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Abstract

Understanding the computations performed by neuronal circuits requires characterizing the strength and dynamics of the
connections between individual neurons. This characterization is typically achieved by measuring the correlation in the
activity of two neurons. We have developed a new measure for studying connectivity in neuronal circuits based on
information theory, the incremental mutual information (IMI). By conditioning out the temporal dependencies in the
responses of individual neurons before measuring the dependency between them, IMI improves on standard correlation-
based measures in several important ways: 1) it has the potential to disambiguate statistical dependencies that reflect the
connection between neurons from those caused by other sources (e.g. shared inputs or intrinsic cellular or network
mechanisms) provided that the dependencies have appropriate timescales, 2) for the study of early sensory systems, it does
not require responses to repeated trials of identical stimulation, and 3) it does not assume that the connection between
neurons is linear. We describe the theory and implementation of IMI in detail and demonstrate its utility on experimental
recordings from the primate visual system.
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Introduction

To understand the function of neuronal circuits and systems, it

is essential to characterize the connections between individual

neurons. The major connections between and within many brain

areas have been mapped through anatomical studies, but these

maps specify only the existence of connections, not their strength

or dynamics (temporal properties). Measuring the strength and

dynamics of the connection between two neurons requires

physiological experiments in which the activity of both neurons

is measured. The most direct of these experiments involves

intracellular recordings, which allow the connection between the

two neurons to be directly investigated. However, intracellular

recordings are difficult to perform in vivo and impossible to obtain

from more than a few cells at a time. Instead, most physiological

studies of connectivity rely on extracellular recordings from multi-

electrode arrays (or, more recently, imaging of calcium activity). In

these experiments, it is not usually possible to explicitly verify

anatomical connectivity, nor to directly characterize the connec-

tions. Instead, the strength and dynamics of ‘functional’ connec-

tivity must be inferred through statistical methods.

The traditional method for characterizing the strength and

dynamics of the connection between two neurons is the cross

correlation function (CXY), which measures the linear correlation

between two signals over a range of specified delays [1]. While CXY

and its variants have been used successfully in a number of studies

(see, for example, Usrey and Reid [2] for a review of many such

studies in the visual system), it has limitations that must be

considered when studying the connection between neurons [3–5].

The limitations of CXY arise from the fact that it is a measure of the

total (linear) dependency between two signals and, thus, implicitly

assumes that all dependencies between them are due to their

connection. In the case of neurons, there are in fact many potential

sources of dependency – shared external stimuli, intrinsic cellular

and network properties, etc. – and CXY cannot disambiguate these

dependencies from those due to the actual connection. Several

modified versions of CXY have been proposed to address these

drawbacks. For example, if neuronal activity in response to

repeated trials of the same external stimulus is available for

analysis, as is often the case in early sensory systems, the ‘shift-

predictor’ can be used to remove some of the correlations due to

the stimulus [1]. Further modifications to CXY have also been

proposed to remove the correlations due to stimulus-driven

covariations in activity [6] and background activity [7]. While

these modified approaches have certainly improved upon the

standard CXY, the confound of dependencies due to the connection

and those arising from other sources remains a general problem.

In addition to correlation-based methods, there are several

other approaches to characterizing the dependency between two

signals that can be used to study the connection between two

neurons. These methods can be generally divided into two classes:

model-based and model-free. The most common model-based

approach to characterizing dependency is Granger causality (GC)

[8]. With GC, one signal is predicted in two different ways: 1)

using an autoregressive model based on its own past and 2) using a

multivariate autoregressive model based on its own past and the

PLoS Computational Biology | www.ploscompbiol.org 1 December 2010 | Volume 6 | Issue 12 | e1001035



past of the second signal. The strength of the dependency is given

by the difference in the predictive power of the two models and the

dynamics of the dependency are reflected in the regression

parameters that correspond to the influence of the second signal.

The power of model-based approaches such as GC is dependent

on the validity of the underlying model; if the dependency between

the two signals is approximately linear, then the characterization

provided by GC will be accurate, but in situations where the

properties of the dependency are complex or unknown, as is often

the case with neurons, a model-free approach may be more

appropriate. The most common model-free approach to charac-

terizing dependency is transfer entropy (TE), the information-

theoretic analog of GC [9]. TE measures the reduction in the

entropy of one signal that is achieved by conditioning on its own

past and the past of the second signal relative to the reduction in

entropy achieved by conditioning on its own past alone. TE is a

powerful tool for measuring the overall strength of a dependency,

but is not suitable for characterizing its dynamics.

In this paper, we detail a new model-free approach for

characterizing both the strength and dynamics of a dependency

by ‘conditioning out’ the temporal correlations in both signals

before assessing the strength of the dependency at different delays.

This approach can overcome some of the confounds that are

common in studies of neuronal connectivity [10–12], as it has the

potential to disambiguate statistical dependencies that reflect the

connection between neurons from those caused by other sources

(e.g. shared inputs or intrinsic cellular or network mechanisms)

provided that the dependencies have appropriate timescales. In

the following sections, we outline the theory behind our measure,

which we call incremental mutual information, illustrate its usage

on simulated neuronal activity and experimental recordings from

the primate visual system, and consider its relationship to other

common measures of dependence.

Matlab code for measuring incremental mutual information is

available for download at http://www.ucl.ac.uk/ear/research/lesicalab

Methods

Correlation
In order to characterize the strength and dynamics of the

connection between two signals, it is necessary to quantify how

much one signal at one point in time influences the other signal at

nearby points in time. Most measures of dependence between two

signals X and Y seek to quantify the difference between the joint

distribution p(X,Y) and the product of the marginal distributions

p(X) p(Y). For example, the cross correlation function measures the

difference between the mean of the joint distribution and the

product of the means of the marginal distributions (the

covariance), normalized by the product of the standard deviations

for a given delay d:

CXY ½d�~
sXY ½d�
sX sY

~
E X ½n�Y ½n{d�½ �{E X ½n�½ �E Y ½n{d�½ �

E X ½n�{E X ½n�½ �ð Þ2
h i1=2

E Y ½n�{E Y ½n�½ �ð Þ2
h i1=2

ð1Þ

where CXY[d] is the correlation coefficient between X[n] and Y[n],

which are assumed to be discretized signals, at integer delay d.

Partial correlation
As described in the Introduction, CXY has limitations that are

important to consider when studying neuronal connectivity. Most

importantly, CXY, as with all dependency measures that operate

only on the joint distribution p(X,Y) and the marginal distributions

p(X) and p(Y), cannot differentiate between the dynamics of the

connection between the neurons and the temporal correlations in

their activity that are due to other sources. It is possible to

overcome this limitation by conditioning out the temporal

correlations in each signal before measuring the dependency

between them, i.e. rather than operate on p(X,Y), p(X), and p(Y),

operate on p(X,Y|Z
I

), p(X|Z
I

), and p(Y|Z
I

), where Z
I

is a vector

containing the past and future of X[n] and Y[n] relative to the

delay of interest

Z
I

d½n�~ X
I

p½n�,X
I

f ½n�,Y
I

p½n{d�,Y
I

f ½n{d�
h i

with

X
I

p½n�~ X ½0�,X ½1�,:::,X ½n{1�½ �

X
I

f ½n�~ X ½nz1�,X ½nz2�,:::X ½?�½ �

Y
I

p½n{d�~ Y ½0�,Y ½1�,:::,Y ½n{d{1�½ �

Y
I

f ½n{d�~ Y ½n{dz1�,Y ½n{dz2�,:::Y ½?�½ �

ð2Þ

as shown in the schematic diagram in figure 1.

The analog of CXY for conditional distributions is the partial

cross correlation:

CXY jZ ½d�~
sXY jZ ½d�
sX jZsY jZ

~

E X ½n�Y ½n{d�jZ
I

d½n�
h i

{E X ½n�jZ
I

d½n�
h i

E Y ½n{d�jZ
I

d½n�
h i

E X ½n�{E X ½n�jZ
I

d½n�
h i� �2

jZ
I

d½n�
� �1=2

E Y ½n�{E Y ½n�jZ
I

d½n�
h i� �2

jZ
I

d½n�
� �1=2

ð3Þ

While CXY|Z overcomes the major limitation of CXY, it is still a

linear measure and may not accurately characterize nonlinear

dependencies.

Incremental mutual information
The idea of partial correlation can be generalized for the study

of any dependency by formulating the information-theoretic

analog of CXY|Z as a partial mutual information [13]: First, the

entropy of X is measured after conditioning on its own past and

future, as well as the past and future activity of Y relative to the

delay of interest. Then, the strength of the influence of Y on X at

the delay of interest can be measured as the additional reduction in

Author Summary

The root of our brain’s computational power lies in its
trillions of connections. With our increasing ability to study
these connections experimentally comes the need for
analytical tools that can be used to develop meaningful
quantitative characterizations. In this manuscript, we
present a new such tool, incremental mutual information
(IMI), that enables the characterization of the strength and
dynamics of the connection between a pair of neurons
based on the statistical dependencies in their spiking
activity. IMI is an important step forward from existing
approaches, as it has the potential to disambiguate
dependencies due to the connection between two
neurons from those due to other sources, such as shared
external inputs, provided that the dependencies have
appropriate timescales. We demonstrate the utility of IMI
through the analysis of simulated neuronal activity as well
as activity recorded in the primate visual system.

Incremental Mutual Information
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entropy that occurs after observing Y at that delay:

DIXY ½d�~H(X ½n�DZ
I

d½n�){H(X ½n�DZ
I

d½n�,Y ½n{d�) ð4Þ

Because this quantity, which we call the incremental mutual

information (IMI), reduces the uncertainty of X as much as possible

before measuring the influence of Y at each delay, it has the

potential to provide an accurate description of both the strength and

dynamics of their dependency. In this form, DIXY is similar to a

partial covariance in that its value is dependent on the properties of

the individual signals (e.g. the total entropy of X, the strength of the

temporal correlations in X, etc.). In some cases, it may be preferable

to use a normalized measure that is more similar to a partial

correlation coefficient, i.e. a measure that expresses the incremental

mutual information as a fraction of its maximum possible value:

D�IIXY ½d�~DIXY ½d�=H(X ½n�DZ
I

d½n�) ð5Þ

To determine whether IMI is appropriate for use in any particular

context, it is important to consider the relative timescales of the

dependency between the signals and the other dependencies to be

conditioned out. At any particular delay, the effects of dependencies

with durations that are long relative to the time bins used for

discretization will be predictable from the past and future values of

the signals, so their contribution to the IMI will be small, i.e.

dependencies with a slow timescale will make a relatively large

contribution to initial reduction in the entropy of X based on past

and future values of X and Y, H(X ½n�DZ
I

d½n�), but not to the

additional reduction in the entropy of X based on the present value

of Y, H(X ½n�DZ
I

d½n�,Y ½n{d�). Conversely, the effects of dependen-

cies that have a duration that is similar to the time bins used for

discretization will not be predictable from the past and future values

of the signals, so their contribution to the IMI will be large, i.e.

dependencies with a fast timescale will make a small contribution

to the initial reduction in entropy H(X ½n�DZ
I

d½n�), but will make

a large contribution to the additional reduction in entropy

H(X ½n�DZ
I

d½n�,Y ½n{d�). Thus, IMI will be most useful when the

duration of the dependency between the signals is similar to the size

of the time bins used for discretization and the durations of the other

dependencies to be conditioned out are longer. Fortunately, this is

often the case for neurons in sensory systems, as will be illustrated in

the examples in the Results.

Implementation
As with any measure based on entropies, the calculation of IMI

requires careful consideration. Because IMI is a model-free

approach, the number of samples required to produce a result of

a given precision are likely to significantly exceed those of model-

based approaches. The bias and variability of the entropy

estimates that underlie the computation of IMI can vary

substantially depending on the size of the data sample, the

number of possible values that a signal can take on, and the signal

dimensionality. Fortunately, neuronal activity typically has only a

few possible values (e.g. the number of spikes in each time bin).

However, the terms X
I

p, X
I

f , Y
I

p, and Y
I

f representing the past and

future of the signals are vectors. In practice, these vectors must be

limited to some finite length, which we term v, and this length will

determine their dimensionality:

Z
I

d½n�~ X
I

p½n�,X
I

f ½n�,Y
I

p½n{d�,Y
I

f ½n{d�
h i

with

X
I

p½n�~ X ½n{v�,X ½n{vz1�,:::,X ½n{1�½ �

X
I

f ½n�~ X ½nz1�,X ½nz2�,:::,X ½nzv�½ �

Y
I

p½n{d�~ Y ½n{d{v�,Y ½n{d{vz1�,:::,Y ½n{d{1�½ �

Y
I

f ½n{d�~ Y ½n{dz1�,Y ½n{dz2�,:::Y ½n{dzv�½ �

ð6Þ

Thus, the calculation of IMI requires a tradeoff: increasing the value

of v allows the entropy of the first signal to be reduced as much as

possible before measuring the influence of the second signal, but also

increases the chances that the entropy estimates may be biased or

highly variable. There are a number of bias correction techniques

available that may be useful in mitigating problems related to

sample size [14]. For the examples below, we corrected the entropy

estimates using ‘quadratic extrapolation’ bias correction via the

information toolbox software available at http://www.ibtb.org [15].

Also, for all of the examples below, time is discretized into

sufficiently small bins such that each bin contains no more than one

spike, limiting the possible values of X and Y to 0 and 1.

Statistical inference
Because the bias and variability of entropy estimates are

dependent on sample size, it is critical to establish the validity and

precision of any calculation of IMI using statistical methods. In the

Figure 1. The quantities involved in computing incremental mutual information. The incremental mutual information (IMI) between two
signals X and Y is computed by first computing the entropy of X[n] after conditioning on Z

I

d½n�~ X
I

p½n�,X
I

f ½n�,Y
I

p½n{d�,Y
I

f ½n{d�
h i

, a vector
comprised of the past and future of both signals relative to a delay d. This entropy is then compared the entropy of X[n] after further conditioning on
Y[n2d]. The reduction in entropy due to this further conditioning is the incremental mutual information.
doi:10.1371/journal.pcbi.1001035.g001
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experimental examples presented below, we use two different

bootstrap procedures with random sampling to establish 95%

confidence intervals and to determine whether the observed values

are significantly different from zero. To establish 95% confidence

intervals, we calculated IMI from 100 random samples of the same

size drawn with replacement from the original sample. To

preserve the temporal dependencies in the data, sampling was

performed after the vectors X ,Y , and Z
I

were formed and the

three vectors were sampled together. Confidence intervals were

defined as the mean 6 2 standard deviations of the values

calculated from the random samples. To establish the significance

of the observed values, the same procedure was followed, but Y

was sampled separately from X and Z
I

. This sampling preserved

the dependencies between X and Z
I

, but removed the dependen-

cies between X and Y (and, thus, in theory, removed any IMI

between them). The observed values were considered significantly

different from zero if they were greater than 2 standard deviations

above the mean of the values calculated from the random samples.

Results

Simulated example 1: Differentiating input correlations
and connection dynamics

IMI is designed to give accurate measures of the strength and

dynamics of the connections between neurons even in cases when

the correlation may not, i.e. when the activities of individual

neurons contain temporal correlations unrelated to the connection

between them. In these cases, the cross correlation function can be

ambiguous – its shape can reflect either the true dynamics of the

connection, temporal correlations in the activities of the individual

neurons, or a combination of both. A simple example of this

ambiguity is illustrated in figure 2a.

We first simulated a pair of neurons X and Y with independent,

uncorrelated inputs and a dynamic connection, i.e. a spike from

neuron Y caused a prolonged increase in the spiking probability of

neuron X. We simulated the activity of neuron Y as a dichotomized

Gaussian noise and the activity of neuron X as the dichotomized

sum of a Gaussian noise and the filtered activity of Y:

Y ½n�~
1, sy½n�wh

0, otherwise

�
X ½n�~ 1, sx½n�ze ~YY ½n�wh

0, otherwise

(
ð7Þ

where sy*N(0,1) and sx*N(0,1) are uncorrelated, e = 0.5 is a

scaling factor determining the overall strength of the connection,

h = 1 is the spiking threshold, and the input from Y to X,
~YY ½n�~(Y � g)½n�, is the convolution of the activity of Y with a

Gaussian filter g[n] with a peak delay of 4 samples and a half width

of 3 samples (note that ~YY , the filtered version of Y, is unobserved).

From the simulated activity of this pair of neurons (with a sample

size of 220), we estimated the cross correlation function CXY and

normalized incremental mutual information D�IIXY ½d� (with v = 2) at

delays ranging from d = 210 to 10 samples. Both CXY and D�IIXY ½d�
for this pair were broad, reflecting the dynamics of the connection.

Figure 2. Incremental mutual information disambiguates temporal correlations and connection dynamics. a) A schematic diagram
showing two neurons X and Y. The two neurons are driven by independent uncorrelated noise sources and Y drives X through a strong dynamic connection. The cross
correlation function CXU and normalized IMID�IIXY computed from the simulated activity of the two neurons at a range of delays are shown. b) A second pair of neurons
X and Y. The two neurons are driven by independent noise sources. The source driving Y has temporal correlations while the source driving X is uncorrelated. Y drives X
through a strong static connection with a delay of 4 samples. The cross correlation function CXU, the normalized IMID�IIXY , and the normalized IMI with only past activity
conditioned out D�IIp

XY computed from the simulated activity of the two neurons at a range of delays are shown. IMI was computed with v= 2 for 220 samples.
doi:10.1371/journal.pcbi.1001035.g002

Incremental Mutual Information
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We next simulated another pair of neurons that was similar to

the first one, except that U received input with temporal

correlations and the connection between U and X was static with

a delay of 4 samples:

Y ½n�~
1, ~ssy½n�wh

0, otherwise

�
X ½n�~

1, sx½n�zeY ½n{4�wh

0, otherwise

�
ð8Þ

where ~ssy½n�~(sy � g)½n� is the convolution of sy with a Gaussian

filter g[n] with a peak at zero delay and a half width of 3 samples.

While CXY for this pair was also broad because of the temporal

correlations in the activity of Y, D�IIXY ½d� was sharp, reflecting the

static connection. Thus, while IMI captures the differences in the

connections between these two pairs of neurons, correlation

conflates connection dynamics with temporal correlations in

individual activities and yields ambiguous results.

This example can also be used to illustrate the necessity of

conditioning out the both past and future activities of the neurons.

A modified version of IMI can be formulated in which only the

past activities of the two neurons are conditioned out:

DI
p
XY ½d�~H(X ½n�DXp½n�,Yp½n{d�){H(X ½n�DXp½n�,Yp½n{d�,Y ½n{d�)

D�IIp
XY ½d�~DI

p
XY ½d�=H(X ½n�DXp½n�,Yp½n{d�)

ð9Þ

In this formulation, the IMI is related to transfer entropy (see

Discussion). As shown in figure 2b, D�IIp
XY ½d� correctly conditions

out the effects of the temporal correlations in the activity of Y for

delays that are smaller than that of the actual connection, but not

for delays that are larger than that of the actual connection. This

reason for this asymmetry is as follows: Because of the temporal

correlations in the activity of Y, its value will be similar for

neighboring samples. When the delay of interest d is smaller than

the delay corresponding to the actual connection d*, Y[n2d*] is

included in the vector of past activity and, since Y[n2d] carries no

information about X beyond that which is carried by Y[n2d*],

Y[n2d] makes no contribution to the IMI. However, when

Y[n2d*] is not included in the vector of past activities, Y[n2d],

which is similar to Y[n2d*] because of the temporal correlations in

Y, will carry additional information about the activity of X and,

thus, will contribute to the IMI.

Simulated example 2: Unmasking a weak connection
As a further consequence of the ambiguity in the cross

correlation function illustrated in the example above, temporal

correlations in individual activities may mask weak connections

between neurons entirely. A simple example of this problem is

shown in figure 3a. We simulated a pair of neurons that received a

shared input with temporal correlations and had a weak static

connection between them with a delay of 3 samples:

Y ½n�~
1, ~ssy½n�wh

0, otherwise

�
X ½n�~

1, ~ssx½n�zeY ½n{3�wh

0, otherwise

�
ð10Þ

where ~ssy½n� and ~ssx½n� are the convolution of Gaussian noise with a

Gaussian filter as described above with a correlation coefficient of

0.5 between them, and e = 0.25 (other parameter values are as

described above). CXY for this pair of neurons was broad, with no

discernable increase at the delay corresponding to the connection

(black arrow), while D�IIXY ½d� exhibits a sharp peak at the

appropriate delay. Thus, by conditioning out dependencies due

to shared input, IMI is able to reveal connections that may not be

evident in the cross correlation function.

Figure 3. Incremental mutual information unmasks weak connections. a) A schematic diagram showing two neurons X and Y. The two
neurons are driven by a shared correlated noise source and Y drives X through a weak static connection. The cross correlation function CXU and
normalized IMI D�IIXY computed from the simulated activity of the two neurons at a range of delays are shown. b) Results for the same simulated
neurons driven by a shared uncorrelated source, presented as in panel a. IMI was computed with v = 2 for 220 samples.
doi:10.1371/journal.pcbi.1001035.g003

Incremental Mutual Information
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Simulated example 3: Shared inputs that cannot be
conditioned out

A slight modification of the previous example can be used to

illustrate a situation where shared inputs cannot be conditioned

out and contaminate the IMI. As described above, IMI will be

most useful when the duration of the dependency between the

signals is similar to the size of the time bins used for discretization

and the durations of the other dependencies to be conditioned out

are longer, as is the case in example 2. If the simulation in example

2 is modified so that the shared input is uncorrelated over time, the

dependency resulting from the shared input can no longer be

conditioned out, as the past and future activities of the neurons can

no longer be used to infer the effects of the input at the delay of

interest. As a result, D�IIXY ½d� has two peaks, one with no delay

reflecting the shared input, and another with a delay reflecting the

actual connection, as shown in figure 3b. It should be noted that

this type of contamination can potentially arise both from shared

external sources such as sensory stimuli as well as from other

unobserved neurons.

Experimental example 1: Thalamic relay neurons and
their retinal inputs

To test the utility of IMI on experimental data, we analyzed the

activity of two pairs of thalamic relay neurons and their retinal

ganglion cell (RGC) inputs recorded in the lateral geniculate

nucleus (LGN) of an anesthetized monkey as shown in figure 4a.

The details of the experimental procedures can be found in

Carandini et al. [16]. During the recordings, visual stimulation was

presented via an LED that illuminated the receptive field center

with an intensity that varied naturally (i.e. with temporal

correlations typical of the natural environment). In this example,

the stimulus was approximately 12 min in duration and did not

repeat.

The histograms in figure 4b show the basic relationship between

the activity of the retinal and thalamic neurons in each pair. For

the first pair, less than half of the RGC postsynaptic potentials

(PSPs) evoked immediate LGN spikes, while the connection

between the second pair was stronger, with nearly 75% of PSPs

evoking immediate spikes. We calculated the cross correlation

function and incremental mutual information for these pairs after

binarizing the spike trains in 2 ms time bins. CXY for these pairs

has a complex shape with 3 components: a broad positive peak

with a half width of approximately 20 ms reflecting the temporal

correlations in the visual stimulus, two sharp negative peaks

reflecting refractory effects, and a sharp positive peak reflecting the

actual connection between the cells. In contrast, D�IIXY for these

pairs had one main peak reflecting the connection between the

neurons - the effects of statistical dependencies arising from the

stimulus correlations have been completely removed and the

refractory effects have been largely conditioned out. For the first

pair, D�IIXY had a relatively long tail, reflecting temporal

summation of RGC PSPs that failed to evoke an immediate

LGN spike. For the second pair, D�IIXY was sharper, reflecting the

stronger connection between the cells.

Relation between incremental mutual information and
signal and noise correlations

In early sensory systems, experiments are often designed such

that the activity in response to repeated trials of an identical

stimulus are observed so that the correlation between neurons

can be separated into two distinct parts known as signal correlation

and noise correlation. The signal correlation, which reflects

both correlation in the stimulus itself and similarities in neurons’

preferred stimulus features, will capture the correlation in

the fraction of the response that is repeatable from trial to trial,

i.e. the correlation that remains after the trial order has been

randomized:

C
Signal
XY ½d�~

s
XiYj ½d�
sX sY

~
SE X i ½n�Y j ½n{d�½ �{E X i ½n�½ �E Y j ½n{d�½ �T

i=j

E X ½n�{E X ½n�½ �ð Þ2
h i1=2

E Y ½n{d�{E Y ½n{d�½ �ð Þ2
h i1=2

ð11Þ

where Xi[n] is the response of neuron X on trial i and S : Ti=j

indicates the expectation over all possible combinations of trials i

and j in which their values are not equal. In studies of neuronal

connectivity, C
Signal
XY is often referred to as the ‘shift-predictor’.

The noise correlation, which results from network and intrinsic

cellular mechanisms, will capture the remaining correlation in the

fraction of the response that is variable from trial to trial

CNoise
XY ½d�~CXY ½d�{C

Signal
XY ½d� ð12Þ

and, thus, captures the dependencies between the neurons that are

not locked to the external stimulus. However, while CNoise
XY may

provide a better measure of the strength and dynamics of the

connection between two neurons than CXY, it still confounds

connection dynamics and temporal correlations that are indepen-

dent of the stimulus, e.g. refractory effects or coupled oscillations.

For comparison with C
Signal
XY and CNoise

XY , the signal and noise

IMI between X and Y can be formulated in an analogous fashion.

The signal IMI is the reduction in the entropy of the response of X

on trial i that results from observing the response of Y on trial j at

the delay of interest, beyond that which results from observing the

past and future responses of both neurons on trial i:

DI
Signal
XY ½d�~H(X i½n�DZ

I
d
i½n�){H(X i½n�DZ

I
d
i½n�,Y j ½n{d�)

D�IISignal
XY ½d�~DI

Signal
XY ½d�=H(X i½n�DZ

I
d
i½n�)

ð13Þ

where Z
I

d
i½n�~ X

I
p
i½n�,X

I
f
i½n�,Y

I
p
i½n{d�,Y

I
f
i½n{d�

� �
. The noise

IMI is the difference between the total IMI and the signal IMI,

i.e. the reduction in the entropy of the response of X on trial i that

results from observing the response of Y on trial i at the delay of

interest and the past and future responses of both neurons on trial

i, beyond that which results from observing the response of Y at the

delay of interest on trial j and the past and future responses of both

neurons on trial i:

DINoise
XY ½d�~H(X i½n�DZ

I
d
i½n�,Y j ½n{d�){H(X i½n�DZ

I
d
i½n�,Y i½n{d�)

D�IINoise
XY ½d�~DINoise

XY ½d�=H(X i½n�DZ
I

d
i½n�,Y j ½n{d�) ð14Þ

Experimental example 2: Thalamic relay neurons and
their retinal inputs revisited

We estimated the signal and noise correlations and signal and

noise IMI for the same two retinogeniculate pairs that were

analyzed in experimental example 1 using a different set of

responses to 140 repeated trials of identical stimulation in which

each trial was 5 seconds in duration. As shown in figure 5, C
Signal
XY

for both pairs was broad, reflecting the temporal correlations in

the visual stimulus. In contrast, D�IISignal
XY was nearly zero at all

delays – because the temporal correlations in the visual stimulus

were slow relative to the bin size used for discretization, there was
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Figure 4. Incremental mutual information analysis of retinogeniculate pairs. a) A schematic diagram showing two neurons X and Y. Y is a
retinal ganglion cell driven by a stimulus with temporal correlations that are typical of the natural environment. X is an LGN relay cell driven by Y and
an unobserved noise source. b) Histograms showing the distribution of time delays between each retinal PSP and the next LGN spike and the number
of additional retinal PSPs that preceded the next LGN spike, as well as the cross correlation function CXU and normalized IMI D�IIXY computed from the
responses of two retinogeniculate pairs to a non-repeating stimulus at a range of delays. For the IMI, the black line indicates the actual estimate, the
yellow band indicates 95% confidence intervals, and the red dashed line indicates the significance level. Confidence intervals and significance levels
were generated via bootstrap procedures with random sampling as described in the Methods. Spike times were binned with a resolution of 2 ms and
IMI was computed with v = 4 for approximately 218 samples.
doi:10.1371/journal.pcbi.1001035.g004

Figure 5. Signal and noise incremental mutual information. The signal and noise cross correlation functions C
Signal
XY and CNoise

XY and the
normalized signal and noise IMI D�IISignal

XY and D�IINoise
XY computed from the responses of the same two retinogeniculate pairs as in figure 4b to repeated

trials of an identical stimulus, presented as in figure 4b. Spike times were binned with a resolution of 2 ms and IMI was computed with v = 4 for
approximately 218 samples.
doi:10.1371/journal.pcbi.1001035.g005
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little information about stimulus-induced dependencies to be

gained by observing the RGC activity at any particular delay on a

different trial when RGC and LGN activity at surrounding delays

on the current trial were already known. While the effects of the

stimulus correlations were removed from CNoise
XY for both pairs,

these functions still had a complex shape, with two negative peaks

reflecting refractory effects, and one positive peak reflecting the

actual connection between the neurons. Thus, while shuffling

removed some of the confounding correlations in CXY, others still

remained, while in D�IINoise
XY , which has one main peak reflecting the

connection between the neurons, most of the confounding

dependencies have been conditioned out.

This example illustrates an important property of IMI. D�IINoise
XY

as shown in figure 5 is nearly identical to D�IIXY for the same two

pairs shown in figure 4. Thus, unlike the cross correlation function,

IMI does not require multiple trials in order to differentiate the

temporal correlations in the responses of individual neurons from

the dynamics of the connection between them.

Discussion

We have presented IMI as a new approach to characterizing the

strength and dynamics of the connection between neurons. By

conditioning out the temporal dependencies in the responses of

individual neurons before assessing the connection between them,

IMI improves on correlation-based measures in several important

ways: 1) IMI has the potential to disambiguate connection

dynamics from other temporal dependencies due to shared inputs

or intrinsic cellular or network mechanisms provided that the

dependencies have appropriate timescales, 2) for the study of

sensory systems, IMI does not require responses to repeated trials

of identical stimuli, and 3) IMI does not assume that the

connection between neurons is linear. Through example applica-

tions of IMI to simulated and experimentally recorded neuronal

activity, we have demonstrated that IMI has the potential to be

both a powerful and practical tool for analyzing the functional

connectivity in neuronal circuits.

Limitations
The major determinant of the ability of IMI to differentiate

connection dynamics from other dependencies is the relative

timescale of the other dependencies. If the other dependencies

have a long duration relative to the time bins used for discretization,

then their effects can be conditioned out through observation of

past and future neuronal activity, as demonstrated in the

experimental examples presented above. If the other dependencies

have a duration that is similar to the bin size, then their effects

cannot be conditioned out without explicit observation of their

source.

As formulated here, IMI is designed to analyze the connection

between a pair of neurons. However, in many brain areas, each

neuron receives input from a large population, and correlations

between these other inputs and the input under study could

contaminate the IMI. If the other inputs are unobserved, it will be

difficult to account for their effects with a model-free approach,

though recent work with model-based approaches has demon-

strated some success [17–20]. If the other inputs are observed

(which is becoming increasingly common with recent advances in

recording and imaging technology that allow for simultaneous

recording of the activity complete or nearly complete local

populations of neurons), there is no reason that, in principle, IMI

cannot be extended to condition out dependencies due to the

activity of the other neurons. However, adding the activity of

additional neurons to the conditioning vector Z
I

will increase its

dimensionality, and, thus, the bias and variability of the entropy

estimates that underlie the computation of IMI. While this may

not be a problem for a small number of neurons, it is certain to be

a problem for large populations. Thus, for large populations, it

may be more appropriate to use a model-based approach such as

Granger causality within a generalized linear model framework

[21].

Relation between incremental mutual information and
transfer entropy

Of the existing approaches to characterizing dependencies

between signals, IMI is most similar to transfer entropy [9]. TE

measures the dependency between two signals as the difference in

the entropy of one signal after conditioning on its own past and

conditioning on its own past and the past of the other signal, or, in

the terminology used to define IMI, TEXY ~H(X DX
I

p){
H(X DX

I

p,Y
I

p). From this definition, it is clear that TE and IMI

are designed for different purposes: TE measures the overall causal

strength of the dependency between two signals by first

conditioning out the past of one signal and then measuring how

much can be learned about the present value of that signal based

on the past of the second signal, while IMI measures the strength

and dynamics of the dependency between two signals by first

conditioning out past and future of both signals and then

measuring how much can be learned about the present value of

one signal from the present value of the other relative to some

delay. The key difference between TE and IMI, as illustrated in

the simulated example presented above, is that, even if computed

at a range of delays, TE is not suitable to assess the dynamics of a

dependency because it considers only past activity and, as a result,

conditions out temporal correlations appropriately for delays that

are shorter than that of the actual dependency, but not for delays

that are longer than that of the actual dependency.

Relation between IMI and generalized linear models
The most effective model-based approach for studying the

functional connectivity in a neuronal circuit is the generalized

linear model (GLM) [22–24]. The GLM attempts to predict a

neuron’s activity based not only on its own activity and the activity

of other neurons, but also on external inputs. Because all of the

filters in the model are fit simultaneously, the influence of the

external inputs on the activity of each neuron, as well as those of its

own past activity, are separated from the influence of other

neurons. The power of the GLM lies in the fact that once the

filters have been estimated, the model can be used to predict the

activity of the entire group of neurons to any external input, but

this power comes at the expense of assuming a particular

parametric structure. Relative to IMI, which makes no assump-

tions about the connections between neurons, the drawback of the

GLM is that the interactions between neurons are assumed to be

of a particular nature (usually additive). However, this assumption

also allows the GLM to be readily applied to large populations.
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