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Abstract Representing texture images statistically as
histograms over a discrete vocabulary of local features

has proven widely effective for texture classification tasks.

Images are described locally by vectors of, for example,

responses to some filter bank; and a visual vocabulary is
defined as a partition of this descriptor-response space,

typically based on clustering. In this paper, we investi-

gate the performance of an approach which represents

textures as histograms over a visual vocabulary which

is defined geometrically, based on the Basic Image Fea-
tures of (Griffin and Lillholm 2007), rather than by clus-

tering. BIFs provide a natural mathematical quantiza-

tion of a filter-response space into qualitatively distinct

types of local image structure. We also extend our ap-
proach to deal with intra-class variations in scale. Our

algorithm is simple: there is no need for a pre-training

step to learn a visual dictionary, as in methods based

on clustering, and no tuning of parameters is required

to deal with different datasets. We have tested our im-
plementation on three popular and challenging texture

datasets and find that it produces consistently good

classification results on each, including what we believe

to be the best reported for the UIUCTex and KTH-
TIPS databases.
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1 Introduction

Effective general-purpose analysis of texture in images

is an important step towards a variety of computer vi-

sion applications, from industrial inspection to scene
and object recognition. Its challenge lies in the wide

variety of possible textures (ranging in nature from reg-

ular to stochastic and in origin from albedo variations

to 3D surface structure) and conditions under which

they are imaged (such as changes in lighting geome-
try and intensity, or viewpoint, both of which can have

a significant impact on appearance (Leung and Malik

2001)).

Any texture analysis relies on an appropriate repre-

sentation, and the task which has become canonical as

a test of representation is multi-class classification.

One paradigm which has proved effective for coping

with the problems described above is to represent tex-
ture images statistically as histograms over a discrete

vocabulary of local features (Leung and Malik 2001;

Cula and Dana 2001b; Varma and Zisserman 2002, 2003,

2005; Hayman et al. 2004; Lazebnik et al. 2003; Zhang
et al. 2006; Varma and Garg 2007; Ojala et al. 2002).

Images are probed locally by considering, for example,

the responses to a filter bank or the greyscale values of a

local image patch. These descriptor responses are then

assigned to discrete bins according to some partition of
the feature space.

This model encompasses two approaches to image
representation. In the first (Varma and Zisserman 2003,

2005; Hayman et al. 2004; Varma and Garg 2007; Ojala

et al. 2002), every image in the dataset is represented

as a histogram over a common dictionary and some
form of histogram comparison measure is used to com-

pare images. This dictionary is most often defined by

a once-and-for-all clustering of feature vectors from a
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subset of images from the dataset, as described below.

The second approach (Lazebnik et al. 2003; Zhang et al.

2006) uses a separate dictionary for each image and

represents the image as a ‘signature’: a table of feature

definitions (e.g. cluster centres) with the correspond-
ing numbers of occurrences in the image. Image signa-

tures are compared using a measure such as the Earth

Mover’s Distance. This dictionary is most often defined

by clustering feature vectors from the single image to
be represented.

Various classification schemes have been explored

for both of these approaches, from nearest-neighbour

matching (Varma and Zisserman 2005, 2003; Lazebnik
et al. 2003) to kernel-based SVMs (Zhang et al. 2006;

Hayman et al. 2004). Although the superiority of SVMs

for texture classification has been clearly demonstrated

(Caputo et al. 2005; Hayman et al. 2004; Zhang et al.

2006), nearest-neighbour is still often used as an uncom-
mitted mechanism to compare texture representations

due to its simplicity and absence of parameters that

need to be tuned.

Of these three dimensions of statistical texture rep-
resentation – the choice of histogram or signature rep-

resentation; the descriptive space over which the his-

togram bins are defined; and the actual choice of his-

togram bins – the first two have been well-studied.
The relative merits of histogram- and signature-based

approaches are explored in tandem with classification

schemes, and a variety of local descriptors have been

proposed including:

– The joint responses of various filter banks (Varma
and Zisserman 2005; Hayman et al. 2004; Leung

and Malik 2001; Cula and Dana 2001b), made up of

e.g. Gaussian derivative filters (Hayman et al. 2004;

Varma and Zisserman 2005).
– Grey-scale image patches (Varma and Zisserman 2003)

or points sampled in some regular local configu-

ration (Ojala et al. 2002); and the related notion

of Markov Random Fields (Varma and Zisserman

2003).
– Modified SIFT (Lowe 1999) and intensity domain

SPIN images (Lazebnik et al. 2003; Zhang et al.

2006).

– Local fractal dimension and length (Varma and Garg
2007).

In this paper we are interested in the third dimen-

sion: how to choose a dictionary of discrete features

over which an image can be represented. For the sake

of clarity, this paper uses the language of the common
dictionary / histogram approach to representation, al-

though many points are also relevant to signature-based

approaches.

1.1 Partitioning feature space

The simplest way to partition feature space in order to

allow a histogram representation of texture would be by

regular binning. However, as the dimensionality of the
space increases the number of bins grows exponentially

and it soon becomes impossible to populate this his-

togram using a single image. Konishi and Yuille (Kon-

ishi and Yuille 2000) worked around this problem by

limiting the number of filters used and adaptively cal-
culating bin widths for each dimension based on data

from the training set, but limitations of this kind re-

main undesirable.

The solution to this problem which has come to to

dominate involves controlling the number of bins by

defining a partition of feature space through unsuper-

vised clustering of feature vectors into textons (Hayman
et al. 2004; Varma and Zisserman 2003, 2005; Leung

and Malik 2001; Cula and Dana 2001b; Varma and Garg

2007; Varma and Zisserman 2002). Local descriptors

calculated from a number of training images for a given

texture class are used to populate a feature space which
is partitioned into a pre-selected number (typically 10-

40) of regions, each represented by a cluster-centre. This

is repeated for each texture class in the dataset and the

combined list of cluster-centres (containing perhaps 250
to 2500 elements, depending on the clustering param-

eters and number of texture classes) used to Voronoi

partition feature space, by labeling new descriptor vec-

tors according to the nearest cluster-centre in feature

space.

Varma and Zisserman (Varma and Zisserman 2005)

investigated reducing redundancy in this representation

by combining textons whose cluster-centres fall close
to each other in feature space. This produces a slight

degradation of classification performance, as does learn-

ing textons from only a subset (around half) of the total

classes in a dataset.

This unsupervised clustering step almost universally

employs the k-means algorithm. Jurie and Triggs (Ju-

rie and Triggs 2005) noted that k-means produces poor
dictionaries of features for describing natural images

(for which similar descriptions to those used for tex-

ture have been studied) because of the highly nonuni-

form distribution of descriptor responses. This results

in most k-means cluster-centres being concentrated in
high-density regions of feature space, with Voronoi cells

radiating outwards, so that the assignment of labels to

potentially informative mid-frequency (of occurrence)

descriptor responses is dominated by less informative
(and potentially noisy) high-frequency responses. Al-

though this non-uniformity is less severe for texture im-

ages (which may be one of the reasons why unadorned
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bag-of-words representations have proved more sucess-

ful in this domain), the problems with k-means still

apply – including the question of how to choose a suit-

able value of k. (Jurie and Triggs 2005) compares k-

means with an acceptance-radius based clusterer for
visual dictionary generation and demonstrates signifi-

cant improvements in object classification results from

the latter.

There are other more general problems with schemes

which use unsupervised clustering to generate a feature

dictionary. The need to populate feature space suffi-

ciently to allow clustering still imposes restrictions on
the choice of local description, although this can be

ameliorated by sampling descriptions from a greater

number of training images. More problematic is the cost

of performing a nearest neighbour computation to as-
sign each new descriptor response – at every point in

an image – to a texton.

1.2 Keypoint detection as feature space quantization

Specifying the quantization of feature space used to de-

fine a visual dictionary can also be seen as encompass-

ing the choice of how to sample features from an image,

which is often described as an additional dimension of

statistical texture representation.

An image representation histogram can be popu-

lated from the image either densely (considering every
point), or from keypoints only (e.g. in (Lazebnik et al.

2003; Zhang et al. 2006)). Detectors used to select these

keypoints are generally tuned to local aspects of the im-

age different than the descriptors. A dual way of con-

trasting these two approaches is as alternative parti-
tions of some feature space. Consider a feature space

consisting of the joint response of i) the descriptor and

ii) the information used in the keypoint detector, e.g.

in the case of the Harris corner detector, x- and y-
derivatives at each point in a local window (Harris and

Stephens 1988). Then, in the same way that methods

which describe an image densely correspond to a dense

(generally Voronoi) partitioning of feature space, those

using keypoint detection assign labels only to those
points which fall within an appropriate sub-region of

feature space as determined by the rules of the key-

point detector, ignoring the remainder, i.e. a non-dense

partition is induced. That is, detecting keypoints in an
image can be seen as equivalent to performing some

form of implicit feature selection in this joint response

space.

1.3 A geometrically defined partition of feature space

In this paper, we investigate the classification perfor-
mance of an approach which represents textures as his-

tograms over a feature dictionary which is defined math-

ematically – by the type of local geometry – rather than

by clustering.

We describe an image locally at some scale using
a family of six Gaussian derivative filters and base our

visual dictionary on the partition of this response space

defined by the Basic Image Features of (Griffin and Lill-

holm 2007). The idea is to assign each filter response
vector to one of a set of Basic Image Features (BIFs),

each corresponding to a qualitatively different type of

local geometric structure, based on a study of types of

local symmetry (see section 2). In our current scheme

there are seven such BIFs which are calculated math-
ematically by deciding which of seven simple combina-

tions of filter response values is largest.

As well as avoiding the problems inherent in using

k-means clustering, our approach has the advantages

over clustering methods of simplicity – there is no need
for a pre-training step to learn a visual dictionary – and

computational efficiency, since we assign filter responses

to histogram bins without needing to perform a nearest-

neighbour computation.

1.4 Related work

Statistical texture representations which are based on

visual dictionaries derived by clustering feature vectors
are discussed above.

One approach which, like ours, provides a dataset-

independent dictionary of local features over which tex-

tures are represented statistically, is Local Binary Pat-

terns (LBPs) (Ojala et al. 2002). Images are probed lo-
cally by sampling greyscale values at a point gc and P

points g0, . . . , gP−1 spaced equidistantly around a cir-

cle of radius R (the choice of which acts as a surrogate

for controlling the scale of description) centred at gc,
as shown in figure 1a. The resulting feature space of

P + 1 greyscale values can be partitioned according to

one of a nested set of progressively more invariant LBP

systems:

– The first defines Local Binary Patterns themselves.

The greyscale value at gc is subtracted from those

at g0, . . . , gP−1 and the resulting values thresholded

about zero to produce a Local Binary Pattern (as in
figure 1b), LBPP,R, given by sign[g0−gc], . . . , sign[gP−1−

gc], which is by definition invariant to any mono-

tonic greyscale transformation.
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Fig. 1 Local Binary Patterns. a) Sampling points from the im-
age, with P = 8, R = 1. b) Binarisation to get LBP8,1. c) The
set of Uniform patterns LBPriu2

8,1 .

– Rotation invariance is built in by factoring out cyclic
relabelling of g0, . . . , gP−1, i.e. representing each group

of LBPs which are equal under some cyclic rela-

belling of g0, . . . , gP−1 by a single canonical LBP

(denoted LBPri
P,R).

– Since the dimensionality of the representation (which
grows exponentially with P ) is still high, a form of

feature selection based on complexity is employed.

Uniform LBPs (LBPriu2
P,R ) are those (rotationally in-

variant) patterns which contain at most two transi-
tions between 0 and 1, as shown in figure 1c. In many

cases, the majority of patterns observed in texture

images are classified as one of these P + 1 Uniform

LBPs. All other LBPs are grouped together into a

single ‘other’ category, producing a P + 2 dimen-
sional representation.

LBPs are similar to our approach in that they are
based upon a pre-defined visual dictionary rather than

one derived with reference to the dataset to be anal-

ysed. They therefore share the advantages listed above

over methods based on clustering. They also possess
similar invariances to our method. The central differ-

ence results from the local description used: we probe

an image locally using Gaussian derivative filters where

as LBPs sample greyscale values. This allows us to make

use of some powerful mathematical properties of Gaus-
sian derivatives in order to study the local geometry of

the image in a way that allows a more geometrically

rigorous treatment of invariances and partitioning of

feature space. For example, the steerability (Freeman
and Adelson 1991) of Gaussian derivative filters allows

us to achieve exact rotation invariance rather than the

approximate rotation invariance of LBPs.

 

c 02c 11c 20
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Fig. 2 Our filter bank, consisting of one zeroth-order, two first
order and three second order Gaussian derivative filters, all at
the same scale. We refer to the vector of responses as a local jet.

The remainder of the paper is structured as follows:
In section 2 we introduce Basic Image Features and our

BIF-based texture representation. In section 3 we evalu-

ate this approach against a selection of state-of-the-art

alternatives on a commonly used texture dataset. In

section 4 we extend our approach to incorporate scale
invariance: this involves extending our representation

and developing a multi-scale texture comparison met-

ric for classification. Results are presented on two ad-

ditional datasets which contain significant intra-class
changes in scale.

2 Basic Image Features (BIFs)

Basic Image Features (Griffin and Lillholm 2007; Grif-

fin 2007, 2008b,a) are defined by a partition of the
filter-response space (jet space) of a set of six Gaussian

derivative filters (Figure 2). This set of filters describes

an image locally up to second order at some scale.

Jet space is partitioned into seven regions – which

we refer to as BIFs – each corresponding to one of
seven qualitatively distinct types of local image struc-

ture, based on symmetry types (figure 3). Algorithm 1

defines this partition by assigning a given filter response

vector to one of the seven BIFs. An example of an im-
age ‘labelled’ with BIFs in this way is given in figure

3.

There are two stages to the derivation of this parti-

tion. In the first, information which is intrinsic to the

local structure of the scene is separated from ‘extrin-
sic’ information resulting from uninteresting changes

in imaging setup. In the second, this intrinsic compo-

nent is quantized into regions corresponding to different

types of local image symmetries.

The transformations which are considered uninter-

esting for the purpose of calculating BIFs are rotations,

reflections, intensity multiplications and addition of a
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1. Measure filter responses cij , and from these calculate the
scale-normalised filter responses sij = σi+jcij

2. Compute λ = s20 + s02, γ =
√

(s20 − s02)2 + 4s2
11

3. Classify according to the largest of:
{

εs00, 2
√

s2
10

+ s2
01

,±λ, 2−
1

2 (γ ± λ), γ

}

Algorithm 1: Calculation of BIFs. The single param-

eter ε controls what amplitude of structure is tolerated

before a region is no longer considered sufficiently uni-

form to be assigned to the ‘flat’ (pink) BIF category
(see figure 3), and is given another label.

 

�����, 2����	 + ���	 , ±�, 2�	�� ± ��, �� 

Fig. 3 Top: Stereotypical image patches demonstrating the type
of structure / symmetry represented by each of the seven BIFs
defined by step 3 of Algorithm 1. Bottom: An image of bark from
the UIUCTex database (Lazebnik et al. 2003), densely labelled
with BIFs computed at scales σ = 1 and σ = 4 (both with ε = 0),
according to the colours of the key above, in order to show where
different BIFs occur in a real-world texture image.

constant intensity. Jet space is factored (Griffin 2007)
by these extrinsic transformation groups to produce an

intrinsic component in which all filter responses differ-

ing only in one of these extrinsic factors are mapped to

the same point. Any partition of this intrinsic compo-
nent will therefore produce a set of features which are

invariant to rotations, reflections and these grey-scale

transformations.

The partition of the intrinsic component of jet space

which defines the Basic Image Features is based on de-

ciding which type of symmetry of the local image ge-
ometry is most nearly consistent with the local jet.

A test has been developed (Griffin 2008a) which
shows whether a filter is sensitive to a certain local

symmetry, i.e. whether it is able to detect invariance un-

der a group of transformations (a prospective automor-

phism group). The type of transformations considered
are image isometries (Griffin 2008b): spatial isometries

combined with intensity isometries. The possible au-

tomorphism groups of 2D images relative to the class

of image isometries, excluding cases containing discrete

periodic translations, have been determined. Hence we

can use our test to decide which filters in the span of the

second order Gaussian derivative family of figure 2 (i.e.

which linear combinations of the filters) are sensitive to
each of these symmetries. This allows the regions of the

intrinsic component of jet space which represent each

type of image symmetry to be identified.

Since most image structures are not perfectly sym-
metrical, we base our partitioning scheme on deciding

which symmetry most approximately holds. By select-

ing an appropriate subset of symmetry types (which

deals with the problem of some automorphism groups

being subgroups of others) and partitioning the intrinsic
component into Voronoi cells around their correspond-

ing regions using a metric induced by the filter response

space (Griffin 2007), we achieve this approximate sym-

metry classification.

2.1 A BIF-based texture representation

By providing a natural quantization of filter response

space into qualitatively distinct types of local image
structure, with an appropriate set of in-built invari-

ances, BIFs offer a basis for a viable mathematical al-

ternative to visual dictionaries based on clustering. As

discussed above, the advantages of this include avoid-

ance of biases introduced by the clustering algorithm;
elimination of a clustering pre-training step; and com-

putational efficiency since image locations are classified

into BIFs simply, using algorithm 1, rather than by a

costly nearest-neighbour computation.
However, simply modelling an image as a histogram

over our 7 categories produces too coarse a representa-

tion. Using a simple 7-bin BIF-histogram texture repre-

sentation and the classification framework of section 3,

only 65% of images from the CUReT dataset are clas-
sified correctly; state-of-the-art approaches score in the

high nineties percent (see sections 3 and 4). We need

a way of combining this seven letter ‘alphabet’ into a

sufficiently descriptive collection of ‘words’ to make up
our dictionary.

One way to achieve this is to look at local config-

urations of BIFs, i.e. how the type of local structure

in the image changes with location and/or scale. The

configuration which we evaluate in this paper is a stack
of BIFs calculated, at the same spatial location, across

four octave-separated scales. We refer to these ‘scale

templates’ as BIF-columns, and define σbase to be the

finest scale in a BIF-column. Informally, we have found
that this selection of four scales seems to produce a rep-

resentation which captures the right trade-off between

specificity and generality. By considering how BIFs vary
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over scale, rather than space, we retain the rotation-

invariance of BIFs, which has been shown (Varma and

Zisserman 2005) to be advantageous for texture classi-

fication.

The single parameter ε of Algorithm 1 controls how

much ‘noise’ is tolerated before a region is no longer

considered sufficiently uniform to be assigned to the

‘flat’ (pink) BIF category, and is given another label.

For texture analysis we do not want any ‘flattening’ of
potentially informative low-contrast structure and so

we set ε = 0, with the result that this BIF is never

selected. Hence we reduce our alphabet to six letters,

resulting in a 64 = 1296 dimensional representation by
BIF-columns. In practise this also means that we need

not compute responses to our zeroth order filter, so as-

signment of image points to BIF-columns is fully deter-

mined by the responses of 5 × 4 = 20 filters.

We populate our histogram by counting occurrences

of BIF-columns at every pixel in an image, rather than

at keypoints. Further, we include description at points

which are too close to the edge of the image to accom-
modate the full spatial support of the filters. Where

full support is unavailable, we compensate by wrapping

around to the opposite edge of the image. Tradition-

ally, this ought to decrease the accuracy of our models.

However, we have observed the opposite: that removing
edge-points from our description degrades classification

performance to a similar degree to removing the same

number of points at locations randomly sampled from

across the image. We offer the explanation that this
result is a combination of (i) the effects of poorer sam-

pling when these points are removed, with (ii) sufficient

homogeneity in the images which we have analysed so

that they can reasonably be treated as cyclical.

Thus our texture representation at scale σbase com-

prises:

1. Compute a stack of four BIF-images at scales σbase, 2σbase, 4σbase, 8σbase

by convolving the image with a second-order fam-

ily of Gaussian derivative filters and applying Algo-

rithm 1 (with ε = 0). Transpose to form an array of

BIF-columns representing each image pixel.
2. Populate a 1296-bin histogram representation by

counting occurrences of BIF-columns.

3 Evaluation

We test our BIF-column texture representation by clas-

sifying images from the CUReT dataset (Cula and Dana

2001a). CUReT consists of 61 texture classes each con-
taining 205 images of a physical texture sample pho-

tographed under a (calibrated) range of viewing and

lighting angles, but without significant variation in scale

or in-plane rotation. CUReT is a challenging test of lo-

cal image description because of the significant intra-

class changes in appearance resulting from varying di-

rectional light falling on the 3D texture samples. In line

with other classification studies using CUReT, we con-
sider only the 92 images per class which afford the ex-

traction of a 200x200 pixel foreground region of texture.

Since our focus is on representation, we use a sim-

ple nearest-neighbour classifier rather than a more so-
phisticated classifier such as support vector machines

which has been shown to produce superior results (Ca-

puto et al. 2005; Hayman et al. 2004; Zhang et al. 2006)

but requires more tuning of parameters. The classifier is

trained by computing representation histograms of all
images in the training set; and a novel image classified

according to the shortest distance from its representa-

tion to each stored training histogram. The most com-

monly used histogram comparison metric for this pur-
pose is the χ2 statistic, although others such as a log-

likelihood measure have been used (Ojala et al. 2002).

We employ a simplified form of the Bhattacharyya dis-

tance, 1 −
√

g.
√

h, which is theoretically better suited

than χ2 to calculating distances between distant points
in high dimensional space (Thacker et al. 1997). How-

ever, we have also experimented with the χ2 metric in a

limited set of experiments and have found no significant

difference in the results produced. One possible cause
for this is that in a nearest-neighbour classifier all but

the smallest distances are effectively ignored and, for

small distances, the Bhattacharyya measure approxi-

mates the χ2 measure (Thacker et al. 1997).

For our BIF-column representation, we set the single
scale parameter σbase = 1 (a multi-scale approach is

developed in Section 4).

We compare histograms of BIF-columns with four

other state-of-the-art histogram representations, using
the same classification framework in each case. These

are:

VZ-MR8 (610 textons) (Varma and Zisserman 2005) : Af-

ter being grey-scale normalised, images are probed

locally using the (normalised) MR8 filter bank, which
consists of a Gaussian; a Laplacian of Gaussian; and

collections of elongated first order and second or-

der Gaussian derivative filters, each at three scales

and six orientations of which only the response with

greatest magnitude at each scale is recorded. Thus
filter response vectors are eight dimensional in total

(although 38 filters are computed in their calcula-

tion), are approximately invariant to rotation and,

like BIF-columns, describe the local deep structure
of an image. To generate a dictionary of textons,

filter responses densely sampled from 13 randomly

selected images per texture class are clustered using



R
EV

IE
W

 V
ER

SI
O

N

7

 

10 20 30 40

0.2

0 .4

0 .6

0 .8

1 .0

LBP��,�
���� 

BIF-columns 

VZ-MR8 (2440 textons) 

VZ-MR8 (610 textons) 

VZ-Joint 7x7 

P
ro

p
o
rt
io

n
 o
f 
te
st
 i
m

ag
es

 c
la
ss
if
ie
d
 c
o
rr
ec

tl
y
 

Number of training images per class 

Fig. 4 The mean proportion of correctly classified images over 100 random splits of the CUReT dataset into training/test data, for
a range of training set sizes. The best result for BIF-columns (with 43 training images per class) is 98.1±0.3%.

k-means to produce 10 cluster-centre textons per

class. Aggregated over the 61 CUReT classes, these

610 textons Voronoi-partition feature space.

VZ-MR8 (2440 textons) (Varma and Zisserman 2005)
: As VZ-MR8 (610 textons) above, except that 40

cluster-centre textons are learnt per CUReT cate-

gory resulting in a 2440 dimensional representation.

VZ-Joint 7x7 (Varma and Zisserman 2003) : After be-

ing grey-scale normalised, images are described lo-
cally by the collected grey-scale values of a 7x7 pixel

image patch. The resulting 49-dimensional feature

space is partitioned into 610 textons using cluster-

ing in the same way as for VZ-MR8 (610 textons).
LBPriu2

24,3 (Ojala et al. 2002) : Rotation-invariant uniform

Local Binary Patterns as described in Section 1.4,

with 24 points sampled around a circle of radius 3

pixels, resulting in a 26-dimensional representation.

Note the low-dimensionality of this representation
compared to the others tested.

Each of the five (including BIF-columns) represen-
tations which we test contain some degree of invariance

to grey-scale transformations. For the VZ methods, this

is a global (per image) rather than local invariance, al-

though the normalisation of filter responses will add
some degree of local invariance as well. BIF-columns

are invariant to additions and linear multiplications of

intensity, while LBPs are invariant to any monotonic

grey-scale transformations. Similarly, with the one ex-

ception of VZ-Joint, each representation exhibits some

degree of rotation-invariance. VZ-MR8 and LBPs are

invariant to small discrete rotations and hence approx-
imately invariant to continuous rotations, while BIF-

columns are fully invariant to continuous rotations.

Our classification task consists of training with a

given number of images randomly chosen from each tex-

ture class and assigning all of the remaining images to

one of the 61 categories. We repeat this experiment with
100 different random selections of training and test data

(as in (Zhang et al. 2006)) and report the mean fraction

of images correctly classified along with the standard

deviation. Figure 4 shows results for a range of training

set sizes.

First, note that the performance ranking of the five
representations tested remains the same regardless of

the number of images in the training set. This can

be seen as confirming the uncommitted nature of the

nearest neighbour classifier used with each of the repre-

sentations. BIF-columns score highest, followed by the
two MR8 based representations (with the richer 2440-

bin representation slightly superior) and then 7x7 im-

age patches. The performance of uniform Local Binary

Patterns is significantly below those of the other ap-
proaches for all but the smallest collections of training

images. However, it should be noted that this repre-

sentation is only 26-dimensional, compared to a mini-
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mum of 610 dimensions for other methods. This reflects

its design goal of being able to cope with smaller im-

ages: fewer bins produce a less precise representation

but one which can be populated more accurately when

the quantity of data available is a limiting factor. How-
ever, the proximity of the two MR8-based approaches

suggest that the dimensionality of representation is not

a major cause of variation in performance between the

other four (more consonant) representations.
The relative similarity in performance of the best

four methods for large numbers of training images begs

the question of whether we are pushing against a ceiling

of a minority of images which are particularly difficult

for histogram-based texture representations to cope with.
Figure 6 suggests that this is not the case: although

there is some correlation between the distributions of

images misclassified by different representations, in the

majority of cases it is fairly weak, i.e. in general different
representations mis-classify different images. One no-

table exception to this is the strong correlation between

the two representations using the same (MR8) local de-

scription, which differ only in the number of cells into

which their feature spaces are partitioned. The particu-
lar types of texture which appear problematic for each

representation defy easy characterization (figure 5).

4 Multi-scale histogram matching

Although our representation describes the local deep

structure in an image, it is not scale invariant. The

scale of the base of our BIF-columns, σbase, remains

fixed. In order to be able to usefully describe sets of
textures which, unlike CUReT, contain significant vari-

ation in scale, we extend our representation and intro-

duce a multi-scale histogram comparison.

There are two related problems which should be ad-

dressed in an appropriate scale-treatment of texture.
First, images of the same texture should be recognised

as such despite being taken from different distances

(scale invariance). Second, the texture representation

should incorporate description at (and representations
should be compared across) a range of scales (referred

to elsewhere (Ojala et al. 2002) as multi-resolution anal-

ysis), rather than at one fixed scale which is chosen as

a compromise for the given dataset, or at one intrin-

sic scale. This ensures (i) that the image is probed at
scales matching those of important local structure in

that image, and (ii) that where (as frequently happens)

images contain informative structure at a number of

scales, full use is made of this information: rather than,
for example, having to choose whether a brick wall is

best represented by the layout of the bricks or the mi-

crostructure of the clay.

BIF-columns 

VZ-MR8 (610 textons) 

VZ-Joint 7x7 

VZ-MR8 (2440 textons) 

LBP��,�
���� 

Fig. 5 The (1st, 3rd, 5th, 7th and 9th) most frequently misclas-
sified images over the 100 trials (top), and the images for which
they were most often mistaken (bottom). For each representation,
some images are perceptually similar to those for which they are
mistaken and some are not.
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 VZ-MR8 

(610 textons) 

VZ-MR8 

(2440 textons) 

VZ-Joint 7x7 LBP��,�
���� BIF-columns 

VZ-MR8 

(610 textons) 
 

    

VZ-MR8 

(2440 textons) 
0.96  

   

VZ-Joint 7x7 

0.55 0.54  

  

LBP��,�
���� 

0.30 0.29 0.52  

 

BIF-columns 
0.56 0.59 0.46 0.41  

 Fig. 6 Correlation between the marginal distributions by class of incorrectly classified images (taken across all 100 training/test splits
with 43 training images per class) for each pair of representations. There is strong correlation between the two representations using
the same (MR8) local description, but only weak correlation between other representations. The strongest correlation for LBPs is
with VZ-Joint (although the converse is false). This could be explained by the relative similarity of these two representations in using
greyscale-based descriptions and in the extents of their local regions of support, despite the very different forms of their feature space
quantization. Similarly, the strongest correlation for BIF-columns is with the two MR8-based methods, which also probe the image
using Gaussian derivative filters.

Hayman et al. (Hayman et al. 2004) adopt a pure

learning approach which addresses the first of these
problems (and, to an extent, part (i) of the second) by,

in effect, augmenting the training data with artificially

rescaled versions of the original training images. By de-

coupling the descriptions of textures at each scale it
makes the implicit assumption that textures need only

be matched at a single dominant intrinsic scale; thus

although it works well for the datasets tested, it may

not extend to the more general problem.

Our approach retains the links between representa-

tions of the same texture at different scales by mod-
elling an image as a stack of BIF-column histograms

computed over a range of scales (indexed by σbase) in

the same way as for the single-scale representation de-

scribed in section 2.1. The range of σbases which we

have found to be effective (as a trade-off between de-
scriptiveness and computational complexity) increment

in quarter-octaves from 2−1/4 to 23/2 meaning that,

with the four-octave span of our BIF-columns, the to-

tal range of scales analysed runs from 0.84 to 22.6 pix-
els. We emphasize the difference between BIF-columns

which describe the local variation in structure around

some point in scale space; and histogram stacks which

represent the global variation over scale of the texture

itself.
The second of the above criteria is then addressed

by comparing histogram-stack texture representations

using a multi-scale metric, based on the Bhattacharyya

distance, which computes a weighted average of the dis-
tances between histograms at each scale. The first crite-

rion (scale invariance) is realised by allowing histogram

stacks to be shifted in scale relative to one another be-

fore calculation of this distance, as shown in figure 7

(scale-shifting).
More specifically, to compare stacks of normalised

BIF-column histograms for images A and B, calcu-

lated at column-base scales σbase = σA1
, σA2

, . . . , σAn

and σB1
, σB2

, . . . , σBn
respectively (see figure 7, right),

our multi-scale metric calculates a weighted average

of squared Bhattacharyya distances computed at each

pair of base scales (σAi
, σBi

),

∑n
i=1

(1−
√

h(A;σAi
).
√

h(B;σBi
))

2

σ2

i
∑n

i=1
1

σ2

i

(1)

where h(I; σj) is the normalised BIF-column his-

togram of image I computed at base scale σj and σ2
i =

σ2
Ai

+σ2
Bi

. The weighting by 1
σ2

Ai
+σ2

Bi

discriminates against
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scale 

� � 

���
 

���
 

���
 

���
 

Fig. 7 Multi-scale comparison of images A and B. Left : Scale shifting: Histogram stacks containing n histograms are shifted relative
to each other in scale in each of 2n− 1 possible ways, to allow matching of similar features appearing at different scales in each image.
Right : The notation used in equation 1.

poorly sampled coarse scale representations. Normali-

sation commensurates distances for differently shifted

comparisons, allowing the multi-scale scheme to be in-

corporated directly into our nearest neighbour classi-
fier: the distance between two images is effectively taken

to be the minimum of the distances calculated between

those images in each of the 2n − 1 possible ways illus-

trated in figure 7.

4.1 Evaluation

We have tested our multi-scale scheme by classifying

texture images from three datasets: the CUReT dataset
as used in Section 3, KTH-TIPS (Hayman et al. 2004)

and UIUCTex (Lazebnik et al. 2003). We emphasize

that our method is exactly the same for each dataset,

with no tuning of parameters.

The KTH-TIPS dataset extends CUReT by imaging

new samples of 10 of the CUReT textures at a subset of
the viewing and lighting angles used in CUReT but also

over a range of scales, producing 81 200x200 pixel im-

ages per class. Although KTH-TIPS is designed in such

a way that it is possible to combine it with CUReT in

testing, we follow (Zhang et al. 2006) in treating it as a
stand-alone dataset. UIUCTex contains 25 classes, each

of 40 640x480 pixel images. The dataset is uncalibrated

and classes contain images taken at a variety of scales

and viewpoints, and sometimes with non-rigid defor-
mations of the samples. However, variations in lighting

geometry are less severe than for the other two datasets.

As in Section 3, results are reported as the mean

proportion of images correctly classified over 100 ran-

dom splits into training and test data, along with one

standard deviation. We use 43, 40 and 20 training im-
ages per class respectively for CUReT, KTH-TIPS and

UIUCTex.

Results (as reported in (Crosier and Griffin 2008))

are shown in Table 1. Despite not being modified to

suit each dataset, our multi-scale BIF-columns scheme

scores well across all three datasets, producing what we

believe to be the best reported results on the UIUCTex

and KTH-TIPS images; and the best reported results
out of those which use a nearest-neighbour classifier

on CUReT. The overall best performance on CUReT is

from Broadhurst’s conference paper (Broadhurst 2005),

which achieved 99.22% correct classification using a Gaus-

sian Bayes classifier with marginal filter distributions.

Analysis of the behaviour of our multi-scale approach
shows that the two component parts – the multi-scale

comparison metric and histogram-stack scale-shifting –

complement each other appropriately (figure 8). Our

multi-scale metric improves performance over our sin-

gle scale scheme on both the UIUCTex and CUReT
datasets, confirming that texture comparison at a range

of scales is important even in the absence of signifi-

cant intra-class variation in scale; where as the scale-

shifting part of our algorithm is useful only when scale-
invariance is called for. Indeed, for the CUReT data,

distances between matching images are nearly always

smaller when no scale-shifting is used, meaning that, for

these images, our multi-scale algorithm rarely acts any

differently than if this component were absent (figure
9). By contrast, shifting occurs frequently for UIUCTex

images. That is, most of the time, scale-shifting is used

only when scale-invariance is called for.

Note in figure 8 that, on the UIUCTex images, the

method which produces the next-best results to our full

multi-scale scheme is scale-shifting without the multi-
scale comparison metric, which is the method most sim-

ilar to Hayman et al.’s approach (Hayman et al. 2004).

Figure 10 shows examples of images which are mis-

classified by our multi-scale scheme.
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CUReT UIUCTex 

Fig. 8 The proportion of images correctly categorized by each of the two components of our multi-scale classifier (the multi-scale
metric and scale-shifting); our full multi-scale classifier (these components combined); and our single scale classifier as evaluated in
section 3. We use 43 training images per CUReT class and 5 training images per UIUCTex class, and report the mean and standard
deviation over 100 trials of the fraction of remaining images correctly classified. For CUReT, which does not contain significant
intra-class variation in scale, there is no benefit to be gained by using scale shifting. However, comparing images at a range of scales
using our multi-scale metric does result in improved performance, suggesting that images contain informative structure at multiple
scales. For UIUCTex, which does contain significant intra-class scale variations, both the multi-scale metric and scale-shifting produce
improvements over our single scale classifier, with the combination of the two in our full multi-scale scheme giving the best performance.

 

Fig. 10 Examples of images from the UIUCTex dataset which are mis-classified by our multi-scale algorithm (top); the training
images for which they are most often mistaken (centre); and the most frequently corresponding ‘nearest misses’ from the correct class
(bottom). Left to right, the images are the first (‘fur’ mistaken for ‘marble’), second (‘bark 2’ mistaken for ‘granite’), third (‘marble’
mistaken for ‘bark 2’), fourteenth (‘bark 3’ mistaken for ‘fur’) and seventeenth (‘brick 1’ mistaken for ‘glass 1’) most frequently mis-
classified UIUCTex images, counted over 100 random splits into 20 training and 20 test images per class. Mis-classified images are
often perceptually similar, on a local level, to those for which they are mistaken, as in the middle three examples. However, the most
frequently mis-classified image (left) bears little resemblence to the training image selected by our algorithm. The right-most example
demonstrates a lack of sensitivity to the regularity property of the brick texture, a limitation inherent in the representation of images
as histograms.
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Table 1 Classification scores on the CUReT, UIUCTex and KTH-TIPS datasets. Scores are as originally reported, except for those
marked † which are taken from the comparative study in (Zhang et al. 2006).

CUReT UIUCTex KTH-TIPS
43 training images 20 training images 40 training images
per class per class per class

Multi-scale BIF-columns 98.6±0.2% 98.8±0.5% 98.5±0.7%
Varma & Zisserman - MR8 (Varma and Zisserman 2005) 97.43%
Varma & Zisserman - Joint (Varma and Zisserman 2003) 98.03% 78.4±2.0%† 92.4±2.1%†

Hayman et al. (Hayman et al. 2004) 98.46±0.09% 92.0±1.3%† 94.8±1.2%†

Lazebnik et al. (Lazebnik et al. 2003) 72.5±0.7%† 96.03% 91.3±1.4%†

Zhang et al. (Zhang et al. 2006) 95.3±0.4% 98.3±0.5% 95.5±1.3%
Broadhurst (Broadhurst 2005) 99.22±0.34%
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Fig. 9 The proportion of images, out of those which are correctly
classified, in which the nearest training image representation is

found using the given degree of histogram-stack scale-shifting (fig.
7), for CUReT (red) and UIUCTex (black) images. For CUReT,
the distance calculated between histogram-stack representations
after shifting is nearly always larger than the distance calculated
with no shifting, i.e. the closest training image is most frequently
found using no scale-shifting: as is appropriate in the absence
of intra-class scale changes. For UIUCTex, which does contain
intra-class variations in scale, it is more common for a distance
calculated after shifting to be smaller than the distance with no
shifting, resulting in a flatter distribution.

5 Summary

We have developed a statistical texture representation

which models images as histograms over a dictionary of

features which is based on the qualitative type of local
geometric structure, encoded by Basic Image Features,

rather than a dictionary based on clustering. Our fea-

tures are naturally invariant to rotation and reflection,

and addition and linear multiplication of illumination
intensity; and we have extended the approach to incor-

porate invariance to changes in scale.

Our approach has the advantages over methods which

use clustering of simplicity – there is no need for a pre-

training step to learn a visual dictionary – and com-

putational efficiency, since we assign feature vectors to

histogram bins without needing to perform a nearest-
neighbour computation. In addition, it avoids the po-

tential introduction of biases by clustering algorithms

poorly suited to the data.

We have tested our implementation on three pop-

ular and challenging texture datasets and find that it
produces consistently good classification results on each,

including what we believe to be the best reported for

the UIUCTex and KTH-TIPS databases. Further, it

does this without requiring modification or tuning of

parameters between datasets.
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