the IPDE. As indicated in Figure 1, the

IPDE consists of three main components: the integrated product database (IPDB), the shared data

manager (SDM), and a set of domain access interfaces (DAI’s).

Domain
Access

Interface 1
(DAI1)

CAD/CAE
App 1

DAIn

DAI2

Integrated
Product

Database
(IPDB):

Oracle 8

Shared
Data

Manager
(SDM):

Oracle 8

CAD/CAE
App n

CAD/CAE
App 2

•
•
•

•
•
•

Figure 1: Architecture of the IPDE Project

The IPDB is an object-relational database [24] for storing engineering design data. The SDM,

which also adopts object-relational technology, is a data manager that controls access to the IPDB and

keeps track of relationships between product/process data as well as configuration information [25]. The

8

SDM is acting as the middle layer between the IPDB and DAI’s. DAI’s serve as a windows-based

interface for communicating with the SDM about data transfer into and out of the IPDB.

3.2 Units of Functionality
The IPDB is the primary data component of the environment, storing the data files that must be

exchanged between different design and analysis tools as well as the relationships that exist between such

files. Versioning and configuration information is also an important data component of the IPDB. In

particular, the data of the IPDB is based on the concept of application protocols (AP’s) as defined within

the Standard for the Exchange of Product Model Data (STEP), which is a comprehensive ISO standard

that describes how to represent and exchange digital product information [26]. For example, some of the

APs used in this project include AP 203 (Configuration Controlled 3D Designs of Mechanical Parts and

Assemblies), AP 209 (Design Through Analysis of Composite and Metallic Structures), and AP 214

(Core Data for Automotive Mechanical Design Process). An AP provides a standard schema definition in

EXPRESS for the data that is used within a particular design and/or analysis domain. EXPRESS, which

is part of STEP, is an International Standard that has been used to describe information in designing,

building, and maintaining product data [27, 28]. EXPRESS contains a well-defined textual language and a

graphical representation language call EXPRESS-G.

A unit of functionality (UoF) is a logical subcomponent (i.e., subschema) of an AP, representing

a sharable unit of data that can also be used to establish relationships to other sharable units of data. When

a user checks a file into the IPDB, the user identifies the specific UoFs that must be stored. The SDM is

responsible for extracting these subcomponents and storing them in the IPDB together with their

relationships. Other users can then check out these UoFs and use them to generate additional UoF’s and

relationships related to the product design. The IPDB therefore maintains a history of the design files

generated during the design process, together with information about the dependencies that exist between

files.

The actual data within the IPDB and the SDM is stored at two different levels of detail. The

metadata and control data of the SDM and some components of the IPDB, such as those that maintain

data about specific products, relationships between UoFs, versions, and configurations, are stored as fine-

grained objects. Other data, such as the large files that contain UoFs, are stored as binary large objects

(BLOB) since there is no need to access the internal details of such files. In either case, however, the data

that must be stored in the SDM and the IPDB is conceptually described using EXPRESS.

3.3 Functionality of the SDM
The SDM contains the security information for controlling access to the SDM and the IPDB. A

fundamental task of the SDM is the management of bookmarks. A bookmark establishes a series of

references to objects in the IPDB that are needed to support the process of checking data into and out of

9

the IPDB. The SDM can access the IPDB directly in this way. The SDM also controls other aspects of

access to the IPDB, such as user management and session management.

A graphical view of a bookmark is shown in Figure 2. The left-hand side of Figure 2 is a

simplified view of a bookmark described using EXPRESS. The rectangles on the left side of Figure 2 are

EXPRESS entities. Each line with a small circle defines the “has-a” relationship. For example, the

Product_Definition_Formation entity is an attribute of the Product entity. The right-hand part of Figure 2

displays specific instances of a bookmark. As described in Figure 2, a bookmark contains several

references to IPDB objects. The top of a bookmark points to a specific product. The middle portion of a

bookmark points to EXPRESS entities that define specific product versions (i.e., Product Definition

Formation, Product Definition, Property Definition). A bookmark finally points to specific UoF’s (i.e.,

large files that contain the actual design version). A bookmark itself doesn’t store real values. Instead, a

bookmark points to the paths through a bookmark schema that define specific configurations. These

different paths help the users to check-in UoF’s related to a specific product design, or to check-out the

UoF’s identified in the bookmark. All reading and writing operations to the IPDB must be done through

bookmarks.

Figure 2: EXPRESS Schema and Bookmark Instances

Property2

Version3

Definition

Part ID1

Version2

Property1Property3

Definition

Property3

UoF1

Rel_UoF2

Property2Property1

Rel_UoF1

Product

Product_Definition_Formation

Product_Definition

Property_Definition

Unit_of_Functionality

Express Schema: Bookmarks:

UoF3

Rel_UoF1
Rel_UoF2

Design
Context

Analysis
Context

PDR

10

 SDM_Operations

user_login (string:user_id, string:password): Result Integer
// For user login to the SDM

user_logout (): Result Integer
// For user logout from the SDM

get_domains (stringArr:domains): Result Integer
// Fixed number of domain name exist in the SDM, which contains different groups of UoF's

set_configuration (string:domain_name, string:parse_log, string:checkin_log,
 string:checkout_log, string:in_dir, string:out_dir) : Result Integer
// Set the configuration information including the domain names, the log files, and input file
// location and output file location

view_configuration (string:domain_name, string:parse_log, string:checkin_log,
 string:checkout_log, string:in_dir, string:out_dir) : Result Integer
// Give a complete view of the configuration information

clear_log_file (short:parse_log_path, short:check_in_log_path, short:check_out_log_path) : Result Integer
// Clears up the log files that are created by parse/check_in/check_out process

ask_change_passwd (string:passwd) : Result Integer
// Invokes the password changing process. Asks the user to input the old one, and validate it

change_passwd (string:passwd, string:repeat_passwd) : Result Integer
// Repeat inputting the password, if they are the same, the password is changed to the new one

display_cur_bookmark (string:bookmark_name, string:product_id, string:product_name,
 string:product_version, string:product_definition_id, string:product_definition_description,
 string:property_name, UofList:uoflist) : Result Integer
// Displays the context in the current book, e.g., bookmark name

add_bookmark (string:bm_name) : Result Integer
// A bookmark is added in the SDM. The process of adding bookmark is from this step
// and can be terminated at any level

Table 1: The SDM API

3.4 Functionality of DAI’s

A DAI is a graphical interface for interacting with the SDM. DAI’s provides the means for users

to load design files from different CAD tools into the IPDE. A DAI communicates with the SDM through

an API that is composed of the SDM database operations as well as operations from ST-Developer [29].

ST-Developer is an additional engineering software package that provides tools for working with

EXPRESS schemas. Table 1 presents the API of the SDM [6]. Table 1 also explains the functionality of

each operation.

11

SDM_Operations

display_products (stringArr:part_number, stringArr:part_desc) : Result Integer
// Displays the products' contexts (top level of the bookmark in Figure 2) in the IPDB.

display_part_versions (string:part_number, stringArr:pversion, stringArr:pversion_desc) : Result Integer
// Displays the versions' contexts (2nd level of the bookmark in Figure 2) related to the // selected product

display_property_defs (string:design_id, string:analysis_id, stringArr:property_names,
 stringArr:subtypes) : Result Integer
// Displays the property definitions' contexts (4th level of the bookmark in Figure 2) related
// to the selected product definition

display_uofs (string:prop_name, UofList:uoflist) : Result Integer
// Displays the contexts of the UoF's (last level of the bookmark in Figure 2) related to the
// selected property definition

select_uofs (UofNode:uof) : Result Integer
// Selects one UoF from the UoF's list

display_bookmarks (stringArr:bm_names, intArr:core_ids) : Result Integer
// Display all the bookmarks related to the user in the SDM

select_bookmark (short:bm_number) : Result Integer
// Select the bookmark in the bookmark list, it then becomes the "current bookmark"

delete_bookmark (short:bm_number) : Result Integer
// Delete a bookmark from the bookmark list

delete_current_bm (short:pre_core) : Result Integer
// Delete the current bookmark in the bookmark list, then there is no "current bookmark"

parse_exchange_file (string:ap_file_name, string:ap_file_location, string:err_log_name,
 stringArr:uofs) : Result Integer
// Inputs the AP files by name path, e.g. AP 209, extracts and returns the UoF's from the files

check_in_exchange_file (stringArr:uof_instance, intArr:selected_ids, intArr:uof_ids, string:ap_file_name,
string:ap_file_loc, string:err_log_name, string:err_log_loc): Result Integer
// Stores the UoF's in the IPDB, establishes the relationships among the objects in the IPDB

check_out_exchange_file (intArr:uofIds, string:p21_file_name,
 string:constr_file_name, string:files_loc, string:err_string) : Result Integer
// According to the relationships among the UoF's, checks out the UoF's and recomposes them to AP files

ftp_invoke (string:hostname, string:username, string:password, string:directory, string file_name) : Result
Integer
// Invokes the ftp process, and transfers the data files between the client and the server

Table 1: The SDM API (Continued)

DAI’s call the SDM functions directly and also perform other operations that do not involve

access to the IPDB. The main screen of a DAI provides three different menus. The “File” menu invokes

operations for accessing and viewing files. The “IPDB” menu invokes the primary SDM operations,

12

including the bookmark operations, an IPDB browsing operation, and the UoF check-in and check-out

operations. The “Options” menu calls the operations for configuration of the environment such as

changing passwords, and establishing default file locations.

The following chapter describes the investigation of the reengineering work involved in

transforming the IPDE into a distributed client/server architecture using CORBA, with the Dai as the

client as the SDM as the server. In particular, we outline the design tradeoffs and evaluate the efficiency

of different techniques for incorporating the use of Orbix into the IPDE.

4. INTEGRATING CORBA INTO THE IPDB
This section presents the research issues associated with the redesign and implementation of the

IPDE as a client/server architecture. Section 4.1 addresses issues associated with the architectural design

of the system. Section 4.2 present the investigation of different alternatives for large file transfer. Issues

related to concurrent user access are presented in Section 4.3. A more detailed evaluation of this research

is presented in Section 5.

4.1 A Client/Server Architecture for the IPDE
To support design decisions in the reengineering of the IPDE, we established an objective of

minimizing the number of changes to be made to the existing code of the IPDE. This objective was

established since:

1) it was not clear at the start of this research how extensive the changes might be, and

2) there were limited resources within the scope of the RaDEO project to support extensive modifications.

Our approach, therefore, has been to take the path of least resistance, but to analyze the tradeoffs

along the way. As a result, the client/server redesign of the IPDE is functional but not necessarily

the most efficient or the best in terms of object-oriented design.

This subsection outlines the design decisions encountered in the research and the choices that

were made in an effort to minimize the reimplementation effort. This first subsection addresses the

partitioning of functionality between the client and the server. The second subsection addresses the

tradeoffs involved with object-oriented design vs. code reuse. The third subsection discusses issues

associated with the server and the client side wrapper.

4.1.1 Partitioning of Functionality between the Client and the Server
The first logical step was to partition the functionality between the client (the DAI) and the server

(the SDM). Most of this functionality was already defined by the current system. In particular, the DAI

handles user interface issues as well as the logic associated with the control of user access to the SDM.

13

The SDM on the other hand, handles all operations associated with access to the databases of the SDM

and the IPDB.

In the initial design process, we were fortunate to have access to an Orbix consultant working at

Boeing. His initial suggestion was to redesign the system so that the server was responsible for the control

logic associated with access to the SDM. This also frees the client from having to be concerned with

knowledge associated with how to apply a sequence of operation calls to the server. In this way, any

program could serve as a client to the SDM, while the SDM would maintain complete control over the

access to the database. This shifting of functionality from the DAI to the SDM was rejected, however,

since it required a significant amount of modification to both the SDM and the DAI. For example, this

would have required adding state variables to the SDM for each user so that the SDM could recall the

most recent sequence of operations for each user, as well as the code to analyze the sequence of

operations to determine if an illegal sequence of operations has occurred. This change would have also

required modification to the way in which the user interface was presented in the DAI.

The fundamental problem with this type of modificaiton is that the DAI was originally designed

to capture the control logic associated with access to the SDM. This original design decision may

therefore limit the generality of the SDM as a server in any distributed environment. The DAI, however,

was originally designed as an important component of the IPDE, offloading application control logic from

the SDM to the DAI. The decision was therefore made to leave the partition of functionality as it was in

the original version of the system [30, 31]. In addition, the DAI would handle the tasks associated with

file editing (non-database access) as well as the transfer of files between the client and the server. It was

decided that the file transfer procedure (ftp) would be invoked and executed by the client. This would

eliminate placing additional file transfer responsibility on the side of the already highly-burdened server.

After evaluating all options for partitioning functionality, we therefore decided to provide:

1) the SDM as a server, responsible for data management functions of the SDM and IPDB databases,

including data integrity, retrieval, insertion, deletion and updating.

2) the DAI as a client, responsible for the user interface control logic associated with access to the SDM,

and general non-database operations.

4.1.2 OO Design Vs. Code Reuse
The next major step in the redesign process involved the object-oriented design of the IDL

interface. The first design below presents an ideal object-oriented view of the SDM as a server. We

address the problems associated with achieving such an object-oriented design. We conclude by

describing our final decision about how to design the IDL interface for the SDM.

14

An Ideal Object-Oriented View of the SDM
In an IDL file, an interface is similar to a class. The interface specifies the set of attributes and

operations that all objects of that type provide to clients. IDL supports multiple inheritance, so one

interface may inherit attributes and operations from others. After the IDL file is compiled, the interfaces

are implemented as classes.

According to the principle of object-oriented design, an interface should provide improvement in

basic component definition and interfacing. As a result, operations should be grouped into classes

according to their logical relationships. For example, using the operations shown in Table 1, the

bookmark’s attributes and functions can be organized into an interface. The check-in/check-out functions

define an additional interface. Other related functions, such as those that operate on configuration and

login information define a third interface.

Figure 3 illustrates the implementation of these three separate interfaces: the “Bookmark” class,

the “Check-in/Check-out” class and the “SDMOps” class. The one-to-one relationship between these

three Orbix objects and their corresponding internal objects is displayed in Figure 4. This approach

promises the security of each object and the potential for parallel processing between the three different

server objects.

15

Figure 3: Ideal Design of the IDL Interface for the SDM

The original implementation, however, causes major restrictions for the implementation of this

approach, requiring a significant reengineering process of the original API code. The problem is that the

operations in the original API were all tightly coupled to each other and were not implemented following

strict object-oriented concepts. For example, the check_in/check_out operations need to access bookmark

information, including the current bookmark context and all of the configuration information. Access to

this information is performed in the original check-in/check-out operation by directly accessing the

corresponding objects in the Oracle databases of the IPDB. If we decouple the current API into three

classes, access to the bookmark and the configuration information requires interactions between different

objects. This decoupling will introduce new function calls in each of the classes and also require the

recoding of the existing operations. In addition, reengineering work to the DAI is also unavoidable. The

functions called by the DAI must be rearranged into three classes according to the change of the class

definitions. New functions for associations among the classes will also be required by the DAI code. The

implementation of this approach causes significant modifications of approximately half of the IPDE code.

SDMOps

user_login()
user_login()
get_domains()
set_configurations()
view_configurations()
clear_log_file()
ask_change_passwd()
change_password()
get_user_info()
get_domain_info()
get_check_in_file()
get_check_out_file()
get_log_file_info()

Bookmark

display_current_bm()
add_bookmark()
display_products()
display_part_versions()
display_property_defs()
display_uofs()
select_uof()
display_bms()
select_bm()
delete_bm()
delete_current_bm()
get_current_bookmark()

Check-in/Check-out

ftp_invoke()
parse_exchange_file()
check_in_exchange_file()
check_out_exchange_file()

16

Figure 4: Ideal Design of the IPDE System

The Actual IDL Interface to the SDM

Since the original implementation provides only one internal class, “SDMOps”, to accept all API

invocations, the three stubs and three skeletons that will result from Figure 4 must still call the same

internal object. The separation of the operations into three interfaces, therefore, provides only a logical

grouping of the operations according to functionality. To avoid major recoding, the interface is

implemented as shown in Figure 5. The interface therefore corresponds to the existing API class with all

of the available functions defined as part of this interface. In this way, we could maximize the reuse of

existing code, with the original API left mostly untouched.

This design hides the function calls in or among the other internal classes which are invisible to

the DAI. From a functional point of view, however, the interface supports the interactions between the

client and the server, even though the elegance of an objected-oriented design is sacrificed. Additionally,

since the client still invokes one single interface rather than three, the DAI code can also be reused with

minimal changes. We will provide a detailed description of how we implemented this approach in the

next subsection, which discusses wrapping issues.

Bookmark

Check_in/
Check_out

_Orb
Check_in/
Check_out

SDMOps

O
R
B

Bookmark
_Orb

SDMOps
_Orb

Bookmark

Check_in/
Check_out

SDMOps

Databases

Client Orbix Objects Server

17

Figure 5: Actual System Model

4.1.3 Re-engineer SDM with Orbix

Following the initial IDL design, it was necessary to investigate the implementation differences

between the existing API, as well as new functions that would serve the client/server model. For example,

additional parameters were needed in some functions to support multiple user access as well as the

changes to the database which support concurrent access. Additional functions were also needed to

support large file transfer. Such changes must be reflected in the IDL interface. Existing functions of the

API also required modification.

In the SDM, one example of incorporating this type of change involved the transfer of files

between the client and the server. The new client/server environment requires that the server must access

files that originate from remote sites. Input files originate from the client and are sent to the server. Output

files from the server must also be sent back to the client. A file transfer operation is invoked when the

transfer of a file is needed. The client needs to know information from the server, such as login

information as well as where an input file should be sent or where an output file can be accessed. As a

result, a new function was added to the server to retrieve the information for the ftp.

Implementation differences between the existing DAI and the SDM are primarily associated with

the use of data types. In particular, the types supported by the IDL interface do not match exactly with the

types of the parameters in the original implementation of the SDM. The function calls in the DAI and the

function implementation in the SDM could be recoded to conform to the types of the IDL interface, since

the DAI was developed using UIM/Orbix [22] which supports Orbix calls. Using this approach, the DAI

SDMOpsSDMOps
O
R
B

SDMOps
Databases

Client Orbix Objects Server

18

invokes requests to the server object directly and wrappers on the client side are not necessary. The

advantage of this choice is that the system will work more efficient with one less wrapper on the client

side. The disadvantage is that it requires modifications and retesting of the DAI. The integration of Orbix

into the existing system therefore loses its transparency. To avoid significant recoding to the DAI, we

chose to develop client side wrappers. The development of the client side wrappers also provided a more

transparent approach to the integration of CORBA into the existing IPDE. After the creation of the stub

and the skeleton, two layers were created corresponding to the stub and the skeleton, respectively. Figure

6 shows the basic procedure of creating the application with Orbix.

Figure 6: Creation of Client/Server with Orbix

The specific changes that occurred were:

1) On the server site, the skeleton implementation contains the call to the corresponding methods of the

SDM object. The wrapper transforms the Orbix parameters to those of the original SDM interface. The

output values of the SDM function are then wrapped back to Orbix format.

SDM
DB

IPDB
DB

SDM_client
 layer

DAI SDM_Server
 layer

SDM
Orbix

 Daemon

User

SDM.IDL

IDL Compiler

Client Server

19

2) On the client site, a similar layer is added to accomplish transparency to the DAI code. Every function

in this layer has exactly the same name as the corresponding function in the server. The functions in this

layer, however, transform the data types of the DAI into the data types of the IDL interface.

Using this approach, the boundaries among the DAI, the client-side wrapper, the server-side

wrapper, and the server are very clear. The reengineering process is therefore transparent to the existing

system. The DAI and the SDM required little modification except for the recoding required to support

concurrent access. The testing process to the new system is also limited to the Orbix middlelayer. The

distributed computing process is straightforward, expeditious, and maximizes the reuse of the existing

code as well.

To support the implementation of the wrappers, several general-purpose functions were

developed. The key to a correct transformation is to be aware of the special characteristics of the data

types or objects from both the original API and Orbix. For example, stringType, which is an abstract

class, was implemented to have a strong capability to serve the programmer in the original code. The

operations to a stringType object, e.g. “+”, “<”, “=”, are overloaded to work as string concatenation,

string comparison, and string assignment, respectively. stringType is a string object which can be

assigned by ‘=’, but string in Orbix can only be assigned by the function strcpy. The operations to a

stringType object and the ones to a string variable in Orbix are therefore completely different. As another

example, the length of UofList, which is a list class in the existing system, can be incremented

dynamically, while its corresponding UList in Orbix be allocated an adequate amount of space before its

use. The complete investigation of every difference between the original classes and the classes defined in

Orbix is necessary to support a correct transformation.

After the client and server side wrappers were implemented, an initial client/server version of the

IPDE existed. The problem of large file transfer between the clients and the server was addressed as the

next step.

4.2 File Transfer Between the DAI and SDM
The check-in and check-out services provided by the SDM require the transfer of large files. The

original implementation of the IPDE assumed the access of such files within the same file system. A

major modification of the client/server implementation of the IPDE involved the capability of transferring

check-in files from remote sources and transferring check-out files to remote sources. This transfer

process must also be done in an efficient manner since the files to be transferred can be quite large (up to

100 megabytes).

There were three choices for implementation of the file transfer. Two of the three choices

involved the transfer of the files as parameters in CORBA. In one case, the file is sent as one large data

20

string. In the other case, the file is broken into smaller parts and iteration is needed to send the entire file.

This approach is a more generic method. However, the transaction time associated with this may not be

acceptable, especially for the transfer of large files. A third choice is to automatically invoke an ftp

operation external to CORBA, simply using CORBA as a notification mechanism. This approach

provides a better solution for large files. The ftp approach also supports transferring files in any format

while the other two approaches only support ASCII files. However, the disadvantage of this approach is

the portability of the code. This section describes the design and implementation of the file transfer

mechanism for this research. The problems associated with this method are also addressed. A

performance analysis of the three approaches is described in Section 5.

4.2.1 Design and Implementation of the File Transfer
The transfer of files in the IPDE takes place before and after the execution of a check-in operation

and after the execution of a check-out operation. Since the server may have multiple processes running at

the same time while a client normally runs only one process, the server has a much greater computing

burden than the client. Therefore, it was decided that the ftp procedure would be invoked and executed by

the client. This approach reduces the server’s computing work. The server can then focus on the check-

in/check-out tasks.

The ftp is transparent to the DAI. Before requesting a check-in operation, the user must establish

the check-in file location. When a check-in operation is requested, the ftp process is performed before the

server begins the parsing of the check-in file. Similiarly, after a check-out operation is performed, the

output file is automatically transferred back to the client. The user therefore requests the check-in or

check-out process without explicitly requesting an ftp operation. Since the ftp function is a generic

function which is embedded in the wrapper on the client side, no change to the DAI is required. The ftp

operation is also independent from the check-in/check-out operations. As a result, no change in the check-

in/check-out functions was required.

To implement the ftp procedure, the server needs a common directory to store the files ‘ftped’

from the client, as well as the error log files created by the check-in/check-out process and the output files

to be transferred to the client. Once a new user logins to the system for the first time, the server will

establish a new directory inside the common directory according to the user’s name. Each user, therefore,

has a separate working directory. The client must also be able to ask the server for the login information.

The client then ftp’s the file to the common directory on the server. If the file has been transferred back to

the client, then the file must also be deleted from the server ‘s directory. The server object knows nothing

about the ftp procedure. The parse operation simply accesses files from the server’s working directory.

21

The check-out procedure also writes to the common directory. The client is responsible for accessing the

file.

To support the transfer process, there is a profile on the UNIX platform called “.netrc”. This file

is specifically used for the invocation of the ftp mechanism. This file does not necessarily exist in the root

directory, since the ftp function can write this file with the ftp commands into the root directory manually.

Once the “.netrc” file exists in the system, it becomes available to an ftp process. A system call such as

“ftp hostname” invokes the ftp command lines in the “.netrc” file. This file must contain the correct

commands, including the information to login to the server (since the client invokes the execution), the ftp

command, the file names to be transferred, and also the “delete” command which cleans up the files in the

common directory. The information is stored in the SDM. Once an ftp operation is invoked, the client

gets the information from the server through the Orb, and then rewrites the “.netrc” file in the root

directory of the client.

The completion of the ftp procedure also depends on the correctness of the server information and

the correctness of the file allocation. If one of these operations fails, the ftp will not be successful. Error

messages from the ftp procedure are trapped and output to the user.

4.2.2 The Disadvantage of the FTP Approach
Section 5 demonstrates that the ftp approach is the most efficient approach for large files. There

are, however, three disadvantages to the ftp technique implemented in this research. First of all, the

portability of this approach is limited to UNIX platforms. The “.netrc” file is a part of the ftp package

which is installed in all UNIX systems. Since the current implementation is UNIX-based, this approach is

not a problem. This decision could cause problems, however, for future portability to Windows platforms.

Second, we need the login information of the server to fill in the “.netrc” file in the client’s root

directory. Since the client is responsible for the file transfer, the client must send a request to the server to

fetch the login information, which is maintained in the SDM database. If the login information of the

server changes, the SDM administrator must make the corresponding changes in the database. So the

changes to the system and the database must be coordinated as a maintenance issue.

Finally, this approach requires that an administrator must keep the common directory secure.

4.3 Support For Multiple Concurrent Users
The IPDE must be capable of supporting multiple DAI’s that access the database at the same time

[32]. Some of the functionality for concurrent access is provided by Oracle 8 [24], while other

functionality must be provided by Orbix as well as by the modification to the SDM.

22

4.3.1 Multi-processing Vs. Multi-threading
There are two approaches for implementing concurrent access in Orbix: multi-threading and

multi-processing [33]. Multi-processing means that multiple processes exist synchronously [33]. When a

client logins to the system, the system invokes a server object. A process is then created for this object. If

another client logins to the system, another server object is invoked and a new process is also created for

that object. So for a given server, there can be multiple processes existing simultaneously to serve

different clients.

A multithreaded process, however, means the process has two or more threads (program

counters), sharing the same address space, object handles, and other resources. Each thread has its own set

of central processing unit (CPU) registers and its own stack. Each thread is also independently scheduled

by the operating system [33]. The operating system divides the CPU time into time slots and allocates

them to different threads. So the threads seem to be running synchronously to the users. Multi-threading

can be adapted to a system that supports multi-processing. Many modern operating systems allow a

process to create many lightweight threads. Orbix-MT allows clients and servers to create threads safely.

A server can be programmed to create a thread automatically per client request with Orbix [22].

For example, in the IPDE with CORBA, the server can be designed to have a ServerManageObject. When

a client logins to the system, the client invokes a ServerManageObject. The object is then inserted into a

list of ServerManageObjects. When a new client logins to the system, the new client invokes another

ServerManageObject, which is again inserted into the list. The clients will have the capability to identify

their corresponding ServerManageObject in the object list. In this approach, there is only one process at

the server site. So every client’s request will make the server invoke a thread to retrieve the corresponding

ServerManageObject in the list. This scenario is illustrated in Figure 7.

23

Figure 7: Relationships of the Clients, SDMManageObject, and a Server Process

To a system supporting multi-user access, the multi-threading approach is more scalable than the

multi-processing approach. The threads in a process will share a large amount of resource (e.g., the text

segmentation, the data segmentation). Using multi-processing, each process must have its own text

segmentation and data segmentation independent from each other. Both of these resources obtain large

amount of memories. In the multi-processing approach, it takes time to swap in or swap out the text

segmentation and the data segmentations for multiple processes, while the threads are sharing the same

resources which do not need to be swapped in the multi-threading approach. The multi-threading

approach therefore is more extendable and lightweight than the multi-processing one. Since the IPDE

project has the potential for being a heavyweight application, with multiple users accessing the system

concurrently, the multi-threading approach therefore can reduce system resource requirements when

compared with multi-processing.

In this research, the multi-processing approach was selected primarily since our current version of

Orbix does not support multi-threading. If it was supported, however, the implementation of multi-

threading would violate our objective of minimal changes to the code. Since each thread is independently

scheduled by the operating system, it can run in parallel with the other threads in its process. Once multi-

threading is introduced to the system, parallel programming difficulties, such as thread synchronization,

critical section control, and deadlock prevention, will also be introduced to get the benefit of better

throughput of the system. Multi-processing also introduces similar programming difficulties, but its

situation is less complicated as multi-threading. For example, multiple threads implicitly share the data

segmentation in which the global valuables are stored, while multiple processes will not share these

S DM M an ag e
O bject 1

S DM M an ag e
O bject 2

C lien t 2

N ew C lien t

N ew S D M -
M an ageO b ject

C lien t 1

Lin k A dd a L in k

R equest 1 R equest 2 R equest 3

In A Serve r P rocess

24

global valuables. The developer is responsible for synchronizing such data in multi-threading

programming.

With Orbix, it is easy to invoke multiple processes. A single command line added into the

server’s registration information through the Orbix Daemon accomplishes this task. A switch is set to be

“-per-client-pid”, which specifies that a separate server process is to be used for each client process [34].

In this way, each client’s request will invoke a separate server process, which will not share data

structures or any other resources among the processes.

4.3.2 Changes to the SDM for Concurrent Accesses
The SDM and the IPDB database support concurrent access because Oracle 8 provides automatic

row-level locking. Whenever a client A tries to get access to a record in the SDM or the IPDB which is

being accessed by another client B, the client A has to wait until the completion of the transaction by the

client B. The real transaction time is generally so fast that the locking is not apparent to users.

The primary difficulty associated with support for multiple DAI’s is caused by the fact that the

same use can potentially login more than once to the SDM, thus causing inconsistency for the data

managed by an individual user. For example, the inconsistency exists for parallel use of viewing the IPDB

and bookmark operations. The “View IPDB” operation adopts the same mechanism as adding a

bookmark: a new bookmark is added to the SDM and becomes the current bookmark. The “View IPDB”

bookmark is also invisible to a user for a single access. Once the user exits the screen, the bookmark is

deleted from the SDM. Suppose, however, a user logins to the system twice, uses the “View IPDB”

screen to traverse the IPDB and, at the same time, also tries to browse the current bookmark in another

DAI. The user then finds that the current bookmark is not as expected. This problem has been solved by

adding a flag into the “sdm_user” object in the SDM. Once the user logins, the flag is updated. Every time

the user tries to login to the IPDE, the flag is checked to confirm that the user doesn’t try to login more

than once. After the user logouts from the IPDE, the flag is returned to its default value.

The last consideration for concurrent access issue is concerned with the shared data in the

databases. In the current version of the IPDE, a UoF can only be modified by its owner, so the concurrent

access by multiple users to more than one UoF’s is not a problem. The same investigation to other shared

data is done to make sure there is no conflict in any scenario of the transactions according the rules of the

IPDE. In future versions of the IPDE, however, as several problems are resolved with regard to universal

object identification, it may be possible for multiple users to try to modify the same UoF at the same time.

In this case, write-locking to UoF’s will be required.

25

5. EVALUATION OF USING CORBA WITHIN THE IPDE
The previous section presented the design and reengineering issues associated with incorporating

CORBA technology into an existing application such as the IPDE. This section presents a more detailed

evaluation of the design choices illustrated in Section 4. In particular, Section 5.1 provides a subjective

evaluation of system modification issues when reengineering an existing system with CORBA. Section

5.2 presents a performance evaluation of file transfer options. Performance issues associated with the use

of wrappers are addressed in Section 5.3. Section 5.4 then presents a performance evaluation of the

concurrent, multi-user access provided by the new CORBA-version of the IPDE.

5.1 Incorporating CORBA into an Existing System
One of the objectives of the project was to evaluate the amount of effort required to incorporate

CORBA technology into existing systems. This particular aspect of the evaluation is subjective in nature

based on our experience with integrating CORBA into the IPDE. The issues outlined in this section,

however, provide general guidelines that should be considered when modifying any existing system for

use with a tool such as Orbix.

The issues to be considered can be roughly identified as:

1) partitioning of functionality between the client and the server,

2) developing an object-oriented IDL interface for the server,

3) developing client side wrappers and server side wrappers, and

4) insuring adequate support for concurrent, multi-user access.

When developing a new CORBA application, there is a lot of flexibility in the design process. For

an existing application, however, the division of functionality may already be fixed and may require

extensive modification if it is changed. In the IPDE, we had to choose between an ultra-thin client and a

client with the capability to control the logic associated with calls to the SDM. To support an ultra-thin

client, the server will be responsible for the control logic associated with access to the SDM. This can free

the client from having to be concerned with knowledge of how to apply a sequence of operation calls to

the server. However, this approach requires the server to have the capability to control the transaction

sequences and also the capability to find illegal sequences. This shifting of functionality would have

required significant changes to the SDM due to the division of functionality that was already determined

in the original design of the system. The experience with this project demonstrates that to maximize

reusability and reduce reengineering, it may be necessary to accept the original division of functionality

for the components involved in the system.

After determining the functionality of the server, we needed to extract the operations from the

server that the client would invoke from the user interface. IDL interfaces are designed to contain these

operations as well as data types needed for parameters. An existing application may not able to provide a

26

true object-oriented interface. At best, the IDL may reflect the API of the existing system, or may require

the development of an API layered on top of existing code. But if the existing code is not originally

developed in an object-oriented manner, logical reorganization of the interface as separate objects may

not be helpful to optimize the system. In the IPDE project, we also encountered the choice between an

ideal IDL interface design according to object-oriented design and an IDL interface design considering

the existing API operation class as discussed in Section 4.1.2. A redesign to separate the existing API into

separate objects would have caused significant recoding to the API and the DAI. We chose to sacrifice a

true object-oriented interface in order to maximize the reuse of the existing code and reduce the

possibility of the new errors.

The wrappers of the client side and the server side are important components for adding

distributed computing to an existing system. The wrapper of the server side, which communicates through

the ORB, is a natural part of developing a skeleton. However, the wrapper for the client side keeps the

Orbix programming transparent to the client. Though the system with this wrapper is less efficient

compared to the system with the direct invocation to the server object by the client, the advantage is

found in the implementation of this approach. The reuse of the client code is maximized. The clear

boundaries between the client, the client-side wrapper, the server-side wrapper and the server present a

modularized architecture that can accelerate the development cycle to extend the system in the future.

The development of wrappers is straightforward. Some general functions responsible for the

conversion of the major data types must be developed. The implementation of converting functions

depends on the complexity of the objects of both sites. To accomplish the wrapping correctly, a complete

investigation of the data types in both formats must be done. Conversion functions are used when an

operation of a Orbix object calls its corresponding operation of the API object. No changes to the existing

API functions are necessary.

The multi-processing approach adopted for this research provided a quick solution to support for

multiple users. Systems with many users, however, may need further investigation into the multi-

threading approach with the understanding that multi-threading requires extensive modifications. In the

IPDE project, for example, a complete recoding to support the parallel execution problem would be

necessary if multi-threading is adopted. This approach also requires an evaluation of the existing code to

determine alternatives for the support that it already provides for concurrent access as well as the types of

changes that may be necessary to provide for concurrent access through CORBA.

In summary, CORBA technology can be easily integrated into existing systems. The easier and

more transparent techniques, however, may be less efficient. If the objective of the CORBA

transformation is to provide a more object-oriented design and to support efficient communication,

significant redesign and recoding may be required.

27

5.2 Performance Evaluation of File Transfer Operation
As described in Section 4, there were three techniques available for transferring files between the

DAI and the SDM:

1) a file is sent by an automatic invocation of an ftp operation external to CORBA

2) a file is sent as one large data string parameter, or

3) a file is broken into smaller parts and iteratively sent as a parameter.

The first subsection below describes the implementation issues associated with each of the

approaches. The second subsection provides a performance comparison of each approach.

5.2.1 Implementation Efforts for Different Approaches
The file transfer approach implemented within the IPDE involved direct invocation of the Unix

ftp facility. The use of this approach is rather straightforward. The coding changes were minimal and

performed on the client side. The server simply needs to provide the necessary information for the remote

login.

When the file is transferred as one large parameter, the server provides the major service. The

implementation is separated into two parts involving the “get” and the “put” operations. In the “get”

operation, for example, the server breaks the file into small parts, links the parts into an unbounded string

list, and sends the list back as a parameter. The “put” operation is implemented in a similar manner. This

approach was tested as a separate client/server program. The implementation of this approach requires

approximately twice the effort of the ftp approach.

The third approach is to break the files into small, equal-sized parts and transfer each part using a

parameter. The client is responsible for distributing the file into parts and composing the parts into a file

again. This method is used to avoid the large buffer space required in the server. In this case, when space

is a critical resource, the server needs to allocate one fixed buffer size for all parts of the file. This

approach is therefore better than the second approach when the active file is sent as one parameter.

However, the coding of this approach is more complicated. The transfer time is faster than the second

approach but slower than the first approach as discussed in the next subsection.

The advantage of the second and third approaches described above is that the file transfer process

can be handled by a server separate from the SDM server. The SDM server is already highly burdened

with the service it provides. In particular, the parsing, check-in, and check-out procedures can be quite

time-consuming, especially when large files are involved. When multiple users perform these operations

at the same time, the server can be slowed down even more for it must be responsible for managing the

buffer space required for the file transfer. However, synchronization control must be provided to the

28

multiple working servers, e.g., the SDM server and the ftp server. This approach was rejected since the

synchronization control among multiple servers is very difficult to implement.

5.2.2 Performance Comparison of Each Approach
As part of this research, we performed time studies to compare the time involved to transfer files

under the three techniques described above. Since the transfer process in each approach is invoked by an

ftp function call or an iteration of the ftp function call, the starting points of the time testing are set to be

prior to the ftp function call or the iteration. The ending points are set at the end of the ftp function call or

the iteration. The system call “gettimeofday” is used to identify the starting time and the ending time. The

time unit is also set to be 1/1000 second. In all three approaches, the client invoked the system call for

starting and ending time. During the transfer process, the machine used for testing may also be dealing

with resource demands of the users. To obtain consistent results, all tests were run while the system was

running under similar loads.

Table 2 shows the results of the tests graphically that were used to compare the transfer time of

the three different techniques. For each case, the timing was performed for files of size 0.75 megabytes

(MB), 7.5 MB, 25 MB, and 50 MB, 75 MB, and also 100 MB.

Table 2: Test Results of File Transfer with Different Approaches

0.76 MB 7.5 MB 25 MB 50 MB 75 MB 100 MB
Approach 1 1.888 85.233 235.346 467.745 678.456 926.343
Approach 2 2.547 126.319 342.532 628.934 875.343 1157.587
Approach 3 3.567 98.893 287.341 556.349 737.396 979.987

29

Figure 8: Time Comparison of Different FTP Approaches

The lines in Figure 8 represent the general growth of the transfer time according to the growth of

the file size. From Figure 8, we also see that the transfer time for each approach is similar with smaller

file sizes. When the files become larger (about 10 megabytes), the time required for each approach

increases. Differences also begin to appear in the different techniques. The use of the Unix ftp facility in

the first approach is the fastest. The second approach of sending the entire file as one parameter is the

slowest of the three approaches. This is primarily due to the large amount of buffer space that is required

to implement this technique. For the transfer of several very large files, this approach could become so

overwhelming that other users may be prohibited from simultaneously running processes on the same

machine. The third technique of breaking the file into several parts is comparable in time to the Unix ftp

approach, although generally slower. The size of the buffer can be limited to a reasonable size, so the

large buffer problem of the second approach will not occur. However, the size of the buffer is, in fact, an

important factor for the transfer speed. For a file more than 100 megabyte, a 10-kilobyte buffer will cause

the server and the client to be involved in more than 10,000 loops, therefore, slowing down the transfer

time. The buffer size must be determined by the length of the files involved in the transfer. In our project,

a 64-kilobyte buffer is reasonable for both small and large files. In general, the size of the buffer may be

difficult to predict.

Since the three approaches are comparable, either approach could be adopted for the IPDE. For

different resource requirements, we can choose different approaches. When the time and space are both

0

200

400

600

800

1000

1200

1400

0.76
MB

7.5
MB

25
MB

50
MB

75
MB

100
MB

File Size

T
ra

ns
fe

r
T

im
e

Approach 1
Approach 2

Approach 3

30

critical resources, approach 1 should be adopted. When portability is the most important issue and the

files are relatively small, approach 2 could be chosen. Approach 3 is a more generic approach that is

portable and works well for files of any size.

5.3 Performance Issues for Wrappers
Where the server with a wrapper is a necessary part of the client/server architecture, the client

with a wrapper is optional to developers. As described in Section 4, an alternative implementation

approach is to modify the client code to directly invoke Orbix calls. As part of this research, we

performed studies to compare the communication time between the server and the client with a wrapper,

and the time between the server and the client without a wrapper. In the IPDE, we could embed the

functions of the Orbix objects into the DAI code. However, the DAI is an interactive GUI which would

make the studies complicated if we did this. As a result, we developed a textual driver code for the client

with the wrapper and another one for the client without the wrapper. The studies were therefore

performed outside of the GUI environment. Iteration was introduced to invokes sequence of operations

and therefore make the test results more apparent. The starting point was set prior to the iteration of the

function call and the ending point was set right behind the iteration call. The system call “gettimeofday”

was used as the starting point and the ending point. The time unit was set to be 1/1000 second. The

number of loops was set as 100. The system load and the system environment were equal in each

approach.

Table 3 shows the results of the tests. The timing was performed for several typical function calls

in the SDM (display_products, display_uofs, display_current_bm, display_bms). These functions deal

with operations on bookmarks. Figure 9 displays a graphical comparison of this test data.

Table 3: Testing Results of Wrapper Technology

The test data illustrates that the transaction time of the client with the wrapper is about two times

slower than the approach without the wrapper. In the client with the wrapper, the transaction times of the

functions are slower since different type conversion functions must be called. The complexity of

conversion affects the execution time. However, as discussed in Section 4, the wrapper of the client side

also maximizes the reuse of the existing client code. The wrappers of the client side and the server side

provide clearer system boundaries and greater transparency to the Orbix internal process. The client side

display_products display_uofs() display_current_bm() display_bookmarks()
Without wrapper 5,447 7,335 6,786 4,495

With wrapper 14,424 22,165 15,767 20,643

31

wrappers are also faster to implement. This is one area, however, that could be recoded to improve the

performance of the client/server implementation of the IPDE.

Figure 9: Graphical View of Test Results of Wrapper Technology

5.4 Effectiveness of Multi-user Access

The final evaluation issue addresses the effectiveness of using CORBA within the IPDE to

support multiple users. As part of this research, we compared transaction times for the following cases:

1) the transaction time for single users in the original non-CORBA mode of operations,

2) the transaction time for single users in the non-concurrent CORBA mode of operation, and

3) the transaction time for multiple users in the concurrent CORBA mode of operation.

We developed a textual code driver for each mode to eliminate the complexity caused by the

interactive GUI interface and the DAI. As in the previous study, iteration was introduced to make test

results more apparent. The starting point was set up prior to the iteration of the function call and the

ending point was set right behind the iteration call. The system call “gettimeofday” was used as the

starting point and the ending point with the time unit set to 1/1000 second. The number of loops was set at

100 times and the system load was equal for each study.

Table 4 shows the data results of the time study. Figure 10 displays the time comparison of the

results. For concurrent-mode cases, there were four concurrent processes active at the same time.

0
5,000

10,000
15,000
20,000
25,000

 d
isp

lay
...

dis
pla

y_
...

dis
pla

y_
...

dis
pla

y..
.

Functions

T
im

e
(m

S
ec

)
Without wrapper
With Wrapper

32

Table 4: Testing Results of Three Modes for Different Functions

Figure 10: Comparison of Single and Concurrent Accesses

We analyze the reason for the results from Table 4 and Figure 10 below:

1) The transaction time for single users in the current CORBA mode of operation.

In this mode, the DAI, the SDM, and the databases are tightly coupled. The system allows only a

single user to login. No extra layers are added between the DAI and the SDM. The system has fast

transaction speed compared with the CORBA version of the IPDE with the obvious disadvantage of no

concurrent access.

2) The transaction time for single users in the non-concurrent CORBA mode of operation.

The transaction time is slowed down significantly after the CORBA layer with wrappers are

added to the DAI and the SDM. Since the IPDE is basically a database system, there is a large amount of

data throughput. The middlelayers have to take time to wrap the data up into the Orbix format, then

transfer them through the network, and finally wrap them back to the format that the DAI could use. The

obvious advantage, however, is that users can access the IPDE from remote locations.

3) The transaction time for multiple users in the concurrent CORBA mode of operations.

display_products display_uofs() display_current_bm() check_in_exchange_file()
Mode 1 3,223 4,313 4,765 183,343
Mode 2 14,424 22,165 15,767 230,643
Mode 3 17,341 24,987 18,221 247,327

0
50,000

100,000
150,000
200,000
250,000
300,000

dis
pla

y_
pr

od
uc

ts

dis
pla

y_
uo

fs(
)

dis
pla

y_
cu

rre
n.

..

ch
ec

k_
in_

ex
c..

. Function

T
im

e
(m

S
ec

)

Mode 1

Mode 2

Mode 3

33

This mode is the most complicated among the three since it involves concurrent access to the

IPDE. The concurrent CORBA mode of operation is obviously the most time-consuming mode of

operation, although the time for four users is not significantly greater than the transaction time for one

user. As described in the previous section, the performance of the system could be improved by

elimination of the client side wrapper and by the implementation of multi-threading.

6. SUMMARY AND FUTURE WORK

This research has presented the results of an experiment involving the reengineering of an

existing engineering design application into a client/server architecture using CORBA. The specific

application was the IPDE, supporting a database approach to the exchange of design data. The original

IPDE was reengineered with the user interface (DAI) as the client and the database component (SDM) as

the server. Evaluation of the reengineering work to the original system was performed. The efficiency of

the different implementation options was also investigated.

The results of this work demonstrate that CORBA technology can be easily integrated into

existing applications. The speed of the integration as well as the efficiency of the resulting system,

however, depend on the degree of modification that developers are willing to consider in the

reengineering process. The most transparent approach to the use of CORBA requires less modification

and generally less efficient performance. The less transparent approach to the use of CORBA can

potentially require significant system modification but greater performance gains. This work outlines

issues that must be considered for the partitioning of functionality between the client and the server,

development of an IDL interface, development of client and server side wrappers, and support of

concurrent, multi-user access. In addition, this work also provides performance and implementation

comparison of different techniques for the use of wrappers, and for the transfer of large data files between

the client and the server. Performance comparisons for the incorporation of concurrent, multi-user access

are also presented.

The results of this work also provide several recommendations for future versions of the IPDE.

Performance can be improved by removing the client side wrappers and providing direct invocation of the

Orbix calls into the DAI. In general, the system should be redesigned to provide a more object-oriented

approach to the support of SDM services. Multi-threading should also be investigated for more efficient

support of a large number of users.

34

ACKNOWLEDGEMENTS
This research was supported by DARPA’s Rapid Design Exploration and Optimization Program
(RaDEO). The partners on this project are Boeing Defense and Space Group, MacNealschwindler
Corporation, and Arizona State University.

REFERENCES
[1] Object Management Group, The Common Object Request Broker: Architecture and Specification,
Updated Revision 2.0, July 1996.

[2] Jon Siegel, CORBA Fundamentals and Programming, Wiley Computer Publishing Group, 1996.

[3] IONA Technologies Ltd, Orbix 2 distributed object technology, Programming Guide, November,
1995.

[4] Boeing Defense & Space Group, Manufacturing Automation and Design Engineering (MADE),
Integrated Product Definition Model (IPDM), DARPA proposal, September 1995.

[5] Philip Gill, “A Better Way to Fly”, Oracle Magazine, May/June, 1997.

[6] Ling Fu, The Implementation and Evaluation of the Use of CORBA in an Engineering Design
Application, M.S. Thesis, Department of Computer Science and Engineering, Arizona State University,
Tempe, AZ, Summer 1998.

[7] Douglas C. Schmidt, Silvano Maffeis, “Constructing Reliable Distributed Communication Systems
with CORBA”, IEEE Communications Magazine, vol. 4, no. 2, February, 1997.

[8] Steve Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments”, IEEE Communications Magazine, February, 1997.

[9] Thomas J. Mowbray, Ron Zahavi, The Essential CORBA: Systems Integration Using Distributed
Objects, John Wiley & Sons, Inc, 1995.

[10] G. Booch, Object-Oriented Analysis and Design with Applications, 2nd edition, Benjamin
Cummings, 1994.

[11] Arnold Hutt,. Object Oriented Analysis and Design. John Wiley & Sons, Inc., 1994.

[12] Naji Ghazal, Basic Concepts of CORBA’s IDL, GTE Labs’ Distributed Object Computing Group,
Dallas, June, 1996.

[13] Hewlett Packard Press Release, HP Introduces CORBA 2.0-Compliant HP Distributed Smalltalk
Flexible Tool to Develop Three-Tier, Multilanguage, Multiplatform Application Architectures,
http://www.hp.com/csopress/95aug07.html, August 7, 1995.

[14] Don Kretsch, Solaris NEO Interoperability with CORBA ORBs and COM,
http://www.sun.com/software/events/presentations/OP4.Kretsch/OP4.Kretsch.html Jan 18th, 1998.

[15] Eric Evans and Daniel Rogers, “Using JAVA Applets and CORBA for Multi-user Distributed
Applications”, IEEE Internet Computing, vol.1, no.3, May-June, 1997.

[16] M. Khayrat Durmosch, Christian Egelhaaf, “Design and Implementation of a Multimedia
Communication Service in a Distributed Environment Based on the TINA-C Architecture,” Trends in
distributed Systems: CORBA and Beyond, International Workshop TreDS ’96, Springer, October, 1996.

[17] Steve Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments”, IEEE Communications Magazine, Feburary 1st, 1997, vol. 35 no2.

35

[18] Boeing Corporation, “BOEING Pushes For Objects,” Informationweek, April 29th, 1996, n577,
Page 24.

[19] OMG Organization, “CORBA Forms the Backbone of NCA,” Software Magazine, vol.17, no1,
January 1st, 1997.

[20] M. Roantree and P.Hickey, “Metadata Modeling for Healthcare Applications in a Federated Database
System, Trends in Distributed Systems: CORBA and Beyond,” International Workshop TreDS’96,
Aachen, Germany, October, 1996.

[21] M. Leclerc, C. Linnhoff-Popien, CORBA-Based Data Transfer for Financial Risk Management,
Trends in Distributed Systems: CORBA and Beyond, International Workshop TreDS’96, Aachen,
Germany, October, 1996.

[22] Black & White, Getting Started with UIM/Orbix, Black & White and IONA Technologies Ltd.,
1996.

[23] Black & White Technologies, Orbix Programming Guide, Release 2.0, Black & White and IONA
Technologies Ltd., 1996.

[24] Oracle Corporation, Oracle 8.0.3 User Manual, 1997.

[25] Michael Tjahjadi, The Implementation and Evaluation of an Express to Oracle8 Mapping, M.S.
Thesis, Department of Computer Science and Engineering, Arizona State University, Summer, 1997.

[26] International Standard ISO, STEP Part 1: Overview and Fundamentals,” ISO TC184/SC4, 9-15-
1992.

[27] D. Schenck and P. Wilson, Information Modeling the EXPRESS Way, Oxford University Press,
1994.

[28] International Standard ISO, “STEP Part 11: EXPRESS Languange Specification,” ISO10303-11,
1993.

[29] STEP Tools, Inc., ST-Developer Tools User Manual, STEP Tools, Inc., 1997.

[30] Jim Clarke, Todd Bowman and Jim Stikeleather, A White Paper for Business Professionals ---
Client/Server Architectures, The Technical Resource Connection, Inc, 1996.

[31] T.J. Mowbray and R. Zahavi, The Essential CORBA: Systems Integration Using Distributed Objects,
John Wiley, New York, NY, 1995.

[32] Aart Van Halteren and Peter Foliant, “Experiences with Supporting Multiple Interfaces in a CORBA
Environment”, the ECOOP’97 Workshop on CORBA, Jyväskylä, Finland, June, 1997.

[33] Helen Custer, Inside Windows NT, Microsoft Press, 1993.

[34] Jim Clarke, Jim Stikeleather and Peter Fingar, Distributed Object Computing For Business, The
Technical Resource Connection, Inc, 1996.

ClearNet: A Multi-Tiered Infrastructure for
Browser-Based Applications

Naser S. Barghouti and Bill Moss

Bear, Stearns & Co., NY, NY

ClearNet is an infrastructure developed over the last 2 years at Bear, Stearns & Co. to deploy financial
services to orrespondent clients over the Internet and private access lines. The services include order and
trade entry systems, client portfolio management tools, broker management tools, on-line financial
statements, and private securities trading systems. The architecture of ClearNet, which is based on
distributed objects, aims to achieve 6 objectives:

1. Ease of Use: to provide a familiar user interface and a friendly navigation and use experience.
2. Security: to ensure that a client accesses only the services to which he or she is entitled.
3. Reliability: to guarantee a high quality of service, in terms of availability of services, that meets the

customer’s needs.
4. Performance: to provide our services in a speedy and efficient manner.
5. Scalability: to allow for future growth of our customer base without impacting performance or

reliability.
6. Maintainability: to sustain our leading edge by absorbing new best-in-breed technologies as

seamlessly as possible.

Technologies like Java (client- and server-side), CORBA, Enterprise JavaBearns, and client-side and
server-side digital certificates were used in building ClearNet applications. This presentation will describe
the architecture, especailly our use of istributed objects, and share our experiences in developing and
deploying ClearNet to thousands of customers worldwide.

�

A Software Architecture for A
Real Time Data Distributed

Objects System

By Neil Roodyn

1. Introduction
This paper presents a software architecture for using distributed objects within a real time system. It first
presents the problem and then addresses the issues typically associated with both real time systems and
distributed object systems. The commercial aspects are then examined along with the specific commercial
requirements made for such a system. Next the thoughts and ideas behind the design are presented,
followed by examining the objects, the object relationships and the interfaces exposed by the objects.
Specific features of the implementation carried out by Cognitech Ltd. are considered, and possible future
work is discussed.

2. The Problem
It was the problem of creating a system which both provided data and created derived data in a timely
manner that led to the architecture described within this paper. In the past Cognitech has written systems
which utilise the classic client/server model. The real time data feeds would be collected on a server which
would then both archive the data and provide the data for collection by a number of clients. These systems
had problems; i) The clients had no way of being notified of changes in the data without implementing a
proprietary solution, ii) any derived data had to be calculated either on the server, wasting valuable CPU
time, or duplicated on each client, resulting in the same data being created in many places & iii) the
client/server model doesn’t fit in well with object models used when designing and implementing the
system.
After working on several such client/server solutions it became obvious that a better solution could be
found by utilising a distributed objects model. It is this model that is described within the following text.

3. Issues with Real Time and Distributed Objects Systems
In order to fully understand the nature of both real time and distributed objects systems, as well as methods
used to achieve the goals of this project, I here examine how existing systems manage to achieve similar
tasks. The financial sector is Cognitech’s target market for real time systems, these systems provide market
data as it changes along with news and financial reports. This data is usually provided in the form of a
‘feed’, which is simply a stream of the data.
The data involved will generally come from an external source, the user will wish to view the changes in
that data within a specified time frame. Each application will tend to be different, but generally real time
data becomes historical data once that specified time frame has elapsed. The aim of the software is
therefore to get the data to the user within that time frame.
Until recently it has not been feasible to create a real time distributed object system to cater with real time
financial data. The available distributed object systems did not provide a stable enough platform and the
timely delivery of data could not be guaranteed. Another problem was that the commercial acceptance of
such platforms was low. This is now changing with statements such as:
’It is self-evident that there is a significant potential market for a DCOM which is "real-time" -- at the very
least in the minimal sense of DCOM having service latencies which are tightly upper bounded and the
smaller the better.’ [1]
The architecture described here does not provide a guaranteed latency period and so the system must be
considered as a soft[2] real time system. Even so the system implementation would not be of use if this
latency becomes too great.

�

4. Commercial Aspects and Requirements
In previous projects Cognitech had handled data in multiple formats from multiple sources. We now
examine the commercial requirements and aspects of the distributed objects system that was created.
Windows NT is now becoming the standard environment at all levels of industry. It was a definite
commercial requirement that this system ran on the Windows NT platform. Another good reason for
selecting Windows NT as an environment is the powerful API it provides, the breadth of technical support
available and the many skilled programmers who know the API well. This has lead to the fact that many
other applications are already available which may complement a system such as the one being discussed
herein.
Microsoft have already provided some guidelines for the creation of real time systems for financial data, in
a paper entitled ‘WOSA Extensions for Real Time Market Data’[4], otherwise known as WOSA/XRT. On
top of this architecture I had already worked on the RTD (Real Time Data) System[5] for Black Ace
Software Engineering Ltd. (a sister company of Cognitech). It was considered important to learn from these
experiences and build on them to create the new system. With the general acceptance of, and migration
towards, Microsoft solutions, COM has become a feasible standard for implementing commercial real time
data systems. In essence a virtuous cycle has caused more developers to use COM which in effect has
forced COM to become more stable and faster, which enables more developers to use COM and so on.

The requirements for where to create a system that could:
1. Take differing types of financial data; whether the data was a price, a currency exchange rate or

description of a fund’s activities.
2. Accept data from more than one feed; an input interface would need to cope with input from multiple

sources.
3. Provide a mechanism for derived data to be calculated; these calculations would have to occur within

set time frames upon receipt of the data. Calculations could be dependant upon another calculations
derived data, but there were no cyclic dependencies.

4. Client programs should be able to filter the data for information that is of interest to the user.
5. Provide the data, derived and source, to one or more client programs; an interface to allow client

programs to be notified in a timely manner would be required.
6. Store the data for historical analysis; some form of database system would be needed to archive the

data. This archived data would need to be available to other third party application through a standard
interface.

The existing business model is shown in figure 1. The data is collected by research and then entered into a
database. The research department also performs calculations on the raw data to create derived data which
is also placed in the database. The data in the database is then used by the research team , the sales team
and the trading team to generate reports on screen and on paper.

Database

Research Team
Manual input

Research Team
Calculations

Paper Reports

On screen reports

Data Feeds

)LJXUH���%XVLQHVV�PRGHO�IRU�GDWD�FROOHFWLRQ

�

5. Designs
From the requirements and previous project experience figure 2 was sketched out as an outline for data
flow within the system. As can be seen a three tier approach has been taken. This provides several
advantages over the more typical client server model:
i) A simple system that inserts the data into a database will collect the feed data. There is little that

can go wrong, Even if the rest of system fails the raw data will still be collected.
ii) Complex calculations are all carried out by one layer, this doesn’t have to sit on one physical

machine and can be scaled across multiple servers.
iii) Each piece of derived data only has to be calculated once. Unlike a client server model where the

calculations occur on 'fat' clients.
iv) The clients can be 'thin'; they don't need to have much intelligence and they can become display

mechanisms.

Each of the data connections is now examined.

'DWD�)HHG�→�/LYH�'DWD�%DVH

This would be a straight movement of data directly into the Live DB from the feed. Some sort of feed
decoding would be required. We could also have some module receiving the feed, which performs the Live
DB update and the Data Server update.

/LYH�'%�→�'DWD�6HUYHU

Straight after (or before) the data is input to the Live DB, the same data is passed to the Data Server. The
method could be by single field value (or record value - depending on structure of feed), or by batch of
field (record) values. Return values are not required. As mentioned before, we could have some module
performing the Live DB update as well as the Data Server update.

'DWD�6HUYHU�→�/LYH�'%

This data flow represents fields that have changed as a result of other fields being updated or data that has
been input by the user. The Data Server will have to be intelligent enough to know when to update the
Live DB (and when it does so, it must not cause the Live DB to update the already updated clients.)

'DWD�6HUYHU�→�+LVWRULF�'DWD�%DVH

This kind of data flow will occur when the client changes some data and this gets passed back to the Data
Server and forwarded from there to the Historical Data Base. Again, some control may be required to
identify this data as having the Historical Data Base as the data sink.

+LVWRULF�'DWD�%DVH�→�'DWD�6HUYHU

This data flow occurs when data has been requested by the Data Source from the Historical Data Base. A
simple SQL interface will suffice.

'DWD�6HUYHU�→�&DOFXODWLRQ�2EMHFWV

This is an interesting data flow. The origin of the flow is a single field that has changed. This field may
influence other fields and consequently must result in the updating of the clients and the Live DB.
Issues that arise here are; i) Where do we decide which, if any, fields are affected by the changed field, ii) if
the field does affect other fields which method do we use to decide which other fields are affected, iii) how
are the recalculations carried out, do intelligent objects within the calculation objects perform the
calculations, or are they performed by some ‘turn the handle’ operation.

&DOFXODWLRQ�2EMHFWV�→'DWD�6HUYHU

This data flow consists of the fields that have changed as a result of calculation requests. These could be
provided as a return value of the function performing the calculations mentioned in the previous section.
Alternatives include passing the variables by reference, if that is possible in the environment.

'DWD�6HUYHU�→&OLHQWV

Send the clients the data that has been updated and let them decide if they need to refresh their displays.

�

&OLHQWV�→'DWD�6HUYHU

Any client will fire off an event when some of its data has changed. This event will be received by the
Data Server and handled by requesting all clients to update. In addition to this, the corresponding Live DB,
Historical DB and dependant fields must be updated.

Historical

BackEnd Server DB

Data FeedsArchiving

DataServer

Historic Data Live data

Calculation COM objects

Calculation Requests

Derived Data Fields

Derived, Historic and Live fields Data updates

Live

Client Client Client

)LJXUH���,QWHU�PRGXOH�'DWD�)ORZ�'LDJUDP

6. The Objects
The system designed is split into separate modules; BackEnd Database Server, Data Server, Calculation
Engines and Clients. Each of these modules contains one or more objects that exposes the functionality of
the module to the other modules via a COM interface. These are listed in Table 1.

�

Module Object Description
BackEnd Database Server

ConnectionManager A connection point for data
servers to connect to for
advises of data changes.

DataAdvisor Starts and stops advises
being sent through to the
Data Server.

DBNotify Database uses to notify of
changes to the data.

Data Server
ConnectionManager A connection point for

clients to connect to for
advises of data changes.

ClientManager Exposes an automation
interface for clients.

DataStore Supports an automation
interface for feeding data
and requesting the latest
values.

ItemSink Exposes a sink interface for
the ConnectionManager
object of the BackEnd
Database Server to advise
of changes.

Calculation Engines
ItemSink Exposes a sink interface for

the ConnectionManager
object of the Data Server to
advise of changes.

Client
ItemSink Exposes a sink interface for

the ConnectionManager
object of the Data Server to
advise of changes.

Table 1. Modules and Objects

7. Object Relationships and Interfaces
%DFN(QG�6HUYHU

The BackEnd Server Module comprises the Live and Historic Databases, plus the handling of data feeds.
The Database Manager handles the interface between the databases and the Data Server machine.

Database Manager
The data manager handles routing of data to the database and to the Data Server. Its function is to ensure
that the Data Server is only informed of changed values, by keeping a cache of most recent updates. In
addition, it decides, according to the source of the data item whether or not to inform the Data Server of the
new addition to the database.
'DWD�6HUYHU

The Data Server interfaces to the rest of the system are shown in figure 3.

�

Sink
Calc Clients

Request

Data Server

Feed

Reg / Unreg

Clients

SinkBackEnd Server

Historical
and Live

DB Manager

Sink

Sink

Reg / Unreg

)LJXUH���,QWHU�FRPSRQHQW�,QWHUIDFH�UHODWLRQVKLSV

The Back End Server and Data Server use the same mechanism for pumping data out to the Client
programs, and the Calculation Engines, both of which must export the following DCOM interface:

ItemSink: Data Advise notifications are sent to this interface every time the Server is aware of a new piece
of data. In addition, any broadcast messages are sent through this interface.

The Data Server exports three DCOM interfaces:
Request: This is a request for data from the Data Server (handled either by the cache, or by a pass-through
request to the database). Each request spawns a new thread, which handles the request, pumps the data back
to the caller, and then dies.
Register / Unregister Client: Each Client or calculation engine must register with the Data Server in order
to receive notifications of changed data.
Feed: The feed interface is used to add data to the Data Server, either from a feed, from the result of a
calculation, or from a client program.

In addition to the DCOM interfaces, the DataServer links directly into the databases in order to perform
ODBC queries to fulfil data requests.
&DOFXODWLRQ�(QJLQHV

The Data Server treats the calculation engines as clients. Each one receives data updates from the server,
decides whether to calculate, and pumps results back as new data items. Each calculation performed by the
system is a separate Calculation Engine.

8. Features of Implementation
The system has been designed with flexibility in mind, each component could run on a different machine or
they could all run on one machine. The practical up shot of this is to allow the load to be spread. In practice
the system created has the BackEnd server and the feeds running on the same machine as the database, and
the Data Server running on a machine with the calculation engines, the clients are then all be running on

�

separate machines. In this way one machine becomes dedicated to data collection, one to deriving data and
each user has their own client machine.
The entire system has been implemented using C++ and COM. The database we used was Microsoft’s SQL
server, this provides a mechanism for calling COM Automation functions within a stored procedure, which
allowed us to communicate from the database into the BackEnd Server. It was easily tested by writing
Visual Basic test harness code to test each component individually and groups of components together.

9. Future Work
This system is one of the first implementations of a real time distributed objects system, we at Cognitech
strongly believe that we shall be creating more such systems in the future and will be improving on the
system presented here.
Work is already under way to create the next generation of more generic real time systems using distributed
objects.
With feedback provided from our clients we will be continually enhancing the architecture and working on
new ideas to provide faster response times, further stability and create neater solutions.

�

%,%/,2*5$3+<

>�@ (��'RXJODV�-HQVHQ��
$�1HZ�3URVSHFW�IRU�5HDO�7LPH�'&20"
��0D\�����
�KWWS���ZZZ�UHDO�WLPH�RUJ�QRBIUDPHV�QRWHZRUWK\�UW�GFRP�KWP

>�@ &RROLQJ��-�(��6RIWZDUH�'HVLJQ�IRU�5HDO�WLPH�6\VWHPV��,QWHUQDWLRQDO�7KRPVRQ�&RPSXWHU�3UHVV�������
>�@ %URFNVFKPLGW��.UDLJ��,QVLGH�2/(�0LFURVRIW�3UHVV�������
>�@ :26$�([WHQVLRQV�IRU�5HDO�7LPH�0DUNHW�'DWD��:26$�;57��'HVLJQ�6SHFLILFDWLRQ��2SHQ�0DUNHW�'DWD

&RXQFLO�)RU�:LQGRZV
>�@ 1HLO�5RRG\Q��:ROIJDQJ�(PPHULFK��$Q�$UFKLWHFWXUDO�6W\OH�IRU�0XOWLSOH�5HDO�7LPH�'DWD�)HHGV������
>�@ 3UHVVPDQ��6RIWZDUH�(QJLQHHULQJ��$�3UDFWLWLRQHUV�$SSURDFK��0F*UDZ�+LOO
>�@ 2/(��3URJUDPPHU·V�5HIHUHQFH�9ROV�2QH�	�7ZR��0LFURVRIW�3UHVV�������
>�@ &ULWWHQGHQ��-RKQ��,QIRUPDWLRQ�2YHUORDG�)HDWXUH�$UWLFOHV�3DFLILF%\WH�����
>�@ 5HDO�7LPH�6\VWHPV�DQG�0LFURVRIW�:LQGRZV�17��0LFURVRIW�&RUSRUDWLRQ������
>��@ 'HQQLQJ��$��¶$FWLYH;�&RQWUROV�,QVLGH�2XW·��0LFURVRIW�3UHVV
>��@ �.UXJOLQVNL��'DYLG��¶,QVLGH�9LVXDO�&��·��0LFURVRIW�3UHVV
>��@ �0F&DUWK\��-LP��¶'\QDPLFV�RI�6RIWZDUH�'HYHORSPHQW·��0LFURVRIW�3UHVV
>��@ �0DJXLUH��6WHYH��¶:ULWLQJ�6ROLG�&RGH·��0LFURVRIW�3UHVV
>��@ *X\�(GGRQ�	�+HQU\�(GGRQ��,QVLGH�'LVWULEXWHG�&20���0LFURVRIW�3UHVV������
>��@ 'RQ�%R[��(VVHQWLDO�&20��$GGLVRQ�:HVOH\������
>��@ -RQDWKDQ�3LQQRFN��3URIHVVLRQDO�'&20�$SSOLFDWLRQ�'HYHORSPHQW��:52;�������

	2: 2
	1: 1
	3: 3
	4: 4
	5: 5
	6: 6
	7: 7
	8: 8
	9: 9
	10: 10
	11: 11
	12: 12
	13: 13
	14: 14
	15: 15
	16: 16
	17: 17
	18: 18
	19: 19
	20: 20
	21: 21
	22: 22
	23: 23
	24: 24
	25: 25
	26: 26
	27: 27
	28: 28
	29: 29
	30: 30
	31: 31
	32: 32
	33: 33
	34: 34
	35: 35
	36: 36
	37: 37
	38: 38
	39: 39
	40: 40
	41: 41
	42: 42
	43: 43
	44: 44
	45: 45
	46: 46
	47: 47
	56: 56
	57: 57
	58: 58
	59: 59
	60: 60
	61: 61
	62: 62
	63: 63
	64: 64
	65: 65
	66: 66
	67: 67
	68: 68
	69: 69
	70: 70
	71: 71
	78: 78
	79: 79
	80: 80
	81: 81
	82: 82
	83: 83
	84: 84
	85: 85
	86: 86
	87: 87
	88: 88
	89: 89
	90: 90
	91: 91
	92: 92
	93: 93
	94: 94
	95: 95
	96: 96
	97: 97
	98: 98
	99: 99
	100: 100
	101: 101
	102: 102
	103: 103
	104: 104
	105: 105
	48: 48
	49: 49
	50: 50
	51: 51
	52: 52
	53: 53
	54: 54
	55: 55
	72: 72
	73: 73
	74: 74
	75: 75
	76: 76
	77: 77
	106: 106
	107: 107
	108: 108
	109: 109
	110: 110
	111: 111
	112: 112
	113: 113
	114: 114
	115: 115
	116: 116
	117: 117
	118: 118
	119: 119
	120: 120
	121: 121
	122: 122
	123: 123
	124: 124
	125: 125
	126: 126
	127: 127
	128: 128
	129: 129
	130: 130
	131: 131
	132: 132
	133: 133
	134: 134
	135: 135
	136: 136
	137: 137
	138: 138
	139: 139
	140: 140
	141: 141
	142: 142
	143: 143
	144: 144
	145: 145
	146: 146
	147: 147
	148: 148
	149: 149

