
Web Service Interfaces for Inter-organisational Business Processes
An Infrastructure for Automated Reconciliation

Giacomo Piccinelli
Hewlett-Packard Laboratories

Stoke Gifford Park
Bristol BS34 8QZ, UK

gicomo_piccinelli@hp.com

Wolfgang Emmerich
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
w.emmerich@cs.ucl.ac.uk

Christian Zirpins, Kevin Schütt
Dept. of Computer Science (VSIS)

University of Hamburg
 Hamburg, Germany

zirpins@informatik.uni-hamburg.de

Abstract

For the majority of front-end e-business systems, the
assumption of a coherent and homogeneous set of
interfaces is highly unrealistic. Problems start in the
back-end, with systems characterised by heterogeneous
mix of applications and business processes. Integration
can be complex and expensive, as systems evolve more in
accordance with business needs then with technical
architectures. E-business systems are faced with the
challenge to give a coherent image of a diversified
reality. Web Services make business interfaces more
efficient, but effectiveness is a business requirement of at
least comparable importance.

In this paper, we propose a technique for automatic
reconciliation of the Web Service interfaces involved in
inter-organisational business processes. The working
assumption is that the Web Service front-end of each
company is represented by a set of WSDL and WSCL
interfaces. The result of our reconciliation method is a
common interface that all the parties can effectively
enforce. Indications are also given on ways to adapt
individual interfaces to the common one. The technique
was embodied in a prototype that we also present.

1. Introduction

The high level of internal automation that companies
have achieved is a major driver for the development of e-
business systems. Information systems are a pervasive
reality inside business operations, and the automation of
business-to-business (B2B) interaction is recognised as
the next objective for corporate IT. Countless products as
well as open-access technologies become available on a
daily basis. Standardisation initiatives flourish at any
level, from enabling technology (e.g. XML, SOAP and
WSDL) to business-level ontology (e.g. ebXML,
RosettaNet). New interaction and intermediation models
gain increasing acceptance (e.g. electronic services,
electronic marketplaces).

From its early appearance three years ago, the
electronic service model has been gaining increasing
consensus as a way to tackle the complexity of e-business
systems and solutions. The initial history of the Internet
saw technology come first, and business applications
follow. In the case of electronic services, the business
objectives came first. Electronic services are about
business processes and resources made available over the
Internet, in order to enable seamless interaction and
dynamic creation of business solutions. As for today,
technology is only at the early stages in terms of enabling
the full vision for electronic services. The development of
the Web Service stack represents an important step
towards making electronic services a reality.

The work we present focuses on Web Services, and
their use in B2B integration solutions. Web Services
currently support the externalisation of atomic business
capabilities. Description models for Web Service
interfaces like WSDL (Web Service Definition Language)
and WSCL (Web Service Conversation Language)
support the externalisation of access points (WSDL) to a
business service as well as basic interaction patterns
(WSCL). In the case of a flight reservation service, a
WSDL interface can model a flight-availability request.
The invocation of the Web Service related to such
interface could return the list of available flights to a
certain destination. A WSCL interface can instead model
the interaction involved in the payment for the flight
purchase. A number of messages might be exchanged in
relation to the actual payment, triggering a conversational
interaction between Web Services. The complete
interface for the flight reservation service can be
modelled as sets of WSDL and WSCL interfaces. The
focus of our work is the automatic reconciliation of the
Web Service interfaces externalised by e-business
systems.

Section 2 contains a brief overview of Web Services
and related initiatives in the space of business-to-business
integration (B2Bi). Section 3 depicts a typical scenario
for e-business systems, highlighting possibilities and
challenges for Web Services and introducing the problem
of process reconciliation. In Section 4, we propose a

Start

Receive-Invoice

Send-Payment(DD)

End

Figure 1.a: Interaction process for TravelSmart

Start

Send-Invoice

End

Receive-Payment(DD)

Start

Receive-Payment(CH)

End

Figure 1.b: Interaction processes for AirWeb

technique for automatic reconciliation of business-service
interfaces. The assumption is a service description based
on WSDL and WSCL. The technique is based on the
concept of workflow inheritance. Section 5 describes the
prototype embodying the proposed technique. In Section
6, the prototype is applied to an example of interface
reconciliation. Section 7 describes related works. The
closing section includes considerations on current results,
and indications on future developments.

2. B2B integration and Web Services

Business-to-business integration revolves around
interaction and coordination. In terms of interaction,
information must be exchanged efficiently and interpreted
univocally. In terms of coordination, business processes
need to align on mutually acceptable cooperation logic.
For a long time, solutions based on the EDI (electronic
data interchange) model have addressed the integration
problem for closed and static clusters of companies. The
challenge is now to extend the basic principles of EDI to
open and dynamic clusters of business partners.

In the EDI world, business interaction is based on
private networks and proprietary protocols. The main
problem with traditional EDI is flexibility. Sharing a
common ontology and business practices is a prerequisite
for cooperation. Still, the acceptance should be on a wide
scale. As a reference case, we can consider the travel
industry and expand the context for the flight reservation
example introduced in the previous section. A travel
agent TravelSmart may be working with a specific set of
airlines. A new airline AirWeb can enter the market, and
offer special retail margins for the first six months of
operation. TravelSmart should be able to start trading
with AirWeb almost immediately. After the initial six
months, the retail margins offered by AirWeb become
less attractive. TravelSmart should be able to stop trading

with AirWeb, without concerns for upfront investments.
Unrealistic in a traditional EDI context, dynamic
business-to-business integration is a key objective for
electronic services.

RosettaNet [18] and ebXML [22] demonstrate the
potential of open standards for a common business
ontology. Initiatives such as OMG’s MDA (Model
Driven Architecture) [14] promote common architectural
patterns for business solutions. UDDI (Universal
Description Discovery and Integration) [21] enables
dynamic discovery of business partners. Still, Web
Services represent the most noticeable effort in terms of
open and dynamic integration. From a business
perspective, the service-oriented model [19] redefines the
modularisation criteria for business capabilities. Business
offer is represented as service modules, which can be
combined into customer-specific solutions. Business
solutions can involve multiple parties, each contributing
only specific capabilities. From a technology perspective,
the Web Service stack leverages the flexibility of XML to
enable the automatic processing of service-related
information. From SOAP (Simple Object Access
Protocol) [6] and WSDL (Web Service Description
Language) [8] to XLANG [20] and WSCL (Web Service
Conversation Language) [4], Web Services are rapidly
moving from access logic to service delivery logic. The
convergence of Web Services and the Semantic Web
initiatives [23] promises further improvements in the
space of rich definitions of business services.

3. B2B integration and process reconciliation

The canonical subdivision for a business information
system is based on the notions of back-end and front-end.
The back-end includes applications and processes directly
linked with the production of goods and services, as well
as the interaction with suppliers. The front-end includes

applications and processes involved in sales and other
forms of customer interaction. Taking TravelSmart as
example, the interaction with AirWeb for the purchase of
a number of seats on a flight is part of the back-end. The
interaction with a group of holidaymakers for the sale of a
package holiday is part of the front-end. For AirWeb, the
interaction with TravelSmart is part of the front-end.
B2Bi refers to the integration between back-end of
business customers and the front-end of their suppliers. In
the example, B2Bi is about TravelSmart and AirWeb. As
a step towards dynamic B2Bi, the focus of our work is on
automatic reconciliation for the business interaction
processes enforced by different companies.

A concrete example of process reconciliation can be
derived from the interaction processes used by
TravelSmart and AirWeb. Focusing on invoicing and
payment, Figure 1 captures a high-level representation of
the interaction processes required by the e-business
systems of TravelSmart (Figure 1.a) and AirWeb (Figure
1.b). The interaction logic for TravelSmart involves
waiting for the invoice, and then paying by direct debit.
The interaction logic for AirWeb is to send an invoice,
and to allow payment by either direct debit or electronic
cheque. From AirWeb’s perspective, invoicing and
payment are two distinct processes that can occur in any
order. Despite the structural differences in terms of
interaction processes, the interaction logic of the two
companies is clearly compatible. The essential piece of
information required by AirWeb is that it should initiate
the interaction with TravelSmart by using the invoicing
process. AirWeb may also be interested to know that
TravelSmart will never use one of the payment options.
The essential piece of information for TravelSmart is that
the interaction process it requires is perfectly matched by
AirWeb.

Interaction processes are an essential component of a
business offer, and the capability to adapt them
consistently with the delivery capability of the company
results in tangible competitive advantage. The end goal of
process reconciliation is to identify common ground as
well as possible incompatibilities in the interaction logic
of the business partners. In particular, the objective is to
provide indications to each party on the adjustments
required to the respective interaction processes in order to
adhere to mutually acceptable patterns of interaction. The
outcome of the reconciliation translates into contractual
obligations.

The challenge posed by electronic services is to
automate the reconciliation procedure for interaction
processes. The human factor remains crucial, but human
contribution should be more in terms of modelling the
reconciliation logic then on the application of such logic
to specific reconciliation instances.

4. Process reconciliation technique

Summarising the content of the previous sections, the
new generations of e-business systems are increasingly
adopting service-oriented models and technology.
Interaction processes become integral part of the interface
exposed to business partners, and the capability to
mutually adapt interaction patterns constitutes a key
competitive advantage.

In this section, we propose a technique for the
reconciliation of the interaction requirements of
complementary business interfaces. The working
assumption is that the interaction layer is implemented
with Web Service technology.

4.1. Background

For illustration purposes, we assume a scenario in

which two companies (A and B) have already agreed on
the business content of the interaction. Company A could
be TravelSmart, which already knows that AirWeb
(company B) sells flights. The e-business systems of both
companies support Web Services, and each company has
described the preferred interaction processes as a set of
WSDL and WSCL descriptions (IA and IB respectively).
The reconciliation technique produces a pair of sets (IA1,
IB1) of WSDL and WSCL descriptions that captures
commonly acceptable interaction processes for A and B.
The technique also produces indications on the way the
WSDL and WSCL interfaces in the initial offer of each
company can be used in order to enforce the common
interaction processes.

The proposed approach focuses on the technical
capabilities of interaction between the Web Service
interfaces of the two companies. Specific business
requirements may locally invalidate this assumption,
hence the need for some form of business validation of
the result produced. For example, AirWeb may require
payment before invoicing from new partners like
TravelSmart. The business validation issue is outside the
scope of the work presented in this paper.

The idea for the reconciliation of IA and IB is to build
new processes out of mutually acceptable modifications
and combinations of existing processes. The approach
does not completely solve issues raised by fundamental
results of computability theory, such as the fact that the
equivalence between processes is in general only semi-
decidable. Still, the scope of this work is the support of
business interaction. We rely on the assumption that
businesses expose meaningful descriptions of their
interaction requirement. Interaction processes are aligned
with core production processes, and they are likely to
inherit the structural simplicity of internal workflows.

4.2. Process unification

The general approach for the reconciliation of IA and IB

is based on unification techniques derived from logic
programming [13]. Individual processes are considered as
clauses (facts) in a theory. Sets of processes such as IA
and IB as well as their union are considered as theories.
Fundamental difference in terms of unification rules is
that matching is done between complementary elements
instead of equals. For example, a Send-Invoice is
matched with a Receive-Invoice. Every element in IA
is unified in a theory deriving from the combination of IA
and IB, and the result added to IA1. The combination of IA
and IB is not a standard union of sets. The way in which IA
and IB are used is described in more detail in the
following section. Similarly, every element in IB is
unified in the combined theory, and the result added to
IB1. In practice, the construction of the sets IA1 and IB1
progresses in parallel. If the unification is not possible,
nothing is added to IA1 or IB1 and a new element is
considered.

The core of the unification technique we devised is
based on an extension of the concepts and techniques for
workflow inheritance proposed by van der Aalst in [2].
Van der Aalst focuses particularly on internal business
processes, and their need to adapt to changing business
conditions. Apart from the shift in focus towards
interaction processes, the new dimension we add is the
evolution of a process specification explicitly driven by
other process specifications. Traditionally, research on
workflow evolution has focussed more on execution
history [9].

The transformation model proposed by van der Aalst
provides two transformation methods called blocking and
hiding. Blocking a task in a process implies that the task
is no longer executed. In practical terms, the task is
removed from the process description. Hiding a task in a
process implies that the execution of the task can be
ignored. The task can still be executed, but the execution
does not affect the process. In both cases, the task
virtually disappears from the process; but the impact can
be profoundly different. In case of blocking, the
transitions connected to that task are also erased. Entire
branches of the process can be severed from the main tree
and become unreachable. In case of hiding, the transitions
are still available. The flow of the process simply
traverses the task, independently from its execution. For
example, we can consider the simple processes in (Figure
1). Hiding task Receive-Invoice in TravelSmart
makes the process compatible with the payment process
for AirWeb. Blocking Receive-Invoice in
TravelSmart would instead make the Send-Payment
task unreachable preventing the compatibility with
AirWeb.

Our unification model extends the basic principles of
hiding and blocking along different lines. First, we
consider interaction steps instead of normal tasks. The
concept of equal is replaced by the concept of
complementary; extensively explored in frameworks such
as Milner’s CCS [15]. Second, we take a different
approach to hiding. Instead of hiding the task where it
appears explicitly, we introduce it explicitly also where it
is implicitly present. Third, we consider multiple
processes at the same time. The chain reaction triggered
by the unification procedure can involve multiple
elements from both IA and IB.

4.3. Unification procedure

Given a process pA in IA, pA is used as a seed for the

construction of two complementary (sets of) processes SA
and SB to be added respectively to the reconciled
interfaces IA1 and IB1. The case of IB is symmetric. The
algorithm for constructing SA and SB revolves around the
following procedure:

• Given m the first move in pA, find an element pB
in IB that begins with the complementary move m*
(the match is between send and receive)
• If pB is found, create two temporary processes
pA1 and pB1 starting respectively with m and m*
• Proceed evaluating the structural compatibility of
pA and pB, evolving pA1 and pB1 in accordance to
the rules for blocking and hiding (description
follows) for the cases in which there is no direct
compatibility between the current processes
• If pA1 and pB1 reach a complete stage (all the
moves are matched), go to the following step. If a
complete stage is not reachable, start from the
beginning with a different element in IA
• Add the resulting sets SA and SB to IA1 and IB1

As anticipated, blocking and hiding need to be adjusted

to the interaction requirements for Web Services and the
properties of WSDL and WSCL. The blocking of a move
m in pA is applied only if two tests fail at the same time.
First, there must be no matching move among the
reachable next steps of the current complementary
process pB. The definition of reachable depends on the
structural connection with the current steps (e.g.
sequential or conditional) [17]. Second, there must be no
other pB* elements in IB having m* as first move. In the
first case, the compatibility is found directly within pA
and pB. In the second case, pB* can be virtually connected
with pB and temporarily recreating the conditions for
direct compatibility. The second case is also relevant to
the hiding technique.

When compatibility is achieved by merging more than
one process, the classic hiding rule would require hiding

Figure 2: UML Class Diagram of the Process Reconciler

the moves in the current process that are matched by the
new branch of the virtual process. We instead adopt the
opposite approach, and explicitly represent the virtual
branch of the complementary process. The objective is to
capture the fact that different Web Service interfaces are
used accordingly to a wider interaction process. We leave
the possibility to discard the extra information acquired to
an optional step in the reconciliation process.

During the execution of the algorithm, new processes
from IB can be used to extend pB in the attempt to match
pA. At the same time, processes from IA can be used to
extend pA in the attempt to match pB. The use of the term
cross-unification tries to capture the idea of an
intertwined evolution for pA and pB.

4.4. Computational complexity

The computational cost of the unification procedure can
be expressed in terms of the number of matches
performed between process steps. The number of matches
gives an indication of the time as well as the space
required by the algorithm. We consider N the number of
processes in IA and M the number of processes in IB.

In the optimal case, there is a direct one-to-one
matching between the processes of the two companies. In
this case the complexity is O(max(N,M)). The worst case
can be constructed by introducing indirect loops. For
example, IA could include a process defined as the
sequence of the steps Send-Invoice and Receive-
Payment. IB could include a process composed by the
only step Receive-Invoice, and a second process
defined as the sequence of the steps Send-Payment and
Receive-Invoice. Such configuration would create an
infinite loop of invoicing and payments. Standard loop-

control mechanisms are in place in the actual
implementation of the algorithm. In the worst case, all
processes on both sides are modelled in a way that causes
loops. In practice, such case is highly unrealistic. The
complexity of the worst case is O((N∗M)(N∗M)).

In the average case, the match between the processes of
the two companies requires some form of composition
and adaptation of the various processes. The presence of
loops is limited in proportion to the overall number of
processes involved in the reconciliation. We estimate the
complexity of the average case as O(N∗M).

5. Prototype

The process reconciliation concept is embedded in a
prototype we refer to as Process Reconciler that was
implemented using Java technology and the DOM model
for XML processing. It is engineered as a generic
standalone service that can be used by various parts of an
e-business platform for tasks like semi-automatic
reengineering of the business-level interaction processes
as well as subsequent control and management of
technical Web Services interoperation. Thus, it exposes
both manual and programmatic interfaces, consisting of
an interactive tool, a Java API as well as a Web Service
interface. Standard XML editing tools can be used to
manage WSDL and WSCL documents.

(Figure 2) shows the architecture of the Process
Reconciler using a UML class-diagram. It mainly consists
of three major packages: service, process, and
agreement. The service package covers the internal
representation of static Web Service interfaces derived
from WSDL specifications. It primarily includes a
Service class, which holds a collection of Operation

type objects. The latter represent all external operations a
specific service is capable of dealing

<Conversation name="AirWeb_Payment"
initialInteraction="Start"
finalInteraction="End">
<ConversationInteractions>
 <Interaction interactionType="Empty"
id="Start" />
 <Interaction interactionType="ReceiveSend"
id="receive_pay_by_debit">
 <operation name="pay_by_debit"/>
</Interaction>
 <Interaction interactionType="ReceiveSend"
id="receive_pay_by_cheque">
 <operation name="pay_by_cheque"/>
</Interaction>
 <Interaction interactionType="Empty"
id="End" />
</ConversationInteractions>
<ConversationTransitions>
 <SourceInteraction href="Start"/>
<DestinationInteraction
href="receive_pay_by_debit"/>

 <SourceInteractio
n href="Start"/> <DestinationInteraction
href="receive_pay_by_cheque"/>
 <SourceInteraction
href="receive_pay_by_debit"/>
<DestinationInteraction href="End"/>
 <SourceInteraction
href="receive_pay_by_cheque"/>
<DestinationInteraction href="End"/>
</ConversationTransitions>
</Conversation>
--
<portType name="InterfaceExample1">

<operation name="invoice">
<output message="Invoice"/>

</operation>

Figure 3.a: Part of AirWeb’s payment process

with, discriminating interaction types that can be inbound,
outbound or both.

A Service instance is always associated with a set of
interaction processes. The information on service
choreography is derived from WSCL process
specifications and represented in the process package.
This package includes a Process class, which handles
collections of Transition type objects and
Interaction type objects together expressing the
interaction flow. Interactions are linked to associated
operations. The explicit modelling of operations and
interactions as distinct entities derives form the need to
handle multiple occurrences of the same operation in a
single related interaction flow. The same operation can be
used in different moves of a process.
The actual unification procedure is implemented within
the agreement package. The objective of the prototype
was to show the feasibility of the reconciliation
technique. Hence, basic techniques are used for activities
such as loop handling and exploration of possibility

spaces. Specific procedures enforce a simple form of
normalisation for the process specifications. The main
objective of this normalisation is to remove redundancies
(e.g. identical first moves after a conditional branching
point). The algorithm is then applied to the resulting sets
of processes. In the end, Web Service interface
specifications of the reconciled interaction processes for
both service partners are being generated.

6. Example

In this section, we apply the Process Reconciler to the

example of TravelSmart and AirWeb. AirWeb is
proposing two interaction processes as shown in (Figure
1.b). The first process pB contains only one outbound
interaction send_invoice. PB expresses the option of
AirWeb to send an invoice at any time. The second
process pC represents the possibility for a business partner
to choose between two types of payment. The option is
expressed by the alternative inbound interactions
receive_pay_by_debit and receive_pay_by_cheque.
These processes are represented as Web Service
interfaces using WSDL and WSCL. An extract of them is
shown in (Figure 3.a).

TravelSmart is proposing the interaction process pA
(Figure 1.a). The process captures the fact that the
company will first wait for an invoice (inbound
interaction receive_invoice), and then pay by debit
(outbound interaction send_pay_by_debit). The
sequencing of the interaction steps can be quite important
for TravelSmart. An extract from the WSCL definition of
the process is presented in (Figure 3.b).

Using the Process Reconciler, the interaction processes
of the two companies are used to define a mutually
acceptable interaction ground. The reconciliation
procedure starts from the processes proposed by
TravelSmart. The first step is the match between
receive_invoice in pA and send_invoice in pB. Next,
the reconciliation mechanism tries to find the counterpart
for send_pay_by_debit of pA. The match is made
possible by pC, which is virtually merged with pB. The
procedure terminates with a successful result. The WSCL
process represented in (Figure 3.b) represents also the
result produced by the Process Reconciler.

The reconciliation procedure can then proceed with the
processes proposed by AirWeb. The reconciliation of
AirWeb process pC fails, because it is not possible to
match one of the starting interactions with TravelSmart
process pA. However, reconciliation succeeds for pB
where send_invoice matches receive_invoice.
Because the end of pA is not reached, pC is considered for
the next round of matching. As in the previous case, the
match of one of the conditional branches of pC with the
remaining part of pA succeeds. Looking at this last step in
more detail, receive_pay_by_debit is matched to

receive_pay_by_debit and receive_pay_by_cheque is
blocked. The part of the WSCL result produced by the
Process Reconciler for AirWeb is similar to the one for
TravelSmart, but send and receive operations are
swapped.

<Conversation name="TravelSmart_Payment"
initialInteraction="Start"
finalInteraction="End">
<ConversationInteractions>
 <Interaction interactionType="Empty"
id="Start" />
 <Interaction interactionType="Receive"
id="receive_invoice">
 <operation name="invoice"/>
</Interaction>
 <Interaction interactionType="SendReceive"
id="send_pay_by_debit">
 <operation name="pay_by_debit"/>
</Interaction>
 <Interaction interactionType="Empty"
id="End" />
</ConversationInteractions>
<ConversationTransitions>
 <SourceInteraction href="Start"/>
<DestinationInteraction href="receive_invoice"/>
 <SourceInteraction href="receive_invoice"/>
 <DestinationInteraction
href="send_pay_by_debit"/>
 <SourceInteraction
href="send_pay_by_debit"/>
<DestinationInteraction href="End"/>
</ConversationTransitions>
</Conversation>

Figure 3.b: TravelSmart’s payment process

The example highlights the issue of business validation
mentioned in previous sections. Process pA is a
technically acceptable common ground for the e-business
systems of the two companies. Still, the option to use the
interaction pay_by_cheque is something that might be
useful to TravelSmart, and a key feature in the offer of
AirWeb. The value of such an option could justify an
extension for the web interface of TravelSmart.

At the current stage of development, Web Service
standards and technology focus entirely on the structural
aspects of communication. Initiatives like the Semantic
Web [5] show the interest from both the industry and the
research community in addressing this type of problems.
We are currently exploring the use of specific metadata to
indicate a weight value for both individual moves and
process regions. For example, the need to block a move
with high weight could then result in a warning to be
raised to the business validation level.

7. Related Work

The modelling of component behaviour is central to

Web Services [10]. The focus is on the specification of
transaction processing, business rules, and related forms

of business logic. Examples representation models
include RosettaNet [18], ebXML [22], the Business
Process Modeling Language (BPML) [7], and the
Business Transactions Protocol (BTP) [16]. Workflow
[24] represents the main reference point in terms of both
model and technology. Behavioural evolution [2, 9] and
inter-organizational use [1] of workflows are particularly
relevant to Web Services.

Based on the workflow model, different efforts are
ongoing for the specification of Web-Service interaction
and orchestration. The focus is on message flow. Main
examples of such efforts are the Web Service
Conversational Language (WSCL) [4], the Web Services
Flow Language (WSFL) [12], and the Extensible
Language (XLANG) [20]. An example of modelling and
management of conversational Web Services can be
found in [11]. General contributions to the behavioural
specification of services come also from the semantic web
initiative [5]. As part of DAML (DARPA Agent Markup
Language), DAML-S is directly related to semantic
description of Web Services, containing a process model
for service operation [3].

The main issue with current approaches to behavioural
descriptions for Web Services is dynamic change. Change
requires a layer of meta-information that is almost
completely absent at this stage. For example, information
is required about the fact that parts of a behavioural
specification are optional or mandatory. We propose that
an explicit notion of adaptation capability is required in
order to support the dynamic nature of Web Service.

8. Conclusions

Web Services play a fundamental role in the definition
and implementation of B2B interaction processes. Using
formalisms such as WSDL and WSCL, companies can
capture and expose their interaction logic as sets of
processes. The problem we address in this paper is the
reconciliation of the processes exposed by distinct
business partners.

The aspects of the process reconciliation we focus on
are essentially two. The first aspect is the definition of a
common set of processes that the parties can use for the
interaction. The second aspect is the specific adaptation
required to the processes of each party in order to support
the common processes. Each aspect introduces specific
requirements for the reconciliation algorithms, and
conflicts arise. The tradeoffs are between the breadth of
the common processes and the amount of internal change
required to support them. The algorithm we propose takes
a balanced approach towards both types of requirements.
Common processes are built out of compatible portions of
existing processes. Prerequisite for the effectiveness of
the algorithm is the use of a common ontology (e.g.
RosettaNet) by the parties.

The algorithm focuses on process reconciliation from a
technical perspective. Validation of the resulting
processes from a business perspective is a crucial
requirement for a complete solution. We perceive explicit
management of process-level policies as a fundamental
element for business validation. Process-level policies are
among the main lines of development for our work.

Bibliography

[1] W. M. P. v. d. Aalst and K. Anyanwu, “Inheritance of
Interorganizational Workflows to Enable Business-to-Business
E-commerce”, In Proc. 2nd Int. Conf. on Telecommunications
and Electronic Commerce (ICTEC). Nashville, Tennessee,
USA, 1999, pp. 141-157.

[2] W. M. P. v. d. Aalst and T. Basten, “Inheritance of
workflows: an approach to tackling problems related to change”,
Theoretical Computer Science, vol. 270, 2002, pp. 125-203.

[3] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L.
Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne,
K. Sycara, and H. Zeng, “DAML-S: Semantic Markup For Web
Services”, In Proc. Internationl Semantic Web Working
Symposium (SWWS), 2001.

[4] A. Banerji, C. Bartolini, D. B. A. Chopella, K.
Govindarajan, A. Karp, H. Kuno, G. P. M. Lemon, S. Sharma,
and S. Williams, "Web Services Conversation Language
(WSCL) 1.0”, W3C Technical Note, 2002.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web”, Scientific American, vol. 284, 2001, pp. 34-43.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer, “Simple
Object Access Protocol (SOAP) 1.1”, W3C Note, 2000.

[7] BPMI, “Business Process Management Initiative”,
http://www.bpmi.org, 2002.

[8] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “Web Services Description Language (WSDL)
1.1”, W3C Note, 2002.

[9] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M.
Teschke, “A comprehensive approach to flexibility in workflow
management systems”, In Proc. Work Activities Coordination
and Collaboration (WACC), San Francisco, California, 1999,
pp. 79-88.

[10] H. Kuno, "Surveying the E-Services Technical
Landscape," in Proc. Second International Workshop on
Advance Issues of E-Commerce and Web-Based Information
Systems (WECWIS 2000). Milpitas, California, USA: IEEE
Computer Society, 2000.

[11] H. Kuno and M. Lemon, “A Lightweight Dynamic
Conversation Controller for E-Services”, In Proc. 2nd Int.

Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems, Milpitas, California, USA, 2001.

[12] F. Leymann, “Web Services Flow Language (WSFL 1.0)”,
IBM, 2002.

[13] J. W. Lloyd, Foundations of Logic Programming, 2nd
edition, Springer, 1987.

[14] J. Miller and J. Mukerji, “Model Driven Architecture”,
Object Management Group (OMG), 2001.

[15] R. Milner, “A Calculus of Communicating Systems”, In
LNCS 92, Springer-Verlag, 1980.

[16] OASIS, “Business Transactions”, http://www.oasis-
open.org/committees/business-transactions, 2002.

[17] G. Piccinelli, "Exposing Models of Behaviour of E-Service
Components," in Proc. 6th London Communication Symposium.
London, UK, 2001.

[18] RosettaNet, http://www.rosettanet.org, 2002.

[19] A. Sillitti, T. Vernazza, and G. Succi, “Service Oriented
Programming: a New Paradigm of Software Reuse”, In Proc. of
the 7th Int. Conference on Software Reuse, LNCS, 2002.

[20] S. Thatte, “XLANG - Web Services for Business Process
Design”, Microsoft, 2002.

[21] UDDI, “Universal Description, Discovery and
Integration”, http://www.uddi.org, 2002.

[22] UN/CEFACT and OASIS, “Electronic Business XML”,
http://www.ebxml.org, 2002.

[23] W3C, “Semantic Web Initiative”,
http://www.w3.org/2001/sw, 2002.

[24] WFMC, “Workflow Management Coalition”
http://www.wfmc.org, 2002.

