
Ice-sheet elevations from across-track processing of airborne

interferometric radar altimetry

R. L. Hawley,1,2 A. Shepherd,3 R. Cullen,4 V. Helm,5 and D. J. Wingham6

Received 5 August 2009; revised 24 September 2009; accepted 16 October 2009; published 19 November 2009.

[1] Interferometric Radar Altimeters (IRA’s) use dual
receive antennas to overcome one of the spatial
limitations of pulse-limited altimeters. In a conventional
IRA measurement, the range and across-track direction of a
scatterer are determined using the phase difference between
the antennas. We demonstrate a method of determining
multiple elevation points across a swath orthogonal to the
instrument ground track in regions of steep terrain, such as
ice-sheet margins. We use data from an airborne IRA (a
prototype of the CryoSat-2 instrument), and compare the
results to simultaneous Airborne Laser Scanner (ALS)
observations. This application results in a 75-fold increase
in measurement density compared to conventional radar
altimetry. Along a�2.5 km ground track, the RMS departure
between the IRA- and ALS-derived measurements was
1.67 m. Based on our result, although our approach is
limited to areas of relatively steep slope, a 25- to 75-fold
increase in elevation measurements could be achieved in
coastal regions of Antarctica and Greenland with similar
processing of CryoSat-2 data. Citation: Hawley, R. L., A.

Shepherd, R. Cullen, V. Helm, and D. J. Wingham (2009), Ice-

sheet elevations from across-track processing of airborne

interferometric radar altimetry, Geophys. Res. Lett., 36, L22501,

doi:10.1029/2009GL040416.

1. Introduction

[2] Understanding the state of the world’s ice masses is
important to scientists, policymakers, and society. Although
the large ice sheets of Antarctica and Greenland contain the
vast majority of ice on Earth today, the world’s 105 small
glaciers and ice caps are expected to provide the greatest
cryospheric component of 21st century sea level rise [Lemke
et al., 2007]. These small ice masses include steep topog-
raphy which has limited our ability to quantify changes in
their volume using radar altimetry. In addition, the sectors
of the Antarctic and Greenland ice sheets exhibiting the
greatest changes today are at their margins, where slopes are
similarly problematic. The CryoSat-2 interferometric radar
altimeter (IRA) is designed to overcome some of the
limitations of pulse-limited altimeters [e.g., Partington,

1998] and survey ice elevation changes with sufficient
spatial and temporal resolution to fill gaps in our knowledge
of such regions [Wingham et al., 2005].

2. Background

[3] In sloping regions, the first echo returned to the
receiver will be from the off-nadir Point Of Closest
Approach (POCA). A classical pulse-limited altimeter can-
not determine the location of the POCA without additional
slope information. An IRA uses dual receive antennas to
determine the across-track location of the POCA, and the
angle subtended to the scattering location can be determined
using the phase difference between echoes received at the
two antennas.
[4] In the normal operation of an IRA over a flat or

slightly-sloping surface, the echo from the POCA (point 0 in
Figure 1d) will be from a location within the antenna beam-
width. Subsequent echoes will then simultaneously arrive
from both sides (across-track) of the POCA (Figures 1d, top
and 1d, middle), and the phase-difference signal will be
indistinct. In this case, the correct identification of the POCA
using interferometric phase (‘‘conventional processing’’) is
possible, but the across-track processing scheme presented
here would be foiled. If, however, the surface slope is large
enough that the POCA is on the edge of or outside the
antenna beam (i.e., when the surface slope is greater than
half of the antenna’s angular beamwidth, or about 1.25� for
ASIRAS), the echoes from outside the beam will be suffi-
ciently attenuated that the recorded phase signal is from only
one side of the POCA, and can thus be used to determine the
elevation and position of successive points in the across-
track direction (Figure 1d, bottom). Note that a similar
geometry could be achieved over flat terrain by angling
the antenna.
[5] Here, we extend the interferometric altimetry tech-

nique of Jensen [1999]. An echo from an angle q off-nadir
will be received by one antenna slightly before the other, as
it travels a slightly shorter path. This path length difference
is equal to bsin(q) where b is the length of the antenna
baseline. The phase difference between the signals reaching
the two antennas will be (2p/l)b sin(q) where l is the
wavelength of the carrier frequency. The relationship
between the angle q (from the antenna baseline to the target)
and the measured phase difference f between the two
antennas is given by

f ¼ kb sin qð Þ � kbq ð1Þ

where k = 2p/l is the wavenumber of the carrier frequency.
[6] We extend this relationship to include the echoes

acquired from the remainder of the coherent backscattered
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echo waveform. At each location sampled within the
waveform, the phase measurement provides the look angle
and the time delay provides the range to the scattering
surface. It is then a straightforward geometric translation,
knowing the aircraft attitude and thus the attitude of the
antenna baseline, to determine the elevation of the ground
location from which echoes are returned.

3. Data and Methods

3.1. Location

[7] We use data collected during the CryoSat Validation
Experiment (CryoVEx) 2004 spring campaign, over the
Austfonna ice cap in Svalbard. At this low-elevation site
near the equilibrium line [Pinglot et al., 2001], the radar
return is dominated by surface scattering, and penetration of
the radar pulse [e.g., Hawley et al., 2006] is minimal. Under
such circumstances, the interferometric phase is directly
related to off-nadir surface scattering.

3.2. ASIRAS

[8] The Airborne Synthetic aperture Interferometric Ra-
dar Altimetry System (ASIRAS) [Lentz et al., 2002] is an
IRA, designed to demonstrate the concept of a satellite
based system for the CryoSat mission [Wingham et al.,
2005]. The radar is a phase sensitive Ku band altimeter with
a high pulse repetition frequency, allowing along-track
synthetic aperture beam-forming. Beam-forming is per-

formed using a method [Wingham et al., 2004] similar to
the delay-doppler concept [Raney, 1998; Raney and
Leuschen, 2004] to optimize along-track resolution by
taking multiple looks in the along-track direction. The
carrier frequency of the radar is 13.5 GHz and the band-
width is 1 GHz. The half-power beamwidth before process-
ing is approximately 2.5 degrees in the across-track
direction and 10 degrees in the along-track direction.
Aircraft position and attitude are measured with a Differen-
tial Global Positioning System (DGPS) and an Inertial
Navigation System (INS), respectively.
[9] We adjusted the raw, un-calibrated radar data to

compensate for the effects of the delay-doppler slant-range
geometry [Wingham et al., 2004]. Adjusted waveforms
scattered from the same along-track location were averaged
(multi-looked) and then geo-located using information from
the DGPS and the INS. Figure 1 shows an example record
from our test site. A phase ‘‘ramp’’, which results from the
changing angle between the interferometer baseline and the
point from which the signal is returned, is clearly evident. In
addition, a discontinuity can be seen where the interfero-
metric phase exceeds ±2p and thus wraps. In this study, the
amplitude (power) and phase of radar echoes are processed
to form a single-look complex image, and the phase is
subsequently filtered and unwrapped to remove ambiguities
[Werner et al., 2002].
[10] The unwrapped phase signal forms the basis of our

across-track elevation measurements. Each echo sample

Figure 1. An example record from our ASIRAS Interferometric Radar Altimeter data. (a) Normalized power,
(b) interferometric phase difference (radians), (c) coherence. Clearly evident is the phase ‘‘ramp’’ as the point of intersection
between the radar wave and the ground sweeps across the ground track. (d) Geometry of the measurement over an ice sheet
at 3 different slopes. The antenna beamwidth is indicated by the shaded red triangle. Altimeter returns at successive times
arrive at the antenna from the numbered points, with point 0 being the Point of Closest Approach (POCA). (top and middle)
Successive returns come from both sides within the beam pattern. In the second case, at moderate slope, the POCA is
shifted to the right. In this case the altimeter operating in interferometric mode can still correctly identify the POCA.
(bottom) Illustrated is the geometry required for our across-track processing. Here, the POCA is outside the antenna beam
pattern, and so returns from upslope of the POCA are attenuated and do not contribute to the recorded phase signal. The
remaining points 2–6 have a simple phase-distance relationship, and can be processed into multiple across-track elevations.
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originates from a discrete angle with respect to the interfer-
ometer baseline, and the time of each phase measurement
indicates the distance from the antenna phase center to the
scattering point. For each range bin we compute the vector
between the antenna phase center and the scattering point.
This vector is in an inertial reference frame tied to the
aircraft. We then use the DGPS and INS data to determine
the aircraft position and attitude, and combine the angles of
pitch, roll, and aircraft heading in a co-ordinate transforma-
tion to determine the geodetic (WGS-84) coordinates of the
ground point. Figure 2 shows an example of elevation
measurements derived in this way.

3.3. Airborne Laser Scanner

[11] We use data from a commercial Airborne Laser
Scanner (ALS; Rigel LMS-Q280) mounted on the same
aircraft platform to validate the IRA elevation measure-
ments. The LMS-Q280 uses a 1064 nm laser and a scanning
mirror to collect measurements at �2–3 m ground spacing.
Ice surface elevations from the ALS have proven to be
repeatable to within ±10 cm (V. Helm et al., unpublished
field report, 2006), making the ALS data ideal for valida-
tion. Data collected from runway overflights revealed a
constant offset of �0.8 m betwen ALS and retracked
ASIRAS elevations. However, this is roughly equal to the
distance between first energy return and the retracked point
on the waveform. Because our processing uses the full
waveform and no retracking, we compare elevations using
an offset of zero.
[12] We gridded the ALS elevations and calculated an

interpolated ALS elevation for each ASIRAS-resolved

ground point. The number and accuracy of the ASIRAS
elevation measurements are each dependent on the coher-
ence threshold at which the interferometric data are unwrap-
ped (Table 1). On average, an �85 m swath of elevation
measurements was obtained with a root-mean square
departure of �1.6 m with respect to the ALS observations.

4. Discussion

4.1. Performance of the Algorithm

[13] The two-dimensional grid of elevation measure-
ments retrieved using this interferometric processing algo-
rithm provide vastly improved coverage compared to
conventional processing, which would have otherwise pro-
vided only a one-dimensional line of elevation points near
to the ground track (Figure 2). At our experiment site, the
elevation ranged from �250 m to �330 m along track, with

Figure 2. A section of our across-track processing result. Gridded elevations from the Airborne Laser Scanner form the
background. Each across-track-processed (angle, distance) point is plotted as a filled circle with the same elevation
colormap. Gray circles indicate the positions of elevation points obtained with conventional processing; though the actual
Point Of Closest Approach is at the edge of our swath, imperfect retracking of the echoes in conventional processing results
in a retracked POCA near the center of our swath. Clearly we successfully calculate across-track positions and elevations
from the altimetric phase measurement.

Table 1. Elevation Comparison Between Across-Track Processed

ASIRAS Radar and Gridded ALS Dataa

Coherence Band RMS (m) Number of points

0.4–0.5 2.08 3109
0.5–0.6 1.86 4812
0.6–0.7 1.63 5473
0.7–0.8 1.36 5967
0.8–0.9 1.39 6023
0.9–1.0 1.78 8443
All points 1.67 33828
POCA only 1.33 448
aRMS is the root-mean-squared difference between the ASIRAS and

ALS data. The last line shows the results if no across-track processing is
applied, as would be the case for a conventional level-2 elevation product.
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across-track elevation differences of 1 to 10 meters. The
effective surface slope (angle between the surface and the
interferometric baseline of the antenna, which varies with
the attitude of the aircraft) varied from approximately 2.5 to
5.5 degrees.
[14] Over our �2.5 km-length flightline, our across-

track processing resulted in 33,828 individual elevation
point measurements (Table 1), a 75-fold increase over the
448 points that result from conventional ‘‘POCA’’ process-
ing. The departure from the ALS elevations is slightly higher
for our across-track processing result, but this is partly due to
the use of lower-coherence points. Using only the subset of
points with coherence between 0.7 and 0.9, the resulting
RMS difference is 1.37 m (close to the ‘‘POCA’’ processing
RMS of 1.33 m), and the number of points is 11,990, a
26-fold increase in point density over conventional process-
ing. It should be noted here that for any given waveform, the
additional points share any elevation bias associated with
that waveform.
[15] As shown in Figure 3, the spatial pattern of differ-

ence between ASIRAS- and ALS-derived elevations is
more pronounced along-track than across-track. This may
be due to errors associated with rapid changes in aircraft
attitude. Many of the higher-difference regions were
recorded while the aircraft roll or rate-of-roll was changing
rapidly (Figure 3, inset). While no definitive relationship
was found between aircraft attitude and elevation difference,
changes in the antenna baseline would affect the received
phase difference, and a finite response time by the INS
could induce errors during rapid attitude changes.
[16] The phase-unwrapping algorithm requires a point of

known ‘‘absolute’’ phase from which to unwrap. If this
point is chosen at a location where the phase has already
wrapped, a 2p ambiguity could be introduced. For ASIRAS,
the effect of the entire phase result being shifted by 2p is to
change the across-track angle by �1.7 degrees. Since the
across-track distance would change while the range would
remain the same, a slope-dependent error in retrieved
elevation would be introduced. With our geometry, a 2p
error in phase results in elevation errors > ±2 meters.

Because our elevations are much closer to the ALS result
than this, we are confident that our algorithm has success-
fully captured the true phase signal.

4.2. Application to Space-Borne Radar Altimeters

[17] We investigated the possibility of deriving similar
elevation data from observations of the planned CryoSat-2’s
Synthetic aperture Interferometric Radar Altimeter
(SIRAL). By increasing the number of elevation measure-
ments available one potentially achieves greater spatial
coverage of steep ice-covered terrain, such as the margins
of Antarctica and Greenland, which are currently omitted
from altimeter surveys of ice volume trends [Wingham et
al., 2006].
[18] The swath width achievable with SIRAL differs

from that of ASIRAS due to differences between key
parameters of the two systems. In particular, ASIRAS was
flown for our study at approximately 1140 meters above the
surface, and recorded 256 samples at a slant-range spacing
of 0.086 m, with an antenna pattern half-power beamwidth
of 2.5 degrees across-track. Flying at an altitude of�717 km,
SIRAL will collect 512 samples per waveform, at a nominal
slant-range spacing of 0.47 m. The across-track beamwidth
is 1.2 degrees. Under perfect conditions for across-track
processing, this would correspond to an across-track range
of over 18 km. If phase coherence is preserved across-track
over �1/3 of each waveform in SIRAL data as we have
observed in ASIRAS measurements, elevation data at swath
widths of up to 6 km are to be expected. In practice,
however, as the interferometer look-angle approaches the
theoretical limit for across-track processing, which is less
than the antenna half power beamwidth, or 1.2 degrees for
SIRAL, the phase ‘‘ramp’’ steepens, and the wrapped signal
is resolved by fewer and fewer samples. In these areas phase
unwrapping is expected to become problematic and swath
widths will become smaller until only a single point can be
resolved.
[19] In addition to improved spatial coverage, across-

track processing can provide improved temporal coverage.
For change detection, crossover analysis is commonly used

Figure 3. Elevation differences between our across-track processed radar result and ALS data. The inset at lower right
shows a histogram of the values from the 33,828 points plotted. The high-difference areas show a spatial pattern; this may
be due to errors associated with rapid changes in aircraft attitude. The inset at upper left shows the mean elevation
difference averaged along track, and the aircraft roll angle. The red box outlines the area illustrated in Figure 2.
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[e.g., Wingham et al., 1998]. By increasing the number of
elevations measured across-track, we increase the number
of crossovers for any given orbit as well. Thus, changes can
be tracked over shorter time-scales and with greater accu-
racy than with conventional radar altimeters [e.g., Wingham
et al., 1998].

5. Conclusions

[20] We have demonstrated the ability to derive ice
surface elevation using interferometric synthetic aperture
radar altimetry across a wide swath orthogonal to the
instrument ground track in a region of sloping terrain.
When applied to IRA data recorded from an aircraft, the
method provides a 75 fold increase in the number of
elevation measurements in a region of favorable (high)
slope, with 33,828 elevation points at an RMS difference
of 1.67 m, compared with 448 conventionally-processed
elevation points with an RMS difference of 1.33 m. Suc-
cessful application of similar processing to data from the
upcoming CryoSat-2 satellite-based IRA would improve
observations of volume trends in regions of the cryosphere
that are currently omitted from pulse-limited altimeter
surveys, such as the steep margins of Antarctica and Green-
land and smaller ice caps.
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