
Mapping Service Components to EJB Business Objects

Giacomo Piccinelli
HP Labs Bristol

Filton Rd, Stoke Gifford
Bristol BS34 8QZ, UK

giacomo piccinelli@hp.com

Wolfgang Emmerich and Anthony Finkelstein
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{w.emmerich|a.finkelstein }@cs.ucl.ac.uk

Abstract

The emerging trends for e-business engineering revolve
around specialisation and cooperation. Successful com-
panies focus on their core competencies and rely on a
network of business partners for the support services re-
quired to compose a comprehensive offer for their cus-
tomers. Modularity is crucial for a flexible e-business in-
frastructure, but related requirements seldom reflect on the
design and operational models of business information sys-
tems. Software components are widely used for the imple-
mentation of e-business applications, with proven benefits
in terms of system development and maintenance. We pro-
pose a service-oriented componentisation of e-business sys-
tems as a way to close the gap with the business models
they support. Blurring the distinction between external ser-
vices and internal capabilities, we propose a homogeneous
model for the definition of e-business applications compo-
nents and present a process-based technique for component
modelling. We finally present an Enterprise Java Beans ex-
tension that implements the model.

1 Introduction

E-business has attracted attention from software vendors,
system integrators, solution providers, and ultimately from
businesses. The traditional idea of e-business revolves
around offering to customers, suppliers, and business part-
ners the capability to automate their interaction with the
sales or procurement department of a company. The Inter-
net acts as an additional channel improving speed and au-
tomation for interaction processes. The e-service model [8]
builds on the power of existing e-business capabilities and
extends it with the aim of making the Internet a pervasive
reality for businesses.

In the e-service model, any type of asset can be engi-
neered and presented as a service to potential users inside
and outside a company. The encapsulation of specific sets

of business capabilities into well-defined service modules
improves internal management and execution. Modularity
helps localise points of weakness, over-sizing, under-sizing,
and solve integration problems with other parts of the busi-
ness infrastructure [9]. Modularity enables the outsourcing
of specific business activities, as well as the external offer of
excess capacity. The combination of the e-services model
and enabling business infrastructures like electronic mar-
ketplaces gives a dynamic angle to internalisation and exter-
nalisation of service components. The focus shifts from the
connection to a specific business partner, to the definition
of a specific business need. The link with the business part-
ner offering the best conditions for a service, at every point
in time can be built by exploiting the aggregation power of
open electronic marketplaces [1].

The contribution of this paper is a brief overview of the
e-service vision and a component model for e-business ap-
plications based on the concept of service modules. We first
describe the process-oriented approach we took to service
specification. We then present the EJB-based (Enterprise
Java Beans) prototype for an application platform based on
service modules.

2 E-Services Vision

Until recently, the Internet was about the creation of e-
business and e-commerce systems, and it was dominated
by web sites, portals and store fronts. We have now entered
the next Internet evolution: the proliferation of e-services.
E-services are modular, nimble, electronic services that per-
form work, achieve tasks, or complete transactions [8]. Al-
most any asset can be turned into an e-service and offered
efficiently via the Internet to drive new revenue streams.
Chapter 1 of the Internet was about businesses getting wired
to their employees, customers and partners; key business
processes getting linked to the Internet, and a critical mass
of consumers coming online. Businesses were learning how
to use what looked like a promising new tool.



Now, the Internet is ready for its next evolution. It will
not be about businesses looking at the web as a technol-
ogy. The Internet has been absorbed into the core busi-
ness infrastructure, and businesses are ready to capitalise
on this new asset. Chapter 2 of the Internet will be about
the mass proliferation of e-services. An e-service is any
asset that is made available via the Internet to drive new
revenue streams. These services will be modular units that
combine and recombine to solve problems, complete trans-
actions, and make life easier. Some will be available on
web sites, but others will be delivered via TV, phone, pager,
car, email in-box, or virtually anything with a micro chip in
it. Some will even operate behind the scenes, automatically
working on behalf of consumers and providers.
In Chapter 2, successful companies have to be able to
turn their assets into services delivered via the Internet.
They will adopt an entrepreneurial approach to looking at
their assets and determine how to leverage not only their
core business offerings, but also their proprietary processes,
data, relationships, knowledge and experience. In Chapter
2, we will see more companies turn these assets into ser-
vices and offer them via the Internet.

2.1 Use of Context for Service Components

The first step to turn an existing asset or service into an
e-service revolves around accessibility. The electronic vir-
tualisation of the service has to provide communication
channels that support automated conversational capabili-
ties. Automation is fundamental at each step of the service
delivery chain. Beyond the basic capability to exchange
electronic messages using standard protocols on top of, e.g.
an XML transport, the business logic behind the service
provision and partner interaction has to be enforced. For
example, the service offer has to be presented in a way
that allows automated discovery to take place. The service
description should enable advanced offer-request matching
(beyond the basic pricing), as well as automated negotiation
on contractual terms and parameters. The role of advanced
directory services (e.g. UDDI), and in particular of elec-
tronic marketplaces is fundamental. An e-service is not a
standalone entity but rather a first-class citizen of a highly
dynamic ecosystem enabled by e-marketplaces.

The second step towards the realisation of the full po-
tential for the e-service vision focuses on composition and
interaction orchestration. An e-service has to expose all the
interaction processes involved in the service delivery. Far
from saying that a company should expose its core com-
petences, the requirement is to handle the internal and ex-
ternal business networks dynamically created by every in-
stance of service delivery. A service delivery may no longer
be a one-to-one (buyer-to-seller) relationship. As an exam-
ple, let us assume that the company iBuild has selected the

company iMove for a shipment contract. The final product
of iBuild may be packaged by a company iPack, and iBuild
may want iMove to interact with iPack for arranging the
logistics behind collecting the goods. Similarly, iMove’s
operational structure may be such that it focuses on hub-
to-hub transport using lorries, and it relies on partners for
the hub-to-customer transport. In the case of the service
sold to iBuild, iMove may select (directly or using an e-
marketplace) a company iVan to do the last leg of transport.
As a consequence, iVan has to synchronise with iBuild and
iPack. The responsibility to the end customer will be with
iBuild in the same way as the overall responsibility for the
end-to-end transport will be with iMove.

Thus e-service composition pulls multiple parties to-
gether. Some of them know some of the others, but in some
cases the service providers might not be related. From an
operational point of view, an e-service should be able to co-
operate with a dynamically selected mix of other e-services.
This implies the capability to automatically verify the be-
havioural compatibility of the various execution processes,
as well as the capability to adapt them in order to make co-
operation possible.

2.2 A Model for Service Components

Our service component model is based on the ideas of func-
tional incompleteness, multi-party orchestration, and dy-
namic service composition [4, 6]. A service can be par-
tially incomplete in terms of its implementation. Meta-
information present in the electronic virtualisation layer for
the service specifies the kind of support services needed,
as well as the type of integration required to become fully
functional. For an e-service, the focus moves from the ac-
cess logic to the integration logic. The challenge for both
service providers and service consumers is to adopt an inte-
gration model based on business roles and behavioural de-
scriptions.

�����������
�����������

�����������
�����������

����������
����������

����������
����������

�����������
�����������

�����������
�����������

����������
����������

����������
����������
��������������������
����������
����������

�����������
�����������

����������
����������
����������

����������
����������

����������
����������

����������
����������

�����������
����������� ����������

����������

����������
����������
����������
����������

(a)

(b)
(c)

Figure 1: Process-based Interaction

In a business transaction, the service consumer has to be
informed about the kind of interaction process supported



by the service provider. The idea is to expose the service
delivery process as early as possible, so that both service
consumer and service provider can better evaluate their op-
erational compatibility. The impact of e-services on the de-
sign for e-business systems is captured in Figure 1. Existing
systems are developed around object-oriented models, and
different functions are isolated into different parts of the
system. The problem is (Figure 1a) that different functional
modules are hardwired to each other in an ad-hoc way. The
idea is instead to move to a scenario (Figure 1b) in which
modules are kept separate. The interaction logic (Figure
1c) behind what then become service units is captured ex-
plicitly, and the distinction between internal and external
service components is blurred.

The operational structure of a service can be designed
with a new approach. First the need for specific support ser-
vices is identified. Next the expected interaction processes
with the potential service providers are identified. A spe-
cific service instance is available, only if adequate support
services can be found. The concept of adequacy is heav-
ily based on operational compatibility, in order to ensure a
smooth execution of the overall service. The provider of
an e-service component can focus on the implementation
of the core aspects of the service. The e-service infrastruc-
ture will take care of the integration with the most suitable
e-services to completely enable the new e-service. Integra-
tion logic coexists with business logic, still remaining two
separate entities in terms of management and visibility.

3 E-Service Beans

As an implementation example of the component model
proposed, we instrumented an EJB (Enterprise Java
Beans [5]) platform with process-oriented componentisa-
tion capabilities [2]. The work revolved around the imple-
mentation of a new type of EJB container, within which a
process description file can be used to model the observable
behaviour of the bean. Clients and other beans will only be
able to execute methods of a bean in this container if they
are consistent with the process description. The outbound
communication initiated by the bean is also monitored for
compliance with the behavioural interface captured in the
process. In-line with the naming conventions for EJB, we
refer to the new container as ESB (E-Service Bean).

An E-Service bean represents a service unit, and the pro-
cess description captures the service delivery process deriv-
ing from the external interaction of the bean. Different roles
can be involved in the delivery process behind the service
implementation. The ESB container manages at run-time
the behaviour of the entities playing these roles. When a
bean is created, the roles involved can be partitioned into
groups and assigned transparently to either client programs

or other beans. The only interaction allowed is the one de-
riving from the process description (both inbound and out-
bound). The aim of our prototype was to implement a basic
container that demonstrates this kind of protection for the
beans. The container that deploys service beans has the fol-
lowing features not found in normal EJB containers:

• The bean provider can specify the service behaviour in
a process description file, that is then enforced by the
container. The container generates exceptions when-
ever a method is called in an incorrect way (at the
wrong point in the process or with invalid parameters).

• A process can be specified to have a number of roles
that can be played. Clients can create a bean, specify-
ing the roles they want to play, or contact an existing
bean to have a roles assigned to them. Services cannot
be started until all roles are assigned.

• The client can request role specific descriptions from a
service bean to see what is required to do as the entity
responsible for a specific roles.

• The system makes the state of each service instance
persistent so that everything can be reconstructed in
the event of a system crash.

The tasks performed by the system can be divided into two
parts [5] that we discuss next. The first part is the creation
of the home and remote object classes. The second part is
the actual runtime handling of the beans.

Creating Home/Remote Objects: The archive contain-
ing interfaces, process description and deployment descrip-
tor are made accessible to the container and deployed. The
container then reads the manifest contained in the archive,
finding the deployment descriptor. The deployment de-
scriptor contains information on the persistent fields of the
bean and whether the bean contains references to other ser-
vice beans. If the bean does contain such references, then
any method invocations made using the references will be
checked against their behaviour specification. Once the in-
formation in the deployment descriptor has been read, the
container can generate home and remote object classes. The
home object is used by clients to create ESBs (partitioning
the roles to be played into groups), request group specific
remote objects, find remote objects, and destroy beans. The
remote object is used by the client to make remote method
calls on the bean.

Runtime Handling of the Beans: The second part of
the EJB containers work involves making the home object
available to clients and monitoring the use of the bean ob-
ject via the home and remote objects. Once the home ob-
ject is created it binds itself to the RMI Registry and makes



List_Deals

Book_Deal

Cancel_Deal

List_Deals (…)

Travel Agent

Book_Deal (…)

Cancel_Deal (…)

Figure 2: Customer View on Service Model

itself available via JNDI. Remote interaction between the
client and the container takes place via Java RMI [3]. The
client creating a service bean can dynamically partition the
roles to be played by clients into groups. Each client plays
a specific group of roles, and it receives a remote object
used to call methods on the bean. The client that creates
the service bean gets a remote object for the first group of
roles to be played. The other clients are assigned groups
using the assign method in the home object. The home ob-
ject also creates aprocessUtility object when a service
bean is created and checks with the process description that
the grouping of the roles it has been given by the home is
correct. The remote object then uses theprocessUtility

object to check the validity of method calls. The remote
objects can catch method invocations and return types to
check that they are consistent with the process description.
If they are not, a specific exception is thrown, otherwise the
result is then returned to the client.

4 ESB Container Application Scenario

The activity of the ESB container is illustrated in a scenario
consisting of three simple service beans, the Travel Agent
bean, the Airline bean and the Hotel bean. The scenario
shows the impact of external management on the interac-
tion behaviour of the various components. In the scenario
(Figure 3), a client first interacts with the travel agent to list
holiday deals. The client books a holiday deal and then can-
cels it. Everything is coherent with the behavioural model
specified by the travel agent. When the client books a holi-
day, the travel agent interacts with an airline and a hotel to
book a flight and a hotel room for that holiday. The client
can directly refer to the same airline to request information
on “special deals”, which are budget flights with a price of
less than GBP 300. Though it is one of the methods exposed
be the airline, the client is not allowed to do direct booking
with the airline. When the client attempts the booking, the
incompatibility between request and behavioural specifica-
tion for the service is detected and the request is rejected.

The behavioural interface of the travel agent bean (Fig-
ure 2) specifies that this bean can be created and used by

one entity only, which means there is only one free role
available to be played. In the animation of our scenario,
the client plays this role. The ESB container prevents other
method invocations from reaching the beans, as they do not
conform to the specified behaviour of the components. The
Airline bean behavioural interface specifies two free roles,
one of which will be played by the client and the other
by the Travel Agent bean. The role played by the client
will allow only the special deals method to be called.
The role played by the travel agent allows the invocation
of thebook flight method. The Hotel bean has only one
free role, which is played by the Travel Agent and can be
used to book rooms. Figure 3 shows a basic client con-
sole and the monitor interface for the beans. The snap-
shot is taken immediately after the container has trapped
a method invocation for the booking attempt from the cus-
tomer to the airline. In this case the client has tried to invoke
thebook flight method of the Airline bean, which is not
available within the role the client is playing. The Airline
bean is automatically shielded from the illegal request by
the ESB container. Previous to the intercepted method in-
vocations, the client called thelist deals .

5 Related Work

The CORBA 3.0 Component Model (CCM) [7] overcomes
some of the deficiencies that we have identified for dis-
tributed objects. In particular, they avoid the hard-wiring
of clients to server objects by introducing ports and recep-
tacles along which components can publish and subscribe
to events. The CCM, however, does not specify the abil-
ity to invoke operations and the value of parameters that
need to be passed. Such concerns could be expressed in
CORBA to some extent using the CORBA Security ser-
vice [6], system-level access control policies can be used
to express the privileges that are needed to be able to in-
voke certain operations and application-level access control
may be used to determine which rights are needed to invoke
operations with certain parameters. We however, strictly
separate the definition of services from the way they may
be combined. We can also specify certain precedence rela-
tionships and workflows, which cannot be specified by the
security service. We note that our model of locating service
beans using JNDI might be overly restrictive. In particular,
it demands that a client or entity beans knows the name of
the service bean from which it requires a service. We are
currently investigating how our service model can be inte-
grated with the ODP trading function or its implementation
with the CORBA Trading service [6]). This will enable to
specify a client a type of service and some qualities for ser-
vice provision and then delegate to a trader to locate a suit-
able service bean that provides the required service.



Figure 3: Component interaction mediated by ESB containers

6 Conclusions

E-business models often focus on the flexibility of the ser-
vice offer. The capability to efficiently acquire the external
resources required to satisfy specific demands is important,
and electronic marketplaces play a key role in this process.
Still, the quality and profitability of the service offer de-
pends on the effective integration of external resources with
internal business infrastructure. We propose that a service-
oriented modularisation of e-business systems could reduce
the gap between internal and external components behind a
service implementation. Based on the e-service vision, we
propose a process-oriented model for the operational de-
scription of service components. Together with the foun-
dational aspects of our proposal, in this paper we present
a prototype infrastructure that instruments an EJB-platform
with capabilities for the definition and implementation of
e-service components.

References

[1] H. Blodget and E. McCabe.The B2B Market Maker Book.
Merill Lynch & Co, 2000.

[2] D. Holligsworth. The Workflow Reference Model. Tech-
nical Report TC00-1003, Workflow Management Coalition
(WfMC), 1994.

[3] JavaSoft.Java Remote Method Invocation Specification, revi-
sion 1.50, jdk 1.2 edition, Oct. 1998.

[4] A. Marton, G. Piccinelli, and C. Turfin. Service Provision and
Composition in Virtual Business Communities. InProc. of
the18th IEEE-IRDS Int. Workshop on Electronic Commerce,
Lausanne, Switzerland, 1999.

[5] R. Monson-Haefel. Enterprise Javabeans. O’Reilly UK,
1999.

[6] Object Management Group.CORBAservices: Common Ob-
ject Services Specification, Revised Edition. 492 Old Con-
necticut Path, Framingham, MA 01701, USA, December
1998.

[7] Object Management Group.CORBA Components – Volume
I. 492 Old Connecticut Path, Framingham, MA 01701, USA,
December 1999.

[8] H. Packard. E-Services. http://e-services.hp.com, 1999.

[9] D. G. Schwarz.Cooperating Heterogeneous Systems. Kluwer,
1995.


