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Quantum random walks are the quantum counterpart of classical random walks, and were recently
studied in the context of quantum computation. Physical implementations of quantum walks have only
been made in very small scale systems severely limited by decoherence. Here we show that the
propagation of photons in waveguide lattices, which have been studied extensively in recent years, are
essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large
scales and display negligible decoherence, they can serve as an ideal and versatile experimental
playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum
walks in large systems (� 100 sites) and confirm quantum walks effects which were studied theoretically,
including ballistic propagation, disorder, and boundary related effects.
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In classical random walks, a particle starting from an
initial site on a lattice randomly chooses a direction, and
then moves to a neighboring site accordingly. This process
is repeated until some chosen final time. This simple
random walk scheme is known to be described by a
Gaussian probability distribution of the particle position,
where the average absolute distance of the particle from the
origin grows as the square root of time. First suggested by
Feynman [1] the term quantum random walks was defined
to describe the random walk behavior of a quantum parti-
cle. The coherent character of the quantum particle plays a
major role in its dynamics, giving rise to markedly differ-
ent behavior of quantum walks (QWs) compared with
classical ones. For example, in periodic systems, the quan-
tum particle propagates much faster than its classical
counterpart, and its distance from the origin grows linearly
with time (ballistic propagation) rather then diffusively [2].
In disordered systems, the expansion of the quantum me-
chanical wave-function can be exponentially suppressed
even for infinitesimal amount of disorder, while such sup-
pression does not occur in classical random walks.

In recent years QWs have been extensively studied
theoretically [2] and have been used to devise new quan-
tum computation algorithms [3]. Both discrete and con-
tinuous time QWs (DQWs; CQWs) [4–6] have been
studied. In DQWs the quantum particle hops between
lattice sites in discrete time steps, while in CQW the
probability amplitude of the particle leaks continuously
to neighboring sites. Experimentally, many methods have
been suggested for the implementation of DQWs (see [2]),
but only a small scale system consisting of a few states was
implemented, using linear optical elements [7]. For CQWs,
a few suggestions have been made [8,9], yet only one
experimental method have been implemented by realizing
a small scale cyclic system (4 states) using a nuclear
magnetic resonance system [10]. Such systems are difficult

to scale to much larger configurations. Moreover, even at
these very small scales, errors attributed to decoherence
have been observed.

Here we suggest a very different implementation of
CQWs using optical waveguide lattices. These systems
have been studied extensively in recent years [11], but
not in the context of QWs and quantum algorithms. We
show that these systems can serve as a unique and robust
tool for the study of CQWs. For this purpose we demon-
strate three fundamental QW effects that have been theo-
retically analyzed in the QW literature. These include
ballistic propagation in the largest system reported to
date (� 100 sites), the effects of disorder on QWs, and
QWs with reflecting boundary conditions (related to
Berry’s ‘‘particle in a box’’ and quantum carpets
[12,13]). Waveguide lattices can be easily realized with
even larger scales than shown here (102–104 sites with
current fabrication technologies), with practically no de-
coherence. The high level of engineering and control of
these systems enable the study of a wide range of different
parameters and initial conditions. Specifically it allows the
implementation and study of a large variety of CQWs and
show experimental observations of their unique behavior.

The CQW model was first suggested by Farhi and
Gutmann [6], where the intuition behind it comes from
continuous time classical Markov chains. In the classical
random walk on a graph, a step can be described by a
matrix M which transforms the probability distribution for
the particle position over the graph nodes (sites). The
entries of the matrix Mj;k give the probability to go from
site j to site k in one step of the walk. The idea was to carry
this construction over to the quantum case, where the
Hamiltonian of the process is used as the generator matrix.
The system is evolved usingU�t� � exp��iHt�. If we start
in some initial state j�ini, evolve it under U for a time T
and measure the positions of the resulting state, we obtain a
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probability distribution over the vertices of the graph. This
is described by

 i
@ j
@t
� �dj� j � �j;j�1 j�1 � �j;;j�1 j�1; (1)

where  j is the wave function at site j, dj is the number of
sites connected to site j (dj � 2 in the 1D nearest neighbor
case), and �i;j�� �j;i� is the probability per unit time for
the transition between neighboring [14,15]. This mathe-
matical formulation is effectively identical to the well
known discrete Schrödinger equation used in the tight-
binding (Bloch ansatz) formalism in solid state physics
[15]. It is used to describe the evolution of a wave function
on a periodic potential, which is essentially the propagation
of a quantum particle on a lattice [16,17].

An immediate implication for the correspondence be-
tween QWs and these processes is that many of the experi-
ments in solid state physics described by the tight-binding
model could serve as implementations of QWs. However,
such experiments deal with the macro-physics of the sys-
tem and with overall observables such as conductance or
transmission. Therefore, one cannot measure the specific
spatial and temporal distribution of the electrons or pho-
tons wave functions and the microphysics of the system
cannot be directly observed. Moreover, solid state systems
contain many electrons which interact nontrivially and thus
cannot be described by the evolution equation of a single
particle usually studied in QWs. Consequently, a qualita-
tively different experimental approach is needed in order to
study QWs. Here we report such an approach using wave-
guide lattices.

Recently, a new technique has been developed for the
experimental investigation of periodic systems using op-
tics. The salient feature of these experiments is that evo-
lution of waves in time is also spread out in space, making
it much easier to observe. This is achieved by using wave-
guide structures which are periodic on one dimension
[x axis; see Fig. 1(a)], but are homogeneous along the other
(z axis). In this way the wave propagation along the z axis
is free and corresponds to the evolution in time [11]. Under
appropriate conditions light is guided inside the wave-
guides and can coherently tunnel between them. The ex-

perimental setup and typical lattice parameters are
described elsewhere [18].

Light propagating in weakly coupled, single mode
waveguides, can be described by [19]:

 i
n
c

@Aj
@t
� i

@Aj
@z
� �jAj � Cj;j�1Aj�1 � Cj;j�1Aj�1: (2)

Here Aj is the wave amplitude at site j, �j is the on-site
eigenvalue, Ci;j is the coupling constant or tunneling rate
between two adjacent sites i and j (for a periodic lattice
Ci;j � C is constant), and z is the longitudinal space coor-
dinate. The description by Eq. (2) is completely analogous
to the quantum description of noninteracting electrons in a
solid crystal in the tight-binding approximation, i.e., the
discrete Schrödinger equation. The main differences are
that (i) the spatial modulation of the index of refraction in
the x direction now plays the role of the tight-binding
potential, and the �js represent the propagation-constant
eigenvalues of each waveguide in the lattice (ii) the evo-
lution at a given time can be observed by measuring the
intensity distribution at the corresponding position in the
z axis [11], since z � ct=n, where c=n is the speed of light
in the medium. The advantage of this system is the possi-
bility to control the exact initial conditions for the light
propagating inside the lattice. This is done by setting the
width, the phase and the position across the lattice of the
beam injected into the structure. In addition, this approach
enables direct observation of the resulting wave function
by measuring the distribution of light intensity at the
sample’s output [Fig. 1(b)]. Furthermore, the temporal
evolution of the wave function can be observed by chang-
ing the sample length, or the initial conditions (e.g.,
[13,20]).

One of the hallmarks of QWs on ordered lattices is their
ballistic propagation [2]. In order to observe this behavior,
coherent light is injected into a single site in the lattice and
the output intensity is measured. In Fig. 2 we compare the
theoretical and the measured output distribution. The sig-
nature of ballistic propagation is clearly observed both at
short and long propagation times [Fig. 2(a)]. Note that
decoherence effects are negligible even after relatively
long evolution in time, maintaining the detailed interfer-
ence pattern predicted by theory [Fig. 2(b)]. Similar re-
sults, studied in a different context, were observed as early
as in 1973 by Somekh et al. [21] on small scales in
structures similar to the ones described above. The prop-
agating photons tunnel from the origin site to an adjacent
site, and immediately start tunneling to the next neighbor-
ing site. Through the tunneling between sites the photons
accumulate a �=2 phase, and an additional phase is accu-
mulated continuously in each lattice site j, at a rate given
by �j. The interference of all these waves depends on the
phase accumulated in each possible path, and gives rise to
the observed intensity distribution. This description is
practically identical to the description of the QW, where
the light intensity corresponds to the probability distribu-

FIG. 1 (color online). (a) Schematic view of the optical wave-
guide lattice used in the experiments (see text). (b) Image of the
output light distribution as recorded in the infrared camera, when
the light is injected to a single lattice site at the input.
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tion of the quantum particle. Since the single photon and
many photon problems are described by the same proba-
bility distribution, experiments measuring light intensity
are equivalent to performing a series of single photon
experiments, from which the probability distribution is
obtained. The propagation of more complex quantum
states can be studied using correlated or entangled photons
(see, for example, [22]). In this case the particle character-
istics of the quantum walkers can be revealed by measuring
two-photon correlation functions.

When disordered lattices are used [23,24], a different
behavior is observed. Accumulated random phases of the
random walker lead to destructive interferences that in-
crease with distance from the origin. As a result, after a
short ballistic propagation, the tails of the distribution are
exponentially suppressed leaving the probability distribu-
tion exponentially localized to a small regime. This phe-
nomena should be distinguished from a disordered related
decoherence. Decoherence is related to temporal disorder,
which induces a loss of phase coherence and results in a

transition into classical diffusion, characterized by an ex-
panding Gaussian probability distribution [25,26]. Spatial
disorder such as used here leads to an exponential
(Anderson) localization (e.g., [27,28]), which is a coherent
interference effect. In the context of CQWs, such behavior
was found to be important for the efficiency of quantum
algorithms [17,26,29].

QWs in disordered lattices are highly sensitive to the
initial conditions. Figure 2(c) shows two output patterns of
light intensity resulting from the injection of light into a
single waveguide of a lattice and similar injection to an
adjacent site of the same lattice. The different patterns
observed demonstrate the high sensitivity of the QW to
the exact initial conditions. This serves as a unique signa-
ture of the coherent nature of the QW, which is not present
in the classical case. In addition these results demonstrate
the effect of disorder on QWs, where in this case the
disorder was introduced through randomizing the tunnel-
ing rate between sites (off-diagonal disorder). The tails of
the distribution still show the ballistic component of the
regular QW. However, additional strong peaks now appear
near the origin. At later times these peaks evolve (on
average) into an exponentially localized distribution, while
the ballistic side lobes are suppressed (see [24] for detailed
discussion).

Several theoretical studies have been done on QWs with
boundary conditions [30,31], that give rise to complex self-
interference patterns. In Fig. 3 we show experimental
results of a QW with one reflecting boundary condition,
compared with the theoretical analysis. A series of mea-
surements is shown (horizontal cross sections), where in
each measurement light was injected closer to the bound-
ary. The observed pattern results from the self-interference
of the incoming and reflected photons near the boundary, in
agreement with theoretical predictions [30,32]. Although
these are limited observations showing results of a short
time propagation, longer waveguide lattices could be used
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FIG. 3 (color online). (a) Measurements of the self-
interference patterns of QWs near a reflecting boundary.
Horizontal cross sections show the left half of the probability
distribution of the QW, at decreasing input site position (vertical
axis), where position 0 marks the lattice left boundary.
(b) Comparison to the theoretical analysis using the method of
images [32].
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FIG. 2 (color online). (a) The theoretical prediction showing
the ballistic evolution of the probability distribution of a CQW.
The dashed lines correspond to the experimental measurements
in (b). (b) The observed output pattern of light intensity after
short (blue) and long (green) propagation in a periodic lattice.
This well-known pattern is one of the hallmarks of the ballistic
propagation of QWs. (c) Output patterns of light intensity
resulting from injection of light into two adjacent single wave-
guides (sites 42 and 43) of a disordered lattice. The different
patterns observed demonstrate the high sensitivity of the QW to
the initial conditions in this case.
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to study the more complex evolution at later times. For
example, such behavior of a two boundary conditions
system can be used for studying quantum carpets contain-
ing fractal patterns [12,29].

As an implementation of QWs, waveguide lattices carry
some important advantages over other possible schemes.
First, the technologies available for their fabrication or
induction have reached a peak in recent years, enabling
full control of every lattice parameters in one and two
dimensions [18,33], or limited yet real time control of
lattice parameters in two dimensions [34]. Second, wave-
guide lattices have excellent structural stability; thus, in
practice decoherence due to noise is negligible. The optical
wavelength in our experiments (using AlGaAs wafers) is
around 1:5 �m, the standard communication wavelength,
and losses at these wavelengths are extremely small. This
is highly important for quantum computational tasks where
coherency is essential. Third, effects arising from the
interactions between different random walkers in other
possible implementations are eliminated here, due to the
bosonic, noninteracting nature of photons.

In recent years, several quantum algorithms based on
QWs have been suggested [35]. For realistic use of such
algorithms one requires exponentially large systems. We
note that as long as entanglement is not introduced, our
system is limited to large but not exponentially large scale
functionality. The lack of entanglement limits the number
of the states of the system, which scales linearly with the
number of waveguides. Our system, even without entan-
glement, can potentially implement QW algorithms, since
quantum entanglement is not required for the algorithm
implementation or its improved efficiency. Its only role in
this case is to allow for a larger number of states (see, for
example the discussion in [36]. Some of the suggested QW
algorithms have been shown to provide polynomial or even
exponential speed up [37,38]. Unfortunately, in all of the
algorithms suggested so far the speed up of quantum over
classical algorithms is achieved only when applied to high
dimensional systems. Nevertheless, our system can still be
used to implement and study these algorithms in lower
dimensions.

In summary, we have demonstrated the strong corre-
spondence between QWs and light propagation in wave-
guide lattices. This correspondence can be used to extend
and interchange ideas and knowledge acquired in both
fields (e.g., nonlinear behavior [11] in CQWs or entangle-
ment effects [39,40] in waveguide lattices). The high level
of control, the accuracy, and the low decoherence rates
achieved in waveguide lattices experiments provide a
powerful tools for the study of QWs, and may prove useful
in the implementation of QWs-based algorithms.
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