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Abstract

Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has
been the subject of much discussion. Females may profit from mating multiply through direct material benefits that
increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct
benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to
achieve high fertility. This hypothesis has never been tested in a wild insect population.

Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their
lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether
receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received
a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that
received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs.
Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an
additional mating did not significantly alter the rate of this decline.

Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We
discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of
failed copulations, and the presence of X-linked meiotic drive in this species.
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Introduction

Multiple mating in insects is a widespread phenomenon that has

attracted much attention and for which many explanations have

been proposed [1;2;3;4;5;6;7]. From a classical perspective, males

are expected to increase their fitness by mating multiply with many

females, while females are assumed to require only one or a few

matings to maximise their fertility [3;8]. However, multiple mating

by females is characteristic in many species, despite the potentially

large costs that females incur from doing so [1]. As a result much

work has focussed on female re-mating to seek explanations for

this apparently paradoxical behaviour [2;3].

Multiple mating by females is likely to be costly as a result of

ecological risks [1;9;10], costs derived from the act of mating itself

[11;12;13], and even increased rates of polyspermy or the

expression of adaptations for sperm competition that reduce

fertility [14]. Advantages of mating multiply are usually classed as

either direct or indirect (genetic) benefits [3;4]. Females may

derive direct benefits from multiple copulations when males

provide nuptial gifts that enhance female fitness directly [1].

Alternatively, if males transfer insufficient sperm in a single

ejaculate to fertilize all of a female’s eggs [1;2], or if fertility is

limited by substances other than sperm that are also transferred

during mating [15;16], then multiple mating increases female

fitness directly by assuring long-term fertility [2;3]. Indirect

benefits to females may also ensue if multiple mating results in

the production of genetically superior offspring, for example if

sperm competition engenders fertilisation of eggs by genetically

superior or more compatible males [17;18].

There is good evidence from many insect species that multiply-

mated females have higher fertility than those that have only

mated once [19;20]. Such comparisons clearly demonstrate that

multiple mating confers fertility advantages. However, why do

females who have already mated multiply continue to do so? It is

currently unclear whether additional matings by females that have

already mated multiply also increase fertility; for example, re-

mating frequency had inconsistent effects on fertility in dung flies

[21], leaf beetles [22] and field crickets [23]. One might expect any

immediate fertility benefit of an additional mating to decline with

the frequency of female re-mating [23], if fertility approaches a

maximum or if a female’s sperm storage reaches capacity.

Nonetheless, re-mating may still be important in the longer term

if it maintains high fertility by replenishing used, lost, or dead

sperm. Under such circumstances, correlations between mating

frequency and fertility will be relatively uninformative about the

adaptive value of female re-mating, as they reveal little about
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sperm depletion over time in females. To detect this ‘hidden’

fertility advantage of multiple mating requires experimental

intervention that allows detection of temporal declines in fertility

when females are denied additional matings [24].

The majority of investigations into multiple mating and its

associated benefits in insects have been conducted under

laboratory conditions [3]. Laboratory studies allow powerful,

systematic and controlled investigations of mating behaviour and

its consequences. However, laboratory conditions are also largely

uniform and potentially unrepresentative of the natural environ-

ment under which mating traits originally evolved. In order to fully

understand the forces that shape female mating behaviour, we

need to also address questions concerning the benefits of female

remating under natural conditions. This study is the first to

examine fertility benefits associated with female multiple mating in

a wild insect population.

Here, we investigate whether females gain fertility benefits from

additional mating in a wild population of the polygamous

Malaysian stalk-eyed fly, Teleopsis dalmanni (Diptera, Diopsidae).

Stalk-eyed flies are characterised by lateral extensions of the head

capsule, on which their eyes are located. In T. dalmanni the

distance between the eyes (eyespan) is a sexually dimorphic trait,

with males having greatly exaggerated eyespans compared to

females [25]. They form nocturnal lekking aggregations at dawn

and dusk, during which copulations take place [26;27]. Fights

between males for control of these aggregations are typically won

by individuals with greater eyespan [27], and females prefer to

roost and mate with large eyespan males [24;28;29;30].

Both sexes of T. dalmanni are highly promiscuous and mate at

high frequencies [31;32;33]. Male mating rate is heritable [33],

but there is no evidence that female mating rate is genetically

correlated with that of males [34]. Females usually have low

fertility, and continually mated females lay a higher percentage of

fertile eggs than females mated three times or those mated only

once (81%, 62% and 40% respectively, [19]). This suggests that

females re-mate to obtain direct fertility benefits, at least in

laboratory populations. There is no evidence for fertility

advantages arising from polyandry, as distinct from multiple

mating, in this species [19]. The act of mating per se does not

appear to be particularly costly, in terms of lifespan and lifetime

fecundity, in T. dalmanni [32]. However, multiple mating may

incur other, ecological costs [1;9;10]. Low fertility in female T.

dalmanni is likely the result of sperm-limitation [19]. Males transfer

few sperm during a single copulation (, 65 [35]; ,142 [36]), and

spermatophores are small [37] and unlikely to provide females

with non-sperm resource benefits. Low fertility and chronic sperm

limitation has also been documented in a wild T. dalmanni

population. In a recent field study, Cotton et al. [24] found that

only around 55% of eggs laid by wild females were fertilised, and

that fertility declined with time when females were denied access to

males. This implies that females face sperm-limitation over both

the short and long-term.

We used a wild T. dalmanni population to test whether non-

virgin wild females that received a single mating had higher

fertility than a group of wild females that received an interrupted

and incomplete mating. This approach allowed us to examine the

fertility benefits of performing an additional mating, in an n+1

versus n mating design, where n is the mating frequency of females

prior to the start of the experiment. We define females in the

interrupted (n) mating group as controls and those allowed an

additional (n+1) mating as experimental females. Given the low

levels of female fertility and severe sperm limitation observed

previously in this wild population [24], we asked whether a single

copulation confers a significant reproductive advantage to a female

by a) increasing fertility, and b) slowing the rate at which fertility

declines when a female is housed in isolation.

Materials and Methods

Fieldwork was carried out in Ulu Gombak, Peninsular Malaysia

(3u199 N, 101u459 E) during March and September 2009.

Observations of females, conducted by E.H. and S.C., took place

during dusk (1800 to 1930 hours) at three distinct lekking areas

(LD, BW and UBW). These sites were located along two adjacent

tributaries of the Gombak river that were within 100 metres of

each other.

To estimate the effect of a single mating on female reproductive

output, we experimentally manipulated matings between wild flies.

To ensure that they were sexually mature and receptive, all focal

females were chosen once they had begun copulation, defined as

engagement of male and female genitalia. At this point they were

randomly assigned to one of two groups. Mated (M) females

(n = 43) were allowed to continue mating before being captured.

Matings were classified as successful when copulation lasted .30s;

this ensured that complete spermatophore transfer had occurred

[38;39]. Interrupted mating (IM) (n = 44) females were separated

from their mate and captured before 30s of copulation had

elapsed. Matings were interrupted by using a pencil or paintbrush

to gently separate the male and female. Un-manipulated females

from the mated group, which copulated for ,30s were reclassified

into the interrupted female group. Interrupted copulations do not

result in sperm transfer, although they may lead to the transfer of

seminal fluid [40]. Females were captured from the leks by

aspiration into a plastic bag, and transferred into individual

500 ml containers within one hour of capture. These containers

were lined with a moist cotton pad and a tissue paper base, and

females were fed every two days with pureed banana.

Eggs laid on the tissue paper bases were collected from the

containers every two days for 10 days following capture, and

allowed to develop for a further five days in a Petri dish containing

a moist cotton pad and pureed banana. Egg fertility was estimated

by scoring hatching success under a light microscope at 10x

magnification. Fertilised eggs that have hatched appear as empty

chorion cases, while unfertilised eggs are full and show no signs of

development. Sometimes fertilised eggs failed to hatch, but still

showed signs of development (e.g. horizontal striations in the

chorion and early mouthpart formation) [19]. These eggs were

recorded as fertile.

Once egg collection was completed, females were killed and

stored in ethanol. On return to the UK, females were measured

for eyespan and thorax length using a monocular microscope and

the image analysis programme ImageJ (Version 1.43e; National

Institutes of Health, USA). Eyespan was defined as the distance

between the outer tips of the eyes, and thorax length was measured

along a midline from the base of the head to the joint between the

metathoracic legs and the thorax [24]. Both measurements were

made to an accuracy of 0.01 mm.

We evaluated the factors that affected female reproductive output

using general linear models (GLMs). Female reproductive output

was measured as number of eggs laid (fecundity) and number of eggs

fertilised (absolute fertility). Since absolute fertility and fecundity

were highly correlated (F1,85 = 1522.773, p,0.0001), we also

estimated the relative number of eggs fertilised (relative fertility)

by including fecundity as a covariate in GLMs explaining variation

in absolute fertility. Females that failed to lay any eggs during the

observation period (n = 8) were not included in the final models.

We found significant geographic variation in all aspects of

female reproductive output (three sites: BW, UBW and LD, n = 7,

Fertility in Wild Flies
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34 and 46 females respectively; all F2,67$4.3526, all p#0.0167),

and as a result sample site was included in all models as a main

effect. All site interactions were found to be non-significant so were

not included in the models. We also investigated whether female

morphology (eyespan and thorax length) had significant effects

upon reproductive output.

We asked whether a single additional mating had any significant

effects on female reproductive output by looking at treatment

differences (i.e. n+1 matings in the M group versus n matings in the

IM group) in fecundity, and absolute and relative fertility. We used

data summed over the 10-day collection period to estimate overall

reproductive output during the experiment. We also report the

number of fertilised eggs as a percentage of total fecundity during

the experiment for each group. Note that the sample site effect was

not significant (F2,64 = 2.5372, p = 0.0870), and hence not included

in the test of percentage fertility. Changes in the reproductive

output of wild females during enforced time in captivity have

previously been reported [24]. To determine whether fecundity

and (relative and percentage) fertility changed over the captivity

period (562-day egg collections), we included assay period as an

ordinal factor (time in captivity) in the GLMs. Since eggs were

collected from each female five times during the sample period, we

included female identity as a random factor (shrunk by REML

estimation) to account for non-independence of within-female

measures.

All statistical analyses were performed using JMP software

(version 5.0.1a, SAS Institute Inc.).

Results

We found no significant difference between mated and

interrupted females in terms of their total fecundity (F1,63 =

0.0466, p = 0.8298), absolute fertility (F1,63 = 0.1759, p = 0.6763)

or relative fertility (F1,62 = 0.5762, p = 0.4507) over the 10 day

sample period (Fig. 1). The percentage of fertile eggs in the mated

group did not differ significantly from that in the interrupted group

(mean%6SE: mated = 83.0262.55, unmated = 78.0962.75,

F1,65 = 1.7297, p = 0.1931).

All aspects of female reproductive output varied significantly with

time in captivity, but in different ways (Fig. 2). Both fecundity and

absolute fertility showed significant peaks on day four of observation

(Fig. 2A and 2B; fecundity: F4,282 = 7.5978, p,0.0001; absolute

fertility: F4,194 = 5.9830, p = 0.0001). This effect is probably a short-

term response to capture, and subsequent acclimatisation to

captivity. In agreement with a previous study [24] we observed

that relative fertility declined significantly with time (Fig. 2C;

F4,193 = 6.9897, p,0.0001). We found the same pattern when we

examined percentage fertility (Fig. 2D; F4,193 = 12.1636, p,0.0001).

This is most likely the result of females being sperm limited after

isolation from males [19;24;41].

If a single mating were able to alleviate sperm-limitation, we

would expect differences between treatment groups; fertility in

recently mated females should show less of a decline over time

compared to that of interrupted females. However we did not

observe this, as there was no significant interaction between

treatment and time for both relative (F4,188 = 0.5580, p = 0.6934)

and percentage fertility (F4,188 = 0.9161, p = 0.4557). Similarly, the

treatment 6 time interactions were also non-significant for

fecundity (F4, 277 = 0.3317, p = 0.8565) and absolute fertility

(F4,189 = 0.2761, p = 0.8932), supporting the view that a single

mating does not have an appreciable effect on female reproductive

output (Fig. 2).

Neither female eyespan (fecundity: F1,58 = 1.2314, p = 0.2717;

absolute fertility: F1,58 = 1.4236, p = 0.2377; relative fertility:

F1,57 = 0.2065, p = 0.6513; percentage fertility: F1,58 = 0.0764,

p = 0.7832) nor thorax length (fecundity: F1,58 = 0.8337,

p = 0.3650; absolute fertility: F1,58 = 0.2266, p = 0.6359; relative

fertility: F1,57 = 2.3604, p = 0.1300; percentage fertility:

F1,58 = 0.0108, p = 0.9176) had significant effects upon female

reproductive output.

Discussion

One of the most compelling explanations for the occurrence of

multiple mating in female insects is that they acquire direct fertility

benefits from such behaviour [2;3]. Females often suffer from

sperm-limitation, and there are numerous examples in which

multiply mated females have higher fertility than once mated

females [19;20]. However, evidence for continued fertility benefits

from additional matings by females that have already re-mated is

equivocal [21;22;23]. A previous field study on the same

Malaysian population of T. dalmanni assayed here showed that

wild females had low fertility (,55%) and were highly sperm

limited [24]. Males transfer few sperm during copulation [35;36],

and additional non-sperm direct benefits are unlikely as sper-

matophores are small [37]. Given these extreme attributes, we

asked whether receiving an additional single mating could alleviate

sperm-limitation and confer significant reproductive advantages

upon wild T. dalmanni females?

We used an n+1 versus n mating design to evaluate the fertility

benefits that arise from an additional mating, relative to the

background level of mating in the population. All of the females

analysed were fecund and observed to begin copulating under

natural field conditions with their mate of choice, showing that

they were both sexually mature and receptive to mating. Contrary

to a previous, laboratory-based, study on the fertility benefits of

multiple mating in T. dalmanni [19], we found no evidence for

continued fertility benefits from additional mating in wild females,

measured using absolute or relative values, or when expressed as a

percentage of the total number of eggs laid. This was surprising,

since around one fifth of eggs laid were infertile. We also observed

a significant decrease in fertility during the time in captivity when

females were unable to re-mate. This indicates that they suffered

from sperm limitation [24]. However, the rate of this decline in

fertility was unaffected by an additional mating, which implies that

a single mating was unable to mitigate sperm limitation.

Therefore, against a background of natural mating behaviour,

Figure 1. Fecundity, absolute fertility and relative fertility,
summed over the 10-day observation period, for females that
received either a single additional mating (shaded bars) or an
interrupted mating (open bars). Data displayed as least squares
means 6 SE.
doi:10.1371/journal.pone.0014309.g001
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we found no detectable fertility benefits associated with a single

mating.

Variability in the background level of mating (n) in our

experimental design could potentially have obscured any fertility

effects caused by the additional, experimental, mating. However,

females in each group were chosen at random from the

population, so there is no reason to believe that n differed

significantly between the mated (n+1) and interrupted mating (n)

treatments. However, this assumption is hard to confirm.

Nonetheless, this apparent shortcoming of our design has the

advantage that it frames the effect of a single additional mating

relative to the natural mating background. Thus the fertility

benefit (or lack thereof) that we observed is a realistic estimate of

that gained by the average female in the population.

Why did we not observe fertility benefits from a single

additional mating, despite the presence of unfertilised eggs and

high sperm-limitation? One possibility comes from the observation

that male T. dalmanni transfer few sperm during a single mating

[35;36], and around a third of matings do not result in sperm

transfer at all, despite lasting for longer than 30 seconds [19;40]. A

similarly high proportion of failed copulations has been reported in

other insects that transfer sperm via spermatophores; for example,

in a noctuid moth species 20% of copulations between virgins

failed to transfer any sperm to the female’s storage organs [42]. In

stalk-eyed flies the proportion of copulations that fail to transfer

sperm is currently unknown under field conditions. However, if

the failure rate is similar to that observed in the laboratory [19],

then it is perhaps unsurprising that no difference was detected in

the fertility of females mated n+1 times relative to those that mated

n times. Under such circumstances, females may mate at high

frequencies [31;32;43] in order to accumulate fertility over many

matings. Future work should explore the number of additional

matings required to significantly elevate female fertility relative to

the background level, for example in an n+i versus n mating design,

where i.1.

Any effect on fertility of low sperm number and a high

proportion of failed copulations may be further exacerbated by the

presence of an X-linked meiotic drive element [44]. The element is

reported to occur in around 13–17% of males derived from wild

populations of T. dalmanni, and is also found in its sister species, T.

whitei [44]. Meiotic drive disrupts spermatogenesis, impairing the

elongation of Y-carrying sperm and thus reducing their ability to

fertilise [45;46;47]. As a result, females mated to drive-carrying

males suffer from impaired fertility [45;46]. In T. whitei the

ejaculate of non-drive males can reduce the competitive ability of

sperm from drive males [40;48]. If this is also the case in T.

dalmanni, then females may mate multiply in order to counteract

the detrimental effects associated with mating with drive-bearing

males. Indeed, higher frequencies of female multiple mating have

been observed in laboratory populations of both T. dalmanni and T.

whitei where meiotic drive is also present [49].

In spite of the factors that may constrain fertility, females in our

study nonetheless exhibited higher fertility (,80%) than those in a

previous study on the same population (,55% [24]). This suggests

that there is temporal variation in either mating rate, male fertility,

or both. Since the fertility derived from a single additional mating

might be expected to decrease as existing fertility approaches a

maximum, or if a female’s sperm storage reaches capacity, our lack

of discovery of fertility benefits may reflect the (relatively) high

overall fertility in the population. In addition, since fertility is

correlated with female mating history and sperm-limitation [19],

females with relatively empty sperm storage organs would be

expected to gain greater fertility benefits from an additional

mating than females whose storage organs are full. It would

Figure 2. Changes in fecundity (A), absolute fertility (B) relative
fertility (C) and percentage fertility (D) over time in captivity
for females that received a single additional mating (shaded
bars) or an interrupted mating (open bars). Time periods that are
not connected by the same letter are significantly different (Tukey HSD
comparison of pooled (mated plus interrupted) means). Data displayed
as least squares means 6 SE.
doi:10.1371/journal.pone.0014309.g002
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therefore be informative to quantify the fertility added by a single

mating in other populations or at different times, in which the

average background level of fertility is lower than that of the

sample studied here.

Why do females continue to mate if they do not benefit from

increased fertility? There are two, non-mutually exclusive,

solutions. First, females may remate in order to accumulate

fertility over many matings (see above). Second, there may be

indirect benefits associated with multiple mating if females are

polyandrous [4;50]. While polyandry is weakly associated with

increased fertility [51] (although there is no evience for this in

stalk-eyed flies [19]), it also allows sperm competition, which can

promote fertilisation by genetically superior or more compatible

males [6;17;18;52;53]. A suite of microsatellite markers is available

for T. dalmanni [54] that allows paternity to be assigned to offspring

[39]. So future studies should determine whether wild T. dalmanni

females are indeed polyandrous and to what degree, or whether

they simply mate repeatedly with the male who has control of their

chosen lekking site. Controlled mating investigations under

laboratory conditions should also explore whether the offspring

of polyandrous females have greater (post-hatch) viability than

those of monandrous females.

In conclusion, we were unable to detect any fertility benefits from

a single additional mating in a wild population of promiscuous stalk-

eyed flies. This effect is most likely attributable to small ejaculate

size, the high proportion of failed copulations, and the presence of

X-linked meiotic drive [19;45;46]. Other, indirect, benefits may also

result from polyandry [4;18;53], but these hypotheses have yet to be

tested in wild populations. Males appear to derive few fertility

benefits from a single mating, as mating once with a female does not

significantly increase reproductive output, although assignment of

paternity to offspring is required to test this hypothesis sufficiently

[53;55]. Nonetheless, our data suggest that the high mating rate

observed in both sexes of this species may be an adaptation to

accrue fertility over many matings.
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