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1. INTRODUCTION 

1.1 Context 

The majority of large-vocabulary continuous-speech recognition (LVCSR) systems for 
spoken English treat utterances as simple word sequences.  The pronunciation of a 
sentence is predicted from the concatenation of the pronunciation of the words it 
contains.  The probability of a sentence is predicted from the product of probabilities of 
the words in sequence (see e.g. [1]). 

Not counting simplicity, there are many advantages to this approach: words are easy 
to isolate in text when statistical language models are being built; available 
pronunciation dictionaries are based on words; users expect to see the system 
recognise words; and the conventional measures of performance are based on words 
correct. 

On the other hand, there is much evidence that human listeners are sensitive to the 
internal structure of words, particularly to that related to their meaning, or 
morphology.  Some evidence for this is just to do with the production and 
interpretation of novel, morphologically complex words such as “un-micro-wave-ability”.  
But there is also interesting psycholinguistic evidence that morphological analysis is 
performed on-line during the processes of word recognition of common words.  This 
seems to be the case for both inflexional morphology (cows, milked) and derivational 
morphology (distrust, government). 

This paper contrasts some of the findings of these psycholinguistic experiments with 
our own experiments in applying morphological analysis within LVCSR. 

1.2 Psycholinguistic findings 

The psycholinguistic evidence for on-line morphological analysis stems from priming 
experiments.  In these studies, the time taken for subjects to make a linguistic decision 
about a probe word is measured under different conditions.  In the control condition an 
unrelated priming word is presented to the subject immediately prior to the probe word.  
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In the test condition, a priming word related to the probe word is presented.  The 
experiments look for any systematic changes in reaction time as a function of the 
relationship between the priming word and the probe word.  The findings reported below 
for morphological relationships come from [2]. 

What follows is a very simplified summary of the major findings.  Readers are directed to 
the primary sources for more detail. 

1. Similarity of phonological form is not sufficient to cause priming.  For example 
principal does not prime prince.  Even when there appears to be a morphological 
relationship, the meaning relationship must also be relatively obvious for priming 
to occur.  For example department does not prime depart.  Neither does priming 
occur for words with superficially obvious morphology when there is a perfectly 
good monomorphemic interpretation.  For example vanish does not prime van.  
These results suggest that decomposition is not performed on the basis of the 
phonology alone. 

2. Significant priming is observed between a stem and another word containing 
that stem combined with a suffix.  For example, attract primes attractive, 
attracting, attracted.  These results suggest that stems are linked to a family 
of morphologically-complex related words in the lexicon.  Activation of the stem 
causes activation of morphologically related words. 

3. Significant priming is observed between a word with a suffix and its stem. For 
example attractive primes attract.  These results suggest that morphologically 
complex words are linked to their constituent stems in the lexicon.  Activation of 
a morphologically complex word activates its stem.  

4. Significant priming occurs even when the morphological relationship is obscured 
by complex morphophonological changes.  For example vain primes vanity, and 
teach primes taught.  These results seems to suggest that links between stems 
and their derived forms is not limited to simple phonological decomposition. 

5. Priming is not seen between words with suffixes that share a common stem.  
For example governor does not prime government.  This is in distinction to the 
fact that govern does prime government.  These results suggests a time course 
to the priming phenomenon: that the priming effect occurs when the stem is 
heard, but that it is cancelled when more phonetic evidence comes in.  That is, 
hearing govern primes both governor and government, but once the additional –
or is heard, the priming on government is discarded. 

6. Priming is seen between words with prefixes and words with suffixes sharing the 
same stem.  For example distrust primes trustful.  These results suggest that 
the priming effect can be handed on between word and stem and then between 
stem and word.  There seems to be some asymmetry here with case 5, in that 
the presence of a prefix dis- does not preclude the interpretation trustful, even 
though the presence of a suffix -or precluded the interpretation government. 

These are quite complex phenomena and quite difficult to account for in process terms.  
Cases 2 and 3 suggest that morphological analysis does take place during the 
recognition of some morphologically complex words.  Case 1 shows that an additional 
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restriction is that the morphology must reflect the meaning of the words too. Cases 1 
and 4 seem to suggest that the decomposition is not simply phonological and we need 
to have some knowledge about the word before we attempt morphological 
decomposition.  Cases 5 and 6 suggest that there are differences in the way prefixes 
and suffixes are processed. 

1.3 Relationship to LVCSR 

A speech recognition system working on whole words exhibits very few of the 
behaviours observed in the psycholinguistic data.  The best that can be said is that 
such a system would exhibit cases 3 and 5.  However this would be solely due to the 
degree of phonological overlap between the items.  A system that is processing 
attractive might indeed add to the word lattice a hypothesis attract, while a system 
processing governor would be unlikely to add government.  On the other hand, this 
system might also react to processing principal by adding a hypothesis prince, in 
contradiction to the findings in case 1. 

Does any of this matter?  Many engineers would argue that current LVCSR systems are 
just designed to maximise the probability of a signal given its interpretation; they are 
certainly not designed to mimic human beings.  Many psycholinguists would argue that 
computational models that are not explicitly modelled on the workings of the brain can 
not tell you anything about cognition.  This debate was reviewed in [3], which looked 
at the historical and philosophical basis for this mutual distrust.  One important 
conclusion of this article was that engineering models and cognitive models are to some 
extent complementary rather than in conflict.  Engineering models seek to reproduce 
human behaviour in the sense of the primary task of recognising words accurately.  
Cognitive models seek to explain the peripheral or emergent behaviour of recognition, 
such as response times.  Cognitive models were not designed to provide high 
recognition accuracy, and engineering models were not designed to explain the results 
of psychology experiments. 

We feel that there are advantages to examining the similarities and differences 
between the two scientific approaches to spoken word recognition.  It may be that 
some emergent behaviours are common to man and machine and may be the property 
of any system simply trying to maximise its performance.    For example, the bias to 
frequent words seen in many cognitive models is paralleled by the use of prior 
probabilities in machine models (see [3]).  Conversely we feel that the differences 
between the emergent behaviour of the human and the machine might suggest ways to 
improve machine recognition.  All that is required here is a belief that the human 
recognition system also tries to maximise accuracy.  For example, findings in the 
semantic relationships between words (such as [4]) may suggest ways in which 
statistical language models could adapt to the topic of the sentence. 

1.4 Morphological analysis in speech recognition 

In the experiment described below, we put a layer of morphological processing within a 
conventional LVCSR system and report on the consequences in standard engineering 
terms: perplexities and word recognition accuracy.  Our intentions were merely to see 
whether the incorporation of morphological processing would improve or worsen 
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performance.  We did not set out to replicate the psycholinguistic findings, which in 
any case we did not study in detail until after the experiment was concluded. 

However, this has become a test case for the approach described in [3].  Does the 
incorporation of morphological analysis improve recognition performance?  If so, one 
could argue that this is some evidence as to why humans appear to perform on-line 
morphological analysis in recognition.  Does the system exhibit emergent behaviours 
similar to those found in the psycholinguistic data?  If so, one could argue that this 
behaviour is simply a consequence of exploiting morphology and meaning to improve 
accuracy. 

In section 2 we describe how morphological analysis was incorporated into the decoder, 
while in section 3 we report on the results of an experiment which compares a word-
based and a morph-based recogniser on the same material using comparative metrics of 
performance.  This shows that the morph approach has advantages in some 
circumstances.  In Section 4 we show how a combined morph and word recognition 
system demonstrates an overall advantage to an all-word or all-morph system.  In 
Section 5 we return to the psycholinguistic evidence reported above and make 
comparisons with the emergent behaviour of our system.  

2. Morphological Analysis 

To perform morphological analysis of words in a way that was compatible with the 
recognition decoder, we applied additional phonological constraints to the process of 
morphological analsysis. Phonologically-constrained morphological analysis (PCMA) is a 
decomposition of words into a sequence of prefix/stem/suffix morphemes constrained 
by both orthography and pronunciation [5].  This ensures that (i) each word can be 
mapped to a unique morph sequence, and vice versa; and (ii) that the pronunciation of 
each word is derivable from the concatenation of the pronunciation of the morph 
components. 

Based on [6], a total of 115 prefixes and suffixes were built into the morphological 
analyser.  Each of these was given one or more pronunciations, for example: 

-NESS = n eh s, n ih s, n ax s 
 -ES = s, z, ih z 
 RE# = r eh, r ih 

These pronunciations were then used by the morphological analyser to determine 
whether a candidate word can be decomposed into morphs subject to the constraint 
that the word pronunciation could be found among the possible morph pronunciation 
concatenations.  As an example, the decomposition of abandoned into abandon + -ed is 
allowable because the pronunciation may be constructed from the parts: 

ABANDON = ax b ae n d ax n 
-ED  = d 
ABANDONED = ax b ae n d ax n d 

 
On the other hand, the decomposition of academician is not allowed since its 
pronunciation cannot be reconstructed from its parts, i.e., academic  and –ian: 
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ACADEMIC = ae k ax d eh m ih k 
-IAN  = ia n 
ACADEMICIAN = ax k ae d ax m ih sh n 

 
A list of possible PCMA decompositions was generated using the available word types 
found in the British National Corpus (BNC; [7]) in combination with a British English 
pronunciation dictionary (BEEP, [8]). The dictionary contains 104,185 successful PCMA 
decompositions. Each entry has on average 2.3 morphological components. The 
dictionary may be obtained from the authors. 

The PCMA dictionary allows the rapid translation of a word sequence to an acceptable 
morph sequence and vice versa. If a decomposition is successful, the word is 
represented as a sequence of its component parts with a trailing hash sign (#) 
indicating the presence of a prefix and a leading hyphen (-) indicating a suffix. As an 
example, disregarded is decomposed into three parts: dis# regard -ed, whose 
pronunciation is to be retrieved through concatenating the pronunciations for dis#, 
regard, and -ed listed in the pronunciation lexicon. 

3. Exploratory Experiment 

3.1 Word and Morph Dictionaries 

Two sets of pronunciation dictionaries were created. The first set comprises three 
conventional dictionaries of fully inflected word forms. They contain respectively  20k, 
40k, and 65k word types selected according to frequency of occurrence from 10 million 
words of the BNC training data. The pronunciations were found from BEEP, 
supplemented by pronunciations generated from a set of letter-to-sound rules 
developed by one of the authors. 

Table I summarises the sizes and lists OOV rates for the three dictionaries when tested 
with one hundred sentences selected from reserved test data from the BNC. 

TABLE I: A summary of pronunciation lexicons 
of inflected word forms with OOV rates on 

test set 

Lexicon Size OOV% 

word-20k 19,998 4.3 

word-40k 39,994 2.5 

word-65k 64,978 1.6 

 
The second set comprised three pronunciation dictionaries that contain morphemes 
instead of word forms. They were created through the morphological analysis of the 
three conventional dictionaries of word forms. We thus obtained three morph-based 
dictionaries that covered at least the same words as the three word dictionaries.  
Table II summarises their sizes and OOV rates. 

We see that PCMA analysis is capable of substantially reducing the size of 
pronunciation lexicons. The PCMA dictionaries are about 70% of the size of the fully 
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word form dictionaries.  Furthermore, this reduction in size is combined with a decrease 
in OOV rate.  This is because the morph entries are able to generate more words than 
those covered by the equivalent full word form dictionary. 

TABLE II: A summary of PCMA lexicons of morph units, 
showing reduction over word forms with OOV rates on 

test set 

Lexicon Size Red. 
(%) 

OOV% 

morph-20k 13,370 33.2 2.8 

morph-40k 25,158 37.1 1.6 

morph-65k 46,000 29.2 1.0 

 

3.2 Language Models 

Subsets of the BNC were used as training data to build language models.  The BNC data 
was first preprocessed to remove punctuation, and to convert numbers and 
abbreviations to words.  Training subsets of 5M, 10M, 20M, 40M and 80M words were 
constructed.  Each subset was also translated into morphs using the PCMA dictionary. 

Word-trigram and morph-trigram language models were constructed using the CMU-
Cambridge Toolkit [9] for each of the four sizes of training data for each of the six 
pronunciation dictionaries.  Good-Turing discounting was applied to smooth the counts. 

Perplexities were calculated on 100 sentences of reserved test data.  The perplexity 
calculations are complicated by the fact that the test text increases in length after the 
mapping to a morph sequence.  Since the definition of perplexity involves taking an 
average over the number of units in the text, we cannot simply run a perplexity 
calculation over the word and the morph sequences.  Since there are more morphs, the 
average score will be less, even for the same total log probability.  To make a better 
comparison, we find the total log probability for the test text and average over the 
number of stems rather than the number of units.  As is usual practice, OOV words are 
not included in the calculation, although there are slight differences in OOV rates for 
the differerent models.  Results are summarised in Figure 1. 

Overall perplexities are about 10% worse for the morph models than for the word 
models.  With 65k lexicons and 80M word of training data, the morph model gave a 
perplexity of 260, while the word model gave a perplexity of 230. 
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Figure 1 - Normalised perplexity for word and morph 
 language models for different training data size 
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3.3 Word recognition results 

For the recognition experiment, 100 sentences were randomly selected from the 
reserved portion of the BNC. These were read and recorded by a male speaker of 
southern British English in an anechoic environment. Finally, the recordings were 
digitally acquired at 16 KHz. 

Recognition was undertaken using two software packages: word and morph lattices 
were generated from the speech signals with a demonstration version of the Abbot 
connectionist/HMM continuous speech recognition system [10].  Decoding of the 
lattices was performed by a decoder written at UCL. 

Word and morph lattices were generated by Abbot using a set of parameters provided 
by Steve Renals (personal communication) which increased the number of word-
hypotheses per node to a maximum of 100.  Word lattices were generated using the 
language models trained on 80M words, while they were decoded using language models 
of different sizes. 
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Lattice scores 

The lattice score is a measure of how many correct words from the test sets are 
present in the word lattices produced by the Abbot recogniser used for the 
experiments. To compute the lattice score, the path most similar to the correct answer 
was found through the lattice, and then the number of substitutions, deletions and 
insertions were counted on that path. Acoustic scores were disregarded. It is important 
to note that morphs could not be converted to word sequences in this measure, so 
that these are word accuracy for the word lattices, and morph accuracy for the morph 
lattices. 

Table III shows how lattice scores vary across the choice of word and morph lexicons 
for the BNC test set, using language models trained on 80M words. The numbers in 
brackets are the percentages of completely correct sentences. 

TABLE III: Lattice scores across the choice of word and morph lexicons 
for the LOB and BNC test sets, using language models trained on 80M 
words. Sentence inclusion rates in brackets. 

Word Lexicon Size Morph Lexicon Size 

20k 40k 65k 20k 40k 65k 

86.6 (26) 88.6 (31) 93.0 (39) 93.1 (40) 94.7 (47) 95.5 (53) 

 

The interpretation of these results needs to be performed with care, since although the 
word and morph lattices had the same depth, there are more words than morphs 
available to be put in the lattice.  Nevertheless, we see no evidence from these results 
that the morph lattices are worse than the word lattices, and indeed argument could 
be made that they are superior.  Certainly the morph accuracy is now close to 100% 
minus the OOV rate, and the sentence inclusion rates are considerably higher. 

Word accuracy rates 

To obtain recognition scores, the word lattices generated by Abbot were decoded with 
UCLdecode using the 30 different language model variants.  Word accuracy was scored 
as before but on the best decoded path.  Morph accuracy was calculated by 
concatenating affixes with their stems and then counting words correct, substituted or 
deleted.  The results are shown in Figure 2. 

From these results we can observe (i) that all systems improved in performance with 
increasing language model training data size; (ii) that all systems improved with 
increasing vocabulary size, although these improvements were less for the morph 
systems; (iii) the 20k-equivalent morph system consistently outperformed the 20k word 
system by about 4% absolute; (iv) the 40k-equivalent morph system consistently 
outperformed the 40k word system by about 3% absolute; (v) the 65k-equivalent 
morph and 65k word systems had very similar performance. 

McNemar tests of significance using Peregoy’s method showed that all differences 
between the morph and word results for the 20k and 40k lexicons were significant at 
the p<0.01 level; while there were no significant differences with the 65k lexicons. 
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Figure 2 - Word accuracy results for BNC test sentences 
 as a function of lexicon and language model 

for word and morph approaches 
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3.4 Discussion 

These exploratory experiments aimed to investigate the consequences of the shift from 
words to morphs in terms of lexicon size, OOV rate, perplexity, lattice score and word 
error rate. 

In summary, we have seen that OOV rates can be reduced by about 1% absolute with 
a morph lexicon, with a simultaneous saving of 33% in lexicon size.  Perplexity measures 
are worse, with perhaps an increase of 10% through the use of a morph trigram.  
Despite this, lattice scores and word recognition scores are similar, with morph systems 
even having slightly superior performance in some circumstances. 

The biggest word accuracy gains are for configurations with the smaller vocabulary 
sizes, with the 20k equivalent and the 40k equivalent morph lexicons outperforming the 
20k and 40k word lexicons for all quantities of training data.  Performance increases 
with increasing training data size for all configurations, with only marginal evidence for 
a decrease in the benefit of the morph approach as the amount of language model 
training data increases. However there seems to be nothing to gain from the use of a 
65k equivalent morph lexicon over a 65k word lexicon. 

These exploratory results seem to show advantages for a morph system in 
circumstances where large lexica are impractical or unavailable, and that such gains are 
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independent of the quantity of text available to language modelling (up to 80Mword at 
least).  The fact that the performance of the mo rph systems holds up even in the 
worsening of the perplexity scores could well be due to the small improvements in the 
quality of the morph lattices over the word lattices. 

4. Combination morph and word processing 

The exploratory experiments showed little difference between the morph system and 
the word system for 65k vocabulary sizes.  However they also showed that the 
perplexity of the morph language models was a litle worse, and the morph recognition 
lattices were a little better than the word models and lattices.  This suggests that if 
we can combine the superior performance of the word language model with the superior 
morph lattice, we might obtain higher recognition performance.  The challenge is to 
modify the decoder to input morph lattices but calculate probabilities using a word 
trigram language model. 

To estimate the probability of attaching a new morph to a morph sequence with a word 
language model requires the calculation of these intermediate probabilities: 

The probability of a morph given the morph sequence history is either 

q )...|( 1−−= iNi
F
i

F
i mmmpp where F

im  is the last morph in a word, and N is sufficient 

context to encompass three previous words 

q )...|( 1−−= iNi
NF
i

NF
i mmmpp when NF

im may not be the last morph in a word, and N is 

sufficient context to encompass three previous words 

To calculate these probabilities, it is necessary to chunk the hypothesised morph 
sequence into words, which is relatively easy to do using a morph dictionary.  In the 
first case, the sequence forms exactly three words, and so the word trigram model can 
be used directly: 

 )|( 12 −−= iii
F
i wwwpp  

However, in the second case, component mi could be the prefix of many words, and the 
probability of this morph needs to be summed over all the possible matching words: 

 ∑ −−= )|( 12 iij
NF
i wwwpp  

where the sum is over all words wj that match the end of morph sequence 
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Finally, the probability of the addition of a new morph mi needs to be corrected for the 
assumptions made in the calculation of the previous morph in the hypothesis: 

 

otherwise
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mi starts a new word if mi-1 is a stem or a suffix and mi is a stem or a prefix. 

The synergy arising from combining morph lattices with word models is shown by 
improved word recognition accuracy. At the 80M and 65k level, the BNC test set gave 
an overall word accuracy of 66.3% for morphs with a word language model compared to 
63.7% for words with a word language model and 64.5% for morphs with a morph 
language model. 

5. Conclusions 

The experiments described in sections 3 and 4 show that a very simple strategy for the 
incorporation of morphological analysis into a LVCSR system can lead to improvements 
in word accuracy.  The findings of the exploratory experiment are that the productivity 
of morphs means that a morph lexicon of only 13,000 entries can outperform a word 
lexicon of 20,000 entries.  However the findings are also that there is little benefit from 
this aspect of the analysis when the word vocabulary size reaches 65,000 entries.  As 
far as the language modelling is concerned, the perplexity of a trigram morph model is 
much worse than the perplexity of a trigram word model.  This is what one might 
expect in that a morph trigram uses less sentence context to base its probability 
estimate.  Overall this first experiment does not provide convincing evidence for the 
utility of morphological analysis. 

The findings of the second experiment with a morph lexicon and a word language model 
seem to show advantages that may arise from combining the best aspects of the 
morph and word approaches.  The smaller number of lexical items seems to generate 
slightly superior morph lattices, which in combination with the word language model 
generates the highest word accuracy observed in this paper.  It is interesting that it is 
the combination of the morphological analysis and the word sequence statistics that 
gives the best performance. 

Returning to the psycholinguistic data presented in the introduction, we can now ask 
which of these observed behaviours are also shown by our recognition system.  To do 
this we must make some assumptions about the relationship between psycholinguistic 
priming and some measurable property of our decoder.  We will take a fairly broad 
stance in that we will assume that a probe word is primed if the word is present in the 
list of best hypothesis after the priming word is presented. 

Let us take the data case by case, using the examples for clarity: 
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Case 1: (vanish does not prime van). Our system knows pronunciations for  van, -ish, 
vanish.  We can assume that all three will be hypothesised in the morph lattice.  
However since the word van -ish has never occurred it will be penalised by the 
statistical language model.  Thus van makes it to the lattice, but not to the list of best 
hypotheses. 

Case 2: (attract primes attractive). Our system knows the stem attract and it is put 
into the morph lattice.  When the sentence fragment ending in attract is presented to 
the word model it must consider all words starting with the stem attract and so sums 
the likelihoods of each.  In effect all words starting with attract are active in the list of 
best hypotheses. 

Case 3: (attractive primes attract). Our system treats attractive as attract -ive.  Both 
the stem attract and the suffix -ive make it through to the list of best hypotheses.  
The word interpretation attract is still present in the sense that it may later form part 
of another interpretation of the utterance.  After all the sentence may be attract 
eventually and the -ive suffix incorrect. 

Case 4: (vain primes vanity). Our system does not show this behaviour. 

Case 5: (governor does not prime government).  Our system treats governor as 
govern -or and government as govern -ment.  The word government is considered 
when the input has reached the end of govern but when the final -or is processed, the 
properties of government are no longer relevant.  It does not make it through to the 
list of best hypotheses. 

Case 6: (distrust primes trustful).  Our system treats distrust as dis# trust.  If these 
two items are present in the word lattice then the statistical properties of dis# trust -
ful will certainly be accessed in evaluating the sentence fragment.  However the 
statistical properties of trust -ful will only be accessed if there is a competing 
explanation for the first morph, in for example the interpretation this trust. 

Out of 6 cases, the system scores 4½.  The most significant failure is to do with the 
more complex cases of morphological decomposition: those that involve significant 
phonological changes.  Although one defence could be that such morphology is 
relatively rare in English, we have to admit that it is quite common in other languages, 
for example Arabic.  Thus an interesting area for investigation would be whether a 
pronunciation dictionary which stored vanity as vain -ity and a language model which 
performed the same decomposition would lead to performance improvements.  Or it may 
be necessary to build an explicit morphophonological processing layer in the decoder.  
This in turn might overlap with studies of phonological variation caused by accent 
variation and connected speech processes [5]. 

In this paper we have discussed an approach that we have taken to put morphology 
into speech recognition systems for English.  We have shown that it is the combination 
of a morphological pronunciation dictionary in combination with a word language model 
which seems to offer improvements in performance.  Whether by coincidence or 
otherwise, this combination of components also leads to emergent behaviour strikingly 
similar to that shown by human listeners in psycholinguistic experiments. 
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