
Evaluating Software Architectures: Development, Stability, and Evolution

Rami Bahsoon and Wolfgang Emmerich

Dept. of Computer Science,
University College London (UCL)

Gower Street, London WC1E 6BT, UK
{r.bahsoon; w.emmerich}@cs.ucl.ac.uk

Abstract
We survey seminal work on software architecture evalua-
tion methods. We then look at an emerging class of meth-
ods that explicates evaluating software architectures for
stability and evolution. We define architectural stability
and formulate the problem of evaluating software architec-
tures for stability and evolution. We draw the attention on
the use of Architectures Description Languages (ADLs) for
supporting the evaluation of software architectures in gen-
eral and for architectural stability in specific.

Keywords
Architectural evaluation; Architectural stability; Economic-
Driven Software Engineering Research.

1 INTRODUCTION
The architecture of the system is the first design artifact
that addresses the quality goals such as security, reliability,
usability, modifiability, stability, and real-time perform-
ance. As the manifestation of early design decisions, the
architecture represents those design decisions that are hard-
est to change [42] and need to be validated against the
quality goals for mitigating risks. A software architecture
review is an activity to develop an evaluation of an archi-
tecture against the quality goals. Architecture evaluation
aims to assess and validate the software architecture using
systematic methods or procedures. The evaluation is done
with the objective to ensure that the architecture under
question satisfies one or more quality goals, the so called
the review objectives. Evaluation also aims to ensure that
the architecture is buildable. That is, the system can be
built using the resources at hand: the staff, the budget, the
legacy software (if any), and the time allotted before deliv-
ery. From an evolutionary perspective, reviews are preven-
tive activities to delay the decay (as referred by Parnas) and
limit the effect of software aging [43]. Architectural
evaluations represent a wise risk-mitigation effort and are
relatively inexpensive [12].

Effort on architectural evaluation goes back to the seminal
work of Parnas and Weiss [44]. Their paper entitled “Ac-
tive Design Reviews: Principles and Practices” is regarded
as the cornerstone to the architectural review/evaluation
area. In their paper, Parnas and Weiss expressed one of the
fundamental principles behind the architectural evaluation
methods: undirected and unstructured design reviews for

software design do not work. Their work was motivated by
the observations that approaches to design review tend to
be spotty, ad hoc, and not repeatable. The common practice
was –and still is- to identify a group of reviewer, drop a
stack of read-ahead material on their desk a week or so
prior the meeting, haul them in a conference room for a few
tedious hours, ask for comments on the material read, and
hope for the best [13]. The outcome of such practice is pre-
dictable and entirely disappointing: failing to uncover any
serious problems with the design under consideration and
propagating the problem to other phases. Obviously, this is
attributed to human nature: participants will not have
cracked the read-ahead material until the last minute (if not
at all), or perhaps they have read to make some intelligent
comments. In short, the outcome is an unexercised design
artifact.

Parnas and Weiss prescribed a better way. Active Design
Reviews (ADRs) [44] were suggested and contrasted with
unstructured reviews in which people are asked to read a
document, attend a long meeting, and comment on what-
ever they wish [13]. ADRs are particularly well suited for
evaluating the designs of single components before the
entire architecture has been solidified [12, 13]. Reviewers
are chosen because of their areas of expertise, not simply
because of their availability. Each reviewer is given a ques-
tionnaire and/or some exercises to complete. The question-
naires and/or the exercises compel them to use the docu-
mentation and think about the architecture. For example, an
exercise might be, “How would you use the facilities pro-
vided by this module to send a message to the user and wait
a response?” The reviewer would then be obliged to sketch
out the answer in pseudo-code, using facilities described in
the design and the documentation. The result is that the
artefact being reviewed is actually exercised.

The Software Engineering Institute (SEI), CMU has played
a notable role in evolving and flourishing the principles and
the practices of reviews that address Parnas and Weiss con-
cerns. They have argued to consider the architecture
evaluation as a standard part of the development cycle [12].
With a particular focus on architectural design, the SEI has
developed a number of methods. Examples include the
Tradeoff Analysis Method (ATAM) [25], the Software
Architecture Analysis Method (SAAM) [24], the Active
Review for Intermediate Designs (ARID) [11]. These
methods have been applied for years on dozens of projects

of all sizes and in a wide variety of domains. Other SEI
methods include the Attribute-Based Architectural Styles
(ABAS)[27], and the Cost Benefit Analysis Method
(CBAM) [26]. Notable efforts outside SEI are the Software
Performance Engineering (SPE) [47,48, 55] and ArchOp-
tions [5, 6], our work in progress on the evaluation of soft-
ware architectures for stability and evolution using options
theory.

The evaluation using these methods generally identifies
what the quality goals of interest are and then highlights
the strengths and weaknesses of the architecture to meet the
identified goals. These methods either explicitly address a
single quality goal or multi-quality goals of interest.

The contributions of this paper are in three folds: the first
fold contributes to a review of the seminal work on soft-
ware architectures evaluation methods. Many of the ideas
presented in this review pertain to the use of software
evaluation methods in general. The second fold explicates
evaluating software architectures for stability and evolu-
tion. It contributes to a definition of architectural stability,
formulation, and insights on the evaluation of architectural
stability problem. It highlights and critically discusses Ar-
chOptions[5, 6] in span of the surveyed architectural
evaluation methods, as it presents our position on the sub-
ject. The third fold draws the attention on the use of Archi-
tectures Description Languages (ADLs) in supporting the
evaluation of software architectures in general and for ar-
chitectural stability in specific.

The review is further structured as follows. Section 2 lays
down the groundwork for evaluating software architec-
tures: it discusses why and when to evaluate an architec-
ture; who is involved in the evaluation; and lists ap-
proaches to evaluation. Section 3 provides a comprehen-
sive overlook on software architecture evaluation methods.
Section 4 presents methods that explicate evaluating soft-
ware architectures for stability and evolution. Section 5
draws the attention on the use of Architectures Description
Languages (ADLs) in supporting the evaluation of soft-
ware architectures in general and for architectural stability
in specific. Section 6 summarizes.

2 APPROACHES TO EVALUATION
Architecture evaluation can be applied at any stage of an
architecture life-time. The classical evaluation of an archi-
tecture occurs when the architecture has been specified but
before implementation has begun. Users of iterative or in-
cremental life-cycles models can evaluate the architectural
decisions made at the end of each iteration or during the
most recent architectural cycle. For instance, the Rational
Unified Process (RUP) [28] splits the development (evolu-
tion) process into four phases. These phases are Inception,
Elaboration, Construction, and Transition. The four phases
(I, E, C, and T) constitute a development (evolution) cycle
and produce a software generation. Under the RUP context,

the architectural evaluation can span iteratively and inter-
twined the Inception phase and iterations of the Elaboration
phase, and/or can take place at the Life-Cycle Architecture
(LCA) milestone. At the LCA milestone, the detailed sys-
tem objectives and scope are examined; the choice of the
architecture is considered; and the major risks are identi-
fied.

Early evaluation need not wait until an architecture is fully
specified. It can be used at any stage in the architecture
creation process to examine those architectural decisions
already made and choose among architectural options that
are pending. Early evaluations may take the form of dis-
covery reviews. A discovery review is a very early mini-
review activity. It aims to analyse whatever “proto-
architecture” may have been crafted. The output of a dis-
covery review is an “iterated” or a “revised” set of re-
quirements and an initial architectural approach to satisfy-
ing them, which is subject in turn to later iterative evalua-
tion. Note that the architecting process is best conducted
iteratively and intertwinedly through requirements, archi-
tecting, and validation

Late evaluation is a form of evaluating an existing architec-
ture. It takes place when the architecture already exists and
the implementation is complete. This occurs when an or-
ganization inherits some sort of legacy system and need be
integrated with the existing one. The evaluation at this level
helps the new owners understand the legacy system, and let
them know whether the system can be counted on to meet
its quality and behavioural requirements.

Clements et al. [12] provides two rules of thumb on when
to hold the evaluation: i) hold the evaluation when the de-
velopment team start to make decisions that depend on the
architecture; and ii) when the cost of undoing those deci-
sions would outweigh the cost of holding the evaluation.

Generally speaking, architectural evaluation is a human-
centred activity. The reviews are typically conducted in the
presence of key stakeholders, clients, designers, and the
evaluation team. Architecture evaluation may involve
thought experiments, modelling, and walking-through sce-
narios that exemplify requirements, as well as assessment
by experts who look for gaps and weaknesses in the archi-
tecture based on their experience. The evaluation may be
supported by analytic models, simulation tools, and other
architectural analysis means (e.g. parsers, …etc). These
may be suitable to reason about a single quality goal (e.g.
performance), or multi-quality goals of interest.

Abowd et al. [1] broadly categorize existing techniques to
architectural evaluation as either questioning, measuring
techniques, or hybrid. Questioning techniques use scenar-
ios, questionnaires, checklists, and as the like for architec-
tural investigation. Measuring techniques use metrics,
simulation, prototypes, or experimentations on running
systems. Measuring techniques result in quantitative re-

sults. These techniques differ from each other in applicabil-
ity, but they are all used to elicit discussion about the archi-
tecture and increase understanding of the architecture’s
“fitness” with respect to its requirements. Hybrid may com-
bines both questioning and measuring. Most of the
architecture evaluation methods described in this review
are generally hybrid; they tend to elicit “discussion” about
the architecture using questioning techniques and use sorts
of measurements for reasoning.

3 EVALUATING SOFTWARE ARCHITECTURES
In subsequent sections, we provide a comprehensive over-
look on software architecture evaluation methods. We de-
scribe the evolution of the principle and practice to soft-
ware architecture evaluation through the following meth-
ods: the Software Architecture Analysis Method (SAAM)
[24]; the Architecture Trade-off Analysis Method (ATAM)
[25]; the Active Attribute-Based Architectural Styles
(ABASs) [27]; the PASA Software Performance Engineer-
ing (SPE) [47, 48, 55]; Reviews for Intermediate Designs
(ARID) [11]; and the Cost Benefit Analysis Method
(CBAM) [26].

Conceptually, all the architecture evaluation methods de-
scribed in this review are Active Design Reviews: they re-
quire the participation of experts for their specific stake in
the architecture. They pursue a path of directed analysis
such as eliciting a specific statements on quality goal(s)
that the architecture must meet to be acceptable, and then
follow an measuring path to demonstrate how the architec-
ture satisfy (or does not satisfy) the quality goal(s).

3.1 The Architecture Trade-off Analysis Method
(ATAM)
The Architecture Trade-off Analysis Method (ATAM) [25]
does not only reveal how well an architecture satisfies par-
ticular quality goals, but it also provides insight into how
these quality interact with each other – how they trade off
against each other [12]. ATAM is a scenario based archi-
tecture evaluation method. A scenario describes the interac-
tion with the system from the stockholder’s point of view.
The ATAM uses three types of scenarios. These are use
case scenarios, growth scenarios, and exploratory scenar-
ios. Use case scenarios describe the typical uses of the
completed running system. Growth scenarios represent
typical anticipated changes of the system. Exploratory sce-
narios expose the limits or boundary conditions of the cur-
rent design; in other words, they tend to expose the extreme
changes that are expected to “stress” the system.
The input to the ATAM consists of an architecture, the
business goals of a system, and the perspectives of the
stakeholders involved with the system. The ATAM
achieves its evaluation of an architecture by utilizing an
understanding of the architectural approach that is used to
achieve particular quality goals and the implications of that

approach. The quality attributes that compromise system
“utility” (e.g. performance, availability, security, modifi-
ability, usability, and so on) are elicited, specified down to
the level of scenarios, annoted with stimuli and responses,
and prioritized. The scenarios are used for the evaluators
to understand the inherent architectural risks, non-risks,
sensitivity points to particular quality attributes, and trade-
offs among quality attributes.

The ATAM can be used at various stages of development
(conceptual, before code, during development, or after de-
ployment). The ATAM is fully described in [25, 12].

3.2 The Software Architecture Analysis Method
(SAAM)
The Software Architecture Analysis Method (SAAM) [24]
elicits stakeholder’s input to identify explicitly the quality
goals that the architecture is intended to satisfy. Unlike the
ATAM, which operates around a broad collection of qual-
ity attributes, the SAAM concentrates on attributes for
modifiability, variability (suitable for product line), and
achievement of functionality. The development of SAAM
was motivated by the observation that practitioners regu-
larly make claims about their software architectures (e.g. “
This system is more robust than its predecessor”, “Using
CORBA will make the system easy to modify and up-
grade”) that are untestable [12]. SAAM tends to make
these claims testable; it replaces claims with quality attrib-
utes (like maintainability, modifiability, robustness, flexi-
bility, and so forth) and uses scenarios to operationalize
these attributes.

SAAM indicates places where the architecture fails to meet
its modifiability requirements and in some cases shows
obvious alternative designs that would work better. Like
ATAM, SAAM is a scenario-based method. A scenario in
SAAM is a brief description of the some anticipated or
desired use of the system. Scenarios are classified as either
direct or indirect scenarios. Direct scenarios are those sce-
narios that are directly supported by the architecture, mean-
ing that anticipated use require no modification to the ar-
chitecture for the scenario to be accommodated. An indi-
rect scenario is one that requires a modification to the ar-
chitecture to be satisfied; the architect describes how the
architecture would need to be changed to accommodate the
scenario. When two or more indirect scenarios require
changes to a single component of an architecture, they are
said to interact in that component. Areas of high scenario
interaction reveal potentially poor separation of concerns in
a component; they indicate that the architecture is not
documented to the right level of structural decomposition.
The input to SAAM consists of an enumerated set of stake-
holder’s scenarios that represent known or likely changes
that the system will undergo in the future. These scenarios
are prioritized and mapped onto the architecture representa-
tion. The activity of mapping indicates problem areas in the

architecture: areas where the architecture is overly complex
(e.g. if distinct scenarios affect the same component(s)) and
areas where changes tend be problematic (e.g. if a scenario
causes changes to a large number of components). A com-
plete description of SAAM is provided in [12,24].

3.3 Active Reviews for Intermediate Designs
(ARID)
The Active Reviews for Intermediate Designs (ARID) [11]
combines the philosophy of ADRs with scenario-based
methods like ATAM or SAAM. ARID is a method for
evaluating sub-designs of partial architectures in their early
or conceptual phases. Designs of partial architectures are
architectural in nature; they are sub-designs that represent
the stepping stones to the full architecture. ARID aims to
validate the suitability of the sub-design being proposed
with respect to other parts of the architecture. ARID is mo-
tivated by the fact that if the architectural sub-designs are
inappropriate, then the entire architecture can be under-
mined. Hence, reviewing a sub-design in its early pre-
release stage provides valuable early insights into the de-
sign’s viability and allows for timely discovery of errors,
inconsistencies, or inadequacies.

ARID can be carried out in the absence of complete docu-
mentation. In ARID, the reviewers are the design’s stake-
holders. Like ATAM and SAAM, the reviewers prepare a
set of scenarios. After scenarios are gathered, a winnowing
process occurs: two or more scenarios that are versions of
the same scenario or one that subsumes another are
merged. Prioritisation is by voting: each reviewer is al-
lowed to vote up to 30 percent of the number of scenarios.
Beginning with the scenarios that have received the most
votes, the reviewers craft code or pseudo-code that uses the
design to carry each scenario. At the end of the review,
ARID may have helped to discover (i) the sufficiency, fit-
ness, and suitability of the services provided by the design,
and (ii) the quality and the completeness of the documenta-
tion.

3.4 Attribute-Based Architectural Styles (ABAS)
Attribute-Based Architectural Styles (ABASs) [27] build
on architectural styles to provide a foundation for reason-
ing about architectural design. An architectural style is a
generic description of an architecture. A style specifies the
component types, the topological structure relevant to the
specific style, and patterns of data and control interaction
among the components. A single architectural style may
result in several ABASs, where every ABAS reasons about
a specific quality attribute. For example, an architecture
with a Client-Server architectural style might have a Secu-
rity Client-Server ABAS, a Modifiability Client-Server
ABAS, a Performance Client-Server ABAS, and so forth.

ABAS explicitly associate a reasoning framework with an
architectural style that facilitate the evaluation. The reason-
ing framework may be quantitatively grounded (example
based on rate monotonic analysis, queuing theory, or other
metrics which exist in the various quality attribute commu-
nities) or it may be qualitative in nature (such as checklists,
questionnaires, or scenario-based analysis). For example,
associating a Rate Monotonic Analysis to the pipe-and-
filter style allows creating the Performance Concurrent
Pipelines ABAS. This ABAS supports the architect in rea-
soning about worst-case latency quantitatively. Similarly,
associating a scenario-based reasoning using SAAM or
ATAM, allow creating the Modifiability Layering ABAS.
This ABAS supports the architect to reason about the ef-
fects of changes on modifiability and maintainability. As
far as evaluation is concerned, a style may be “stressed” by
stimuli on a quality of interest. The objective is to gain
insight into the responses of the architecture under evalua-
tion to these stimuli using the associated quality-specific
models. This aids the architect in understanding how to
achieve a desired response by manipulating the architec-
tural parameters.

3.5 PASA: Performance Assessment of Software
Architectures & Software Performance Engineer-
ing (SPE)
Software Performance Engineering (SPE) is systematic
quantitative approach to proactively analyse and mange
software performance [47,48,55]. The SPE technique can
be used to examine an architecture to see whether the de-
signed system will meet it performance goals. It uses model
predictions to evaluate trade-offs in software functions,
hardware size, quality of results, and resource require-
ments. It also includes techniques for collecting data, prin-
ciples and patterns for performance-oriented design, and
anti-patterns for recognizing and correcting common per-
formance problems. PASA, a Method for the Performance
Assessment of Software Architectures, is SPA based. Par-
ticipants in PASA are key developers and project manag-
ers. Performance assessment starts by the identification of
critical use cases that are important to the responsiveness
or scalability of the system. For each critical use case, the
scenarios that are important to performance are recognised.
Measurable performance objectives are then identified for
each key scenario. The architecture is analysed to deter-
mine whether it will support the performance objectives. In
the face of a performance discrepancy, the designer has
many choices to make: the performance requirements can
be relaxed, functionality can be omitted, hardware capabil-
ity can be increased, or alternatives architectural designs
for meeting the performance objectives are recommended.
Conceptually, PASA resembles the ATAM, in which the
singular quality of interest is performance.

3.6 The Cost Benefit Analysis Method (CBAM)
The Cost Benefit Analysis Method (CBAM) [26] is an ar-
chitecture-centric method for analysing the costs, benefits,
and schedule implications of architectural decisions. The
CBAM builds upon the ATAM to model the costs and
benefits of architectural design decisions and to provide
means of optimising such decisions. Conceptually, CBAM
continues where the ATAM leaves; it adds a monetary di-
mension to ATAM as an additional attribute to be traded-
off. The CBAM consists of the following steps: i) choosing
scenarios and architectural strategies (AS); ii) assessing
Quality Attribute (QA) benefits; iii) quantifying the archi-
tectural strategies; iv) costs and schedule implications; v)
calculating desirability; and vi) making decisions.

Upon completion of the evaluation using CBAM, CBAM
could have guided the stakeholders to determine a set of
architectural strategies that address the highest priority sce-
narios. These chosen strategies furthermore represent the
optimal set of architectural investments. They are optimal
based on: benefit, cost, and schedule. To quantify the archi-
tectural strategies benefits, stakeholders are asked to rank
each AS in terms of its contribution to each quality attrib-
ute. A scale of –1 to +1 is used. A +1 means that this AS
has substantial positive effect on the QA (for example, an
AS under consideration might have substantial positive
effect on performance) and –1 means the opposite. Each
AS can be assigned a computed benefit score from –100 to
+100. CBAM doesn’t provide a way to determine the cost;
it considers that cost determination is a well-established
component of software engineering and is outside its scope.
The benefits and scores result in the ability to calculate
desirability metrics for each architectural strategy. The
magnitude of desirability can range from 0 to 100.

Plausible improvements of the existing CBAM include the
adoption of Real-Options theory to reason about the value
of postponing an investment decisions in architectural
strategy. For example, let AS2 and AS3 be two architec-
tural strategies, where AS2 is low-cost, low-benefit, and
AS3 is high-cost, high-benefit. Analysis of the dependency
structure may show, for example, that AS2 must be first be
implemented, deferring the implementation of AS3. In
other word, CBAM uses Real Options theory to calculate
the value of option to defer or delay the investment into an
architectural strategy until more information will be avail-
able.

4 EVALUATING SOFTWARE ARCHITECTURES
FOR STABILITY AND EVOLUTION
In subsequent sections, we focus an emerging class of
methods that explicates evaluating software architectures
for stability and evolution. We define and formulate the
problem of evaluating software architectures for stability.
We discuss why and how to evaluate an architecture for
stability. We differentiate between two types of approaches
to evaluation: these are retrospective and predictive [23].

We review notable research effort in this direction. These
include: (i) Jazayeri’s retrospective method [23] to evalua-
tion, and (ii) ArchOptions [5,6] a predictive approach to the
evaluation of software architectures for stability using Real
options theory. We critically discuss ArchOptions in span
of the reviewed methods.

4.1 On Architectural Stability and Evolution

The architecture represents those design decisions that are
hardest to change [42]. If the business goal is that the sys-
tem should be long-lived, should evolve to accommodate
future requirements, and should create future value, stabil-
ity becomes an important goal to evaluate an architecture
for. Architectural stability is a quality that refers to the ex-
tent an architecture is flexible to endure evolutionary
changes in stakeholder’s requirements and the environ-
ment, while leaving the architecture intact. An architecture,
which lacks flexibility, may entail large and disruptive
changes for the requirements to be accommodated. The
change may “break” the architecture necessitating changes
to the architectural structure (e.g. changes to components
and interfaces), architectural topology (e.g. architectural
style, where a style is a generic description of a software
architecture), or even changes to the underlying architec-
tural infrastructure (e.g. middleware). It may be expensive
and difficult to change the architecture as requirements
evolve [16]. Consequently, failing to accommodate the
change leads ultimately to the degradation of the usefulness
of the system.

Evaluation of software architectures for stability aims to
understand the impact of evolution on the architecture of
the software system. The impact can be understood
through assessing the impact of the change on one or more
architectural aspects. The aspects may be structural (e.g.
components, connectors, and topological such as the archi-
tectural style used etc.); quality (e.g. run time behavioral
quality attribute such as performance or static quality at-
tribute such as maintainability); or economical (e.g. cost
and value implications).

Let A ={S, Q, E} where S stands for the structural aspects
of the architecture A; Q the quality-goals supported by the
architecture A; and E the economical characteristics of the
architecture A. Suppose the architecture need to evolve or
has evolved to A’={S’, Q’, E’}. Stability can be evaluated
by understanding the impact of evolution on A’ relative to
A, or predicting such impact on the architecture-to-be, A’,
based on examining A and other relative inputs (e.g. the
likely changes, business cases, stakeholders’ concerns,
standards, requirements, calibrated market information
etc.). The impact can be understood or predicted through
assessing the impact of the change on one or more architec-
tural aspects.

4.2 Retrospective & Predictive Evaluation for Sta-
bility
Approaches to evaluating software architectures for stabil-
ity can be retrospective or predictive [23]. Both retrospec-
tive and predictive evaluation start with the assumption that
the software architecture’s primary goal is to guide the sys-
tem’s evolution. Retrospective evaluation looks at succes-
sive releases of the software system to analyze how
smoothly the evolution took place. The analysis relies on
comparing properties from one release of the software to
the next. The intuition is to see if the system’s architectural
decisions remained intact throughout the evolution of the
system, that is, through successive releases of the software.

Predictive evaluation for stability provides “insights” on
the evolution of the software system based on examining a
set of likely changes and the extent the architecture can
endure these changes. Predictive evaluation for stability is
preventive with the objective of understanding potential
threats on one or more architectural aspect (i.e. structural,
economical, or quality) if the likely changes need to be ac-
commodated.

Retrospective analysis can be used for empirically evaluat-
ing an architecture for stability; calibrating the predictive
evaluation results; and predicting trends in the system evo-
lution [23]. In other words, retrospective analysis can also
provide basis for predictive analysis. For example, previ-
ous evolution data of the system may be used to anticipate
the resources needed for the next release, or to identify the
components that most likely require attention, need restruc-
turing or replacements, or to decide if it is time to entirely
retire the system. In principle, predictive analysis and ret-
rospective analysis should be combined. However, perfect
predictive evaluations would render retrospective analysis
unnecessary [23].

4.2.1 Retrospective evaluation
Up to the authors’ knowledge, the only retrospective
evaluation technique to architectural stability is [23].
Jazayeri has applied retrospective analysis to successive
releases of a large telecommunication software system. The
analysis uses simple metrics such as software size metrics
(e.g. module size, number of modules changed, and the
number of modules added in the different releases); cou-
pling metrics; and color visualization to summarize the
evolution pattern of the software system across the re-
leases. The evaluation appears not to be preventive; it
summarizes how smoothly the evolution of the software
system has taken place across several releases. The evalua-
tion is done on detailed design artifacts of the system using
design metrics such as modules number and coupling met-
rics. Further, the evaluation uses fine-grained artifacts such
as size metrics, which are not architectural in essence. Al-
though the use of these metrics may be justified in the ab-
sence of metrics that explicates architectures, Jazayeri has
not shown how the reasoning links to the conceptual archi-
tecture. Moreover, the evaluation appears to be expensive

and unpractical; it requires information to be kept for each
release of the software. Yet, such data is not commonly
maintained, analyzed, or exploited. The evaluation assumes
that the system already exist and has evolved making this
approach unsuitable for early evaluation.

4.2.2 Predictive evaluation
ArchOptions [5, 6] is a predictive method for evaluating
software architectures for stability. ArchOptions provides a
novel model that builds on options theory to predict archi-
tectural stability. The model takes value-based [9, 45, 50,
51, 52] reasoning to prediction: ongoing work in the eco-
nomic-driven software engineering research [45] has drawn
the attention that software design and engineering activities
need to be judged by their contribution to the added value
and value creation [9, 50, 51, 52]. This need becomes more
intense especially incase of evolution, where the economic
value is among the primary considerations that determine
whether or not to retire a system, or if the architecture is
“evolutionary friendly”. This claim is indirectly supported
by observations [29, 30] and other studies [43], which sug-
gests that evolving software eventually, reaches a condition
where, from an economic point of view at least, replace-
ment is indicated [30]. Added that the biggest tradeoffs in
large, complex systems always have to do with economics
[4, 26].

ArchOptions argues that real options theory [39, 40] is
well suited to assist evaluating software architectures for
stability. The major idea of this work is that the flexibility
of an architecture to endure changes in stakeholders’ re-
quirements and the environment has a value. This value can
assist in the evaluation of an architecture for stability. More
specifically, flexibility adds to the architecture values in the
form of real options- that give the right but not a symmet-
ric obligation- to evolve the software system and enhance
the opportunities for strategic growth by making future
follow-on investments. The added value under the stability
context is strategic in essence and not immediate. It takes
the form of (i) accumulated savings through enduring the
change without “breaking” the architecture; (ii) supporting
reuse; (iii) enhancing the opportunities for strategic
“growth” (e.g. regarding an architecture as an asset and
instantiating the asset to support new market products); and
(iv) giving the enterprise a competitive advantage by bank-
ing the stable architecture like any other capitalized asset.

ArchOptions can be applied during the early stages of the
development life-cycle to predict threats of evolution on an
architecture. Given likely evolutionary changes, ArchOp-
tions value the flexibility of an architecture to expand in the
face of these changes. ArchOptions builds on Black and
Scholes options pricing model [8] (Noble Prize winning) to
achieve this objective.

ArchOptions predictive results can have different usages:
valuing the long-term investment in a particular architec-

ture; analysing trade-offs between two or more candidate
software architectures for stability; analysing the strategic
position of the enterprise- if the enterprise is highly centred
on the software architecture (as it is the case in web-based
service providers companies e.g. amzon.com); and validat-
ing the architecture for evolution.

Critically relating ArchOptions to the exiting architectural
evaluations methods presented in section 3:

Existing methods to architectural evaluation have ignored
any economic considerations, with CBAM [26] being the
only notable exception. The evaluation decisions using
these methods tend to be driven by ways that are not con-
nected to, and usually not optimal for value creation. Fac-
tors such as flexibility, time to market, cost and risk reduc-
tion often have higher impacts on value creation [9]. These
factors also provide an indication on the “friendliness” of
the architecture to evolution. Hence flexibility is in the
essence. In ArchOptions, we link flexibility to value as a
way to make the value of stability tangible.

Relating CBAM to our work, the following distinctions can
be made: with the motivation to analyse the cost and bene-
fits of architectural strategies, where an architecture strat-
egy is subset of changes gathered from stakeholder, CBAM
does not address stability and does not explicitly target
evolution. Further, CBAM does not tend to capture the
long-term and the strategic value of the specified strategy.
ArchOptions, in contrast, views stability as a strategic ar-
chitectural quality that adds to the architecture values in the
form of growth options. A growth option [39, 40] is an
option to expand with strategic importance. When CBAM
complements ATAM to reason about qualities related to
change such as modifiability, CBAM does not supply rig-
orous predictive basis for valuing the impact of change.
Plausible improvements of the existing CBAM include the
adoption of real options theory to reason about the value of
postponing investment decisions. CBAM uses Real Op-
tions theory to calculate the value of option to defer the
investment into an architectural strategy. The delay is based
on cost and benefit information. In the context of the real
options theory, CBAM tends to reason about the option to
delay the investment in a specific strategy until more in-
formation becomes available as other strategies are met.
However, ArchOptions uses real options to value flexibility
provided by the architecture to expand in the face of evolu-
tionary requirements, and henceforth referred as the op-
tions to expand or growth options.

None of the described methods (described in section 3)
addresses stability or explicitly target the evolution of the
architecture over time. Even when methods like SAAM
and ATAM are used to analyze qualities that are related to
change (such as modifiability), the analysis is not cali-
brated with analytical models of predictive power. This
renders their predictive effectiveness as myopic. For exam-
ple, ATAM and SAAM indicate places where the architec-

ture fails to meet its modifiability requirements and in some
cases shows obvious alternative designs that would work
better. When used for evaluating modifiability, the input to
these methods consist of an enumerated set of stakeholder’s
scenarios that represent known or likely changes that the
system will undergo in the future. These scenarios are pri-
oritised and mapped onto the architecture representation.
The activity of mapping indicates problem areas in the ar-
chitecture: areas where the architecture is overly complex
(e.g. if distinct scenarios affect the same component(s)) and
areas where changes tend be problematic (e.g. if a scenario
causes changes to a large number of components). The
approaches to evaluation do not go beyond thought ex-
periments, walking-through scenarios that exemplify re-
quirements, and/or assessment by experts who look for
gaps and weaknesses in addressing modifiability based on
their experience. ArchOptions, however, provides a predic-
tive model that is built on sound theory.

Conceptually, ArchOptions is an ADR that explicitly fo-
cuses on evaluating the stability of architectural design
with respect to evolution. In other words, ArchOptions
tends to address Parnas and Weiss concerns. It provides
structured and disciplined ways to evaluation. It tends to
pursue a path of directed analysis: it requires the participa-
tion of experts for their specific stake in the architecture
and it takes a analytical path based on real options to dem-
onstrate how the architecture satisfy (or does not satisfy)
the evaluation goal (i.e. stability).

5 ADLs AND THEIR POTENTIAL SUPPORT FOR
SOFTWARE ARCHITECTURES EVALUATION
Although software evaluation methods are typically hu-
man-centred, formal notations for representing and analys-
ing architectural designs, generically referred to as Archi-
tectural Description Languages (ADLs), has provided new
opportunities for architectural analysis [18] and evaluation.
In this section, we briefly survey efforts on ADLs as they
have positive implications on supporting the evaluation of
software architectures. We explain how ADLs can be used
to support the evaluation of software architectures in gen-
eral and the evalution of software architectures for stability
in specific.

ADLs are languages that provide features for modelling a
software system’s conceptual architecture [36]. ADLs pro-
vide a concrete syntax and a conceptual framework for
characterizing architectures [20]. The conceptual frame-
work typically subsumes the ADL’s underlying semantic
theory (e.g., CSP, Petri nets, finite state machines).

A number of ADLs have been proposed for modeling ar-
chitectures both within a particular domain and as general-
purpose architecture modeling languages [36]. Examples
are Aesop [19], Darwin [33, 34], MetaH [54], C2 [37],
Rapide [31, 32], Wright [3], UniCon [46], SADL [38], and
ACME [20].

Architectural descriptions are often intended to model
large, distributed, and concurrent systems. Evaluating the
properties of such systems upstream, at the architectural
level, can substantially lessen the costs of any errors. The
formality of ADL renders them suitable for the manipula-
tion by tools for architectural analysis. In the context of
architectural evaluation, the usefulness of an ADL is di-
rectly related to the kinds of analysis a particular ADL sup-
ports. The types of analyses and evaluation for which an
ADL is well suited depends on its underlying semantic
model. We refer to [36] to state few examples: Wright is
based on CSP; it analyses individual connectors for dead-
locks. MetaH and UniCon both support schedulability
analysis by specifying non-functional properties, such as
criticality and priority. SADL can establish relative cor-
rectness of two architectures with respect to refinement
map. Rapide’s and C2’s event monitoring and filtering
tools also facilitate analysis of an architecture. C2 uses crit-
ics to establish adherence to style rules and design guide-
lines.

Another aspect of analysis, that supports architectural
evaluation, is enforcement of constraints. Parsers and com-
pilers enforce constraints implicit in types, non-functional
attributes, component and connector interfaces, and seman-
tic models. Static and dynamic analyses are used. Static
analysis verifies that all possible executions of the architec-
ture description conform to the specification. Static analy-
sis helps the developers to understand the changes that
need to be made to satisfy the analysed properties. They
span approaches such as reachability analysis [21, 22, 53],
symbolic model checking [10], flow equations, and data-
flow analysis [15]. The applicability of such techniques to
architecture descriptions has been demonstrated in [41]
using two static analysis tools. These tools are INCA [14]
and FLAVERS [15, 35]. Rapide [31, 32] provides a sup-
port to simulate the executions of the system. The simula-
tion verifies that the traces of those executions conform to
high-level specifications of the desired behaviour. Allen
and Garlan [3] use the static analysis tool FDR [17] to
prove freedom from deadlock as well as compatibility be-
tween the component and connectors in an architecture
description. Dynamic software architectures denote that
application’s architecture evolves during runtime [33, 34].
Darwin [33, 34] and its associated analysis tools is an ex-
ample that supports dynamic analysis of software architec-
tures.

In the context of evaluating software architectures for sta-
bility, no notable research effort has explored the role of
ADLs in supporting such evaluation. However, we believe
that ADLs have the potentials to support such evaluation.
For instance comparing properties of an ADL of different
releases of the software can provide insights on how the
change(s) or the likely change(s) tends to threat the stabil-
ity of the architecture. This can be achieved by analyzing
parts of the new version that represent syntactic and seman-

tic changes. Also the analysis can provide insights into
possible architectural breakdown upon accommodating the
change. For example, the analysis may show how the
change may break the architectural topology (e.g. the archi-
tectural style) and/or the architectural structure (e.g. com-
ponents, connectors, interfaces.. ect.). We note that ADLs
have potentials for performing retrospective evaluation for
stability. In this context, the evaluation can be performed at
correspondingly high level of abstraction. Moreover, the
evaluation may be relatively less expensive as when com-
pared, for example, to the approach of [23].

6 SUMMARY
We have reviewed methods for evaluating software archi-
tectures. These methods provide frameworks for architects
to evaluate architectural decisions with respect to quality
attributes that need to be met by the system. They can rea-
son about a single quality goal or multi-quality goals of
interest. Examples of these quality attributes include per-
formance, security, modifiability, and suitability of design.
They take different approaches to evaluation: questioning,
measuring, or both.

If the business goal that the architecture should be long-
lived, should evolve to accommodate future requirements,
or should create future value, stability becomes an impor-
tant architectural quality to evaluate an architecture for. We
have defined architectural stability and have formulated the
problem of the evaluation for stability. We have spotted the
light on an emerging class of methods that explicates
evaluating software architectures for stability and evolu-
tion. These methods assume that the software architecture’s
primary goal is to guide the system’s evolution. They take
retrospective or predictive approaches to evaluation. We
have critically related our work in progress to the reviewed
methods- as it represents our position on the subject.

ADLs have provided new opportunities for architectural
analysis and evaluation. We have briefly surveyed efforts
on ADLs as they have positive implications on supporting
the evaluation of software architectures. We have ex-
plained how ADLs can be used to support the evaluation of
software architectures in general and the evaluation of
software architectures for stability in specific.

7 REFERENCES

1. Abowd, G., Bass, L., Clements,P., Kazman, R., North-
rop, L., and Zaremski, A. (1996). Recommended Best
Industrial Practice for Software Architecture Evalua-
tion (CMU/SEI-96-TR-025), Software Engineering
Institute, Carnegie Mellon University.

2. Abowd, G., Allen, R., and Garlan, D. (1993). Using
Style to Understand Descriptions of Software Archi-
tecture. In Proceedings of SIGSOFT’93: Foundations
of Software Engineering, ACM Press.

3. Allen, R. and Garlan, D. (1994). Formalizing Archi-
tectural Connection. In Proceedings of the 14th Inter-
national Conference on Software Engineering, pp. 71-
80.

4. Asundi, J. and Kazman, R. (2001). A Foundation for
the Economic Analysis of Software Architectures. In
Proceedings of the Third Workshop on Economics-
Driven Software Engineering Research.

5. Bahsoon, R. (2003). Evaluating Software Architec-
tures for Stability: A Real Options Approach. Re-
search Abstract. In: Proceedings of the 25 th Interna-
tional Conference on Software Engineering, Portland,
USA.

6. Bahsoon, R., and Emmerich, W. (2003). ArchOptions:
A Real Options-Based Model for Predicting the Sta-
bility of Software Architecture. In: Proceedings of the
Fifth Workshop on Economics-Driven Software En-
gineering Research, EDSER 5, held in conjunction
with the 25 th International Conference on Software
Engineering.

7. Belady, L.A.and Lehman, M.M. (1976). A Model of
Large Program Development. IBM Systems Journal,
Vol. (15) 3, pp. 225-252.

8. Black, F., and Scholes, M. (1973). The Pricing of Op-
tions and Corporate Liabilities. Journal of Political
Economy.

9. Boehm, B. and Sullivan, K.J. (2000). Software Eco-
nomics: A Roadmap. In: A. Finkelstein (ed): The Fu-
ture of Software Engineering.

10. Burch, J., Clarke, E., McMillan, E., Dill, D., and
Hwang, L. (1990). Symbolic Model Checking: 1020
States and Beyond. In: Proc. of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pp. 428-
439.

11. Clements, P. (2000). Active Reviews for Intermediate
Designs (CMU/SEI-2000-TN-009), Software Engi-
neering Institute, Carnegie Mellon University.

12. Clements, P., Kazman, R., Klein, M. (2002). Evaluat-
ing Software Architectures: Methods and Case Stud-
ies. Addison Wesley, Boston, USA.

13. Clements, P. and Northrop, L. (2002). Software Prod-
uct Lines: Practices and Patterns. Addison Wesley,
Boston, USA.

14. Corbett, J., and Avrunin, G. (1995). Using Integer
Programming to Verify General Safety and Liveness
Properties. Formal Methods in System design. Vol.
(6), pp. 97-123.

15. Dwyer, M., and Clarke, L. (1994). Dataflow Analysis
for Verifying Properties of Concurrent Programs. In:
Proceedings of the Second ACM Sigsoft Symposium
on Foundations of Software Engineering. Vol. (19),
pp. 62-75.

16. Finkelstein, A. (2000). Architectural Stability, Some
Preliminary Comments.
http://www.cs.ucl.ac.uk/staff/a.finkels-tein.

17. Formal Systems (Europe) Ltd. (1992). Failures Diver-
gence Refinement: User Manual and Tutorial.

18. Garlan, D. (2000). Software Architecture: A Road-
map. In: A. Finkelstein (ed): The Future of Software
Engineering.

19. Garlan, D., Allen, R., and Ockerbloom (1994). Ex-
ploiting Style in Architectural Design Environments.
In: Proceedings of SIGSOFT’94, Foundations of
Software Engineering, New Orleans, Louisiana, USA,
pp. 175-188.

20. Garlan, D., Monroe, R. and Wile, D. (1995). ACME:
An Architectural Interconnection Language. Technical
Report, CMU-CS-95-219, Carnegie Mellon Univer-
sity.

21. Godefroid, P., and Wolper, P. (1991). Using Partial
Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. In: Proceedings of the
Third Workshop on Computer Aided Verification, pp.
417–428.

22. Holzman, G. (1991). Design and Validation of Com-
puter Protocol. Prentice Hall Software Series.

23. Jazeyeri, M. (2002). On Architectural Stability and
Evolution. Lecture Notes in Computer Science,
Springer Verlag, Berlin.

24. Kazman, R., Abowd, G., Bass, L. and Webb, M.
(1994). SAAM: A Method for Analyzing the Proper-
ties of Software Architectures. In: Proceedings of the
16th International Conference on Software Engineer-
ing (Sorento, Italy), pp. 81-90.

25. Kazman, R., Klein, M., Barbacci, M., Lipson, H.,
Longstaff, T., and Carrière, S.J. (1998). The Archi-
tecture Tradeoff Analysis Method. In: Proceedings of
ICECCS, Monterey, CA.

26. Kazman, R., Asundi, J., and Klein, M. (2001). Quanti-
fying the Costs and Benefits of Architectural Deci-
sions. In: Proceedings of the 23rd International Con-
ference on Software Engineering, Toronto, Canada,
pp. 297-306.

27. Klein, M. and Kazman, R. (1999). Attribute-Based
Architectural Styles. CMU/SEI-99-TR-22, Software
Engineering Institute, Carnegie Mellon University.

28. Kruchten, P. (2000). The Rational Unified Process:
An Introduction. Addison Wesley Longman.

29. Lehman, M.M., Feedback, Evolution and Software
Technology, FEAST/2, http://www-
dse.doc.ic.ac.uk/~mml/feast/

30. Lehman, M.M., Kahen, G., and Ramil, J.F. (2000).
Replacement Decisions for Evolving Software. In

Proceedings of the Second Workshop on Economics-
Driven Software Engineering Research.

31. Luckham, D. C., Augustin, L. Kenney, J., Veraa, J,
Bryan, M., and Mann W. (1995). Specification
Analysis of System Architecture Using Rapide. IEEE
Transactions on Software Engineering. Vol. 21(4), pp.
366-355.

32. Luckham, D.C. and Vera, J. (1995). An Event-Based
Architecture Definition Language. IEEE Transactions
on Software Engineering, pp. 717-734.

33. Magee, J., and Kramer, J. (1996). Dynamic Structure
in Software Architectures. In: Proc. ACM SIGSOFT
'96 Fourth Symposium on the Foundations of Soft-
ware Engineering, San Francisco, CA, pp. 3–14.

34. Magee, J., Dulay, D., Eisenbach, N., and Kramer, J.
(1995). Specifying Distributed Software Architecture.
In: proceedings of the Fifth European Software Engi-
neering Conference (ESEC’95), Barcelona, Spain.

35. Masticola, S. and Ryder, B. (1991). A Model of ADA
Programs for Static Deadlock Detection in Polynomial
Time. In: Proceedings of the Workshop on Parallel
and Distributed Debugging, pp. 97–107.

36. Medvidovic, N. and Taylor, R. (1997). A Framework
For Classifying and Comparing Architecture Descrip-
tion Languages. In: Proceedings of the Sixth Euro-
pean Software Engineering Conference, together with
Fifth ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Zurich, Switzerland, pp. 60-
76.

37. Medvidovic, N. and Rosenblum, D., and Taylor,
R.(1999). A Language and Environment for Architec-
ture-Based Software Development and Evolution. In:
Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, CA, pp. 44-53.

38. Moriconi, M., Qian, X., and Riemenschneider, R.
(1995). Correct Architecture Refinement. IEEE
Transactions on Software Engineering, pp. 356-372.

39. Myers, S.C. (1977). Determinants of Corporate
Borrowing. Journal of Financial Economics. Vol. (5)
2, pp. 147-175.

40. Myers, S.C. (1987). Finance Theory and Financial
Strategy. Midland Corporate Finance Journal. Vol. (5)
1, pp. 6-13.

41. Naumovich, G., Avrunin, G.S, Clarke, L.A., and Os-
terweil, L.J. (1997). Applying Static Analysis to
Software Architectures. Technical Report UM-CS-
1997-008, University of Massachusetts, Amherst.

42. Parnas, D.L. (1976). On the Design and Development
of Program Families. IEEE Transactions on Software
Engineering. Vol. (1), pp. 1-9.

43. Parnas, D.L. (1994). Software Aging. In: I6th Inter-
national Conference on Software Engineering, Sor-
ento, Italy, pp. 279-287.

44. Parnas, D.L. and Weiss, D. (1985). Active Design
Reviews: Principles and Practices. In: Proceedings of
the 18th International Conference on Software Engi-
neering.

45. Proceedings of the Workshops on Economics-Driven
Software Engineering Research (1999- 2003).
EDSER 1 to 5. Workshops held in conjunction with
the 21st through 25th International Conference on
Software Engineering, 1999 to 2003.

46. Shaw, M., DeLine, R., Klein, D., Ross, T., and
Young, D. (1995). Abstractions for Software Archi-
tecture and Tools to Support them. IEEE Transactions
on Software Engineering, pp. 314-335.

47. Smith, C. (1990). Performance Engineering of Soft-
ware Systems. Addison-Wesley, Reading, Ma.

48. Smith, C. and Woodside, M. (1999). System Perform-
ance Evaluation: Methodologies and Applications.
CRC Press.

49. Stafford, J.A., Richardson, D..J., and Wolf, A.L.
(1997). Chaining: A Software Architecture Depend-
ence Analysis Technique. Department of Computer
Science, University of Colorado, Boulder, CO, Tech-
nical Report CU-CS-845-97.

50. Sullivan, K.J. (1996). Software Design: The Options
Approach. In: 2nd International Software Architecture
Workshop, Joint Proceedings of the SIGSOFT '96
Workshops, San Francisco, CA, pp. 15–18.

51. Sullivan, K.J., Chalasani, P., Jha, S. and Sazawal, V.
(1999). Software Design as an Investment Activity: A
Real Options Perspective, In: Real Options and Busi-
ness Strategy: Applications to Decision Making, L.
Trigeorgis, consulting editor, Risk Books.

52. Sullivan, K.J., Griswold, W., Cai, Y. and Hallen, B.
(2001). The Structure and Value of Modularity in
Software Design. In: Proc. ESEC/FSE-9, Vienna,
Austria, pp. 99-108.

53. Valmari, A. (1991). A Stubborn Attack on State Ex-
plosion. In: E. M. Clarke and R. Kurshan, editors,
Computer-Aided Verification 90. American Mathe-
matical Society, Providence RI. Number 3 in
DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, pp. 25–41

54. Vestal, S. (1996). MetaH Programmer’s Manual, Ver-
sion 1.09. Technical Report. Honeywell Technology
Center.

55. Williams, L.G. and Smith, C.U. (1998). Performance
Evaluation of Software Architectures. In: Proceedings
of the Workshop on Software and Performance
(WOSP98), Santa Fe, NM.

