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FEEDBACK INSTABILITY IN A BOUNDARY-LAYER
FLOW OVER ROUGHNESS

S. N. TIMOSHIN

Abstract. Linear stability of an incompressible triple-deck flow over a wall
roughness is considered for disturbances of high frequency. The wall roughness
consists of two relatively short obstacles placed far apart on an otherwise
flat surface. It is shown that the flow is unstable to feedback or global
mode disturbances. The feedback loop is formed by algebraically decaying
disturbances propagating upstream and weakly growing Tollmien-Schlichting
waves travelling downstream and as such represents an interaction between
modes from continuous and discrete spectra of the corresponding parallel-
flow problem. An example of growth rate calculation for a specific roughness
is considered.

§1. Introduction. Tollmien-Schlichting instabilities near the lower branch
of a neutral curve for a laminar boundary layer in an incompressible
fluid are governed by the equations of viscous-inviscid interaction (triple-
deck equations). These equations are formally valid at asymptotically large
Reynolds numbers in the flow, and they describe near-wall motion of the fluid
in a local region at a chosen downstream location on a solid boundary of small
curvature. Depending on the context, a non-trivial flow within the triple-deck
can be due to an isolated wall roughness, or a self-induced separation, or,
in unsteady flows, to a travelling-wave or a pulse disturbance introduced by
various means, as reviewed, for example, in [3, 7, 8]. Within the triple-deck
formulation, the base, unperturbed, steady flow along a flat surface is unstable
to infinitesimal travelling-wave disturbances [5, 11]. The spectrum of instability
consists of a single mode and includes a lower-branch neutral point, a range of
most highly amplified waves, and a semi-infinite range of short unstable waves
with finite growth rates. Despite the fact that the upper-branch cut-off of the
instability is not captured by the triple-deck model, the initial value problem
for the triple-deck equations proves to be well posed. It was also found that the
base triple-deck flow exhibits convective (rather than absolute) instability, i.e.,
the amplified part of a compact disturbance introduced in the flow at a finite
time will be swept away from the flow region leaving no growing disturbances
behind [4].

The aim in the present paper is to show that a weak, distributed spatial
inhomogeneity in the triple-deck flow, for definiteness due to a pair of isolated
obstacles placed sufficiently far apart, may be sufficient to trigger a form
of absolute instability or unstable global mode in conventional terminology
(see, e.g., [2]). The specific form of absolute instability considered here
relies on a feedback loop sustained by Tollmien-Schlichting waves growing in

[Mathematika, 52 (2005), 161–168]



August 17, 2006 Time: 12:27pm Timoshin.tex

162 s. n. timoshin

amplitude as they propagate downstream, and inviscid pressure waves decaying
algebraically as they spread through the inviscid part of the flow. In terms of
the governing equations it is a link between the parabolic/hyperbolic properties
of the wave system in the boundary layer and the ellipticity introduced through
the viscous-inviscid interaction that alters the spectral characteristics of the
flow. The link relies on the presence of regions of spatial inhomogeneity, here
in the form of wall-mounted obstacles. It is important to note a fundamental
difference between the non-local interaction mechanism in this work and the
effect of local, short-wave, destabilisation observed near concentrated wall
roughness with strongly deformed velocity profiles ([6, 10]).

The analysis in this work is restricted to disturbances in the short-wave
part of the Tollmien-Schlichting spectrum. As a result we shall derive certain
sufficient conditions for the origin of feedback modes. The task of establishing
conditions for the first appearance of non-local instabilities is beyond the scope
of this study.

§2. Problem formulation and linear spectrum. In the standard for the
boundary-layer theory notation, the triple-deck formulation for the flow over
a wall roughness can be written as a coupled system of near-wall viscous flow
and outer inviscid-flow equations:
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Here all variables are non-dimensional and scaled in the usual fashion,
u(x, y, t), v(x, y, t), p(x, t) denote the streamwise (along the x-axis) and normal
(along the y-axis) velocity components and pressure in the near-wall viscous
layer respectively, A(x, t) is the negative displacement thickness, and t is time.
The function f (x) specifies the wall roughness, with Prandtl’s transposition
used to simplify the wall conditions. In the inviscid-flow formulation, φ(x, z, t)
is the velocity potential. The flow is entirely two-dimentional.

Steady-state (or mean flow) solutions of (2.1)–(2.3) exist provided that the
roughness is not excessively large, with u = um(x, y), v = vm(x, y), p = pm(x)
and A = Am(x) determined from the following boundary-value problem:

um
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um = y + Am(x) + f (x) as y → �, um = vm = 0 at y = 0, (2.5)

um → y as |x| → �, pm(x) =
1
π
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x − s
, (2.6)
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where the prime designates the derivative. The principal value integral in
(2.6) is a familiar result in the viscous-inviscid interaction theory obtained
from solving (2.3) for the time-independent potential, φ = φm(x, z) say, with
the mean-flow decay condition imposed upstream and downstream.

The linear stability problem for the mean flow above can be posed as
an eigen-value problem, considering small disturbances of amplitude δ �1
of (complex-valued in general) frequency ω superimposed on the solution of
(2.4)–(2.6). Hence

{u, v, p, A, φ} = {um, vm, pm, Am, φm}
+δ exp(−iω t){uu(x, y), vu(x, y), pu(x), Au(x), φu(x, z)} + O(δ 2),

(2.7)

including complex conjugate terms where necessary. Then, neglecting terms of
order δ 2,

−iωuu +
∂(umuu)

∂x
+ vm

∂uu

∂y
+ vu

∂um

∂y
= −p′u +

∂2uu

∂y2
,

∂uu

∂x
+

∂vu

∂y
= 0, (2.8)

uu → Au (x) as y → �, uu = vu = 0 at y = 0, (2.9)
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+
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∂z2
= 0,

∂φu
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∣∣∣∣
z=0

= −A′u(x),
∂φu

∂x

∣∣∣∣
z=0

= −pu(x). (2.10)

The appropriate boundary condition as |x| → � is a radiation condition on
the instability waves present in the system (2.8)–(2.10). Sufficiently far from the
roughness, the steady-state in (2.4)–(2.6) reduces to um = y, vm = pm = Am = 0,
and hence a travelling-wave form can be taken for the disturbance in (2.8)–
(2.10), with the x-dependence in all functions specified explicitly as exp(ikx).
A non-trivial solution for the disturbance can then be found provided the
wavenumber k and frequency ω satisfy the dispersion relation

Ai′
[
−iω (ik)−2/3] = (ik)1/3k

�∫
0

Ai
[
s − iω (ik)−2/3] ds, (2.11)

where Ai is the Airy function, |arg (ik)| < π , and the real part of k is assumed
positive without loss of generality. As is now well known, the roots of
(2.11) written as k = kn(ω ), n = 1, 2, …, with real frequency ω or, conversely,
ω = ωn(k) with real wavenumber k, form a countable discrete spectrum of
the linear triple-deck problem. Only one of the modes from this spectrum
contains instability waves. For short unstable waves, of typical wavelength of
order ε�1 say, the dispersion relation (2.11) yields

ω = ε −2ω0 + ω1 + o(1), k = ε −1k0 + εk1 + o(ε ), (2.12)

ω0 = k2
0, ω1 = eiπ/4 + 2k0k1. (2.13)

For both temporal (real k) and spatial (real ω ) forms of instability, the short
waves prove to be neutral at leading order. The radiation condition mentioned
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above can therefore be formulated as the condition of absence of these near-
neutral waves in the solution of (2.8)–(2.10) as x → −�. Physically, this
corresponds to eliminating the incoming instability wave in the flow upstream
of the roughness. Hence the frequency ω in (2.8)–(2.10) is an eigenvalue to be
determined as part of the solution. Solutions of the disturbance equations
(2.8)–(2.10) with the imaginary part ωi > 0 will correspond to global or
absolute instabilities growing in the entire flow field sorrounding the roughness,
as opposed to convective instability of the waves contained in the spectrum of
the flat-plate flow (2.11).

§3. Feedback instability. In addition to the discrete wave spectrum
described by (2.11), the formulation (2.8)–(2.10) also contains disturbances
of a continuum spectrum. They are interpreted conventionally as pressure
waves appearing in the solution of the Laplace equation (2.10). We aim to
show that an interaction between discrete and continuous spectra taking place
in the regions of spatial inhomogeneity gives rise to a feedback loop which in
turn leads to self-sustained growth of disturbances. To this end the roughness
will be represented by a pair of isolated obstacles, each with typical length
comparable to the discrete wavelength O(ε ) to begin with, and placed at a
large distance L from each other. In what follows it is convenient (although
not essential) to assume the obstacle height to be of O

(
ε 1/3

)
. Specifically, if

f (x) = ε 1/3
[
F1

(x

ε

)
+ F2

(
x − L

ε

)]
, F1(±�) = F2(±�) = 0, (3.1)

then, to leading order, the solution of (2.4)–(2.6) can be written as

{um, vm, pm, Am} = {ε 1/3um1, ε −1/3vm1, ε 2/3pm1, ε 5/3Am1}+ �, (3.2)

with the governing equations for the base flow around each of the obstacles
of the form

um1
∂um1

∂X1,2
+ vm1

∂um1

∂y1
= −p′m1 +

∂2um1

∂y2
1

,
∂um1

∂X1,2
+

∂vm1

∂y1
= 0, (3.3)

um1 = y1 + F1,2(X1,2) as y1 → �, um1 = vm1 = 0 at y1 = 0, (3.4)

um1 → y1 as |X1,2| → �. (3.5)

Here the O(1) independent variables are: for the upstream obstacle, y1 =
yε −1/3 and X1 = xε −1, for the downstream obstacle, y1 and X2 = (x − L)ε −1,
with the scaled obstacle shapes F1(X1) and F2(X2), respectively. As a result,
the mean flow around each of the obstacles is in the so-called condensed-layer
regime, and these two parts of the steady flow can be regarded as independent
of each other.

Solutions of the disturbance equations (2.8)–(2.10) can be constructed
considering three separate flow regions in the x-direction. Using ε as a key
small parameter, the frequency is sought in the form ω = ε −2ω0 + ω1 + o(1),
similar to (2.12). Then, in the first region covering the vicinity of the
downstream obstacle, we assume (subject to an ultimate matching of the
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solutions in all regions) that the leading order disturbance is a wave from
the discrete spectrum of the parallel-flow problem with a typical amplitude C0,
and hence in the region (X2, y1) = O(1) we have

uu = C0
[
eik0X2 + ε 4/3U1(X2, y1) + �

]
, (3.6)

vu = C0
[
−ε −2/3y1ik0e

ik0X2 − eik0X2 (−i)1/2 + ε 2/3V1(X2, y1) + �
]
, (3.7)

pu = C0
[
ε −1k0e

ik0X2 + ε 1/3P1(X2) + �
]
, (3.8)

Au = C0
[
eik0X2 + ε 4/3A1(X2) + �

]
, (3.9)

φu = C0
[
ek0(iX2−Z) + ε 4/3Φ1(X2, Z) + �

]
, (3.10)

with Z = z/ε = O(1) in (3.10). Note that the main interaction between the
incoming discrete wave and the obstacle takes place in the layer of thickness
y1 = O(1) which is thicker than the Stokes viscous layer for the wave. To the
order considered here, the effect of the Stokes layer is contained in the second
term in (3.7). On substituting (3.6)–(3.8) into (2.8)–(2.10) we find immediately
that ω0 = k2

0 from the leading-order solution, and then, at the next order in ε ,
that

−iω0U1 +
∂

∂X2

(
um1e

ik0X2
)

− ik0y1e
ik0X2

∂um1

∂y1
= −

∂P1

∂X2
. (3.11)

Using the boundary condition, U1(y1 → �) → A1, and solving for the
potential Φ1 in the usual manner, we then find that the pressure induced as a
result of the wave-obstacle interaction can be written as a Fourier integral,

P1(X2) =
1

2π

�∫
−�

eikX2
k|k|

k2
0 − k|k|


 �∫

−�

F2(S) ei(k0−k)sds


 dk, (3.12)

with the contour for the first integration taken below the pole at k = k0.
It is clear that, in the process of interaction with the obstacle, the incoming

wave is scattered into an additional wave of the discrete spectrum propagating
downstream (due to the residue contribution of the pole) and an algebraically
decaying upstream and downstream pressure wave (due to a non-analyticity
of the integrand in the complex plane k). The pressure wave is formed by
disturbances of the continuous spectrum, with the result that

P1(X2) = P10|X2|−3+ �, as X2 → −�, (3.13)

as is typical for a localized obstacle. The value of the coefficient P10 depends
on the obstacle shape. The induced pressure forces a viscous sublayer flow
with ȳ = y/ε = O(1) and the streamwise velocity of the form

uu = C0
[
eik0X2

(
1 − exp

(
− (−iω0)1/2ȳ

))
+ ε 4/3 3

iω0
P10X

−4
2

(
1 − exp

(
− (−iω0)1/2ȳ

))
+ �

]
. (3.14)

In the potential field upstream, this corresponds to an algebraic decay,
Φ1 = −P10r

−2 cos(2ϑ )/2 + � in polar coordinates with X2 = r cos ϑ → −�.
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The second characteristic region in the flow is near the upstream obstacle.
Here the disturbance is dominated by the pressure wave generated downstream,
hence

uu = C1
[
1 + ε 4/3U1(X1, y1) + �

]
, vu = C1

[
ε 2/3V1(X1, y1) + �

]
, (3.15)

∂pu

∂x
= C1

[
ik2

0ε −2 + ε −2/3P ′1(X1) + �
]
, (3.16)

Au = C1
[
1 + ε 4/3A1(X1) + �

]
, (3.17)

where C1 is a constant to be determined shortly. The governing equation for
the velocity U1,

−iω0U1 +
∂um1

∂X1
= −P ′1, (3.18)

and the boundary condition, U1(y1 → �) → A1, give the following result:

U1(y1 → �) = −
1

2π

�∫
−�

eikX1
k

k|k| − k2
0


 �∫

−�

e−iksF1(s) ds


 dk. (3.19)

The contour of integration in the k-plane must be chosen in accordance with
the radiation condition for the instability wave which in the present context
requires the contour to pass under the pole at k = k0. Hence downstream, as
X1 → �, the instability wave emerges with the amplitude in the streamwise
velocity of the form

uu = � + C1ε 4/3
(

−
i

4

)
F̄ 1(k0) eik0X1 + �, (3.20)

where

F̄ 1(k0) =
�∫

−�

e−ik0sF1(s) ds (3.21)

is the Fourier transform of the upstream obstacle shape evaluated at the pole.
The third region extends between the obstacles and has a total length L.

Here the effect of the roughness on the disturbance can be neglected, and
hence the discrete wave (3.20) develops in accordance with the wavenumber-
frequency relations (2.12)–(2.13). This wave reaches the second obstacle with
the amplitude

C0 = C1ε 4/3
(

−
i

4

)
exp

(
i

(
k0ε −1 +

ω1 − eiπ/4

2k0
ε
)

L

)
F̄ 1(k0), (3.22)

as follows from (3.6) and (3.20), with a frequency shift proportional to ω1

taken into account.
It remains to match the pressure wave generated at the downstream obstacle

in (3.13) with that acting on the upstream obstacle in (3.16). The result can be
written as

3ε 16/3C0P10L
−4 = C1ik

2
0. (3.23)
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Eliminating C0 and C1 between (3.22), (3.23), we arrive at the dispersion
relation for the feedback modes,

3
4

ε 20/3L−4k−2
0 exp

(
i

(
k0ε −1 +

ω1 − eiπ/4

2k0
ε
)

L

)
P10F̄ 1(k0) = −1. (3.24)

§4. An example of mode analysis. For a particular illustration we
consider a pair of Gaussian humps, F1(X1) = F10 exp

(
−X2

1/β 2
)
, F2(X2) =

F20 exp
(
−X2

2/α 2
)
, with positive constant height and width parameters,

F10, F20, α , β . Substitution into (3.12), (3.21) then gives P10 = 2ik−2
0 α

√
π

exp
(
−α 2k2

0/4
)
F20, F̄ 1(k0) = F10β

√
π exp

(
−β 2k2

0/4
)
. The dispersion relation

(3.24) takes the form

F̂L−4ε 20/3 exp
[
iL
(
k0ε −1 + ε

(
ω1 − eiπ/4)/(2k0)

)]
= i, (4.1)

where

F̂ =
3
2
F10F20k

−4
0

√
αβ exp

(
−
(
α 2 + β 2) k2

0/4
)
. (4.2)

We recall that, by construction, |ω1| � ω0/ε 2 = k2
0/ε 2. Then, with ω1r = ω1r +

iω1i, the real part of (4.1) yields

k0L

ε
=

π
2

(1 + 4n)[1 + o(1)], (4.3)

with (4.6) needed again in the intermediate case.
Finally, if the shape of the obstacles is fixed but the distance between them

varies, then the disturbance with a fixed mode number n is stable for smaller L

but then passes through a neutral point and becomes unstable as L increases,
with the growth rate approching a finite limit, ωi → 1/

√
2 as L → �. This

means that an upper branch cut-off of the instability is not captured by the
present approximation and probably requires the overall frequency to become
O(1), as follows from (4.5) with n fixed and L increasing.

Similar conclusions can be drawn for other smooth obstacle shapes, with
only minor modifications required in the case of less smooth obstacles.

§5. Discussion. The procedure adopted in this paper in constructing the
feedback modes involves simultaneous solution of the receptivity problem on
the first (upstream) obstacle and the wave scattering problem on the second
(downstream) obstacle. In the short-wave approximation the two problems
can be treated separately, so that matching of the two solutions reduces to
a straightforward comparison of the amplitude coefficients for the instability
and pressure waves in the two local regions. It is essential of course that, in
the intermediate region between the obstacles, the instability wave changes in
amplitude sufficiently fast to counter the algebraic decay of the pressure waves
in the potential flow region.

In a more general context, we have shown that for the particular flow in
this paper the conditions of global instability are not related to the existence of
a range of local absolute instability as required in the theorem proposed in [1]
for slowly varying flows. Note that in this problem global instability signifies
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growth in time for disturbances which are not localized in space, on account
of the infinite flow domain. It is also worth noting that instability persists
even when the underlying wave component is short relative to the obstacle
lengthscale (see solutions with k0�σ 1/2 in §4). In such cases one would expect
the stability analysis within a quasi-parallel (frozen profile) approximation to
be applicable, with an immediate conclusion of convective instability for the
entire flow. We can argue now that the feedback, or absolute, instability can
emerge in a slowly varying incompressible boundary-layer flow as a result of
coupling between quasi-parallel modes from discrete and continuous spectra.

Qualitative features such as a discrete spectrum of feedback modes and
the growing number of modes under increase of the total length parameter (in
this paper – the length L) are in agreement with the results for other systems;
see, e.g., [9] for a flow governed by a mixed hyperbolic/parabolic system of
equations and with exponential decay in upstream influence. However, the
conditions for the origin of feedback under elliptic mechanisms of upstream
influence seem less restrictive as they only require a sufficiently large value
of L.
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