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SUMMARY

Salmonellae employ two type III secretion sys-
tems (T3SSs), SPI1 and SPI2, to deliver viru-
lence effectors into mammalian cells. SPI1
effectors, including actin-binding SipA, trigger
initial bacterial uptake, whereas SPI2 effectors
promote subsequent replication within custom-
ized Salmonella-containing vacuoles (SCVs).
SCVs sequester actin filaments and subvert mi-
crotubule-dependent motors to migrate to the
perinuclear region. We demonstrate that SipA
delivery continues after Salmonella internali-
zation, with dosage being restricted by host-
mediated degradation. SipA is exposed on the
cytoplasmic face of the SCV, from where it stim-
ulates bacterial replication in both nonphago-
cytic cells and macrophages. Although SipA is
sufficient to target and redistribute late endo-
somes, during infection it cooperates with the
SPI2 effector SifA to modulate SCV morphology
and ensure perinuclear positioning. Our find-
ings define an unexpected additional function
for SipA postentry and reveal precise intracellu-
lar communication between effectors deployed
by distinct T3SSs underlying SCV biogenesis.

INTRODUCTION

Many microbes and parasites evade host immune re-

sponses by replicating in customized vacuoles within

mammalian cells. Intracellular bacterial pathogens forge

a specialized niche by delivering multiple virulence effec-

tors into the cell that subvert trafficking events and alter

vacuole positioning (Salcedo and Holden, 2005). Patho-

gen-containing vacuoles can be exploited as ‘‘Trojan

horses’’ to track how intracellular compartments mature

and migrate. Deciphering how bacterial effectors function

provides not only critical understanding of infection but

also new insights into endogenous membrane trafficking.

Salmonellae replicate in a modified phagosome termed

the Salmonella-containing vacuole (SCV) in both nonpha-

gocytic epithelial cells and macrophages (Knodler and
C

Steele-Mortimer, 2003). SCVs interact transiently with

early endosomes (EE), undergo Rab7- and phosphoinosi-

tide-dependent maturation (Brumell et al., 2001; Meresse

et al., 1999), acidify (Rathman et al., 1996), and acquire

markers characteristic of late endosomes (LE) and lyso-

somes (Lys), including lysosomal-associated membrane

protein 1 (LAMP1) (Brumell et al., 2001). Replicative

SCVs recruit actin filaments (F-actin) and hijack microtu-

bule-dependent motors to migrate to the perinuclear re-

gion (Boucrot et al., 2005; Guignot et al., 2004; Harrison

et al., 2003; Marsman et al., 2004; Meresse et al., 2001),

where they intercept secretory traffic from the Golgi appa-

ratus (GA) (Kuhle et al., 2006; Salcedo and Holden, 2003).

Once positioned, maturation is stalled and bacterial repli-

cation is initiated. Specialized LAMP1-rich tubulovesicular

structures of unknown function termed Salmonella-

induced filaments (Sifs) extend along microtubules from

the SCV (Stein et al., 1996).

Salmonellae encode two distinct T3SSs on chromo-

somal pathogenicity islands 1 (SPI1) and SPI2. Six SPI1

effectors coordinately trigger cytoskeletal rearrange-

ments to force bacterial internalization into nonphagocytic

cells (Hayward and Koronakis, 2002). Among these,

Salmonella invasion protein A (SipA) binds actin and en-

hances entry efficiency by promoting actin polymerization

and preventing filament disassembly (McGhie et al., 2001,

2004; Zhou et al., 1999). SPI2 effectors act subsequently

in both epithelial cells and macrophages to promote intra-

cellular replication and systemic spread (Galan, 2001).

While the repertoire and activities of SPI2 effectors remain

largely unknown, the majority localize to the cytoplasmic

face of the SCV and often along Sifs (Henry et al., 2006;

Knodler and Steele-Mortimer, 2005; Salcedo and Holden,

2003; Kuhle and Hensel, 2002).

Perhaps the best-characterized SPI2 effector is SifA,

which is essential for Sif formation (Stein et al., 1996),

SCV integrity, and Salmonella replication (Beuzon et al.,

2000). Bacteria lacking SifA fail to commandeer the

SifA-kinesin interacting protein (SKIP), a host kinesin

inhibitor, allowing detrimental motor accumulation that

triggers aberrant SCV migration toward the cell periphery

(Boucrot et al., 2005). SifA has acquired a eukaryotic

membrane-targeting motif and might also mimic host

Rab GTPases (Alto et al., 2006; Boucrot et al., 2003).

The current tenet is that SPI1 and SPI2 effector cohorts

function sequentially and autonomously, yet increasing
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evidence potentially challenges this view (Lawley et al.,

2006; Hernandez et al., 2004; Knodler and Steele-

Mortimer, 2003; Steele-Mortimer et al., 2002). Here we

demonstrate that the SPI1 effector SipA continues to act

from the cytosolic face of the SCV long after Salmonella

entry. Not only can SipA independently induce LE redistri-

bution, it also cooperates with the SPI2 effector SifA dur-

ing infection to ensure perinuclear SCV positioning. The

data reveal an essential contribution of a SPI1 effector

to subsequent SCV maturation and bacterial replication

and illuminate unanticipated intracellular communication

between bacterial effectors deployed by distinct T3SSs.

RESULTS

SipA Persists after Entry and Is Exposed on the SCV

We observed that SipA remains associated with internal-

ized bacteria (Figure S1A in the Supplemental Data avail-

able with this article online), while other SPI1 effectors are

degraded (data not shown; Kubori and Galan, 2003). How-

ever, as we initially employed a wild-type S. typhimurium

strain expressing enhanced levels of SipA from a plasmid

(sipA++; Cain et al., 2004), we next examined the localiza-

tion of SipAFLAG expressed from the endogenous chromo-

somal context. SipAFLAG similarly surrounded�60% inter-

nalized bacteria 2 hr postinfection and after 8 hr was

associated with a similar proportion of microcolonies (Fig-

ure 1A). To establish which T3SS delivers this formerly

unrecognized SipAFLAG pool, we equivalently engineered

S. typhimurium invG� and ssaV� mutants, which respec-

tively lack essential components of the SPI1 and SPI2

T3SSs, rendering them inactive (Crago and Koronakis,

1998; Hensel et al., 1997). While SipAFLAG was never

detected after infection with S. typhimurium invG�, local-

ization using the ssaV� mutant mirrored the wild-type

(Figure 1A). SipAFLAG staining was unchanged following

bafilomycin treatment that disrupts the SPI2 T3SS (Steele-

Mortimer et al., 2000), and in SPI2 effector mutants

(Figure S1B). These findings demonstrate that SipA per-

sistence requires the SPI1 T3SS post-Salmonella entry.

To ascertain whether SCV-associated SipA is exposed

in the host cytosol, we exploited the finding that delivered

SipA can be visualized during entry using its export chap-

erone (InvB) fused to GFP as a cytosolic reporter (Schlum-

berger et al., 2005). GFP-InvB transfectants were infected

with wild-type S. typhimurium or an isogenic sipA�

mutant. GFP-InvB distributed throughout the cytosol of

control cells or those infected with the sipA� mutant (Fig-

ure 1B). By contrast, GFP-InvB was recruited to SCVs

post-wild-type infection (Figure 1B and Figure S1C), dem-

onstrating that SipA is exposed on the SCV and potentially

poised to engage host or bacterial targets.

SipA Promotes Intracellular Replication

and Perinuclear SCV Positioning

We next investigated whether SipA influences intracellular

multiplication. Replication of the sipA�mutant was signif-

icantly attenuated, whereas that of the sipA++ strain was

reciprocally enhanced in epithelial-like cells and fibro-
64 Cell Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc
blasts (Figure 2A). This dose-dependent response shows

that SipA is central to Salmonella multiplication in nonpha-

gocytic cells. As SPI2 effectors also govern replication

in macrophages, we analyzed any comparable role for

SipA using cultured and primary macrophages. Unex-

pectedly, the sipA�mutant was again significantly attenu-

ated, while increasing SipA levels bolstered bacterial

replication (Figure 2A). These surprising findings illustrate

that SipA also influences replication in macrophages.

Attenuated sipA�mutants adopt a dispersed intracellu-

lar distribution biased toward the cell periphery (Figure 2B),

reminiscent of bacteria lacking SPI2 effectors that direct

SCV-organelle tethering or impede host motor protein ac-

tivity (Boucrot et al., 2005; Henry et al., 2006; Salcedo and

Holden, 2003). To evaluate ‘‘scattering,’’ every bacterium

was categorized as nuclear proximal or distal. The proxi-

mal zone typically encompasses the GA (Figure S2A).

Concomitant with the onset of the replicative defect,

wild-type and sipA++ strains appeared predominantly

perinuclear, whereas ssaV� and sipA� mutants were dis-

persed (Figure 2B). To assess whether scattering reflected

increased SCV-GA uncoupling (Abrahams et al., 2006;

Salcedo and Holden, 2003), infected cells were treated

with brefeldin A (BFA) that induces cis-Golgi redistribution

into the endoplasmic reticulum (Chardin and McCormick,

1999; Lippincott-Schwartz et al., 1990). While BFA re-

duced wild-type and sipA++ replication, the sipA� mutant

was not additionally attenuated, and BFA induced scatter-

ing of both wild-type and sipA++ strains, whereas position-

ing of the sipA� mutant was unchanged (Figure S2B). In-

deed, the sipA� mutant is seldom coincident with the

cis-Golgi (Figure S2A). Taken together, these findings

implicate SipA as a positioning determinant upstream of

GA association.

Bacteria Lacking SipA Reside within Intact SCVs

Scattering and replicative attenuation of the sipA�mutant

might reflect bacterial release into the host cytosol. To as-

sess SCV integrity, LAMP1 distribution was examined in

epithelial cells and fibroblasts infected with wild-type

S. typhimurium, sipA�, and sipA++ strains. Bacteria lack-

ing the SPI2 effector SifA that are released into the host

cytosol at late time points were also examined (Beuzon

et al., 2000). In each infected cell, multiple wild-type bac-

teria were observed within continuous perinuclear SCVs,

from which Sifs extended (Figure 2C and Figure S3; Movie

S1). SCVs formed by the sipA�mutant remained intact but

always unusually encapsulated only individual or some-

times pairs of bacteria (Figure 2C and Figure S3; Movie

S2). Furthermore, Sifs rarely extended from these SCVs,

although occasional ‘‘stunted’’ protrusions were evident

(<5% SCVs). Even more unexpectedly, the sipA++ strain

formed continuous perinuclear SCVs that lacked Sifs, in

which the membrane tightly apposed encapsulated bac-

teria. These tight SCVs seemed inherently unstable, as

bacteria frequently became cytosolic (in �50% infected

cells) (Figure 2C). By comparison, 30%–40% sifA� mu-

tants were cytoplasmic at this time point (Figure 2C;

(Boucrot et al., 2005). These findings demonstrate that
.
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Figure 1. SipA Persists after Salmonella

Entry and Is Exposed on the Cytosolic

Face of the SCV

(A) Intracellular SipAFLAG (green) in NIH3T3

cells after infection (hr) with wild-type S. typhi-

murium or the ssaV� mutant (blue), and in

J774A.1 cells infected with the invG� mutant.

SipAFLAG was expressed and exported equiva-

lently to untagged SipA, retained the ability to

bind F-actin, and did not influence the export

or delivery of other SPI1 effectors or bacterial

entry rate. Equivalent data were obtained using

HeLa and J774A.1 cells (not shown). Scale bar,

5 mm.

(B) GFP-InvB distribution (green) in NIH3T3

transfectants 2 hr after infection with wild-

type S. typhimurium or the sipA� mutant

(blue). GFP-InvB colocalized with SipAFLAG

and did not impede replication or prevent peri-

nuclear positioning of wild-type S. typhimu-

rium. Scale bar, 3 mm.
SipA is not essential for SCV integrity, but that relative

SipA concentration influences SCV morphology and

positioning.

SipA as a Key Determinant of SCV Positioning

Salmonella replication and SCV integrity require balanced

activity of the microtubule motors dynein and kinesin,

which respectively transport cargo toward the nucleus

and cell periphery (Boucrot et al., 2005; Guignot et al.,

2004; Harrison et al., 2003; Marsman et al., 2004). As

SipA manipulates SCV positioning, we examined dynein

and kinesin distribution in infected epithelial cells and

fibroblasts. After infection with wild-type S. typhimurium,
Cel
both dynein and kinesin accumulated diffusely around

the SCV periphery but were only occasionally coincident

with bacteria (Figure 3A; Boucrot et al., 2005). However,

kinesin and tubulin frequently colocalized with peripheral

sipA� SCVs, whereas dynein remained infrequently asso-

ciated (Figure 3B).

When dynein function was disrupted with p50/dynami-

tin, which induces endosome redistribution to the periph-

ery by uncoupling dynactin (data not shown; Burkhardt

et al., 1997), an equivalent subtle increase (�10%) in

wild-type and sipA� at the cell periphery was observed,

together with mild replicative attenuation (Figure 3C and

Figure S4). These data verify that dynein contributes to
l Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc. 65
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Figure 2. SipA Promotes Salmonella Replication and Is Required for SCV Positioning

(A) Upper: Fold increase in intracellular wild-type S. typhimurium (filled circles), the sipA� mutant (sipA�, open squares), and a strain constitutively

expressing augmented levels of SipA from a plasmid (sipA++, filled triangles) strain in NIH3T3 cells over time (hr). Equivalent effects were observed

in HeLa cells (not shown). Lower: Fold increase (left, RAW264.7 macrophages) or percentage increase compared to wild-type (right, bone marrow-

derived macrophages) of wild-type S. typhimurium, the sipA� mutant, and the sipA++ strain over 22 hr. Replication as fold increase in intracellular

bacteria was calculated by comparing values at 2 hr and subsequent time points postinfection. NIH3T3 cells were lysed after �11 hr due to bacterial

replication. Data were derived from three independent experiments and are shown as mean ± SEM.

(B) Upper: Typical distribution of wild-type S. typhimurium, the sipA� and ssaV� mutants, and the sipA++ strain (gray) 6 hr after infection of NIH3T3

cells. Lower: The percentage of intracellular bacteria from 50 infected cells proximal (within 3 mm, open bars) and distal (>3 mm, filled bars) to

the nearest edge of the nucleus 6 hr postinfection. Positioning and replication of the sipA� strain was rescued by complementation with a

low-copy-number plasmid encoding sipA (not shown). Data were derived from three independent experiments and are shown as mean ± SEM.

(C) LAMP1 (green) in HeLa cells 6 hr after infection with wild-type S. typhimurium, the sipA�mutant, or the sipA++ or sifA�mutant strains (blue). Scale

bar, 5 mm.
66 Cell Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc.
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Figure 3. SipA Simultaneously Promotes Perinuclear SCV Migration and Prevents Kinesin Association

(A) Dynein and conventional kinesin (red) in NIH3T3 cells 6 hr after infection with wild-type S. typhimurium or the sipA�mutant (blue). Scale bars, 3 mm

(kinesin) and 5 mm (dynein).

(B) Deconvolved immunofluorescence micrographs of a single z section from a rendered image showing NIH3T3 cells 6 hr postinfection with wild-type

S. typhimurium or the sipA�mutant (blue). Scale bars, 5 mm. Colocalization between kinesin (red), tubulin (green), and the sipA�mutant is marked with

arrows. Indicated regions are rotated 180� about the x (x180) and y (y180) axes.

(C) Upper: Typical distribution of wild-type S. typhimurium and the sipA�mutant (red [left] or blue [right]) 6 hr after infection of pGFP-p50/dynamitin-

transfected (left) or ATA-treated (right) NIH3T3 cells. Scale bar, 5 mm. Lower: The percentage of bacteria proximal (<3 mm, open bars) and distal

(>3 mm, filled bars) to the nearest edge of the nucleus in pGFP-p50/dynamitin-transfected (left) and ATA-treated (right) NIH3T3 cells. Data were

derived from three independent experiments and are shown as mean ± SEM.
perinuclear SCV positioning (Guignot et al., 2004) and

demonstrate that this is SipA independent. Intriguingly,

both positioning and replication of the sipA++ strain are

resistant to p50/dynamitin expression (Figure 3C and

Figure S4). Kinesin activity was inhibited with aurintricar-

boxylic acid (ATA), which impeded replication of wild-

type and the sipA++ strain (Figure S4; Guignot et al.,

2004), and although both remained perinuclear, peripheral

migration of the sipA� mutant was blocked (Figure 3C).

However, despite positional rescue, sipA� replication

was not restored (Figure S4). Taken together, these data

demonstrate that scattering of sipA� SCVs is associated

with aberrant kinesin recruitment.
Ce
SipA Modulates SPI2 Effector Localization

by Binding SCV-Associated F-actin

Cytoskeletal dynamics underpin endogenous vacuole

biogenesis and trafficking, and both F-actin and microtu-

bules accumulate around the SCV (Guignot et al., 2004;

Meresse et al., 2001). Two SPI2 effectors influence SCV-

kinesin interaction, possibly antagonistically; SifA nega-

tively regulates kinesin activity, whereas PipB2 triggers

kinesin recruitment (Boucrot et al., 2005; Henry et al.,

2006). To gain further insight into the role of actin-binding

SipA in SCV positioning, we examined the localization of

SifAHA, PipB2HA, and F-actin after infection with wild-

type, sipA�, and sipA++ strains. In fibroblasts and epithelial
ll Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc. 67
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cells, nuclear-proximal SCVs containing wild-type bacte-

ria were enriched with SifAHA, which additionally deco-

rated Sifs as expected (Figure 4A), whereas SifAHA pres-

ent on SCVs containing sipA� mutants was markedly

reduced, and consequently Sifs seldom formed. SifAHA

nevertheless localized to compartments distinct from the

SCV (Figure 4A). By contrast, SifAHA was present but ap-

parently dormant on ‘‘tight’’ Sif-devoid SCVs formed by

the sipA++ strain (Figure 4A). PipB2HA localized to SCVs,

peripheral vesicles, and extended tubular structures after

wild-type infection and remained localized with SCVs

containing the sipA� mutant, consistent with its role as

a kinesin linker (Figure 4B). Strikingly, as with SifAHA,

PipB2HA localized only to SCVs formed by the sipA++

strain and was unable to disseminate within the infected

cell (Figure 4B). These findings demonstrate that SipA

imbalance induces mislocalization of SPI2 effectors SifA

and PipB2, leading indirectly to aberrant positioning and

morphological defects.

Given that SipA binds F-actin (Zhou et al., 1999), we

next investigated any link with F-actin-SCV association,

and how this might potentially impact on SifA and PipB2

localization. By 6 hr postinfection, F-actin ‘‘nests’’ sur-

rounded the SCVs of wild-type bacteria, which were

more evident in fibroblasts than epithelial-like cells

(Figure 4C; Meresse et al., 2001). F-actin staining ap-

peared more indistinct following equivalent infection of

both cell lines with the sipA� mutant, suggesting that

SipA stabilizes phagosomal F-actin (Figure 4C), akin to

its role during cell entry (McGhie et al., 2004). However,

F-actin was robustly enriched on the ‘‘tight’’ SCVs formed

following infection of epithelial cells with the sipA++ strain

(Figure 4C). Furthermore, F-actin colocalized with both

SifAHA and PipB2HA (Figure 4D). Excessive SCV-F-actin

accumulation therefore impedes SPI2 effector activity.

Nevertheless, as with SipA staining during entry (Schlum-

berger et al., 2005), SCV-SipAFLAG association occurred

when infected cells were treated with cytochalasin D (CD)

or latrunculin B (LB), which prevent actin assembly and

inhibit bacterial replication (Figure 4D; Meresse et al.,

2001), and was unaltered even after actin assembly was

reinitiated by LB washout (Figure 4D). Thus, SipA-induced

F-actin stability modulates localization of key SPI2 effec-

tors, but SipA targeting to the SCV is actin independent.

Recognition and Centripetal Redistribution of Late

Endosomes by SipA

SipA lacks lipid affinity in vitro (Hayward and Koronakis,

1999). To delineate the region(s) of SipA involved in

vacuole targeting, we transfected cells with SipA, the
Ce
C-terminal actin-binding fragment (SipA-C) and the re-

mainder that encodes no recognized activity (SipA-N) as

C- or N-terminal fusions to YFP or CFP, respectively.

SipA and SipA-C colocalized with F-actin, although

SipA-C was more peripheral and SipA distributed

throughout the cell body (Figure 5A). SipA-N fusions

were never coincident with F-actin but instead exhibited

punctate perinuclear distribution (Figure 5A). Fraction-

ation revealed that, while SipA partitioned in the internal

membrane/cytoskeleton fraction (Cain et al., 2004), actin-

binding SipA-C was located exclusively in the plasma

membrane fraction, which additionally contains �10%

cellular actin (Cain et al., 2004), and SipA-N was predom-

inantly in the internal membrane fraction, with �15%

detected in the cytosolic fraction (Figure 5A).

As SipA localizes to LAMP1-rich SCVs independently of

F-actin during infection, we visualized LE/Lys distribution

in cells expressing SipA, SipA-N, and SipA-C. Remark-

ably, although neither SipA nor SipA-N trigger obvious

rearrangement of the actin or microtubule networks,

both induced dramatic centripetal aggregation of LAMP1-

positive LE/Lys compartments toward the microtubule-

organizing center (MTOC; Figure 5B). Additionally, these

compartments colocalized with SipA-N (Figure 5B), dem-

onstrating that SipA-N autonomously targets LE/Lys and

induces their relocalization. Significantly, despite SipA

localizing to the actin cytoskeleton, it also retained the

capacity to induce similar LE/Lys redistribution, whereas

actin-binding SipA-C exhibited no comparable activity.

Coordinate Action of SipA-N and SifA Ensures

Perinuclear SCV Positioning

Given this previously uncharacterized ability of SipA to

redistribute LE/Lys toward the nucleus, we investigated

whether SipA, SipA-N, or SipA-C could complement the

sipA�mutant in infected cells. Expression of SipA or either

derivative had no significant effect on intracellular posi-

tioning of wild-type S. typhimurium (Figure 6), although

SipA expression attenuated intracellular replication (Fig-

ure 6B). However, expressed SipA and SipA-N both

restored perinuclear positioning to the sipA� mutant (Fig-

ure 6), with�75% of bacteria lacking SipA shifting into the

perinuclear zone in SipA-N transfectants (Figure 6B). Yet

despite these effects on positioning, expression in trans

failed to restore replicative proficiency or Sif formation

(Figure 6B; data not shown).

As SCV-localized SipA stabilizes SifA that in turn inhibits

kinesin activity (Figure 4), we examined the effect of in

trans SipA expression on intracellular replication and posi-

tioning of sifA�, sifA�sipA�, and control sseI� mutants.
Figure 4. SipA Influences SPI2 Effector Localization and F-actin Stabilization around the SCV

(A) SifAHA localization (green) in HeLa cells 6 hr after infection with wild-type S. typhimurium, the sipA�mutant, or the sipA++ strain (blue) expressing

SifAHA. Scale bars, 5 mm.

(B) PipB2HA localization (green) in HeLa cells 6 hr after infection with wild-type S. typhimurium, the sipA�mutant, or the sipA++ strain (blue) expressing

PipB2HA. Scale bar, 5 mm.

(C) F-actin (red) in NIH3T3 (left) and HeLa (right) cells 6 hr after infection with wild-type S. typhimurium, the sipA�mutant, or the sipA++ strain (blue).

Scale bars, 5 mm.

(D) Left: Effector (green) and F-actin (red) localization 6 hr after infection of HeLa cells with the sipA++ strain (blue). Scale bar, 1 mm. Right: SipAFLAG

(green) 6 hr postinfection of cytochalasin (CD)- or latrunculin (LB)-treated NIH3T3 cells with wild-type S. typhimurium (blue). Scale bar, 3 mm.
ll Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc. 69
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Figure 5. The N-Terminal Region of SipA Induces Centripetal Redistribution of Late Endosomes toward the Microtubule-

Organizing Center

(A) Upper: CFP-SipA, CFP-SipA-N, and CFP-SipA-C (green) NIH3T3 transfectants costained for F-actin (red). Equivalent localization was observed

for comparable YFP fusions and SipA, SipA-N, and SipA-C. Scale bar, 5 mm. Lower: NIH3T3 transfectants were mechanically fractionated. Nuclear

(N), internal membrane/cytoskeleton (IM/CS), cytosol (C), and plasma membrane (PM) fractions were analyzed by anti-SipA immunoblotting.

(B) LAMP1 (red) and tubulin (green) localization in NIH3T3 transfectants expressing SipA, SipA-N, or SipA-C. ‘‘M’’ indicates microtubule-organizing

center. Scale bar, 5 mm. Lower panels show perinuclear colocalization of CFP-SipA-N and LAMP1. Scale bars, 5 mm.
Unlike with the sipA�mutant that delivers SifA, expression

of SipA, SipA-N, or SipA-C did not restore positioning or

replication of the sifA� mutant (Figure 6; Figure S5). On

the contrary, SipA-C expression increased peripheral po-

sitioning of the sifA� mutant. Identical results were ob-

tained postinfection of transfectants with the double mu-

tant lacking SipA and SifA (data not shown). These data
70 Cell Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier
illustrate that SipA and SifA must cooperate to ensure

perinuclear SCV positioning during infection.

SipA Dosage Is Precisely Titrated during Infection

By genetically manipulating Salmonella, we have demon-

strated that SipA concentration profoundly influences

intracellular replicative proficiency, SCV positioning, and
Inc.
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Figure 6. Coordinate Action of SipA-N and SifA Is Required for Perinuclear SCV Positioning

(A) Typical distribution of wild-type S. typhimurium and the sipA� and sifA� mutants (green) 6 hr after infection of SipA, SipA-N, or SipA-C NIH3T3

transfectants. Scale bar, 5 mm.

(B) Percentage of intracellular bacteria proximal (within 3 mm, open bars) and distal (>3 mm, filled bars) to the nearest edge of the nucleus (left) and the

number of bacteria (right) in 50 SipA, SipA-N, or SipA-C NIH3T3 transfectants 6 hr after infection with wild-type S. typhimurium, and the sipA� or sifA�

mutants. Data were derived from three independent experiments and are shown as mean ± SEM.
SPI2 effector localization. We therefore predicted that

SipA concentration must be tightly controlled during Sal-

monella infection. To assess this, we initially investigated

the effect of inhibiting bacterial protein synthesis after en-

try using chloramphenicol. Only�15% internalized bacte-

ria associated with SipAFLAG 1 hr after antibiotic treatment,

with residual immunostaining appearing fragmented and

distal from the bacteria, which as expected also failed to

replicate. No signal was detectable 6 hr postinfection

(Figure 7A). These data show that bacterial protein synthe-

sis is required for SipA persistence and illustrate that SipA

is apparently actively degraded. Some delivered SPI1
C

effectors are differentially targeted by the cellular protea-

some (Kubori and Galan, 2003). To confirm whether intra-

cellular SipA is similarly susceptible to host-mediated

degradation, infected cells were treated with a protea-

some inhibitor (MG132). Although MG132 promoted cyto-

solic Salmonella replication (data not shown; Perrin et al.,

2004), SipAFLAG accumulation increased significantly

(Figure 7A). This was not a function of increased bacterial

load, as a pool of delivered SipAFLAG could be captured

following treatment with chloramphenicol and MG132

(Figure 7A). Intriguingly, inhibiting proteasome activity in-

duced increased F-actin accumulation around the SCV
ell Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc. 71
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Figure 7. Evidence for Active Control of

Intracellular SipA Concentration

(A) SipAFLAG (green) in NIH3T3 cells treated

with chloramphenicol, MG132, or both drugs

after infection (time shown in hours [hr]) with

wild-type S. typhimurium (blue). Scale bar,

5 mm.

(B) SipAFLAG (green) and F-actin (red) in NIH3T3

cells treated with DMSO (top) or MG132

(bottom) 6 hr after infection with wild-type

S. typhimurium (blue). Scale bar, 1 mm.

(C) Schematic representation of the pheno-

types observed after infection of nonphago-

cytic cells with wild-type (center), the sipA�mu-

tant (right), and the sipA++ (left) S. typhimurium

strains. Red and green lines represent F-actin

and microtubules, respectively. SPI2 effectors

are shown in blue (A, SifA; B2, PipB2), SPI1

SipA (A) in orange, and host proteins SifA-kine-

sin interacting protein (SKIP, black) and the mi-

crotubule-dependent motor kinesin (K, green).

PipB2-enriched tubular structures (blue lines)

are distinct from Salmonella-induced filaments

(Sifs).
and vacuole instability (Figure 7A). This phenotype mirrors

that following infection with the sipA++ strain, which sug-

gests that aberrant F-actin accumulation triggers SCV in-

stability.
72 Cell Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier
DISCUSSION

Previous studies of SipA have detailed how the C-terminal

actin-binding domain enhances bacterial entry by
Inc.
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promoting actin polymerization and stabilizing the gener-

ated filament architecture (McGhie et al., 2001, 2004;

Zhou et al., 1999). We show that SipA remains after bacte-

rial uptake and is exposed on the cytoplasmic face of the

SCV. SipA-dependent stabilization of SCV-associated F-

actin is an important checkpoint during niche biogenesis,

and consequently SipA must be precisely dosed. Actin

binding is dispensable for SCV and LE/Lys targeting,

which is directed by the previously anonymous N-terminal

region. Not only is SipA-N sufficient to induce centripetal

LE/Lys redistribution, but it also cooperates with the

SPI2 effector SifA during infection to promote SCV traf-

ficking toward the nucleus. Concurrently, it prevents det-

rimental SCV-kinesin association by localizing SifA. These

combined activities ensure perinuclear SCV positioning

and proficient intracellular bacterial replication.

Our finding that SipA persists after Salmonella entry

reinforces the view that SPI1 effectors not only trigger

bacterial uptake but also remain active later during infec-

tion. Our data demonstrating functional cooperativity

between effectors delivered by separate T3SSs hints at

an additional level of unexpected complexity. Invasion

by S. typhimurium sipA� and sopB�mutants is only mildly

attenuated (Zhou et al., 1999, 2001), as concerted SPI1

activities trigger entry-associated actin reorganization

(Hayward and Koronakis, 2002). However, both these mu-

tants exhibit stronger defects in replication in both epithe-

lial cells and macrophages (Figure 2; Hernandez et al.,

2004), suggesting that SipA and SopB fulfill significant

roles later during infection. The contribution of individual

SPI1 effectors to virulence beyond initial invasion in ani-

mals is yet to be comprehensively investigated, although

SipA is also required for proinflammatory responses in

epithelial cells (Lee et al., 2000) and together with other

SPI1 effectors for diarrhea in cattle (Zhang et al., 2002).

In agreement with our findings, the original description

of the sipA� phenotype indicated an unexplained but re-

producible increase in the mean time to death in mice (Ka-

niga et al., 1995), more indicative of a systemic replicative

defect rather than a significant early invasive attenuation.

Intracellular SipA concentration must be precisely bal-

anced to ensure a compromise between bacterial replica-

tion and cell viability. In support of this view, we observed

that SipA overtitration induces accumulation of SCV-

associated F-actin, leading to SPI2 effector mislocaliza-

tion, SCV instability, and eventually unchecked bacterial

replication in the host cytosol. Conversely, lack of SipA

leads to SifA mislocalization, aberrant kinesin-dependent

SCV trafficking to the cell periphery, and replicative atten-

uation (Figure 7C). This implies that during wild-type infec-

tion controlled stabilization of SCV-associated F-actin is

a critical checkpoint that perhaps signals correct SCV

positioning, priming SPI2 effector deployment. Similar

factors might operate in physiological cellular trafficking

pathways, where some endosomes analogously assem-

ble tightly knit actin ‘‘coats,’’ but it remains unclear

whether this acts to limit or selectively stimulate compart-

ment fusion and docking events (Defacque et al., 2000;

Kjeken et al., 2004; Yam and Theriot, 2004).
Cel
While both SipA and SipA-N relocate LE/Lys in unin-

fected cells, SipA remains additionally colocalized with

F-actin. This might indicate that SipA acts in trans on LE/

Lys while bound to F-actin or alternatively reflect that

SipA has a higher affinity for actin than LE/Lys or an un-

known LE/Lys-localized target in the absence of regula-

tory signals. This raises the possibility that during infection

SipA activities are differentially controlled by an additional

host factor or bacterial effector on the SCV, possibly SifA.

The context of SipA activity also seems critical, as cell-

expressed SipA impedes bacterial replication but can

nevertheless restore SCV positioning in trans, whereas

only bacterial expression of SipA restores both positioning

and replication.

In contrast to SifA, which autonomously tubulates LE/

Lys (Brumell et al., 2001), SipA and SipA-N redistribute

LAMP1-positive compartments toward the MTOC without

influencing their morphology, an activity more reminiscent

of eukaryotic tethering factors. These cellular proteins re-

main poorly characterized, but some capture vesicles dis-

tal from target organelles and funnel them toward the cell

body, while others, like golgins, act as organelle anchors

(Behnia and Munro, 2005). Such a role is consistent with

the ‘‘SCV-blind’’ phenotype observed with the sipA� mu-

tant, where SifA localizes to distal compartments that fail

to locate or fuse with the SCV. This would suggest that

SCV-localized SipA captures SifA-positive compartments

and funnels them toward the replicative compartment.

Although database searches failed to detect obvious

similarities, attempts using constrained SipA segments

revealed that residues 121–175 share primary sequence

similarity to cellular tethering factors like restin and gol-

gins, and multiple Rab- and microtubule-interacting pro-

teins (Figure S6). Although these observations should

not be overemphasized, the crystal structure of an N-

terminal SipA fragment in complex with InvB fortuitously

included this region (Lilic et al., 2006). Consistent with

GFP-InvB binding failing to impede SipA function, resi-

dues 121–175 appear remote from the chaperone binding

domain and exposed on the opposite face of this pre-

dominantly helical region, indicating that this apparent

homology might reflect a conserved interactive interface

(Figure S6).

Our data reveal that Salmonella sipA� and sifA� mu-

tants share surprisingly similar phenotypes, although

there are also significant differences. SipA is required for

SifA localization to the SCV, but not vice versa, whereas

excess SipA induces SifA mislocalization. SipA likely ex-

cludes kinesin indirectly by localizing SifA to the SCV

and/or promoting fusion of SifA-positive compartments

with the SCV. In turn, SifA binds SKIP, a negative kinesin

regulator (Boucrot et al., 2005). The kinesin linker PipB2

localizes to SCVs generated by bacteria lacking SipA

and in the absence of SifA likely directs their migration

to the cell periphery (Figure 7C; Henry et al., 2006). Cellular

Rab-interacting proteins frequently stabilize their cognate

GTPase and influence motor protein activity by direct

binding. However, SipA is absent from Sifs, and SCV-

associated SifA and SipA are not coincident. No direct
l Host & Microbe 1, 63–75, March 2007 ª2007 Elsevier Inc. 73
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interaction can be detected in vitro or between SipA-N

and cellular proteins in extracts or upon yeast two-hybrid

screening (our unpublished data). This suggests that SipA

might be a component of a proposed multiprotein SCV-

associated regulatory complex that may include SifA,

SKIP, and as yet unidentified factors (Boucrot et al.,

2005). Nevertheless, by priming the SCV for subsequent

SPI2 effector activity, SipA provides functional continuity

between forced bacterial entry and the intracellular repli-

cative niche. Our observations open up new insights into

SCV dynamics and further highlight the complexity of

crosstalk between bacterial pathogens and their hosts.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Plasmids, and Mammalian Cell Culture

Bacterial strains and plasmid construction are described fully in the

Supplemental Data. Bacteria were maintained on Luria-Bertani agar

or cultured in tryptone-yeast (TY) medium supplemented with

10 mgml�1 tetracycline, 50 mgml�1 kanamycin, 8 mgml�1 chloramphen-

icol, or 50 mgml�1 ampicillin.

Mammalian cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% (v/v) fetal calf serum

(FCS), L-glutamine, and antibiotics (Sigma). Bone marrow-derived

macrophages were cultured from mouse bone marrow in medium con-

taining 20 ngml�1 recombinant macrophage colony-stimulating factor

(see the Supplemental Data). Cells were incubated at 37�C, 5% CO2.

Drug stock solutions in dimethyl sulphoxide or ethanol (Cm) were di-

luted at least 1:1000 in DMEM to working concentrations: 100 mgml�1

Cm, 5 mgml�1 BFA, 1 mM bafilomycin A1, 10 mM ATA and MG132,

1 mgml�1 CD and LB. Cells were pretreated with ATA for 3 hr,

MG132 and BafA were added 30 min prior to infection, Cm and

BFA were added 1 hr postinfection, and CD and LB were added 3 hr

postinvasion.

Invasion and Replication Assays

Infection of NIH3T3 and HeLa cells with S. typhimurium was performed

as described (Garner et al., 2002). Macrophages were infected with

opsonized bacteria as described (Beuzon et al., 2000).

Transient Transfection of Cultured Cells

NIH3T3 cells were transfected using Lipofectamine, according to the

manufacturer’s instructions (Invitrogen).

Immunofluorescence Microscopy

Samples were paraformaldehyde fixed, permeabilized in 0.2% Triton

X-100, incubated with appropriate primary and secondary antibodies,

and analyzed using a fluorescence microscope (Leica DM IRBE), as

fully detailed in the Supplemental Data.

Mechanical Fractionation of Cultured Cells

Fractionation was performed as described (Cain et al., 2004).

Supplemental Data

The Supplemental Data include Supplemental Experimental Proce-

dures and six supplemental figures and can be found with this article

online at http://www.cellhostandmicrobe.com/cgi/content/full/1/1/

63/DC1/.
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