
Tool Speci�cation with GTSL�

Wolfgang Emmerich

Dept. of Computer Science, City University London,

Northampton Square, London EC1V 0HB, UK

Abstract

The de�nition of software development methods en-
compasses the de�nition of syntax and static seman-
tics of formal languages. These languages determine
documents to be produced during the application of
a method. Developers demand language-based tools
that provide document production support, check syn-
tax and static semantics of documents and thus im-
plement methods. Method integration must determine
inter-document consistency constraints between docu-
ments produced in the various tasks. Tools must, there-
fore, be integrated to implement the required method
integration and check or even preserve inter-document
consistency. The focus of this paper is on the speci�ca-
tion of such integrated tools and outlines the main con-
cepts of the object-oriented tool speci�cation language
GTSL.

1 Introduction

A software process that develops and maintains a
software system performs a number of di�erent tasks.
Examples are requirements analysis tasks where the re-
quirements of future customers of a software system are
elicited or architectural design tasks where the di�er-
ent components of software systems and relationships
among them are identi�ed. The suggestion of the Wa-
terfall model [21] that these tasks be performed in mu-
tual exclusion has been proved infeasible [3]. Instead
the tasks are often carried out in an incremental and
intertwined manner [23, 12].

Tasks are performed using development methods,
like structured analysis [6] for requirements analysis
or object-oriented methods (for instance the Booch
methodology [4]) for architectural design. Method def-
initions have to determine formal graphical or textual
languages. Examples are data
ow diagrams or class

�This work has been partly funded by the CEC as part
of ESPRIT-III project 6115 (GOODSTEP) and was done
while the author was at University of Dortmund, Germany.

hierarchies. These languages then determine document
types and the purpose of each task of a software pro-
cess is to create, analyse and maintain documents of
the types identi�ed. Hence, the de�nition of a method
encompasses the precise de�nition of document types.
Document types are de�ned in terms of the syntax and
static semantics of the underlying formal languages.

Apart from static semantic constraints of the formal
languages, there are also consistency constraints be-
tween di�erent documents. These inter-document con-
sistency constraints are not con�ned to documents of
the same type but frequently exist between documents
of di�erent types. A need for method integration arises
whose aim is to de�ne the consistency constraints that
documents must obey. An important factor for the
quality of a software system is then whether these con-
straints have been de�ned properly and are respected
by the documents produced during the process.

A particular mix of methods that is appropriate
in one process need not be appropriate for another.
A process developing a real-time application, for in-
stance, should use a requirements de�nition language
that can express response time constraints, but such
a language might be unnecessarily complicated for a
banking application, where response time constraints
need not be expressed. This means that it is impos-
sible to �nd the mix of methods that could be used
in arbitrary software processes. Therefore, method in-
tegration must become part of process modelling and
deserves appropriate attention.

Development methods are implemented by tools
that software developers can use to apply the method.
To implement method integration then requires tools
to be integrated. The main contribution of this paper
is the presentation of the GOODSTEP1 tool speci�-
cation language (GTSL), an object-oriented language
dedicated to the speci�cation of integrated tools. The
language is executable and the GTSL compiler GEN-
ESIS generates tools from GTSL speci�cations.

The rest of this paper will be structured as follows.

1GOODSTEP's aim is to enhance a general object-

oriented database for software engineering processes.

In the next section, we discuss the need for method
and tool customisation in more detail. Section 3 sug-
gests a representation for documents as a basis for the
speci�cation of tools and document types and relates
it to the literature. In Section 4 we present the main
concepts of GTSL. We conclude the paper in Section 5
with work that remains to be done.

2 Method and Tool Customisation

As an illustrating example that we will use through-
out this paper consider Figure 1. It displays four dif-
ferent documents of four di�erent types. Starting from
the bottom left, there are in clock-wise order an entity
relationship diagram, an architectural de�nition that
identi�es di�erent types of modules as components of
a software system2, a module interface de�nition that
identi�es exported types and operations as well as an
import interface, and a module implementation that
implements the exported types and operations of a
module in the C programming language. The inte-
gration of the underlying methods requires a number
of inter-document consistency constraints to be de�ned
between the respective document types. Entities of the
entity relationship diagram, for instance, must be re-
�ned in terms of abstract data type modules in the
architecture diagram. Modules in these diagrams, in
turn, must be re�ned by a module interface de�nition,
that de�nes the export and import interface in detail.
Each arrow of the architecture diagram should appear
as an entry in the import interface of a module inter-
face de�nition. Operations and types that have been
identi�ed in the export interface must be implemented
in the C document. Therefore, parameter lists and
result types in the interface design and in the C doc-
ument should match. Moreover, import interfaces are
re�ned by preprocessor #include statements. Con-
versely, there should be no such statements when the
design does not include the respective entry in the im-
port interface, otherwise there would be dependencies
among source code components that are not properly
re
ected in the design.

The need arises to assist software developers in the
production of documents that meet inter-document
consistency constraints such as those outlined above,
and thus to implement the methods and their inte-
gration. Users3 require a tool for each document type.
Such a tool should support the methods and o�er com-

2The detailed notion is of no concern here and we refer
to [11].

3The software developers that use tools are referred to
as users hereafter.

mands to edit documents of that type. It should be
supportive in achieving syntactic and static semantic
correctness of documents, browsing of semantically re-
lated documents and most importantly, it must check
for inter-document consistency. This requires that
tools be aware of the syntactic structure of documents.
We denote di�erent syntactic units of documents as
increments because users can modify these units in-
crementally. The granularity of increments can range
from complete documents to single identi�ers. The ex-
ample of Figure 1 displays the user interfaces of tools
contained in the Groupie environment [11]. They are
used to edit, analyse and check documents of the types
identi�ed above.

To implement method integration, tools have to
check for inter-document consistency constraint viola-
tions. Di�erent strategies can be considered how a tool
should react to a constraint violation. It might tolerate
a violation and only visualise an inconsistency to the
user when it has been introduced. This visualisation
might be achieved by the use of colours or by under-
lining. In the example of Figure 1, a parameter list
increment in the C implementation is underlined be-
cause it does not match the parameter list determined
in the interface design. Detailed error messages should
be provided on demand. Alternatively, a tool might fol-
low an intolerant approach and reject the execution of
commands that would violate an inter-document con-
sistency constraint. A tool might even automatically
correct erroneous increments. Upon a change of one
increment, it can, for instance, automatically modify
related increments in other documents in such a way
that consistency is retained. We refer to these auto-
matic modi�cations of related increments as change
propagations.

Most software processes are conducted by multiple
rather than single developers. This implies that we
also have to consider the concurrent use of tools by
multiple users. Di�erent versions of documents must
be managed to facilitate independent document devel-
opment. The methods de�ned in terms of document
types, therefore, also have to identify the granularity
for version management. Versions are then used to al-
low users to edit documents in isolation for a certain
period of time. However, due to inter-document con-
sistency constraints, the development cannot be per-
formed in complete isolation. At some point in time,
the documents produced by one developer must be-
come consistent with documents produced by other
developers. Users must then share their document ver-
sions. In the above example a requirements engineer
might use the entity relationship tool to de�ne an in-
formation model of a software system, while a designer

Figure 1: User Interface of Groupie Environment

is de�ning its architecture. Their document versions
should become consistent with each other before imple-
mentation begins, otherwise signi�cant e�ort might be
wasted during implementation if, for instance, wrong
names are used or it turns out that an implemented
module is obsolete. They, therefore, have to edit the
corresponding versions of the entity relationship and
the architecture diagram concurrently.

To reach a state of consistency, users want to see
the impact of concurrent document updates as soon
as possible. Tight cooperation requires updates to a
document version to be done in such a way that all
tools concurrently displaying a document version are
informed of the update as soon as possible. They
should then redisplay the document version in order
to re
ect the update as well. In the above example of
inconsistent parameter lists, a designer might remove
the inconsistency by deleting the additional parameter.
If a programmer is concurrently accessing the version
of the implementation document that corresponds to
the interface, he or she should see, as soon as possible,

that the inconsistency has been resolved and requires
no further attention. The shared and cooperative up-
dates of document versions must, therefore, not be dis-
abled by exclusive locking of complete documents by
long transactions but transactions must be short and
locking must be done with a more �ne-grained granu-
larity.

3 Document Representation

Before we can identify concepts of a higher-level
speci�cation language for the de�nition of methods and
their integration, we have to understand how docu-
ments should be represented. During this discussion
we compare our considerations to related work. The
common internal representation for documents ma-
nipulated by tools is an abstract syntax tree of some
form [20, 8, 13]. Nodes in the abstract syntax tree of-
ten have additional attributes whose values represent
semantic information such as references to a string ta-

Interface Window

ADT
Module

Entity

pl Attribute
 List

1
Attribute

Entity

pl Attribute
 List

1
Attribute

pl Attribute
 List

Relation
 ship

’Window’

’WindowStack’1
Entities

2

1

’size’

’pos’

entsE/R
Diagram

rels

source

target

E/R−Diagram
WindowSystem

1
’WindowStack’

2

target

modsArchi
tecture Modules ADT

Module

ADT
Module

ADT
Module

TC
Module

3

4

1

2

3

imps
Import

Import

’Window’

’Position’

’BasicTypes’

target

source

source

...

Architecture
WindowSystem

Imports

Import
Interface

Param
List

Mod
Name

Comment

Type
Name

Operation
List Function OpName

Using
Type

Comment

ParName

Using
Type

ParName

Using
Type

In
Parameter

In
Parameter

Import
List

Imported
Module

Type
Import

’TWindow’

’CreateWindow’

’TPosition’

’STRING’

’upper_left’

’name’

’TWindow’

’/* creates a new window */’

’/*
 * defines a type...’

’BasicTypes’

’STRING’

name

com

type

opl 1 name

pl

type

com

1

2

3

name

type

name

type

fm

1

1imp

’Window’

ToArch

ToArch

DefinedIn

DefinedIn

ImpFrom

DefinedIn

2

...

...

ToDesign

TC
Module

Mod
Name

Comment

’BasicTypes’

’/*
 * defines a set of...’

TypeName
List

Type
Name

’STRING’1

2

name

com

tnl

Interface
BasicTypes ...

Relation
 ships

...

ImpFrom

ToDesign

...

Figure 2: Excerpt of a Project-wide Abstract Syntax Graph

ble, symbol tables or type information. Operations,
like insertion of a new parameter list place holder can
be implemented as subtree replacements. After free
textual input, the abstract syntax tree can be estab-
lished with parsing techniques well-known from com-
piler construction [1].

Static semantic checking of a document that is rep-
resented as an abstract syntax tree can be done by
attribute evaluations along parent/child paths in the
document's attributed abstract syntax tree [17, 20].
The evaluation paths are computed at tool construc-
tion time based on attribute dependencies. If inter-
document consistency checks are implemented by at-
tribute evaluations, inter-document consistency con-
straints must be checked at an arti�cial root node,
which has sub-trees for each document. With respect
to concurrent tool execution many concurrency con-
trol con
icts arise at these root nodes and decrease
tools' performance. Therefore, techniques based on
the introduction of additional, non-syntactic paths for
more direct attribute propagation have been devel-
oped [15, 18, 14]. They generalise the concept of ab-
stract syntax trees to abstract syntax graphs. Such non-
syntactic paths implement semantic relationships that
connect syntactically disjoint parts of possibly di�erent
documents even of di�erent types. They can be used
for consistency checking, change-propagation when the

document is changed and even for implementing static
semantic analysis and browsing facilities. To handle
these semantic relationships in a consistent way, the
obvious strategy is to view the set of documents mak-
ing up a project as a single project-wide abstract syntax
graph.

In such a graph, we distinguish between aggrega-
tion edges, which implement syntactic relationships,
from reference edges, which arise from semantic re-
lationships. A document is then represented by the
subgraph whose node-set is the closure of nodes reach-
able by aggregation edges from a document root node.
Nodes that cannot have outgoing aggregation edges are
called terminal nodes, for their origin lies in terminal
symbols of the underlying grammar. Those nodes that
may have outgoing aggregation edges are called non-
terminal nodes accordingly.

As an example, consider Figure 2. It outlines how
the di�erent abstract syntax trees representing docu-
ments of Figure 1 are integrated to a project-wide ab-
stract syntax graph. The re�nement of entities de�ned
in the entity relationship diagram in terms of modules
of the architecture is re
ected by inter-document refer-
ence edges (drawn as dotted arrows) labelled ToArch.
Likewise, the re�nement of modules of the architecture
de�nition in terms of module interface documents is
stored by means of reference edges labelled ToDesign.

Intra-document reference edges (drawn with dashed
arrows) labelled DefinedIn represent the use/declare
relationship between type increments of a module in-
terface document. The parameter type of function
CreateWindow with the attribute STRING (given in
quotes), for instance, has an outgoing reference edge to
the node where it is declared, that is to the TypeImport
node with attribute STRING. This node represents an
import that is itself connected via an inter-document
reference edge labelled ImpFrom to another node con-
tained in the subgraph of module BasicTypes where
the type is exported.

Graph grammars have been suggested in [12] to
specify the structure of such abstract syntax graphs.
Productions of the grammar can then be consid-
ered as available operations to modify abstract syn-
tax graphs. Graph grammars, however, do not appro-
priately specify concurrency constraints, lexical syn-
tax, external document representations and dialogues
between users and tools during command execution.
Moreover, graph grammars do not impose a particular
structuring paradigm and speci�cations of graphs that
occur in practice tend to become so complex that they
can hardly be managed appropriately.

4 GTSL

On the basis of the above concepts, we can now
focus on the question how document types and tools
are de�ned appropriately. We propose GTSL for that
purpose. The language allows tool builders to de�ne
static and dynamic properties of syntax graphs as well
as mappings between syntax graphs and external doc-
ument representations. The static properties that are
to be de�ned are the various node types, their at-
tributes and the edges that may start at or lead to
nodes. Dynamic properties are, �rstly, the available
tool commands and their de�nition on the basis of syn-
tax graph access and modi�cation operations and, sec-
ondly, the dependencies between attribute values and
reference edges that de�ne static semantics and inter-
document consistency constraints. The mappings to
external document representations must de�ne the ap-
pearance of abstract syntax graphs at the user interface
of tools or in printed tool output.

For the de�nition of a project-wide abstract syn-
tax graph, as many node types must be de�ned as
there are productions in the underlying language gram-
mars. The speci�cation of document types and tools,
therefore, becomes rather complex for methods and
languages that occur in software engineering practice.
The speci�cation language must incorporate structur-

ing facilities to keep this complexity manageable. The
overall speci�cation of a project-wide abstract syntax
graph should, therefore, be decomposed into the speci-
�cations of the various subgraphs that represent di�er-
ent document types and each of these subgraph spec-
i�cations should be decomposed into speci�cations for
the node types that occur in the subgraph. GTSL sup-
ports this decomposition in an object-oriented way.
Tools are speci�ed in terms of con�gurations of in-
crement classes. Import/Export relationships between
tool con�gurations make the dependencies between dif-
ferent tool speci�cations explicit and simplify customi-
sation and reuse. Increment classes determine node
types of the project-wide syntax graphs and con�gura-
tions determine the increment classes that belong to a
tool.

The complexity of specifying a tool is signi�cantly
reduced if tool builders can reuse already existing tool
speci�cation components. GTSL, therefore, allows the
tool builder to identify similarities among di�erent in-
crement classes and to specify the common structure
and behaviour of increments in one class and reuse it
in similar classes. The object-oriented paradigm is ex-
ploited and similarities are expressed by inheritance.
De�nitions inherited from super classes can be cus-
tomised by rede�ning them. Reuse is then further
supported since GTSL comes with a library of pre-
de�ned classes de�ning, for instance version manage-
ment, common tool commands, symbol tables or stan-
dard scoping rules.

Due to the heterogeneity of the di�erent static and
behavioural concerns, it is impossible to �nd a unique
formalism that is appropriate for their speci�cation.
Instead, we separate the di�erent concerns and of-
fer the most appropriate formalism for each of them.
We integrate these di�erent formalisms into a domain-
speci�c multi-paradigm language that uses rule-based,
object-oriented and imperative concepts.

Following the principle of information hiding [19],
the de�nition of a class is divided into a public class
interface and a private class speci�cation. The class
interfaces and speci�cations are, in turn, structured
into di�erent sections that o�er di�erent paradigms to
specify the various concerns.

The node types in an abstract syntax graph de�ni-
tion play di�erent roles. Terminal classes, which de-
�ne leaf nodes of the abstract syntax tree, must not
have commands to expand child increments, whereas
non-terminal classes, which de�ne inner syntax tree
nodes, require these commands. Non-terminal classes
must also specify the unparsing scheme that de�nes
the external representation of their instances. Abstract
classes de�ne common properties of classes that are

inherited by its subclasses. We call instances of non-
terminal classes non-terminal increments and instances
of terminal classes terminal increments. We refer to
them as increments, if their position in the syntax tree
is not important. Besides increment classes, we ad-
ditionally support non-syntactic classes that will be
used for the declaration of non-atomic attribute types,
such as error lists or symbol tables. Instances of these
classes are referred to as attributes. If the distinction
between attributes and increments is not important,
we will denote instances of classes as objects.

4.1 Speci�cation of Static Properties

Abstract Syntax: Aggregation edges starting from
nodes of a type are de�ned within an abstract syntax
section in the increment class interfaces that speci�es
the type. The abstract syntax section is available for
abstract and non-terminal increment classes. If a child
is de�ned in an abstract class it is inherited by all sub-
classes. Children are speci�ed in the abstract syntax
section with the name and a formal type that restricts
child increments to instances of the formal type or sub-
types thereof, which are induced by the inheritance
hierarchy. Multi-valued aggregation edges are de�ned
by the LIST type constructor. Below there are several
examples of abstract syntax sections for node types
displayed in Figure 2. Note, how ADTModule reuses
de�nitions inherited from Module.

ABSTRACT INCREMENT INTERFACE Module;

INHERIT DocumentVersion, ScopingBlock; ...

ABSTRACT SYNTAX

name:ModName;

com:Comment;

END ABSTRACT SYNTAX; ...

NONTERMINAL INCREMENT INTERFACE ADTModule;

INHERIT Module; ...

ABSTRACT SYNTAX

type:TypeName;

opl:OperationList;

imp:ImportInterface;

END ABSTRACT SYNTAX; ...

NONTERMINAL INCREMENT INTERFACE OperationList;

INHERIT Increment; ...

ABSTRACT SYNTAX

ol:LIST OF Operation;

END ABSTRACT SYNTAX; ...

The distinction between di�erent types of classes
enables us to exclude a number of potential speci�ca-
tion errors. It does not make sense, for instance, to
have a terminal increment class that inherits from an
abstract class, which, in turn, de�nes abstract syntax
children. In that case the terminal class would inherit
these children and no longer be terminal.

Attributes: Node attributes are declared within the
attribute section of increment classes. An attribute
de�nition declares a name and a type of an attribute.
Non-syntactic classes can also be used to impose a
particular behaviour on attribute types. We do not
address non-syntactic classes any further here. They
provide the expressive power of an object-oriented lan-
guage including multiple inheritance, construction of
types and encapsulation with methods.

As an example, consider the following example
from the Groupie interface editor de�nition. It de-
�nes an attribute DefinedNames whose type is of class
SymbolTable. It is used to maintain associations be-
tween names and increments.

ABSTRACT INCREMENT INTERFACE ScopingBlock; ...

ATTRIBUTES

DefinedNames:SymbolTable;

END ATTRIBUTES; ...

Semantic Relationships: Reference edges are de-
�ned as pairs of unidirectional links in the semantic
relationship sections of the two increment classes that
are connected by the edge. The explicit link denotes
the direction from the source to the target increment
class. The implicit link denotes the reverse direction.
Both kinds of links can be single- and multi-valued so
as to allow for 1:1, 1:n and m:n relationships.

Relationships are created and deleted during static
semantics and inter-document consistency analysis.
Creation of a relationship is speci�ed by assigning an
expression that denotes an increment to an explicit
link. The implicit link is established by including the
source increment in the set that stores the implicit link.
A relationship is deleted by assigning the unde�ned
value NIL to the explicit link of the relationship. As an
example, consider the relationships DefinedIn/UsedBy
between UsingType and TypeDecl.

TERMINAL INCREMENT INTERFACE UsingType;

INHERIT UsingName;

SEMANTIC RELATIONSHIPS

DefinedIn: TypeDecl

END SEMANTIC RELATIONSHIPS; ...

ABSTRACT INCREMENT INTERFACE TypeDecl;

INHERIT DefiningName;

SEMANTIC RELATIONSHIPS

IMPLICIT UsedBy:SET OF UsingType.DefinedIn;

END SEMANTIC RELATIONSHIPS; ...

Increment class UsingType de�nes an explicit link
DefinedIn to an abstract increment TypeDecl. Using
that link, a UsingType increment can refer to the in-
crement where its type is declared. If TypeName and
TypeImport are declared as subclasses of TypeDecl,

polymorphism can be exploited to have DefinedIn

edges to the two classes as they occur in Figure 2.
UsedBy then refers to the set of increments that use
the type declarations.

4.2 Speci�cation of Dynamic Properties

Semantic Rules: Attributes and semantic relation-
ships are concepts that can be used for de�ning data
structures for static semantics and inter-document con-
sistency constraints. Changes of attribute values and
the creation or deletion of semantic relationships will
be de�ned in tool commandde�nitions. These changes,
however, usually require a number of follow-on activ-
ities in order to check static semantic constraints for
related increments.

If tool builders have to use imperative concepts to
de�ne static semantics and inter-document consistency
constraints they would have to �nd valid execution or-
ders to perform the required follow-on actions for all
potential attribute and semantic relationship changes.
We strongly consider this to be at the wrong level of
abstraction. Tool builders require instead a declara-
tive concept for de�ning the correctness of the various
static semantic and inter-document consistency con-
straints. This concept should, in particular, relieve
them from worrying about the order in which evalu-
ations are performed. The new concept should also
support our structuring paradigm and be de�ned in
terms of increment classes. In addition, the concept
must enable the e�cient evaluation of static semantic
constraints to be carried out as this has to be done on-
line, i.e. during the execution of user commands. We
introduce semantic rules for that purpose.

Each semantic rule consists of a list of statements
called action that is bound to a condition. The con-
dition is speci�ed after the ON clause and the action
is de�ned between ACTION and END ACTION keywords.
Temporal predicates may be used to specify condi-
tions, namely CHANGED and DELETED. A CHANGED pred-
icate becomes TRUE if its argument has been created or
changed since the last execution of the semantic rule.
The DELETED expression becomes TRUE if its argument
is about to be removed. Arguments of a CHANGED or
DELETED expression may be attributes or semantic re-
lationships of any other increments. Path expressions
are used to determine attributes or semantic relation-
ships of remote increments. A name of an attribute
may only occur as the last name in a path expression.
Compound conditions can be built by using the OR op-
erator. An EXISTS operator is used in the usual sense
of �rst-order logic to specify that the rule has to be ex-
ecuted as soon as some other condition holds for an el-

ement in a multi-valued syntax child or a multi-valued
semantic relationship.

As an example we now consider a solution to a
problem that occurs during static semantics speci�-
cation, namely the name analysis problem [16]. We
solve it with three abstract classes, i.e. ScopingBlock,
DefiningName and UsingName. The classes are in-
dependent of a particular target language and can
thus be reused to de�ne name analysis in multiple
tools. ScopingBlock serves as super class for incre-
ment classes that start a new block. DefiningName

serves as a super class for classes whose increments
contribute to the declaration of new names. Finally,
UsingName serves as a super class for all applied oc-
currences of names. The attribute DefinedNames in
class ScopingBlock is used to maintain associations
between names and references to increments where the
respective names are declared. We then have to de�ne
that an association is included for those and only those
increments that declare names. Hence associations are
entered into the table when de�nitions are created, the
table is updated when the increment name is changed
and associations are deleted when the declaration is
deleted. This is de�ned in the semantic rules below.

INCREMENT SPECIFICATION ScopingBlock;

INITIALIZATION

DefinedNames := NEW DuplicateSymbolTable;

END INITIALIZATION;

SEMANTIC RULES

ON EXISTS(name:DefiningName IN IncludedNames):

CHANGED(name.value);

ACTION

DefinedNames.associate(name,name.value);

END ACTION;

ON EXISTS(name:DefiningName IN IncludedNames):

DELETED(name);

ACTION

DefinedNames.deassociate(name,name.value);

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION ScopingBlock.

In these two rules, IncludedNames denotes the im-
plicit link of a semantic relationship between class
DefiningName and ScopingBlock. We can assume
that it is established during construction of de�ning
name increments. The �rst rule then �res whenever
a new declaring increment is created or its value is
being changed. Then the symbol table is updated
to include the association between the new value and
the increment declaring the value. If a name in the
scope is deleted, the respective association is removed
from the table by the second rule. Then the sym-
bol table can be accessed from semantic rules in class
DefiningName to check for uniqueness of names and

from class UsingName to check for existence of applied
occurrences of names.

Interactions: The steps of a software development
method are implemented by the commands that the
tool o�ers. The command de�nition must determine
the names of commands, preconditions for their appli-
cability and the particular dialogues between tool and
user, if any. In GTSL commands are de�ned as inter-
actions. The de�nition of an interaction encompasses
an internal and an external name, a selection context,
a precondition and an action. The external name ap-
pears in context sensitive menus or is used to invoke a
command from a command-line. The internal name is
used to determine the rede�nition of an inherited inter-
action. The selection context de�nes which increment
must be selected so that the interaction is applicable.
It is actually included in a context-sensitive menu if
the precondition that follows the ON clause evaluates
to TRUE. The action is a list of GTSL statements that
is executed as soon as the user chooses the command
from the menu. The interaction displayed below is con-
sidered to be o�ered if the selected increment is a type
name.

INCREMENT SPECIFICATION TypeName; ...

INTERACTIONS

INTERACTION ChangeType

NAME "Change Type"

SELECTED IS SELF

ON (SELF.expanded)

VAR t:TEXT;

err:TEXT_SET;

BEGIN // start a new transaction

t:=NEW TEXT(value); // read-lock SELF

IF (t.LINE_EDIT("Enter New Type!")) THEN

IF SELF.scan(t.CONTENTS()) THEN

FOREACH i:TypeImport IN ExpTo DO

i.react_to_change(t.CONTENTS())

ENDDO;

FOREACH i:UsingType IN UsedBy DO

i.react_to_change(t.CONTENTS())

ENDDO;

value:=t.CONTENTS() // write-lock SELF

ELSE // read-lock SELF

err:=NEW TEXT_SET(SELF.get_errors());

err.DISPLAY;

ENDIF

ENDIF

// release all locks, changes persist

END ChangeType;

It is actually o�ered if the type has already been ex-
panded. If this is the case and the user has requested
a menu, the string Change Type will become a menu
item. If the user chooses this item, the action is exe-
cuted and the user will be prompted to edit the type

identi�er in a line edit window. The default charac-
ter string in this line edit window is the value of the
old type identi�er. If the dialogue is completed, the
LINE EDIT method returns TRUE and the method scan

is executed. The method implementation is generated
from a regular expression that is provided for termi-
nal increment classes. It returns TRUE if the identi-
�er is lexically correct, otherwise it returns FALSE. If
the identi�er is correct semantic relationships of a type
name will be exploited to propagate the change to de-
pendent increments such as parameter types or type
imports in order to retain consistency. Then the new
lexical value is stored in attribute value. If the iden-
ti�er is wrong an appropriate error message will be
displayed.

Multiple users cannot concurrently execute com-
mands in a totally unrestricted way. This is due to the
lost update and inconsistent analysis problems, known
from concurrency control in database systems [5]. As
an example of the inconsistent analysis problem, con-
sider the following scenario. A designer uses the above
interaction to change the name of an exported type.
A concurrently working designer creates an import
statement referring to the old type. During that, the
included type name is searched in the symbol table
DefinedNames of the module where the type is being
changed. An inconsistent analysis problem occurs if
this search is performed after the other tool has done
the change propagation and before the association was
changed in the table. Then the import statement will
not be displayed as inconsistent although the imported
type does not exist anymore. The construction of an
example for lost updates is straight-forward.

Now we have encountered the dilemma that we can-
not lock document versions exclusively while they are
being edited without hampering cooperation. On the
other hand, we must restrict concurrency to avoid the
lost update and inconsistent analysis problems. The
dilemma is solved by decreasing granularity with re-
spect to both the subject that performs locking and
the objects that are being locked. This means that
tool sessions are considered as sequences of command
executions, each of which is executed in isolation from
concurrent commands. Isolation is achieved by lock-
ing objects in a traditional way. Locking is inferred
from the use of objects and relationships and need not
be speci�ed explicitly. An object is locked in shared
mode when the object is read and in exclusive mode
when it is updated. While shared locks are compatible
to each other, any other combination reveals a con-
currency control con
ict. To decrease the probabil-
ity of concurrency control con
icts, commands do not
lock the complete representation of a document ver-

sion, but only those nodes that are being accessed or
updated during the execution of the command. In the
examples that encounter lost updates or inconsistent
analysis problems, we would then obtain a concurrency
control con
ict. Tools react to these con
icts by delay-
ing the execution of one command to await completion
of the con
icting command, that is until con
icting
locks have been released. This is appropriate because
command execution requires only a few hundred mil-
liseconds, which users will hardly recognise as delays.

Apart from the isolation property sketched above,
interactions have further transaction properties. They
are atomic, i.e. they are either performed completely
or not at all. Once completed, the e�ect of an interac-
tion is durable, i.e. all changes that were made during
the interaction persist even if the tool is stopped ac-
cidentally by a hardware or software failure. Due to
atomicity, tools then recover to the state of the last
completed command execution.

4.3 External Document Representation

The external document representation is determined
in terms of unparsing schemes. Unparsing schemes
are de�ned for non-terminal increment classes only.
They cannot be de�ned for abstract increment classes.
In that case abstract syntax children that might be
added in subclasses would not be re
ected. Neither
are unparsing schemes required for terminal increment
classes. For terminal increments the layout computa-
tion only needs to output the terminal increment's lex-
ical value. As an example for a textual document rep-
resentation consider the unparsing schemes of classes
OperationList and ADTModule below.

NONTERMINAL INCREMENT INTERFACE OperationList;

UNPARSING SCHEME

ol DELIMITED BY (NL),(NL) END

END UNPARSING SCHEME; ...

NONTERMINAL INCREMENT INTERFACE ADTModule; ...

UNPARSING SCHEME

"DATATYPE",WS,"MODULE",WS,name,";",(NL),(NL),

(" "),com,(NL),(NL),

(" "),"EXPORT",WS,"INTERFACE",(NL),(NL),

(" "),"TYPE",WS,type,";",(NL),(NL),

(" "),opl,(NL),

(" "),imp,(NL),(NL),

"END",WS,"MODULE",WS,name,".",(NL)

END UNPARSING SCHEME; ...

5 Summary and Further Work

We have discussed the need for method de�nition
and integration. Method de�nitions have to iden-
tify document types. Method integration must de�ne

inter-document consistency constraints. The applica-
tion of methods should be supported by tools whose
integration implements method integration. We then
have discussed why documents should be represented
as project-wide abstract syntax graphs. Then we have
outlined GTSL as a speci�cation language capable to
de�ne these project-wide abstract syntax graphs as
well as commands that are o�ered by tools to mod-
ify these graphs. The implementation of the GTSL
compiler GENESIS generates ASG schemas for the
O2 database system [2] as discussed in [9]. Standard
database transactions are exploited to implement in-
teractions.

GTSL has been evaluated within the GOODSTEP
project for the construction of an SEE for British Air-
ways. An account on this evaluation is given in a com-
panion paper [10]. One of the results of this evaluation
was that often document types, such as module inter-
face de�nitions and the corresponding implementations
have a similar structure and documents should, there-
fore, not be stored redundantly. To improve e�ciency
and reduce the number of required change propaga-
tions these documents should be considered as di�erent
views of the same conceptual syntax graph. An exten-
sion of GTSL with language concepts to de�ne di�erent
views has been done and it is now being implemented
on the basis of a view mechanism for object-oriented
databases [22].

Di�erent document versions can be managed on the
basis of the version manager of the O2 database sys-
tem [7]. The problem of con�guration management
has not yet been su�ciently addressed. Semantic rela-
tionships with other document versions are established
during editing as determined by the semantic rules.
They are, however, only created with those other ver-
sions of documents that have either been selected ex-
plicitly or are the default version. In that way a user
accesses exactly one con�guration at a time. What
is not yet supported is the explicit construction of a
con�guration. To facilitate this, tools would have to
compute the set of document versions that are consis-
tent with each other. This obviously interferes with
evaluation of semantic rules and it is not yet clear to
us when the required evaluations can best be done.

Acknowledgements

I thank a number of my students, namely Werner
Beckmann, J�org Brunsman, Boris Gesell, Jens Jahnke,
Matthias Kurth, Ralph Mertingk, Wiebke Reimer and
Mike Wagener who contributed to the implementation
of the GTSL compiler. I thank Uwe Kastens, Carlo
Ghezzi and Wilhelm Sch�afer for the discussions we had

about GTSL. The presentation was improved by the
valuable comments I got from Jun Han, Willi Hassel-
bring, JimWelsh and the anonymous referees on earlier
drafts of this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullmann. Compil-
ers { Principles, Techniques and Tools. Addison
Wesley, 1986.

[2] F. Bancilhon, C. Delobel, and P. Kanellakis.
Building an Object-Oriented Database System:
the Story of O2. Morgan Kaufmann, 1992.

[3] B. W. Boehm. A Spiral Model of Software De-
velopment and Enhancement. IEEE Computer,
pages 61{72, May 1988.

[4] G. Booch. Object Oriented Design with Applica-
tions. Benjamin/Cummings, 1991.

[5] C. J. Date. Introduction to Database Systems, Vol.
1. Addison Wesley, 1986.

[6] T. de Marco. Structured Analysis and System
Speci�cation. Yourdan, 1978.

[7] C. Delobel and J. Madec. Version Management in
O2. Technical report, O2-Technology, 1993.

[8] V. Donzeau-Gouge, G. Kahn, B. Lang, and M.
M�el�ese. Document structure and modularity in
Mentor. ACM SIGSOFT Software Engineering
Notes, 9(3):141{148, 1984.

[9] W. Emmerich. Tool Construction for process-cen-
tred Software Development Environments based
on Object Database Systems. PhD thesis, Uni-
versity of Paderborn, Germany, 1995.

[10] W. Emmerich, J. Arlow, J. Madec, and M. Phoe-
nix. Construction of the British Airways SEE with
the O2 ODBMS. Technical report, City Univer-
sity London, Dept. of Computer Science, 1996. To
appear.

[11] W. Emmerich and W. Sch�afer. Groupie | An
Environment supporting Group-Oriented Archi-
tecture Development. Technical Report 71, Uni-
versity of Dortmund, Dept. of Computer Science,
Chair for Software Technology, 1994.

[12] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer,
and A. Sch�urr. Building Integrated Software De-
velopment Environments | Part 1: Tool Speci�-
cation. ACM Transactions on Software Engineer-
ing and Methodology, 1(2):135{167, 1992.

[13] A. N. Habermann and D. Notkin. Gandalf: Soft-
ware Development Environments. IEEE Transac-
tions on Software Engineering, 12(12):1117{1127,
1986.

[14] R. Hoover. Incremental graph evaluation. PhD
thesis, Cornell University, Dept. of Computer Sci-
ence, Ithaca, NY, 1987.

[15] G. F. Johnson and C. N. Fisher. Non-syntactic
attribute
ow in language based editors. In Proc.
of the 9th Annual ACM Symposium on Principles
of Programming Languages, pages 185{195. ACM
Press, 1982.

[16] U. Kastens and W. M. Waite. An abstract data
type for name analysis. Acta Informatica, 28:539{
558, 1991.

[17] D. E. Knuth. Semantics of Context-Free Lan-
guages. Mathematical Systems Theory, 2(2):127{
145, 1968.

[18] M. Nagl. An Incremental and Integrated Software
Development Environment. Computer Physics
Communications, 38:245{276, 1985.

[19] D. C. Parnas. A Technique for the Software Mod-
ule Speci�cation with Examples. Communications
of the ACM, 15(5):330{336, 1972.

[20] T. W. Reps and T. Teitelbaum. The Synthesizer
Generator. ACM SIGSOFT Software Engineering
Notes, 9(3):42{48, 1984.

[21] W. W. Royce. Managing the Development of
Large Software Systems. In Proc. WESCON,
1970.

[22] C. Santos, S. Abiteboul, and C. Delobel. Virtual
Schemas and Bases. In M. Jarke, J. Bubenko, and
K. Je�erey, editors, Proc. of the 4th Int. Conf. on
Extending Database Technology, Cambridge, UK,
volume 779 of Lecture Notes in Computer Science,
pages 81{94. Springer, 1994.

[23] A. L. Wolf, L. A. Clarke, and J. C. Wileden. The
AdaPIC Tool Set: Supporting Interface Control
and Analysis Throughout the Software Develop-
ment Process. IEEE Transactions on Software
Engineering, 15(3):250{263, 1989.

