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Abstract

This thesis considers theoretical, analytical and engineering design issues relat-

ing to non-orthogonal Spectrally Efficient Frequency Division Multiplexing (SEFDM)

communication systems that exhibit significant spectral merits when compared to Or-

thogonal FDM (OFDM) schemes. Alas, the practical implementation of such systems

raises significant challenges, with the receivers being the bottleneck.

This research explores detection of SEFDM signals. The mathematical foundations

of such signals lead to proposals of different orthonormalisation techniques as required

at the receivers of non-orthogonal FDM systems. To address SEFDM detection, two

approaches are considered: either attempt to solve the problem optimally by taking

advantage of special cases properties or to apply sub-optimal techniques that offer re-

duced complexities at the expense of error rates degradation. Initially, the application

of sub-optimal linear detection techniques, such as Zero Forcing (ZF) and Minimum

Mean Squared Error (MMSE), is examined analytically and by detailed modelling. To

improve error performance a heuristic algorithm, based on a local search around an

MMSE estimate, is designed by combining MMSE with Maximum Likelihood (ML)

detection. Yet, this new method appears to be efficient for BPSK signals only. Hence,

various variants of the sphere decoder (SD) are investigated. A Tikhonov regularised

SD variant achieves an optimal solution for the detection of medium size signals in

low noise regimes. Detailed modelling shows the SD detector to be well suited to the

SEFDM detection, however, with complexity increasing with system interference and

noise. A new design of a detector that offers a good compromise between computa-

tional complexity and error rate performance is proposed and tested through modelling

and simulation. Standard reformulation techniques are used to relax the original opti-

mal detection problem to a convex Semi-Definite Program (SDP) that can be solved

in polynomial time. Although SDP performs better than other linear relaxations, such

as ZF and MMSE, its deviation from optimality also increases with the deterioration

of the system inherent interference. To improve its performance a heuristic algorithm

based on a local search around the SDP estimate is further proposed. Finally, a mod-

ified SD is designed to implement faster than the local search SDP concept. The new

method/algorithm, termed the pruned or constrained SD, achieves the detection of

realistic SEFDM signals in noisy environments.
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HD{·} Hamming distance calculation function

Im {·} Imaginary

init_radius Initial radius of the SD hypersphere

length{·} Vector length function

max. Maximise

min. Minimise

randomise{·} Randomisation function

rank{·} Rank of a matrix

recomp{·} Real to complex vector converter function

Re {·} Real

s.t. Subject to

sortSE{·} SE strategy reordering function

Tr{·} Trace of a matrix

∇ The gradient of a function

⊂ Subset

� Inequality over the set SN+

↑ Increasing

∨ Or

dH {·, ·} Hamming distance

Eb/N0 Energy of Bit to Noise Power Density Ratio

l2 Euclidean norm

O (·) Order

ACI Adjacent Channel Interference

ADSL Asymmetric Digital Subscriber Loop

ASK Amplitude Shift Keying
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AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiplexing Access

CGS Classical Gram Schmidt

CSD Complex Sphere Decoder

CVX Convex optimisation tool

DAB Digital Audio Broadcasting

DEV Dominant Eigen Vector

DFT Discrete Fourier Transform

DVB Digital Video Broadcasting

ETSI European Telecommunications Standards Institute

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

FP Fichke-Pohst reordering strategy

FPGA Field Programmable Gate Array

FrFT Fractional Fourier Transform

FT Fourier Transform

FTN Faster Than Nyquist

GA Genetic Algorithms

GS Gram Schmidt

HC-MCM High Compaction Multicarrier Modulation

I In-phase

IC Iterative Cancellation

IC-Lo Iterative Cancellation Lowdin based

ICI Intercarrier Interference

IFFT Inverse Fast Fourier Transform

IFrFT Inverse Fractional Fourier Transform

ILS Integer Least Squares
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IMGS Iterative Modified Gram Schmidt

IOTA Isotropic Orthogonal Transform Algorithm

IPM Interior Point Methods

ISI Intersymbol Interference

KKT Karush-Kuhn-Tucker conditions

LAS Likelihood Ascent Sequence

LB Lower Bound

LHS Left Hand Side

LMI Linear Matrix Inequality

Lo Lowdin orthonormalisation

LS Least Squares

LTE Long Term Evolution

MAP Maximum a Posteriori

MC-CDMA Multi-Carrier CDMA

MCM Multi Carrier Modulation

MGS Modified Gram Schmidt

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Squared Error

NP Non Polynomial

OFDM Orthogonal Frequency Division Multiplexing

OQAM offset QAM

OvFDM Overlapped Frequency Division Multiplexing

OvTDM Overlapped Time Division Multiplexing

PAM Pulse Amplitude Modulation

PAPR Peak to Average Power Ratio

PLC Power Line Communications

PoSD Power Spectrum Density

PSD Pruned Sphere Decoder
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PSK Phase Shift Keying

Q Quadrature

QAM Quadrature Amplitude Modulation

Rand Randomisation

RegSD Regularised Sphere Decoder

RHS Right Hand Side

RSD Sphere Decoder based on real decomposition

SD Sphere Decoder

SDP Semidefinite Programming

SDP-ML Combined SDP with brute force ML

SE Schnorr-Euchner reordering strategy

SeDuMi Self Dual Minimization

SEFDM Spectrally Efficient Frequency Division Multiplexing

SNR Signal to Noise Ratio

SpE Spectral Efficiency

SV Shortest Vector

SVD Singular Value Decomposition

TSVD Truncated Singular Value Decomposition

UB Upper Bound

WCDMA Wideband Code Division Multiplexing Access

WiMAX Worldwide interoperability for Microwave Access

ZF Zero Forcing
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Chapter 1

Introduction

Communications have played a significant role in the transformation of social

lives and structures all around the world. Mobile phones and the Internet

are no longer luxuries, but absolute necessities in the daily life of millions of

people. The support of bandwidth demanding applications by these two means,

has become feasible thanks to advanced transmission techniques like Wideband

Code Division Multiple Access (WCDMA) and Orthogonal Frequency Division

Multiplexing (OFDM). The latter has been adopted in many state of the art

communication systems due to its ability of coping efficiently with frequency

selective and time dispersive propagation channels.

OFDM’s first analogue variants were proposed in 1950s/1960s [1], [2], [3], [4]

and its practical digital implementation became tangible much later by mak-

ing use of the Inverse Discrete Fourier Transformation (IDFT) [5] . Hence,

OFDM has been applied in numerous commercial applications. To mention

but a few, it was first used in late 80s in Asymmetric Digital Subscriber Loop

(ADSL) [6] for the transmission of high data rates over ordinary copper tele-

phone lines. Around the same time, OFDM was adopted by the European

Telecommunications Standards Institute (ETSI) for the development of Digital

Audio (DAB) [7] and Digital Video Broadcasting (DVB) systems [8], [9]. Fur-

thermore, for more than a decade it has constituted the physical layer of wireless
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networks standards like the 802.11a/g/n [10], [11]. Nowadays, the development

and deployment of wireless broadband OFDM systems like Worldwide interop-

erability for Microwave Access (WiMAX) [12], [13] and Long Term Evolution

(LTE) systems are in progress [14], [15]. For LTE, system proposals include

a combination of OFDM with Multiple-Input Multiple-Output (MIMO) tech-

niques [16], [17] that promise the reliable transmission of hundreds of Megabits

per second (Mbps) over distorting mobile communications channels. OFDM

commercial applications are not limited to wireless or ADSL systems. Because

of its ability of meeting tight spectral masks, OFDM is further used in Power

Line Communications (PLC) [18], [19], [20]. In addition, recent research has

taken place for OFDM implementation in optical communications [21], [22] as

a mean of handling the dispersion effects in fibre media.

While the use of rectangular pulses establishes the orthogonality between

the OFDM signal carriers, such use creates OFDM’s with two main weaknesses:

first, it results in an infinite bandwidth that renders OFDM signal vulnerable

to frequency dispersion caused by Doppler effect and/or other frequency off-

sets. Second, the robustness of OFDM against time dispersion requires the

introduction of a redundant guard band between transmitted symbols. As a

consequence, the OFDM spectral efficiency is reduced. Regarding the first

issue, diverse pulse shaping based solutions have been proposed in order to

improve the localisation of the OFDM signal in both time and frequency do-

main [23], [24], [25]. As far as the spectral efficiency is concerned, offset QAM

(OQAM) OFDM [4], [26] was an initial attempt to enhance OFDM throughput

by discarding the guard band overhead. This was achieved through transmit-

ting the in phase (I) and quadrature (Q) parts of the data symbols separately

in half-OFDM signaling period intervals.

In the beginning of this decade, the issue of improving the spectral effi-

ciency of OFDM signals was addressed again. Rodrigues and Darwazeh in [27]

and Xiong in [28] introduced similar to OQAM-OFDM schemes with half in-
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tercarrier frequency separation. Fast OFDM (FOFDM) and M-ASK OFDM,

respectively, preserve the orthogonality for one dimensional data, e.g. M -PAM,

doubling real data OFDM spectral efficiency. However, the transmission of two-

dimensional symbols suffers from intercarrier interference. Ultimately, these

systems do not offer bandwidth saving when compared to systems using higher

order modulation such as M -QAM or M -PSK OFDM.

In 2003, Rodrigues and Darwazeh later proposed in [29] an M -QAM Spec-

trally Efficient FDM (SEFDM) system where carrier orthogonality is intention-

ally violated so that the transmitted signal occupies less bandwidth than an

equivalent OFDM system. Hence, relevant research started becoming popular

and other variants of SEFDM like the High Compact Multicarrier Modula-

tion (HC-MCM) [30] and the Overlapped FDM (OvFDM) [31] were presented.

Last but not least, Rusek and Anderson in [32], [33] proved very recently that

the detection of such signals in AWGN should not suffer any error penalty as

long as the carriers frequency separation is larger than 0.8 of the orthogonal

one. Nevertheless, the perfect reconstruction of SEFDM signals constitutes a

very hard problem, even in the presence of AWGN only, due to the lack of

orthogonality and the resulting interference between the signal sub-bands.

Following the first SEFDM proposal of [29], the work of this thesis aims

to fill in the research gap of reliable and computationally reasonable SEFDM

detection. Initially, the optimal - in terms of error rate - ML detector is de-

rived and showing that the detection is reduced to a Non Polynomial (NP)

hard combinatorial problem. Consequently, other detection methods are in-

vestigated. In particular, suboptimal linear techniques like Zero Forcing (ZF),

Minimum Mean Squared Error (MMSE) and different flavors of Sphere De-

coder (SD), a method that achieves the optimum result with a lower than ML

complexity, are studied . In addition, detection algorithms based on convex

optimisation, such as Semidefinite Programming (SDP), and combinations of

either MMSE or SDP estimates with brute force ML are mathematically mod-
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elled and verified through detailed simulation studies.

1.1 Thesis Organisation

This thesis is divided into seven chapters that discuss the background and the

detailed modelling as well as design issues of the different detectors studied.

Chapter 2 introduces the reader to the concept of multicarrier communica-

tion signals. Starting from the Nyquist fundamental communication principle,

the chapter presents the concept and benefits of using orthogonal bases for

the signal representation and underlines the weaknesses of typical orthogo-

nal systems in terms of poor frequency domain localisation as well as of re-

duced spectral efficiency due to the use of pulse guard bands. Consequently,

various proposals to improve OFDM spectral efficiency, such as offset QAM-

OFDM, Fast OFDM and M -ASK OFDM, are described. Finally, the Mazo

limit [34] for faster than Nyquist transmission and recent work on the dual

Mazo limit [32], [33] are outlined. These different systems and studies provide

the theoretical framework that stimulates the author’s research in the area of

spectrally efficient multicarrier signals that violate the orthogonality principle.

Chapter 3 describes the main principles of the SEFDM system [29] and

highlights the main issues that should be addressed for its practical implemen-

tation. First, the problem of the signal generation is discussed and different

alternatives are briefly described. In particular, it is demonstrated that the

samples of the discrete transmitted SEFDM signal can be generated by the

Inverse Fractional Fourier Transform (IFrFT) of the transmitted data sym-

bols. Recent proposals for the generation of such signals based on the typical

IDFT transformation are also presented. Besides the transmitter, the receiver

structure is also analytically explained. The justification for the use of an or-

thonormalisation process at the receiver side is given and different methods for

the generation of the receiver projections base are examined. Furthermore, the

properties of the matrix of the projections between the orthonormal base and
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the SEFDM carriers are investigated. Useful simulation based observations are

stated with key results being mathematically confirmed. Finally, it is proved

that the noise variables at the output of the receiver demodulator are Gaussian

independent with zero mean and variance equal to the power spectral density

of the channel noise. Following the study of the noise properties, the optimum

maximum a posteriori (MAP) detector is derived and it is shown that an op-

timal SEFDM detection reduces to a combinatorial optimisation problem that

is NP hard.

Chapter 4 investigates the appropriateness of linear detectors for the de-

tection of SEFDM signals. Specifically the ZF and MMSE detectors are inves-

tigated in detail. In addition, new iterative receivers taking advantage of the

properties of the receiver projections matrix, generated either by Gram Schmidt

variants or the Löwdin method, are also proposed. The studies of MMSE show

that it forms a special case of the regularised solution of the initial ML prob-

lem. It is demonstrated by simulation that although all the above detectors

offer a fixed polynomial complexity, they suffer severe error penalties. Finally,

a combined MMSE-ML method is designed and shown to result in significant

improvement of the error rate of MMSE and to approximate the optimal solu-

tion for BPSK SEFDM signals but have degraded error behaviour for 4-QAM

SEFDM signals.

In Chapter 5 a different approach to the detection problem is proposed. A

well known method of dynamic programming called SD is investigated for the

purpose of SEFDM detection. The new detection method is based on splitting

the overlapped SEFDM sub-bands into a number of consecutive processes that

lead to a global optimum. The real and the complex variants of the algorithm

are investigated and compared in terms of complexity and error behaviour.

Finally, the application of a modified SD based on the regularisation of the

ML cost function is proposed in order to cope with the ill conditioning of

the projections matrix. It is demonstrated that the regularised SD offers the
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optimal solution at a reasonable complexity for medium sized SEFDM signals

in high SNR regimes.

Chapter 6 studies SEFDM detection utilising a newly proposed convex op-

timisation technique known as Semidefinite Programming (SDP). This is based

on relaxing the optimal detection least squares problem to a convex SDP. It is

demonstrated by simulation that SDP relaxation is superior to both ZF and

MMSE. However, the gap between the SDP and the optimal solutions deteri-

orates with the increase of interference in the system. Consequently, a novel

SDP-ML combined detector is proposed. Simulation results show that the new

scheme tightens the SDP relaxation gap. Moreover, a pruned SD (PSD) is de-

signed to implement a faster and more efficient SDP-ML concept. PSD achieves

a near-optimal detection for medium dimensional SEFDM signals in low SNR

regimes.

Finally, Chapter 7 summarises the results of this work, citing the designs

and advantages of the investigated and proposed detection techniques. In ad-

dition, the possibility of further research is discussed and directions of future

work are given.

The mathematical proof of Eq. (5.46) is in Appendix A and brief intro-

ductions to lattice theory and convex optimisation are in Appendices B and C,

respectively.

1.2 Main Contributions

This work comprises investigations of existing and design of novel detection

techniques suitable for non orthogonal SEFDM systems. The main contribu-

tions within the course of this research are the following:

• Prove that the Gram Schmidt coefficient matrix of the SEFDM linear

statistical model is upper triangular and that its diagonal elements are

equal or less than unity;
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• Address the problem of the numerical error in the orthonormalisation pro-

cess and study its effect on the system performance. It has been shown

that the Modified GS (MGS) and the Iterative Modified GS (IMGS) are

numerically superior to the standard Classic GS method. In addition, it

was shown by simulation that IMGS can generate numerically orthonor-

mal bases for a large dimensional SEFDM signal.

• Apply the Löwdin orthonormalisation method, typically used in the Quan-

tun chemistry, to the orthonormalisation of multicarrier communication

signals;

• Prove that the noise variables at the receiver correlators outputs are Gaus-

sian independent with zero mean and variance equal to the channel noise

power spectral density;

• Derive the optimal MAP detector for the SEFDM system;

• Design a detection method based on a combination of MMSE and ML

that offers a good approximation of ML error performance for BPSK

modulated FDM signals with a significant reduction in brute force ML

complexity;

• Apply SD to the SEFDM signals detection and derivation of its main

constraints;

• Design a regularised version of SD that overcomes one of standard SD

main limitations, i.e. the projections matrix singularity. This technique

has practical advantages in that it is computationally efficient in high

SNR regimes;

• Introduce a new a boxed ML technique that combines SDP with brute

force ML;
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• Design a novel SD that performs much faster than the equivalent SDP-

ML detector. The new scheme reduces considerably the computational

effort of the regularised SD and would potentially fill the gap of detection

for medium size SEFDM signals in low SNR regimes;

The above contributions and results based on this work have resulted in the

following publications (listed chronologically):

1. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘Analysis of Sub-

Optimum Detection Techniques for Bandwidth Efficient Multi-Carrier

Communication Systems,’ in Cranfield Multi-Strand Conference, CMC

2008, May 2008.

2. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘A combined

MMSE-ML detection for a spectrally efficient non orthogonal FDM sig-

nal,’ 5th International Conference on Broadband Communications, Net-

works and Systems, 2008. BROADNETS 2008., pp. 421 − 425, Sept.

2008.

3. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘An Optimum De-

tection for a Spectrally Efficient non Orthogonal FDM System,’ in 13th In-

ternational OFDMWorkshop 2008, InOWo’08, Hamburg, Germany. OFDM

International Workshop 2008, August 2008.

4. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘Spectrally Effi-

cient FDM Signals: Bandwidth Gain at the Expense of Receiver Complex-

ity,’ in IEEE International Conference on Communications, 2009. ICC

’09., June 2009, pp. 1− 6.

5. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘An Overview of

Optimal and sub-Optimal Detection Techniques for a Non Orthogonal

Spectrally Efficient FDM,’ in London Communications Symposium, LCS

2009, September 2009.
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6. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘An Investigation

of Semidefinite Programming Detection for a non orthogonal FDM sys-

tem,’ 20th Personal, Indoor and Mobile Radio Communications Confer-

ence 2009, IEEE PIMRC’09, Japan, Tokyo, September 2009, pp. 2827−
2832.

7. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘A New Quasi-

Optimal Detection Algorithm for a Non Orthogonal Spectrally Efficient

FDM,’ in 9th International Symposium on Communications and Infor-

mation Technologies 2009, IEEE ISCIT 2009, Incheon, Korea, September

2009, pp. 460− 465.

8. A. Chorti, I. Kanaras, M. Rodrigues, and I. Darwazeh, ‘Joint Channel

Equalization and Detection of Spectrally Efficient FDM Signals,’ in pro-

ceedings with the 20th Personal, Indoor and Mobile Radio Communica-

tions Conference 2010, IEEE PIMRC’10, Turkey, Istanbul, September

2010.

9. I. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, ‘A fast constrained

sphere decoder for ill conditioned communication systems,’ to appear in

IEEE Communications Letters, 2010.

10. R. Clegg, S. Ahmed, I. Kanaras, and I. Darwazeh, ‘A practical system for

improved efficiency in frequency division multiplexed wireless networks,’

submitted to IEEE Transactions on Communications, 2010.

Further on the basis of ideas driven from this work the paper below, propos-

ing the application of overlapped FDM to enhance the physical layer security

of communication systems, was recently published.

A. Chorti and I. Kanaras, ‘Masked M-QAM OFDM: A Simple Approach for

Enhancing the Security of OFDM Systems,’ in 20th Personal, Indoor and Mo-

bile Radio Communications Conference 2009, IEEE PIMRC’09, Japan, Tokyo,

September 2009, pp. 1682− 1686.
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Chapter 2

Multicarrier modulation:

Basics

This chapter introduces the basic concepts of multicarrier modulation (MCM)

systems with the aim of revealing the motivation behind the research work

of this thesis. The goal is not to provide a detailed analytical/mathematical

description of the different communication systems but to highlight their key

merits and demerits from basic communication and signal theory principles.

2.1 MCM representations

In general, in a multicarrier system the transmitted signal may be expressed as

s(t) =
+∞∑

m=−∞

N−1∑

n=0

Sm,nxm,n(t), (2.1)

where Sm,n are the information symbols, e.g. M -QAM symbols, and xm,n(t)

are a set of functions used for the generation/representation of the samples of

the transmitted signal. These functions comprise translated and modulated

pulses, i.e. xm,n(t) can be expressed as

xm,n(t) = g(t−mT )ej2πn∆ft. (2.2)
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where the time translation step T is equal to the symbol period, the frequency

step ∆f is equal to the carriers frequency separation, and g(t) is the pulse

function.

In orthogonal multicarrier systems like OFDM, g(t) is normally selected to

be the rectangular function rect(·) defined as

rect(
t

T
) =







1, |t| ≤ T2
0, |t| > T2

. (2.3)

In addition, systems are designed in such a way so that ∆f and T meet the

following orthogonality principle

∆f =
1
T
. (2.4)

Satisfying (2.4) guarantees the orthogonality between the basis functions, i.e.

∫ mT
2

−mT
2

xm,n(t)x∗m,k(t)dt =







1, n = k

0, n 6= k
, (2.5)

where (·)∗ denotes the complex conjugate.

Thanks to orthogonality, the reconstruction of the transmitted data sym-

bols at the receiver side becomes simple. Such reconstruction is accomplished

by projecting the signal onto the same orthogonal base used for the signal gene-

ration at the transmitter side. This is implemented by a bank of correlators

that generate independent samples, S′m,0, S
′
m,1, . . . , S

′
m,N−1, of the data symbols

corrupted by noise as illustrated in Fig. 2.1.

Nevertheless, in Hilbert spaces [35], [36] - such as the vector space of com-

munication signals - this is not the only option. An alternative could be signal

generation by projecting the data symbols onto a non orthogonal base. In that

case, a simple signal reconstruction relies upon the respective biorthogonal

base [36], [37]. The biorthogonal set comprises of functions that lack mutual

orthogonality, yet they are orthogonal over the base of the transmitted signal,
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Figure 2.1: Illustration of the OFDM signal generation/reconstruction.

i.e.
∫ mT

2

−mT
2

xm,n(t)y∗m,k(t)dt =







1, n = k

0, n 6= k
, (2.6)

where xm,n and ym,n are the signal generation and its biorthogonal base func-

tions, respectively. Notwithstanding, orthogonal bases demonstrate a major

advantage when compared to the biorthogonal ones. They minimise the effect

of the additive white noise (AWGN) on the detection error [25].

Apart from the ease of signal reconstruction and the optimal error rate

in AWGN channels [24], meeting orthogonality implies that the OFDM signal

further satisfies the fundamental communication principle set by Nyquist and

described also by Gabor in [38] 1. Following this, the number N of data symbols

that are conveyed independently by a signal of duration T and bandwidth W ,

must meet the following inequality

N ≤WT (2.7)

1In [38] Gabor shows that a time limited signal can be developed in a fourier series that

comprise an infinite number of spectral lines with 1
T

separation. Consequently, within a band

W the signal is represented by a maximum N = WT complex exponentials, i.e. the fourier

functions, or 2N real cosines and sines that can convey independent, data equal to the number

of the fourier coefficients.
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In practical OFDM systems, the overall bandwidth approximates N∆f . Con-

sequently, in OFDM the bandwidth-symbol period product will be

WT = (N∆f)T = N (2.8)

Hence, the OFDM signal contains the maximum number of linear independent

functions within a band, or equivalently the OFDM orthogonal base is described

as ‘complete’ [36], meaning that OFDM makes the most out of the signal space

in terms of capacity [39].

This, of course, does not mean that OFDM can be used to transmit at faster

rates than single carriers schemes. Actually, in OFDM the input high data rate

stream is split to N low rate streams, equal to the number of carriers, that are

transmitted in parallel (see Fig. 2.2). The main motivation behind this is what
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Figure 2.2: Block diagram of an OFDM transceiver.

established OFDM as one of today’s most attractive transmission technique

in wireless communication systems. That is OFDM’s ability to cope easily

and efficiently with multipath propagation effects. Specifically, the destructive

effects of the latter are intersymbol interference (ISI) and fading that can be

either flat or frequency selective depending on the delay spread τ of the channel

[40]. ISI is handled by introducing a guard band between consecutive OFDM

symbols that is larger than τ . Thus, the delayed samples of a symbol do not fall

in the detection window of consecutive symbols, as illustrated in Fig. 2.3. As
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0  0.25 1.25  1.5 2.5  

1st symbol Line of sight (LOS) path
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2nd symbol Line of sight (LOS) path
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τ
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Figure 2.3: OFDM use of guard band against ISI.

far as the frequency selectivity is concerned, due to the parallel transmission of

N lower rate streams the OFDM signaling period is large enough so that each

OFDM sub-band is smaller than the coherence bandwidth w ≈ 1
τ of the channel,

i.e. the range of frequencies that undergo the same channel response [40].

Consequently, each of OFDM sub-bands undergoes effectively flat fading that

requires much less complex equalisation. In particular, the transformation of

the intersymbols guard band into a kind of symbol cyclic repetition, called

cyclic prefix and illustrated in Fig. 2.4, allows the diagonalisation of the channel

matrix by the IFFT-FFT pair. Hence, an easy equalisation for each OFDM

sub-band can be accomplished separately.

Figure 2.4: Cyclic prefix.

However, the use of orthogonal functions appears to have disadvantages.

In particular, OFDM signals are vulnerable to the frequency dispersion mostly

met in mobile communication systems. It is well known that the change in

the propagation path between mobile transmitters and receivers results in fre-
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quency offsets known as Doppler frequencies [40] that would result in the loss

of orthogonality. Moreover, because of the infinite spread of each of the signal

sub-band 2 - due to the use of the orthogonal pulses - any deviation from orthog-

onality leads to high intercarrier interference (ICI). A solution to this problem

is the good ‘localisation’ of the multicarrier base functions. This implies that

the base functions in eq. (2.2) do not deviate significantly from their time

and frequency mean values mT and n∆f , respectively [39]. A measure of this

deviation is given by the base functions second order moments (dispersions),

∆T =
∫ +∞

−∞
t2 |x(t)|2 dt,

∆Φ =
∫ +∞

−∞
f2 |X(f)|2 df, (2.9)

where ∆T and ∆Φ are the time and frequency dispersions of the base functions,

respectively, and X(f) is the signal representation in the frequency domain.

Gabor was the first to investigate the issue of the well localised functions in

his famous 1945 ‘Communications Theory’ paper [38]. Extending the Heisen-

berg uncertainty principle to the communications field, he derived a minimal

bound for the product of the time and frequency dispersion. In particular, he

showed that

∆Φ∆T ≥ 1
2

(2.10)

In the same paper Gabor also demonstrated that the ideally localised functions

is a set generated upon a new prototype function xm,n(t) given by

xm,n(t) = e−α
2(t−mT )2

ej2π∆ft. (2.11)

where α is a constant and the function e−α
2(t−mT ) represents a Gaussian pulse.

An example of such a pulse is illustrated in comparison with a rectangular pulse
2According to the Balian-Low theorem [39], [24], [25], orthogonal systems, using prototype

functions xm,n(t) having the same orthogonality properties as the rectangular window, have

infinite dispersion either in the time or the frequency domain, suffering ISI or ICI, respectively.

Fig. 2.5 illustrates the bad localisation of typical OFDM in frequency due to the frequency

representation of the rect pulses by Sinc functions.
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Figure 2.5: Comparisons of rectangular and Gabor pulses in the time and fre-

quency domain, as illustrated in left and right sub-figure, respectively.

in Fig. 2.5. It is apparent that due to the lack of sidelobes the former is much

superior than the latter in terms of frequency dispersion.

Although Gabor functions are well localised, they do not constitute an

orthogonal base. Notwithstanding, the lack of orthogonality is not always a

limitation [24]. For example, in mobile communication channels, where the

noise is not the dominant distorting effect, good localisation and not orthogo-

nality is the first priority. In addition, for ∆fT > 1 Gabor functions compose

an incomplete set of linear independent functions, i.e. they can convey inde-

pendent data, yet sub-optimally in terms of signal space utilisation. These

observations drove major research in the field of another class of systems that

combine efficient pulse shaping, e.g. Hermite pulses, with multicarrier trans-

mission [23], [24], [41].

2.2 Communication Below Orthogonality

Hitherto, we referred to multicarrier systems that are based on signal rep-

resentations over complete or incomplete bases, i.e. when ∆fT ≥ 1. Next
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question comes naturally: what happens when the frequency separation be-

tween the FDM carriers is squeezed beyond the orthogonality point; and then,

what could be the benefits and the disadvantages of such a design. In the liter-

ature, it is well known that in this case there can be frames of such functions,

i.e. non orthogonal and overcomplete sets [24]. The overcompleteness implies

that the frame functions are no longer linear independent [36]. An immediate

corollary of this is the lack of invertibility of the matrix of the linear transfor-

mation of data symbols S to the multicarrier signal s(t). Note that, in OFDM

this is guaranteed by the invertibility of the Fourier transformation matrix.

Consequently, at first sight, perfect reconstruction, i.e. detection, of the data

symbols, even in the case of an ideal channel is not possible.

Nevertheless, Saltzberg first introduced in [4] the possibility of reducing the

carriers frequency separation by 50%, i.e. half OFDM frequency separation.

Although the new set is apparently overcomplete in the complex Hilbert space,

a more thorough look shows that the system preserves the orthogonality prin-

ciple, and consequently the completeness, when the signal is examined in the

real Hilbert space. In particular, Saltzberg proposed the separate transmission

of the real and imaginary parts of the complex M -QAM symbols with an offset

of T/2 between them. The perfect reconstruction of the half OFDM symbol

signals required orthogonality only between the real parts of the base functions.

In contrast to OFDM where the prototype function is

xm,n(t) = g(t−mT )ej2π∆ft, with ∆FT = 1 (2.12)

in OQAM-OFDM system the base functions are translated as time and fre-

quency copies of the following prototype function,

xm,n(t) = g(t−mT )jm+nej2π∆ft, with ∆FT =
1
2
. (2.13)

Note that the term jm+n corresponds to π/2 rotation between adjacent carriers.

A block diagram of this system, called Offset QAM-OFDM (OQAM-OFDM)

transceiver is illustrated in Fig. 2.6.
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Figure 2.6: OQAM-OFDM transceiver block diagram [26].

The main advantage of the OQAM-OFDM is that it combines the base

completeness with the possibility of applying pulses other than rectangular

in order to achieve better localisation [42]. Good examples are the use of

pulses of optimised time domain characteristics [42] and the use of the Isotropic

Orthogonal Transform Algorithm (IOTA) pulses [39] that enable OFDM to get

rid of the cyclic prefix overhead. Consequently, OQAM-OFDM appears to be

more spectrally efficient than standard OFDM [43].

Further design issues are of interest when operating below orthogonality,

mainly the digital implementation for the signal generation and the receiver

projections. A solution based on a N/2 length IFFT-FFT pair and a bank of

filters was first proposed in [26]. Furthermore, a less computationally expensive

proposal based on the discrete cosine transform was presented in [28]. All these

systems perform similarly to the equivalent (in terms of symbol period) OFDM

in case the baseband modulation symbols are real. However, the fact that the

advantage of the reduced frequency separation is lost to systems employing
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complex modulation compromises the superiority of the proposed schemes in

terms of spectral efficiency. The next section outlines recent research on the

design of non orthogonal multicarrier systems that are capable of complex

modulation to convey more data than OFDM systems occupying equivalent

bandwidth.

2.3 Overlapped FDM

In the last decade sporadic research efforts took place for the design of over-

complete non orthogonal multicarrier systems. The main motivation was the

potential increase of spectral efficiency fitting more signals - than the orthogo-

nality principle allows - in a specific frequency range. Initially, Rodrigues and

Darwazeh [29] proposed an FDM system where the orthogonality principle was

deliberately violated, i.e. ∆fT < 1. The signal generation at the transmitter

side was based on a bank of analogue local oscillators and mixers. Thanks to

the overlapping between the sub-bands the overall signal bandwidth was a frac-

tion of the bandwidth of an equivalent OFDM for the same transmission rate.

The error performance of the system was evaluated in AWGN. Consequently,

the projection of the noise signal onto an orthonormal base was a prerequi-

site for optimal detection. Since the base of transmission functions were no

longer orthogonal, an orthogonalisation method was used in order to generate

an orthonormal base suitable for the receiver projections. In addition, the re-

ceiver correlations were based on a bank of analogue filters that output a set

of statistics for detection purposes. For the projections base was different from

the signal generation base, a simple-OFDM likewise signal detection was not

possible and required exhaustive search over the entire set of possible trans-

mitted FDM symbols. However, the complexity of such a solution increases

exponentially over the number of signal carriers and the constellation cardinal-

ity. In [29] ZF and Genetic Algorithms (GA) were investigated to circumvent

the detection complexity. Both these solutions were proved inefficient in terms
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of error performance, leaving a gap for further research.

Apart from the detection issue [29] revealed other design challenges such

as finding a digital signal generation mechanism that could get rid off the

bulky structure of an analogue transmitter. Hamamura et al proposed in [30]

a solution based on the use of typical IFFT-FFT pair for the generation and

projection of the signal at the transmitter and receiver side, respectively. In

particular, following the principle of [26], the generation of the OFDM symbol

by discarding some of the output samples of a longer IFFT was introduced. This

is equivalent to the truncation by a rectangular window in the time domain that

results into the extension of each of the sub-band. In addition, the requirement

of an orthonormal base for the projections was met by the use of the FFT

and a detector based on the calculation of the Euclidean distance between

the received vector and all the possible results/hypotheses was used as in [29].

Notwithstanding, the detector proposed by Hamamura also suffered a very high

complexity.

Further to the previous efforts [44] and [45] introduce systems termed Over-

lapped Time Division Multiplexing (OvTDM) and Overlapped FDM (OvFDM)

that overlap symbols or channels in time or frequency domain, respectively. The

signal generation and demodulation is based on the use of typical IFFT-FFT

pair [31]. Nevertheless, detection was proved to be the main challenge and re-

sults were presented for small dimensional signals, i.e. N ≤ 12, [46], [47], [48].

It is useful though to highlight an intriguing observation reported in [45]. The

authors mention that although independent demodulation is not possible due

to the overlapping between consecutive pulses in OvTDM systems - the same

applies for overlapped FDM sub-bands - joint detection would be tangible as

long as there is one-to-one correspondence between the symbols sequence and

the overall transmitted waveform. Fig. 2.7 illustrates such an example. Two

overlapped binary pulses A and B are transmitted. Because of their unique

shapes their overlapping can lead to only 4 discrete waveforms corresponding
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one-to-one to the 4 different combinations of A and B, i.e. A + B, A − B,

−A−B and −A+B. Consequently, comparing the received waveform with all

4 possible transmitted waveforms achieves correct detection.
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Figure 2.7: Principle of overlapped multiplexing after [45].

2.4 Mazo limit

Most interestingly, Rusek and Anderson recently dealt with the problem of de-

riving the minimum Euclidean distance between transmitted BPSK or 4-QAM

symbols that overlap in time and/or frequency [32], [33]. They were inspired by

the 1975 work of Mazo, at Bell Labs, for systems that can transmit faster than

the Nyquist signaling criterion [34]. Mazo proved that the transmission band-

width of Sinc pulses can be reduced to 80% of the Nyquist signaling rate, i.e.
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the transmission is by 25% faster, with no Euclidean distance loss. Although

the shorter transmission time results in overlapping between consecutive pulses,

this result implies that ISI should degrade the detection error rate in AWGN.

Rusek and Anderson further proved that the frequency separation between

FDM sub-bands could also be reduced down to a close to Mazo bound without

noticeable degradation in the error performance. Notwithstanding, the detec-

tion implementation for such systems relies on very complex techniques since

the transmitted symbols cannot be detected independently due to the system

inherent ISI and/or ICI [34], [49].

2.5 Conclusions

In this chapter, a short review of multicarrier communications basics was given.

It was shown that OFDM demonstrates significant advantages like simple signal

reconstruction, detection optimality in AWGN and ease of handling of time dis-

persive channels. But above all, OFDM makes the most of the available signal

bandwidth in terms of transmitting the maximum possible number of indepen-

dent data. Still, sporadic efforts have taken place in order to improve OFDM

spectral efficiency. Initially, half symbol OFDM systems managed to transmit

one-dimensional data symbols at rates twice as fast as those of OFDM sys-

tems. Nevertheless, they did not offer bandwidth advantage when compared

to standard OFDM conveying 2-dimensional data apart from discarding the

cyclic prefix overhead needed by OFDM to cope with ISI and frequency selec-

tive fading. Then, non orthogonal overlapped in time and/or frequency systems

were proposed to reduce the bandwidth of an equivalent to OFDM transmitted

signal. The deliberate lack of orthogonality rendered an independent detection

of the transmitted symbols impossible. However, detection could be possible

as long as there is a one by one correspondence between the information sym-

bols sequence and the overall transmitted waveform. In addition, recent work

has shown that as long as overlapping does not exceed some specific bounds,
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the Euclidean distance between the transmitted waveforms does not shrink

and consequently the detection error rate should not degrade. Yet, a feasible

implementation of detection is an open research area. Motivated by these obser-

vations and results, this thesis aims to explore the limits of a computationally

practical detection. In the following chapters, various detection techniques are

studied, designed and tested using appropriate mathematical and numerical

simulation modelling. The next chapter however is specifically dedicated to

studies of the SEFDM signals and systems for which the detection is the focus

of this thesis.
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Chapter 3

The SEFDM system

3.1 Introduction

The idea of squeezing the frequency separation between the OFDM carriers in

order to improve OFDM spectral efficiency is not something new. Saltzberg

was the first to propose offset QAM/OFDM [4] that offered increased spectral

efficiency of a conventional OFDM by the cyclic prefix overhead [43]. Later, Ro-

drigues and Darwazeh in [27] and Xiong in [28] proposed the idea of combining

1-dimensional modulation schemes with half symbol period of OFDM systems

and introduced the use of typical discrete fourier and fast-cosine transforma-

tions, respectively, for their implementations. Notwithstanding, both schemes

did not offer the benefits of M -dimensional modulated OFDM systems. Since

then, various efforts have come to the light. High compaction multicarrier

modulation (HC-MCM) [30], [50], overlapped FDM (OvFDM) [31] and more

recently faster than Nyquist (FTN) signaling [33], [49], [51] are the most promi-

nent proposals of spectrally efficient multicarrier systems.

This thesis deals specifically with the study of the first attempt for a non

orthogonal spectrally efficient FDM (SEFDM) as proposed by Rodrigues and

Darwazeh in [29]. Such system has an advantage in its use of a demodulation

architecture that facilitates the detection process. This is due to the triangular

shape of the projections matrix that could either assist the implementation
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of iterative receivers or simplify techniques like SDs by discarding relevant

decomposition steps.

In this chapter, firstly, a general description of the SEFDM concept is given

and its spectral efficiency gains are demonstrated. Following, the main SEFDM

implementation challenges are pointed out. In particular, three main areas

of potential research are identified: the design of a digital transmitter, the

design of a demodulator able to extract sufficient statistics for the transmitted

SEFDM waveform and finally, the design of a reliable and computationally

cheap detector.

Regarding the transmitter, the use of an inverse fractional fourier transform

(IFrFT) is introduced. In addition, recent proposals based on the conventional

inverse discrete fourier transform (IDFT) are presented. As far as the demod-

ulator is concerned, it is shown that the Gram Schmidt (GS) orthonormalisa-

tion method proposed in [29] is numerically stable only for a small number of

carriers. Consequently, other orthonormalisation techniques like modified GS

(MGS), iterative MGS (IMGS) and Löwdin method are described and their

use for SEFDM is studied and compared in terms of orthonormalisation errors.

Additionally, various properties of the matrix of the projections of the SEFDM

carriers on the demodulator orthonormal base are derived and discussed. Rel-

evant proofs are also given either based on mathematical calculations or on

numerical modelling results.

Then, starting from the noise properties at the demodulator output, it

is shown that the optimal detector for the SEFDM system is reduced to a

combinatorial optimisation problem. An initial solver is modelled following an

exhaustive enumeration method and some preliminary bit error rate (BER)

results are demonstrated. Finally, all three main parts of the SEFDM system

are discussed in terms of computational effort in order to identify potential

bottlenecks for the SEFDM performance. The mathematical developments of

this chapter serve as a necessary introduction to the following Chapters (4, 5
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and 6) that present different detection techniques of varying complexity and

performance.

3.2 SEFDM system general description

The original SEFDM transceiver is described in [29]. A high data rate input

stream is split into N parallel low data rate streams. The latter modulate,

according to a specific modulation scheme of level M , N SEFDM subcarriers

fα,n(t), n = 0, . . . , N − 1, whose frequency separation ∆f is only a fraction α

of the inverse of the SEFDM symbol period T , i.e.

∆f =
α

T
, with α < 1. (3.1)

Thus, the required bandwidth is reduced by a factor 1− α, at the expense

of the loss of orthogonality between the carriers. The transmitted signal, in an

SEFDM symbol period, is given by

s (t) =
1√
T

N−1∑

n=0

Snfα,n(t) =
1√
T

N−1∑

n=0

Sne
j2πn∆ft, (3.2)

where Sn represents the nth modulation symbol. Thanks to the squeeze of the

carriers frequency separation SEFDM optimally offers a spectral efficiency gain

of 1
α , approximately. Further details on the SEFDM spectral efficiency issue

will be given in the next section.

For proof of concept and assuming the only impairment introduced by the

communication channel is Additive White Gaussian Noise (AWGN) n(t), the

received signal r(t) can be expressed as

r(t) = s(t) + n(t). (3.3)

The proposed receiver consists conceptually of two stages. The first stage

uses a bank of N correlators to extract N sufficient 1 statistics from the re-

ceived signal. The second stage uses a detector. Fig. 3.1 depicts the SEFDM

transceiver.
1Roughly, a statistic is sufficient when it carries all of the useful information about the

parameter to estimate [35].
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The particular choice of the correlation functions at the receiver outer stage

is driven by two important requirements: (i) the correlation functions should

be orthonormal in order to prevent noise coloring, and (ii) that detection of

the SEFDM signal must be computationally feasible. Both requirements can

be met by generating an orthonormal base that spans the SEFDM signal space

using the Gram Schmidt (GS) orthonormalisation method [52], [53]. However,

it is well established in the literature [53], [54] that the classic GS algorithm

is vulnerable to numerical errors and even for small values of N the generated

base functions are not orthogonal. For example, in the case of SEFDM carriers,

the classic GS base functions are not orthogonal for N > 16 when α = 0.75.

Consequently, we employ instead the computationally stable Iterative Modified

Gram Schmidt (IMGS) [55] for the generation of the orthonormal base (see

section 3.5). Denoting bk(t) the kth IMGS orthonormal base, the output of the

kth receiver correlator is given by

Rk =
∫ T

0
r(t)b∗k(t)dt, k = 0, . . . , N − 1. (3.4)

The equivalent system linear statistical model can be described in matrix

representation 2 as follows

R = MS + N, (3.5)

where R = [Ri] is the vector of the N observation statistics, S = [Si] is the

vector of the N transmitted symbols, M = [Mij ] is the N × N covariance

matrix of the SEFDM carriers and the orthonormal base, and N = [Ni] is a

vector containing N independent Gaussian noise time samples of zero mean

and covariance matrix σ2I (I being an identity matrix of N ×N dimension and

σ2 is the noise variance). The elements of R and M are given by

Ri =
∫ T

0
r(t)b∗i (t)dt, i = 0, . . . , N − 1, (3.6)

Mij =
∫ T

0
fa,i(t)b∗j (t)dt, i, j = 0, . . . , N − 1. (3.7)

2Throughout this thesis standard matrix notation is used; where a symbol appears in bold,

it refers to a matrix of any dimension including a (1×N) dimension which is a vector.
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3.3 SEFDM spectral efficiency

The time domain SEFDM signal is given by

s(t) =
1√
T

+∞∑

k=−∞

N−1∑

n=0

Sk,ng(t− kT )e
j2παnt
T , (3.8)

where g(t− kT ) are taken as rectangular (with no loss of generality) pulses of

duration T . Consequently, g(t − kT ) = rect( tT − k), with rect(·) denoting the

rectangular function, defined as

rect(
t

T
) =







1 −T2 ≤ t ≤ T2
0 elsewhere

. (3.9)

The frequency domain Sk(f) representation of the kth SEFDM symbol is

Sk(f) = F{ 1√
T

N−1∑

n=0

Sk,nrect(
t

T
− k)en

j2παt
T }

=
1√
T

N−1∑

n=0

F{Sk,nrect(
t

T
− k)en

j2παt
T }

=
1√
T

N−1∑

n=0

Sk,nF{rect(
t

T
− k)} ⊗ F{1× en

j2παt
T }, (3.10)

where F{·} and ⊗ denote the fourier transformation and the convolution, re-

spectively. Applying basic fourier properties Eq. (3.10) reduces to

Sk(f) =
√
T
N−1∑

n=0

Sk,nSinc(fT )ej2πfkT ⊗ δ(f − nα
T

), (3.11)

where δ(·) denotes the Dirac function. Finally,

Sk(f) =
√
T
N−1∑

n=0

Sk,nSinc
(

(f − nα
T

)T
)

ej2π(f−n α
T

)kT . (3.12)

It is apparent that the spectrum of the SEFDM symbol comprises a series

of Sinc functions of 1
T width centrally located at nαT frequencies. Fig. 3.2

illustrates an SEFDM symbol in the frequency domain for α = 1 and 0.5,

corresponding to OFDM and FOFDM, respectively. It is clear that in OFDM,

the center of each Sinc function coincides with the zero crossings of all other
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(a) OFDM. (b) SEFDM for α = 0.5.

Figure 3.2: Frequency domain representation of OFDM and SEFDM with N = 4

subcarriers, in the right and left sub-figure, respectively. T was set to 4× 10−6s.

functions. Notwithstanding, this is not the case in SEFDM scenarios with

α < 1.

The overall bandwidth B of the SEFDM signal is roughly given by

B = (N − 1)
α

T
+ 2

1
T
. (3.13)

The SEFDM spectral efficiency β is defined as the ratio of the data bit rate

N log2M
T over the signal bandwidth B. Hence, β is

β =
N log2M

T

(N − 1)αT + 2 1
T

=
N log2M

(N − 1)α+ 2
. (3.14)

It is clear that for large N

β ≈ log2M

α
. (3.15)

To confirm the above result, the noise equivalent bandwidth BN of SEFDM

was measured by simulation for N = {32, 256} and α = 0.5→ 1. Its calculation

was performed according to

BN =

∫+∞
−∞ S2(f)df
max |S2(f)| , (3.16)
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where S(f) is the signal representation in the signal domain.

Fig. 3.3 shows the Power Spectrum Density G(f) of the SEFDM signal for

different values of the factor α = ∆fT . G(f) is normalised over max{|G(f)|2},
and calculated according to the following [56]

G(f) =
|S(f)|2

max{|S(f)2|} , (3.17)

Fig. 3.4 demonstrates the SEFDM spectral gain calculated in two ways: either

using Eq. (3.15) or by simulation as the ratio of the measured BN over the

bandwidth of the equivalent OFDM signal, i.e. BN measured for α = 1.
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Figure 3.3: SEFDM G(f) for α ∈ {0.5, 0.75, 1} and N = 32.

It is notable that simulation measurements coincide with the closed formula

calculations of (3.15) for large N = 256 confirming that as the normalised carri-

ers frequency separation α decreases, the noise equivalent bandwidth decreases

and the SEFDM spectral gain increases proportionally.

Finally, Fig. 3.5 demonstrates spectral efficiency of BPSK and 4-QAM

SEFDM schemes, versus the Eb/N0 required to achieve a BER of 6 × 10−3.

It is assumed that an optimal detection for such systems is tangible and that
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Figure 3.4: SEFDM spectral efficiency gain for α = {1 → 0.5} and N =

{32, 256}.

the error rate does not degrade due to the sub-bands overlapping for (BPSK,

α ≥ 0.401) and (4-QAM, α ≥ 0.802) settings, in line with assumptions reported

in [34], [32], [33]. The spectral efficiency of such SEFDM is compared to the

spectral efficiency of a symbol rate/equivalent OFDM. The Shannon limit for

the normalised capacity of a band-limited AWGN channel [52] serves as an

upper bound. It is clear that 4-QAM SEFDM is superior as opposed to OFDM

for α ≥ 0.8 (that achieves a spectral efficiency of 2.5) and closer to Shannon

limit. Notwithstanding, a further decrease in α value does not necessarily

offer a spectral efficiency benefit though the SEFDM signal occupies a smaller

bandwidth than OFDM. This is due to the power penalty that should be paid

because of the deterioration in the error rate of the SEFDM detection caused

by the increase of the system inherent interference.
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Figure 3.5: SEFDM spectral efficiency and the Shannon channel capacity bound.

3.4 SEFDM transmitter implementations

The implementation of an analogue SEFDM transmitter, depicted in Fig. 3.1,

is overly complex when the number of the SEFDM carriers N becomes large.

Consequently, alternative implementation methods should be investigated. Al-

though this thesis focuses on the receiver design and specifically in the detector

part, for the completeness the following paragraphs briefly present potential

solutions for a feasible SEFDM transmitter. These can be classified in two

main categories: the fractional fourier transform (FrFT) based and the dis-

crete fourier transform (DFT) based transmitters.

3.4.1 Fractional Fourier based transmitter

In analogy to a classic OFDM transmitter that uses an Inverse Fast Fourier

Transform (IFFT), an Inverse FrFT (IFrFT) algorithm can be employed for

the generation of the SEFDM signal. The IFrFT is described in detail in [57].

55



CHAPTER 3. THE SEFDM SYSTEM

The kth output of the IFrFT can be expressed as

xk(α) =
N−1∑

n=0

Sne
2πjkαn/N , (3.18)

so that the Inverse DFT (IDFT) is the IFrFT for α = 1.

The IFrFT matrix is expressed as

Fα
−1 =












1 1 · · · 1

1 ζα · · · ζα(N−1)

...
...

. . .
...

1 ζα(N−1) · · · ζα(N−1)(N−1)












, (3.19)

with ζ = e2πj/N . From the above it is clear that the time domain SEFDM

samples within the signaling period T can be derived according to Fα
−1S.

The attractiveness of the FrFT is the existence of efficient fast algorithms

[58], [57] for its computation that require only 20N log2N flops . As opposed

to Radix-2 algorithms used in the standard FFT implementations, this implies

an increase in computational cost by 4 times. Notwithstanding, the order of

complexity of fast FrFT is still N logN and independent of α.

3.4.2 DFT based transmitter

For the first time, IDFT was used for the generation of non orthogonal FDM

signals for an OQAM OFDM system in [26]. The author proposed the sys-

tem implementation through a half OFDM length, i.e. N2 IFDT-DFT pair. In

addition, to reduce further complexity the IDFT-DFT was replaced by their

respective IFFT-FFT implementations. A similar concept was adopted later

in fast OFDM (FOFDM) systems [27], i.e. M -PAM SEFDM with α = 0.5.

Noticing that for real inputs IFFT generates symmetric outputs, half of the

samples of the FOFDM symbol were discarded before transmission. The trun-

cation of the IFFT output resulted in a transmitted signal occupying a reduced

bandwidth. The same approach was also adopted in [30] and [31] for the trans-

mission of SEFDM systems with arbitrary α.
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More recently Ahmed and Darwazeh [59], [60] presented new variations of

IDFT implementations for the generation of SEFDM signals where α is equal

to a rational number, i.e. α = b
c with b < c and both being integer prime

numbers. It is notable that in this case according to [57], FrFT can be easily

reduced to a larger dimensional DFT. In particular, the inverse FrFT (IFrFT)

for an N carriers SEFDM system is given by

xk

(
b

c

)

=
N−1∑

n=0

Sne
j2π kn

N
b
c , with k = 0, . . . , N − 1. (3.20)

Setting N ′ = cN and adding cN − N zeros in the previous sum, Eq. (3.20)

reduces to

xk

(
b

c

)

=
cN−1∑

n=0

S(np)e
j2π

k(np)b

N′ , with k = 0, . . . , N − 1, (3.21)

where p is an integer chosen so that (pb)mod(N ′) = 1, with {·}mod{·} denoting

the modulo operator 3. This is equivalent to pbN ′ = ρ+ 1
N ′ , where ρ is an integer.

Consequently, Eq. (3.21) is reduced to

xk

(
b

c

)

=
cN−1∑

n=0

S(np)e
j2πkn pb

N′ =
cN−1∑

n=0

S(np)e
j2πkn(ρ+ 1

N′
), (3.22)

Finally,

xk

(
b

c

)

=
cN−1∑

n=0

S(np) e
j2πknρ
︸ ︷︷ ︸

1

ej2π
kn

N′ =
cN−1∑

n=0

S(np)e
j2π kn

cN . (3.23)

An obvious choice for p is p = 1
b [60] so that (pb)mod(cN) = 1. Then, the

RHS of Eq. (3.23) is equivalent to an IDFT of size cN where the np =
(
n
b

)th,

n = 0, b, 2b, . . . , (N − 1)b, inputs are the transmit symbols and the remaining

inputs are zero padded. This IDFT can be computed through a Radix-2 IFFT

using 5cN logCn floating operations. Furthermore, because only the first N

outputs of the IDFT are required, the computational cost of the respective

IFFT is finally reduced to 5cNlogN operations, i.e. c times more than an

IFFT implementation of an equal sized OFDM transmitter.
3The amodb operation finds the remainder of the division of a with b
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A numerical example could be the following: consider an SEFDM system

with N = 16 carriers and α = 5/6 normalised frequency separation. The

transmitted SEFDM signal can be generated using a N ′ = 6× 16 = 96 length

IDFT, inserting the transmit data symbols at the 0, 6, 12, . . . , 90 indexed inputs

and zero padding the rest. Then, the output of the IDFT is truncated so that

only the first N = 16 samples are transmitted.

Recent work at UCL [60] also introduced two modifications of the above

scenario. First, it was shown that an N carrier SEFDM signal can be generated

using a larger Nα = cN 1
b IDFT under the assumption that Nα is an integer

number. The main advantage with respect to the previous concept is that the

IDFT used is b times smaller which results in a reduced complexity. Secondly,

the use of multiple smaller size IDFTs combined with some post processing is

proposed resulting in further reduction of complexity.

Fig. 3.6 illustrate possible SEFDM transmitters based on single IDFTs of

either cN or Nα = cN
b length.

3.5 SEFDM Demodulator

As mentioned in section 3.2, the noise whiteness at the demodulator output

requires the projection of the received signal onto an orthonormal base that

spans the same vector space as the transmit SEFDM carriers. In the intro-

duction of the SEFDM model [29], the Classical Gram Schmidt (CGS) method

was proposed for the generation of the receiver base. Although CGS appears

to have a very simple structure, it performs inefficiently even for a medium

number of SEFDM carriers due to its large rounding error. In order to handle

this effect, other techniques like the Modified Gram Schmidt (MGS) and its

iterative variance (IMGS) are investigated in this work. Both promise a higher

orthonormalisation accuracy [53], [54].

Alternatively to GS variants, the application of the symmetric Löwdin or-

thonormalisation is also investigated. This method exhibits interesting
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Figure 3.6: Potential IDFT based SEFDM transmitters [59] and [60].
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properties like the greater resemblance in the least square sense between the

orthonormal functions and the transmit SEFDM carriers. The next sections

describe the development and use of the different orthonormalisation techniques

for the generation of the demodulator base, and provide a short comparison of

these techniques in terms of orthonormalisation error.

3.5.1 Classic Gram Schmidt (CGS) orthonormalisation

Consider a set ofN linear independent but non orthogonal vectors [v1, v2, ..., vN ]

that constitute a base of a complex vector space. CGS generates an orthonormal

base of N vectors [u1, u2, ..., uN ] following an iterative process: first, the seed

vector u1 of the new base is derived as

u1 =
v1

‖v1‖2
, (3.24)

where ‖·‖2 denotes here the Euclidean norm. For SEFDM, this is equivalent

to the square root of the energy of the respective SEFDM base function [52].

Next, u2 is calculated by subtracting from v2 its projection onto u1 and

then normalising over the norm of the resulting vector as

u
′

2 = v2 − 〈v2, u1〉u1,

u2 =
u
′

2
∥
∥u
′

2

∥
∥

2

. (3.25)

The same process is then reiterated until all N orthonormal vectors are

generated. The N th vector is given by

u
′

N = vN −
N−1∑

i=1

〈vN , ui〉ui,

uN =
u
′

N
∥
∥u
′

N

∥
∥

2

. (3.26)

Table 3.1 provides the algorithmic steps of the CGS as used in this thesis

for the generation of the SEFDM receiver orthonormal base.

It must be stated that in CGS the number of the generated non zero or-

thonormal vectors is equal to the number of the linear independent vectors of
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Orthonormalisation algorithm I: CGS

01: v[1 : N ]← g[1 : N ] initialisation step

02: for m from 1 to N

03: um ← 1√
ξm

[

vm −
∑m−1
i=1 〈vm, ui〉

]

orthonormalise mth vector

04: end m loop

05: b[1 : N ]← u[1 : N ] set SEFDM base

Table 3.1: CGS Orthonormalisation Algorithm.

the initial set [52]. In addition, the CGS orthonormal base is not unique since

its outcome depends on the selection of the first vector v1. Therefore, for each

permutation of the vectors of the initial base, CGS results into a different or-

thonormal base. In any case, the produced set of vectors shares the same span

with the initial base. A proof is derived below. Following [53] the span of the

orthonormal vectors u1, u2, . . . , uN is the set of all their linear combinations.

Consequently, it is given by

span {u1, u2, ..., un} =

{
N∑

i=1

κiui : κi ∈ C
}

, (3.27)

where C is the set of complex numbers. Thanks to GS orthonormalisation each

of ui is deduced to a linear combination of the vectors of the initial base. Hence,

ui =







N∑

j=1

λjvj : λj ∈ C






. (3.28)

From Eqs (3.27) and (3.28), the orthonormal base span is given by

span {u1, u2, ..., un} =







N∑

i=1

κi





N∑

j=1

λjvj



 : κi, λj ∈ C






. (3.29)

Apparently, the term
∑N
i=1 κi is equal to a new complex number, call it c.

Consequently, Eq. (3.29) becomes

span {u1, u2, ..., un} =






c
N∑

j=1

λjvj =
N∑

j=1

cλjvj : c, λj ∈ C






. (3.30)

61



CHAPTER 3. THE SEFDM SYSTEM

Orthonormalisation Algorithm II: MGS

01: v[1 : N ]← g[1 : N ] initialisation step

02: for m from 1 to N

03: um ← 1√
ξm

[

vm −
∑m−1
i=1 〈vm, ui〉

]

orthonormalise mth vector

04: for n from m+ 1 to N re-orthonormalise m+ 1→ n vectors

05: vn ← 1√
ξn

[

vn −
∑n−1
i=1 〈vm, ui〉

]

06: end of n loop

07: end m loop

08: b[1 : N ]← u[1 : N ] set SEFDM base

Table 3.2: MGS Orthonormalisation Algorithm.

Finally, setting cλj = µj , Eq. (3.30) reduces to

span {u1, u2, ..., un} =







N∑

j=1

µjvj : µj ∈ C






. (3.31)

The latter is equivalent to the span of the initial base vectors v1, v2, . . . , vN .

3.5.2 Modified Gram Schmidt (MGS) orthonormalisation

Although CGS is widely used because of its simplicity, it suffers from a rel-

atively large numerical error in the derivation of the vectors projections [53].

Consequently, the orthonormalisation process fails for larger dimensions of the

initial vectors set. To improve the orthonormalisation result, the application

of the modified Gram Schmidt (MGS) method is proposed. According to well

established literature, whilst MGS is mathematically equivalent to CGS it has

a superior computational performance because of its iterative nature [61], [53].

A short description of the MGS algorithm is given in Table 3.2

It becomes apparent that the main difference between CGS and MGS is

the following: in CGS an orthonormal vector is generated at each step and the

initial base of vectors remain unchanged for the rest of the calculations. In
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Orthonormalisation Algorithm III: IMGS

01: v[1 : N ]← g[1 : N ] initialisation step

02: for k from 1 to K repeat MGS for K times

03: for m from 1 to N implement MGS

04: um ← 1√
ξm

[

vm −
∑m−1
i=1 〈vm, ui〉

]

05: for n from m+ 1 to N

06: vn ← 1√
ξn

[

vn −
∑n−1
i=1 〈vm, ui〉

]

07: end of n loop

08: end m loop end of MGS

09: end k loop end of K iterations

10: b[1 : N ]← u[1 : N ] set SEFDM base

Table 3.3: IMGS Orthonormalisation Algorithm.

contrast, in MGS the initial base is updated at each step after the reorthonor-

malisation of some of its vectors.

3.5.3 Iterative Modified Gram Schmidt (IMGS) orthonormal-

isation

In the iterative variant of MGS the orthonormalisation process is repeated for

a predefined K number of steps. The orthonormal base generated at each step

is set as an initial input to the orthonormalisation process of the next step [62].

It has been shown that a small number (K = 2) of iterations is enough to

further improve the MGS orthonormalisation accuracy [54], [63]. A simple

implementation of IMGS is given in Table 3.3

In order to confirm the superior performance of IMGS, relative to CGS and

MGS, simulations were performed for SEFDM signals with different number of

carriers N = {4 −→ 256}. For the sake of comparison, the orthonormalisation
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error E of each method was measured. E is defined as

E =
∥
∥
∥I−UUH

∥
∥
∥

2

F
, (3.32)

where ‖·‖F denotes the Frobenius norm of a matrix, I is the N × N identity

matrix and U is the matrix of the orthonormal base vectors.

Figs 3.7 (a) and 3.7 (b) demonstrate the orthonormalisation error E nor-

malised over the MATLAB machine precision (≈ 2.2204 × 10−16). It is clear

and expected that CGS and MGS performance degrade with the increase in N

and/or the decrease in α. This observation implies that both techniques are

not efficient for the orthonormalisation of the set of the initial SEFDM carriers

when the sub-bands overlap and consequently the system inherent interference

are considerably high. In particular, simulation results show that CGS and

MGS work inadequately for (N > 8, α = 0.5) and (N > 16, α = 0.5) settings,

respectively. Notwithstanding, IMGS is superior as opposed to MGS and CGS

and achieves a pretty low orthonormalisation error even for large dimensional

SEFDM signals, e.g. N = 256. In addition, as seen in Fig. 3.7 (b), E seems

to be independent from α. Finally, it appears that K = 2 is sufficient for good

IMGS performance and that a higher K number of iterations, e.g. K = 6,

offers nothing but a trivial improvement in the IMGS orthonormalisation.

3.5.4 Löwdin orthonormalisation

Gram Schmidt procedure and its variants are non symmetric orthonormalisa-

tion methods in the sense that their outcome strongly depends on the initial

seed - vector. Therefore, the set of orthonormal vectors is different for any

permutation of the initial SEFDM carriers set. Löwdin introduced, in work

associated with quantum chemistry and a different orthonormalisation method

that is not sequence dependent [64], [65] and further exhibits the attractive

property of generating vectors that resemble the most to the primal ones in the

least squares sense [66], [67].
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Figure 3.7: Orthonormalisation error E for different orthonormalisations.

Considering V is the matrix of the linear independent but non orthonor-

mal vectors [v1, v2, ..., vn], Löwdin method generates the respective orthonormal

base U = [u1, u2, ..., un] as follows: first, a transformation matrix M is derived,

U = MV. (3.33)

Under the assumption that U matrix is orthonormal,

UUH = IN ⇔ (MV)(MV)H = IN ⇔M(VVH)M = IN . (3.34)

It is obvious that the matrix VVH is equal to the Grammian matrix of

the initial set of vectors that is Hermitian [68]. Replacing VVH with ∆, Eq.

(3.33) reduces to

M∆MH = IN ⇔∆−1 = MHM. (3.35)

A solution for the above equation is M = ∆−1/2. In order to calculate the

inverse of its square root, ∆ is diagonalised [69] using its eigenvectors matrix

E as

∆ = EDE−1, (3.36)

where D is a diagonal matrix whose diagonal elements are ∆ eigenvalues. Con-
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Orthonormalisation Algorithm IV: Löwdin

01: v[1 : N ]← g[1 : N ] initialisation step

02: (δ[1 : N ], e[1 : N ])← eig{v[1 : N ]Hv[1 : N ]} eigenvalue decomposition of VHV

03: M← e[1 : N ]Diag{δ[1 : N ]−
1
2 }e[1 : N ]−1 calculation of Löwdin M

04: u[1 : N ]←Mv[1 : N ] orthonormalisation

05: b[1 : N ]← u[1 : N ] set SEFDM base

Table 3.4: Löwdin Orthonormalisation Algorithm.

sequently, ∆−1/2 is given by

∆−1/2 = ED−1/2E−1. (3.37)

Next, the new orthonormal base is generated according to

U = ∆−1/2V, (3.38)

where ∆ is given in Eq. (3.37). A description of the Löwdin orthormalisation

method is given in Table 3.4. The symbols δ[1 : N ] and e[1 : N ] correspond to

the eigenvalues and eigenvectors of a matrix, respectively. The function eig{·}
generates the eigenvalues and eigenvectors matrices δ and e, respectively, while

the function Diag{·} creates a square diagonal matrix whose diagonal comprises

of the elements of the argument vector.

Finally, as already mentioned, the Löwdin method generates orthogonal

vectors that resemble the most the initial vectors in the least squares sense, i.e.

the generated carriers have the property of minimising the following norm

min. ‖V−U‖2F = min. Tr((V−U) (V−U)H), (3.39)

where Tr {·} denotes the trace of the matrix.

3.5.5 Projections matrix properties

The properties of the projections matrix M are important since they determine

the distribution of the system inherent interference at the output of the demod-
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ulator correlators. Upon the orthonormalisation method the matrix shape and

properties vary. This section shows either by mathematical analysis and/or

simulation results some important properties of M.

Proposition 1: The SEFDM projections matrix is upper triangular when the

GS method is applied for the generation of the receiver orthonormal base.

Proof: The GS method is by construction a QR decomposition method of

the initial set V of SEFDM carriers, i.e.

V = QR ⇐⇒ QHV = R, (3.40)

where Q is an orthonormal matrix and R an upper triangular matrix. It is

apparent from the RHS of Eq. (3.40) that M = R.

Proposition 2: The sum of the squares of the elements of each column of the

SEFDM GS projections matrix is equal to unity.

Proof: from Eq. (3.40) the Grammian MHM is

MHM = (QHV)HQHV = (V)HQQHV. (3.41)

Since Q is unitary, it is clear that

MHM = VHV. (3.42)

It has been shown in the transmitters sections 3.4 that VHV = F−1
α Fα = Φ

where Fα is the fractional fourier matrix. In addition, from proposition (1)

L = MH is a lower triangular matrix. Apparently, L is the Cholesky decom-

position matrix of Φ, i.e.

Φ = LLH = MHM. (3.43)

From [70] the diagonal elements lii, i = 1, . . . , N , of L are given by

lii = mii =

√
√
√
√φii −

i−1∑

k=1

likl
∗
ik =⇒ mii =

√
√
√
√φii −

i−1∑

k=1

mkim
∗
ki. (3.44)

The diagonal elements φii of the FrFT Grammian matrix Φ are equal to

φii =
1
N

i−1∑

l=1

e
j2π(i−1)(l−1)α

N e
−j2π(l−1)(i−1)α

N =
1
N

i−1∑

l=1

1 = 1. (3.45)
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From Eqs (3.44) and (3.45) it is derived that mii is equal to

mii =

√
√
√
√1−

i−1∑

k=1

mkim
∗
ki ⇒ m2

ii = 1−
i−1∑

k=1

m2
ki. (3.46)

The LHS of Eq. (3.46) reduces to
i∑

k=1

m2
ki = 1. (3.47)

It is notable that mki determine the contribution of the transmit symbol Sk

at the output of the ith correlator. Consequently, proposition (2) could be

interpreted as follows: the overall energy of the ith symbol is preserved yet

redistributed by the GS projections matrix according to Eq. (3.47). From Eq.

(3.46) is also clear that

m11 = 1 and mii < 1 for i 6= 1. (3.48)
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Figure 3.8: The condition number κ of IMGS matrix M for N ∈ {4, 8, 16, 32, 64}
and α ranging from 1 to 0.5

Proposition 3: The condition of the SEFDM GS projections matrix is overly

worsening with the increase in N and/or decrease in α.
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Simulation results have shown that the diagonal elements, i.e. the eigen-

values, of the triangular matrix M decay very fast towards zero as N increases

and/or α decreases. Consequently, the condition of M also deteriorates under

the same conditions since [70]

κ{M} =
λmax
λmin

, (3.49)

where κ{·} denotes the condition number of a matrix, and λmax and λmin the

minimum and maximum eigenvalues of M. From Eq. (3.48) it is obvious that

λmax = m11 = 1. Consequently, as λmin → 0, k{M} → ∞.

Fig. 3.8 shows the condition number κ{·} of M generated by IMGS, versus

N and α. For the sake of illustration, all the big values κ{M} ≥ 102 of the

condition number are set to be equal to 102.

Assuming that 102 is a lower bound for the matrix bad condition, it is clear

that for N > 16 and or α ≤ 0.8 the projections matrix M gradually becomes

severely ill conditioned and tends to be numerically singular.

Proposition 4: The size of the cluster of the small singular values of the SEFDM

GS projections matrix is equal to (1− α)N .

In order to verify the above proposition, the matrix was singular valued

decomposed using the standard MATLAB SVD function. Fig. 3.9 (a) and (b)

shows M singular values for N ranging from 8 to 64 and α from 0.5 to 1. In

all cases (1− α)N singular values of matrix M gradually decay to zero.

Proposition 5: The SEFDM projections matrix is Hermitian when the Löwdin

method is applied for the generation of the receiver orthonormal base.

Proof: The projections matrix M is by definition the inner product of the

matrices of the initial and the orthonormal base, V and U, respectively

M = VUH . (3.50)

After replacing U from Eq. (3.38) and ∆ with VVH, (3.50) reduces to

M = V

((

VVH
)−1/2

V

)H

= VVH
((

VVH
)−1/2

)H

= ∆
(

∆−1/2
)H

.

(3.51)

69



CHAPTER 3. THE SEFDM SYSTEM

8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N →

S
in

gu
la

r 
va

lu
es

 [d
B

] ←

 

 

α= 1 (OFDM)
α=.9
α=.8
α=.7
α=.6
α=.5

16 24 32
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N →

S
in

gu
la

r 
va

lu
es

 [d
B

] ←

 

 

α= 1 (OFDM)
α=.9
α=.8
α=.7
α=.6
α=.5

(a) M singular values; N = 16. (b) M singular values; N = 32.

Figure 3.9: SVD of SEFDM IMGS projections matrix M with α ∈ {0.5, 0.8, 1}.

It is clear that (∆)−1/2 is also symmetric since ∆ is a Grammian positive

semidefinite Hermitian matrix. To show the product of two Hermitian matrices

A and B is also Hermitian, it is enough to show AB = BA or equivalently that

(AB)(BA)−1 = I [53]. Consequently, following (3.51) it must be shown that

(

∆−1/2
)H

∆

(

∆
(

∆−1/2
)H
)−1

= I

⇔
(

∆−1/2
)H

∆
(

(∆−1/2)H
)−1

∆−1 = I, (3.52)

and because ∆−1/2 = (∆−1/2)H , since ∆ is Hermitian, it is sufficient to show

∆−1/2∆(∆−1/2)−1∆−1 = (∆−1/2∆)(∆−1/2∆)−1 = I

⇒M = ∆(∆−1/2)H ∈ SN , (3.53)

where SN denotes the set of the square Hermitian matrices of N dimension.

Proposition 6: The sum of the interfering terms is smaller in a Löwdin than

in a GS based SEFDM system.

The Frobenius norm ‖M‖2F is equal to

‖M‖2F =
N∑

i=1

N∑

j=1

|mi,j |2 = Tr
(

MMH
)

=

Tr
(

VUH(VUH)H
)

= Tr
(

VUUHVH
)

= Tr(VVH) = ‖V‖2F =
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N∑

i=1

L∑

j=1

|vi,j |2 =
∑

i=1

NEi = N, (3.54)

where Ei is the energy of the ith vector, here normalised to unity.

It was also found by simulation that the sum of the squares of the M

diagonal elements, |mi,i|2, is larger in Löwdin than in IMGS. In addition, it is

clear from Eq. (3.54) that since ‖M‖2F is constant, the sum of the squares of

the non-diagonal elements is smaller in Löwdin than in IMGS
N∑

i=1

|mi,i|2(Löwdin) >
N∑

i=1

|mi,i|2(MGS)

(3.54)⇒

N∑

i=1

N∑

j=1

|mi,j |2
(Löwdin)

<
N∑

i=1

N∑

j=1

|mi,j |2
(MGS)

. (3.55)

From an energy point of view, this indicates that in Löwdin orthonormali-

sation the output of the correlators suffers from less interference since a smaller

amount of the signal energy is transferred to the interfering terms. Fig. 3.10

provides a comparison between the Löwdin and the IMGS orthonormalisation

methods in terms of size of the norm of the diagonal elements of the respective

correlation matrices M. Simulations were performed for different numbers of

SEFDM carriers with various values of the normalised frequency separation α.

3.6 Noise properties after projection

From Eqs (3.3) and (3.4), it is apparent that the output of the receiver kth

correlator includes a noise component nk given by

nk =
∫ T

0
n(t)b∗k(t)dt, k = 0, 1, ..., N − 1, (3.56)

where bk is the kth orthonormal base function generated by IMGS and n(t)

represents the channel AWGN with zero mean and variance σ2.

The expected value E{·} of each of the noise components will be

E {nk} = E

{
∫ T

0
n(t)b∗k(t)dt

}

. (3.57)
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Figure 3.10: Comparison between Löwdin and IMGS methods. conj{·} and .∗
denote the conjugate and the element by element multiplication, respectively.

It can be shown that

E {nk} =
∫ T

0
E {n(t)} b∗k(t)dt. (3.58)

Yet, assuming the channel noise has zero mean, i.e. E {n(t)} = 0, it follows

that

E {nk} = 0. (3.59)

In addition, the covariance Cninj of any two of the noise components ni and

nj , with i, j ∈ {0, 1, ..., N − 1}, is given by

Cninj = E{(ni − E{ni})(n∗j − E{ni})}. (3.60)

Following Eq. (3.59) Eq. (3.60) reduces to

Cninj = E(ni − 0)(n∗j − 0) = E
{

nin
∗
j

}

=

Cninj = E

{
∫ T

0
n(t)b∗i (t)dt

∫ T

0
n∗(τ)bi(τ)dτ

}

=

Cninj =
∫ T

0

∫ T

0
E {n(t)n∗(τ)} b∗i (t)bj(τ)dtdτ . (3.61)
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The autocorrelation function E {n(t)n∗(τ)} is equal to σ2δ(t − τ) because

of the assumed white nature of noise n(t). Consequently, Eq. (3.61) reduces to

the following

Cninj =
∫ T

0

∫ T

0
σ2δ(t− τ)b∗i (t)bj(τ)dtdτ ⇐⇒

Cninj = σ2
∫ T

0
b∗i (t)bj(t)dt. (3.62)

The orthogonality property of the GS or Löwdin base functions bi ensures

that the covariance of the noise components is equal to

Cninj =







σ2 i = j

0 i 6= j
. (3.63)

Consequently, in matrix representation, the vector N of the noise at the

correlators outputs (see Eq. (3.5)) will be comprised of N uncorrelated (since

their covariance is zero [71]) noise variables, [n0, n1, ..., nN−1], with zero mean

(see Eq. (3.58)) and covariance matrix equal to σ2I (see Eq. (3.63)), where I

is the N ×N identity matrix.

3.7 SEFDM optimal detector

The front end of the SEFDM system is a detector that makes use of the de-

modulator sufficient statistics to recover the transmitted data symbols. This

section provides the mathematical analysis of the MAP detection which is op-

timal in the sense that it minimises the probability of erroneous decisions [52].

The analysis initially accounts the assumption that the signal is affected by

AWGN only. Consequently, due to the projection of the received signal onto

an orthonormal base the noise variables at the correlators’ outputs will exhibit

the properties shown in section 3.6.

According to Bayes theorem [71] the a ‘posteriori’ probability can be ex-

pressed as

p(Sm|R) =
p(R|Sm)× p(Sm)

p(R)
. (3.64)
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The probabilities p(Sm) of transmitted SEFDM symbols are called a ‘priori’.

To facilitate the analysis it is further assumed that at all transmitted symbols

are Independent and Identical Distributed (IID). Hence, since the same con-

stellation is used for the modulation of all carriers, p(Sm) = 1/MN and Eq.

(3.64) reduces to

p(Sm|R) =
1

MN
× p(R|Sm)

p(R)
. (3.65)

It is apparent that the a ‘posteriori’ probability depends only on the likeli-

hood function p(R|Sm) that offers a measure of closeness of the receiver statis-

tics vector R to the transmitted waveform Sm. Hence, it is sufficient to max-

imise the likelihood function p(R|Sm).

In order to further reduce the problem of the likelihood function optimisa-

tion, p(R|Sm) is derived. First, the probability distribution function for each

of the correlators outputs (receiver statistics) is calculated. In particular, each

of the statistics follows a Gaussian distribution with mean S
′

m,k = MkSm and

variance equal to σ2 [52] (see section 3.6 above), where Mk is the kth row of

the M matrix. So, their probability distribution functions are

p(Rk|Sm) =
1√

2π
√

N0/2
e

{

−
(Rk−S

′

m,k
)2

N0

}

, k = 1, . . . , N. (3.66)

The probability distribution of the signal/vector R = [R1, R2, ..., RN ] is

given by the joint distribution of the statistics variables as

p(R|Sm) = p(R1, R2 . . . , RN |Sm). (3.67)

Furthermore, thanks to the statistical independence of Rk|Sm (guaranteed

by the correlations with an orthonormal base) their joint likelihood probability

of p(R|Sm) (see(3.65)) is equal to the product of the individual ones,

p(R|Sm) =
N∏

k=1

p(Rk|Sm). (3.68)
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Following Eq. (3.66) Eq. (3.68) reduces to

p(R|Sm) =
1

(πN0)N/2
e

{

−
∑N

k=1

(Rk−S
′

m,k
)2

N0

}

. (3.69)

The maximisation of the likelihood function is equivalent to the minimi-

sation of the exponent term in Eq. (3.68). Consequently, the ML detection

reduces to the following Least Squares (LS) optimisation problem, i.e. the

minimisation of a sum of squares,

min.
N∑

k=1

(Rk − S
′

m,k)
2 =

∥
∥R − S′m

∥
∥2

2 = ‖R −MSm‖22 ,

s.t. Sm ∈ QN , (3.70)

where QN is the set of all the possible SEFDM symbols Sm and S′m =

[S
′

m,1, S
′

m,2, ..., S
′

m,N ] corresponds to the symbols Sm after transformation by

the projections matrix M SEFDM.

In order to investigate the error performance of ML detection, a simple

detector is implemented in MATLAB following an exhaustive enumeration

method. In particular, the cost function of Eq. (3.70) is calculated over the

entire set QN . Then, the vector Sm that achieves the minimum value in (3.69)

is picked up as the optimal estimate Ŝm.

A set of preliminary simulations were performed for small dimensions only,

N ∈ {2, 4, 8}, of BPSK and QPSK modulated SEFDM carriers due to the overly

complexity of the applied brute force method. Figs 3.11 and 3.12 demonstrate

the SEFDM optimal detection bit error rate (BER) curves versus α ranging

from 1 to 0.3. It is notable that optimal BPSK SEFDM detection achieves the

OFDM (i.e. SEFDM with α = 1) error rate for ∆fT ≥ 0.5. However, in QPSK

case the signal detection gradually degrades for ∆fT ≤ 0.8. Consequently, ML

detection performance approximates the error performance of an equivalent

OFDM system under specific constraints that are related to the kind of the

transmitted data (e.g. BPSK, QPSK) as well as the projections matrix M
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properties. The latter depends on the signal dimension N and the frequency

separation ∆f of the SEFDM subcarriers.
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Figure 3.11: ML detection error performance versus α for BPSK SEFDM.
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Figure 3.12: ML detection error performance versus α for QPSK SEFDM.
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Figure 3.13: ML detection error performance versus Eb/N0 for BPSK and QPSK

SEFDM with N = 2→ 4 carriers. α was set to 0.9 and 0.8.

It must be noticed that the brute force ML detection is not tangible for

SEFDM signals with
∣
∣
∣QN

∣
∣
∣ > 216, with |·| denoting the set cardinality. In this

work modelling the number of carriers N was constrained due to simulation

time reasons, to 8 for BPSK and 4 for QPSK SEFDM, respectively.

3.8 Comments on the SEFDM system complexity

A possible digital implementation of the SEFDM system is illustrated in Fig.

3.14. It is apparent that the main SEFDM transceiver is broken down into three

main parts: the transmit signal generator, the demodulator and the detector.

As shown in section 3.4 the complexity of a fractional FT needed for the

SEFDM samples generation is O(N logN) [57]. Consequently, from a compu-

tational effort view point, the transmitter does not constitute a real constraint

for the SEFDM system design.

Regarding the demodulator, the computational cost is twofold: first, the
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generation of a GS orthonormal base is O(N3) [53]. However, the orthonor-

malisation can be precomputed offline and therefore does not affect the system

overall complexity. Second, a straightforward implementation of the projec-

tions requires N multiplications between two N × 1 vectors. That is O(N2)

and may prove to be a practical limitation for very large dimensional SEFDM

systems.

Finally, as far as the detector is concerned, it has been shown that the

SEFDM optimal detection reduces to a combinatorial least squares problem.

Such a problem has been proved to be non polynomial hard [72]. In addition,

the complexity of its solution following an exhaustive enumeration over all the

possible hypotheses is O(MN ). As a result, a ‘real time’ SEFDM detection is

limited to 4-QAM systems with N < 8. Hence, it is apparent that the detection

is the main bottleneck for the SEFDM system performance, which is the focus

of what follows in this thesis.

3.9 Conclusions and discussion

This chapter gives a detailed general description of the SEFDM model initially

proposed by Rodrigues and Darwazeh in [29]. The most significant SEFDM

benefits were presented in terms of bandwidth reduction and spectral efficiency

gain when compared to equivalent data rate OFDM system. It was shown by

mathematical derivations and simulations that SEFDM offers a spectral gain

of 1−α
α and is closer than OFDM and single carrier schemes to the ideal channel

capacity bound derived by Shannon.

In addition, the main design challenges of an SEFDM system were iden-

tified. First, a short description of possible implementations of a practical

SEFDM digital transmitter is given. In analogy to the standard use of IFFT in

OFDM systems, a generalised fourier transformation could be applied for the

generation of the time domain samples of the SEFDM symbols. The so called

FrFT can be implemented by fast algorithms that require 20N logN floating
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operations only. Apart from FrFT, recent research efforts based on typical

DFTs [59], [60] have also been cited. These proposals achieve the generation of

the SEFDM signal at the expense of a small increase in complexity of an equal

sized OFDM systems, yet offer compatibility with the FFT techniques used in

the modern communication systems.

Furthermore, this chapter dealt with the receiver design issues. It was shown

by simulations that the classic Gram Schmidt (GS) method, as in [29] initially

proposed for the generation of the receiver orthonormal base, suffers from a

severe rounding error even for medium sized SEFDM signals. Consequently,

other variants of GS are proposed. It was concluded that an iterative modified

GS (IMGS) technique performs sufficiently well for large SEFDM signals. In

addition, the Löwdin method, well known in the field of quantum chemistry,

was examined because of its interesting property of generating orthonormal

functions that resemble the most the initial SEFDM carriers.

The chapter reports a detailed study of the SEFDM linear model matrix

M. By construction, M includes the correlation coefficients between the trans-

mit SEFDM carriers and the receiver orthonormal base. It was proved that

the shape of M depends on the orthonormalisation method and that for all

the GS variants and the Löwdin method M is upper triangular or Hermitian,

respectively. Moreover, it was mathematically shown that the energy of each

transmitted symbol is preserved but redistributed to the correlators outputs

through the projections process. Finally, it was demonstrated by simulation

that the condition of M is overly worsening with the SEFDM inherent in-

tercarriers interference; and it was found that the number of ‘corrupted’ M

singular values is equal to αN .

In addition, considering that the receiver base is orthonormal by the IMGS

application, it was proved that the noise variables at the output of the demod-

ulator are uncorrelated with zero mean and covariance equal to σ2I. Following

this, the last section of this chapter introduced the detection issue that is the
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main motivation of this work. Based on the derived noise properties, the op-

timal, in terms of decision errors, maximum a posteriori detector was reduced

to a maximum likelihood detector that solves a combinatorial least squares

optimisation problem. Some preliminary simulations were run by applying a

brute force solver to the problem. Results complied with [34], [32], [33] and

demonstrated that optimal 4-QAM SEFDM detection can perform similarly to

OFDM when α ≥ 0.8. However, it was seen that as α decreases below this

bound and N increases the optimal SEFDM detection results in error penalties

when compared to single carrier and OFDM schemes. In addition, results were

limited to SEFDM with N ≤ 8 since the complexity of the ML detector in-

creases exponentially with the number of the carriers and the modulation size.

Upon these observations, it is concluded that the main gap in the research

area of the SEFDM systems is the creation of a practical detector for medium

and large SEFDM signals that could trade-off sufficiently computational cost

for error penalty. The following chapters present this work findings, includ-

ing descriptions and simulation results, for various detection algorithms that

approach a solution to the problem under different conditions.
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Chapter 4

Linear and iterative detectors

4.1 Introduction

The previous chapter presented the main challenges in the design of an SEFDM

system; efficient signal generation, the generation of sufficient statistics at the

receiver and finally the reliable detection of the transmitted SEFDM symbols.

In all three, the computational complexity is a major prerequisite for real prac-

tical systems. In [73] and more recently in [60], it has been shown that efficient

signal generation could be achieved using either IFrFT or a combination of

parallel IFFTs with the same order of complexity of an OFDM transmitter,

i.e. O(NlogN) where N is the number of the signal sub-carriers. As far as

the statistics generation is concerned, [29] proposed the projection of the re-

ceived signal onto a Gram Schmidt (GS) generated orthonormal base that has

the same span of the transmitted SEFDM signal. CGS, MGS and its itera-

tive versions are O(N3) [53], yet they do not actually encumber the system

computational effort since they need to be implemented only once offline [73].

In addition, assuming no oversampling, the projections computation complex-

ity is also O(N2) since a single projection requires no more than N complex

multiplications and N − 1 additions.

However, the SEFDM detection appears to be significantly more complex.
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The internal ICI, due to the squeeze in the frequency separation ∆f of SEFDM

carriers, prohibits a simple OFDM-like approach. SEFDM optimal ML detec-

tion is a non polynomial hard combinatorial problem (see section 3.7). Hence,

its solution relies on an exhaustive search over the set of all possible hypotheses,

i.e. the set of the SEFDM transmitted symbols, that increases exponentially

with N and with the constellation cardinality M . Consequently, the NP hard

nature of the ML detection constitutes a significant bottleneck for the system

overall performance and complexity.

In this chapter, a first attempt to deal with this problem is made by inves-

tigating suboptimal linear detection techniques like ZF and MMSE. First, ZF

implementations are examined based on either the inversion of the projections

matrix M or an iterative process that takes advantage of the triangular shape of

M. In addition, encouraged by the properties of the Lowdin orthonormalisation

as discussed in section 3.5.4, a heuristic approach that combines the projection

of the received signal on a Lowdin orthonormal base with an iterative cancella-

tion process is proposed. Then, the Tikhonov regularisation of the ML problem

is described and the effect of the regularisation is demonstrated by simulation.

In addition, the linear MMSE detector is derived and it is shown that it consti-

tutes a special regularised ML solver. Finally, a combined MMSE-ML method

is designed in order to improve performance over a standalone MMSE detector.

4.2 ZF SEFDM detection

The received SEFDM is described by the linear statistical model [29]

R = MS + N, (4.1)

where R is the N × 1 statistics vector, S is the N × 1 vector of the transmit

symbols that take values in a discrete alphabet QN , M is the N ×N matrix of

the projections of the SEFDM sub-carriers onto an orthonormal base, and N is

the N ×1 vector of the noise variables at the output of the receiver correlators.
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Thanks to the noise vector properties (see Chapter 3), the SEFDM ML

detection reduces to a LS minimisation problem

min. ‖R −MS‖22,

s.t. S ∈ QN . (4.2)

With no loss of the generality, QN could be further constrained to include

integers only. Hence, the ZF solution of the Integer LS (ILS) problem involves

two steps: First, the problem is relaxed, by omitting the input constraint

min. ‖R −MS‖22 ⇔ R = MS, (4.3)

then, from Eqs (4.1) and (4.3) the solution S̃ of the unconstrained problem is

S̃ = M
−1

R = M−1(MS + N) = S + M−1N, with S̃ ∈ RN , (4.4)

where RN is the set of all the possible real N -tuples. Finally, S̃ is rounded to

the closest integer so that a solution Ŝ of the original problem of Eq. (4.2) is

derived. The ZF, also known as Babai estimate [74], Ŝ is given by

Ŝ =
⌊

S̃
⌉

=
⌊

M−1R
⌉

, Ŝ ∈ ZN , (4.5)

where ZN is the set of the integer N -tuples and ⌊·⌉ denotes the slice operator.

Despite its polynomial complexity, mainly determined by M inversion that

is O(N3), ZF error performance is suboptimal. While ZF eliminates interfer-

ence, as it renders M to the identity matrix, it multiplies the noise vector with

the inverse of the projections matrix M−1. As a result, the noise effect could

be overly increased depending on M properties. In particular, as M eigenval-

ues, or equivalently its determinant, become very small the noise is expected

to grow and the performance of the detection scheme deteriorates.

Finally, another limitation of this technique is the inversion requirement

for the matrix M that for SEFDM tends to be one numerically singular and

consequently non-invertible, as the number of the carriers increases and/or their

frequency separation decreases.
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4.3 Iterative Cancellation (IC)

For the GS based SEFDM system, Eq. (4.1) is analytically written as
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n1
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.

(4.6)

Noticing M is triangular (see section 3.5.5), an iterative detector could be

applied. Starting from the N th element, the estimate ŜN of the N th transmit

symbol is

ŜN =
⌊
RN
mNN

⌉

. (4.7)

Then, the estimate ŜN−1 of the N − 1 symbol is calculated from Eq. (4.6)

after the subtraction of the interference due to SN as

ŜN−1 =
⌊

1
mN−1N−1

(

RN−1 −mN−1N ŜN
)⌉

. (4.8)

The same process is repeated backwards until the first element. The esti-

mate of the ith element, i = 1, . . . , N , is given by the recursive formula

Ŝi =






1
mii



Ri −
N∑

j=i+1

mijŜj











. (4.9)

For a first order estimation of the complexity we take the simple assumption

that division, multiplication, addition or subtraction count for one flop (i.e.

floating operation) each. Hence, the calculation of the Ŝi element requires

2(N − i) + 1 flops. The total number I of flops performed for the detection of

an SEFDM symbol is

I =
N∑

i=1

(2 (N − i) + 1) =
N∑

i=1

(2N + 1)− 2
N∑

i=1

i⇔

I = 2N2 +N − 2
N(N + 1)

2
= N2 −N. (4.10)

Consequently, the complexity of this iterative method is quadratic, i.e.

O(N2), that is lower than the cubic complexity of ZF.
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4.4 IC using a Lowdin base (IC-Lo)

In Chapter 3, it was shown that the Lowdin orthonormalisation generates a

set of vectors that resemble mostly to the SEFDM carriers in the least square

sense. It was also demonstrated by simulations, that the result of this similarity

is that the size of the squares of the diagonal elements mii, i = 1, . . . , N , of the

projections matrix M is larger than in a GS based SEFDM. Hence, it appears

that more energy is assigned to the useful terms and less to the interfering

products. Driven by this observation, the following heuristic is proposed and

tested:

• First, project the received signal onto a Lowdin generated base. Conse-

quently, a Hermitian M is generated;

• Set mij = 0 for i > j, i.e. cancel all the interfering terms that are due to

the M elements that lie below its diagonal;

• Apply the IC method described in section 4.3.

To clarify the concept, the following simple numerical example is given: for

an SEFDM system with N = 4 and α = 0.8, the algorithm generates first the

projections matrix following the Lowdin method. As a result, M is

M =












0.98 −0.1 + 0.07i −0.03 + 0.10i 0.02 + 0.07i

-0.1-0.07i 0.97 −0.1 + 0.07i −0.03 + 0.1i

-0.03-0.1i -0.1-0.07i 0.97 −0.1 + 0.07i

0.02-0.07i -0.03-0.1i -0.1-0.07i 0.98












.

Then, the shadowed part of the matrix will be forced to zero resulting into

M =












0.98 −0.1 + 0.07i −0.03 + 0.1i 0.02 + 0.07i

0 0.97 −0.1 + 0.07i −0.03 + 0.1i

0 0 0.97 −0.1 + 0.07i

0 0 0 0.98












.
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Finally, the iterative process of section 4.3 is applied. For example, if S and

R are respectively

S =












−1

+1

−1

−1












and R =












0.45− 0.61i

0.19 + 1.37i

0.79− 0.95i

0.09− 1.03i












,

the estimate of the last transmit symbol will be

Ŝ4 =
⌊
R4

m44

⌉

=
⌊

0.09− 1.03i
0.98

⌉

= ⌊0.0926− 1.0483i⌉ = −1.

The process is iterated for the remaining of Ŝi. It is notable that uniform

and close to unity values of the diagonal correlation coefficients are generated

by the projections of the SEFDM carriers onto the Lowdin base.

4.5 Numerical Results

A set of initial simulations were run in order to test the error performance

of the linear detection techniques described in the previous paragraphs. In

particular, the bit error rate (BER) of ZF, IC and IC-Lo are measured for

SEFDM signals with N varying from 8 to 32 and modulated by BPSK or

QPSK symbols. Results are taken for different values of the normalised sub-

carriers frequency separation α = ∆fT , ranging from 1, i.e. OFDM, to 0.5,

i.e. FOFDM. The power of the additive noise in the SEFDM system is varied

by setting Eb/N0 from 0 to 7 dB. All the results are averaged over at least

10000 random generations of SEFDM symbols. Finally, IMGS is used as an

orthonormalisation method for ZF and IC methods while the Lowdin method

is used only for IC.

Figs 4.1 and 4.2 demonstrate BER curves versus α for BPSK and QPSK

SEFDM, respectively, for a fixed value of Eb/N0 = 5dB. The SEFDM ML error

rate result is taken as the upper bound of the SEFDM detectors performance.

87



CHAPTER 4. LINEAR AND ITERATIVE DETECTORS

0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

BPSK SEFDM

← α

B
E

R
 (

E
b/N

0=
5d

B
) 

→

 

 

16ML

08ZF

16ZF

32ZF

08IC

16IC

32IC

08IC−Lo

16IC−Lo

32IC−Lo

Figure 4.1: Linear detections error performance versus α for BPSK modulated

8→ 32 SEFDM carriers.

0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

QPSK SEFDM

← α

B
E

R
 (

E
b/N

0=
5d

B
) 

→

 

 

08ML

08ZF

16ZF

32ZF

08IC

16IC

32IC

08IC−Lo

16IC−Lo

32IC−Lo

Figure 4.2: Linear detections error performance versus α for QPSK modulated

8→ 32 SEFDM carriers.

88



CHAPTER 4. LINEAR AND ITERATIVE DETECTORS

It is obvious that for both modulations the performance of all three methods

is inferior as opposed to the ML detection. ZF is completely inefficient even

for a small N = 8 due to the large noise enhancement. The condition of the

projections matrix M deteriorates with the increase of N and/or α reduction,

the ZF error rate overly degrades. IC method appears to perform quite better

than ZF for N = 8, 16. This is attributed to the avoidance of M inversion

that suffers from numerical inaccuracies (see section 3.5.5). However, for a

larger, N = 32, signal dimension and α < 0.8 performs similarly to ZF. This

is because according to Eq. (4.7) the pre-slice estimates involve a high noise

amplification if the M diagonal elements are very small. In addition, due to

its iterative nature, IC suffers the effect of propagation of errors. Thus, an

erroneous decision at the first symbol additively encumbers the detection of

the remaining data symbols.

Finally, it is notable that the proposed IC-Lo heuristic has superior perfor-

mance to ZF and IC, especially in the BPSK SEFDM detection. Nevertheless,

IC-Lo results significantly deviate from the optimal detection curve, too.

Figs. 4.3 and 4.4 illustrate BER curves versus Eb/N0, for α = 0.8 cor-

responding to the dual Mazo limit (see Chapters 2, 3). The theoretical BER

curves of single carrier (SC) BPSK and QPSK detections were used as a mea-

sure of comparison. It appears again that IC-Lo prevails among the examined

linear detections. Nevertheless, all three methods introduce significant error

penalties relative to the ideal case even for a small, N = 16, SEFDM signal.

4.6 Least Squares (LS) problems Regularisations

Noticing that the singular values of the SEFDM matrix M are decreasing grad-

ually (see section 3.5.5), the unconstrained detection problem of Eq. (4.3) is
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identified as an ill-posed LS problem 1. A tool for studying and solving such

problems is the Singular Value Decomposition (SVD) of the coefficients matrix

of the respective linear model [75]. The ordinary SVD of M is

M = UΣVH . (4.11)

where U = [u1 u2 . . .uN] and V = [v1 v2 . . .vN ] are the left and right singu-

lar vectors matrices, respectively, and Σ is a diagonal matrix containing the

singular values σi of M.

The inverse of M can be derived by SVD in the following

M−1 =
(

UΣVH
)−1

= VΣ−1UH =
N∑

i=1

viui
H

σi
. (4.12)

Then, the solution of the unconstrained SEFDM problem given in Eq. 4.4

is written in terms of SVD as

S̃ = M
−1

R =
N∑

i=1

viRui
H

σi
. (4.13)

Eq. (4.13) shows that S̃ is a linear combination of M singular vectors

weighted by its singular values. As these values decay rapidly to zero, any per-

turbation (noise in terms of AWGN or numerical inaccuracies) of the statistics

vector R from the transmit symbol S will be overly enhanced and the solu-

tion S̃ will be extremely large. As a result, the slice operator will introduce a

significant error in the SEFDM detection hard decisions.

Notwithstanding, an improvement could be achieved by applying suitable

regularisation techniques [75]. The following sections examine Tikhonov regu-

larisation that is the most well known and most commonly used.

1Most of LS problems with ill conditioned matrices belong to two main classes: rank-

deficient problems that are characterised by coefficients matrices with a well identified cluster

of very small singular values; and discrete ill-posed problems where the singular values of the

coefficients matrix decay gradually to zero. Simulation results in section 3.5.5 demonstrate

that the unconstrained SEFDM detection exhibits the properties of an ill posed problem [75].
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4.6.1 Tikhonov Regularisation

By Tikhonov, the LS problem of Eq. (4.3) is regularised by adding in the cost

function a penalty term that provides some further information about S̃ . The

general Tikhonov LS problem formulation is

min. ‖R −MS‖22 + ǫΩ2(S). (4.14)

where ǫ is called the regulator and Ω2(S) is called the smoothing norm. The

latter is usually given as ‖LS‖22 where L is the regulator matrix. For simplic-

ity, L is assumed to be equal to the identity matrix I. Thus, the Tikhonov

regularisation reduces to

min. ‖R −MS‖22 + ǫ‖S‖22. (4.15)

The solution of Eq. (4.15) is [75]

S̃ = (MHM + ǫI)−1MHR. (4.16)

or in SVD form,

S̃ =
N∑

i=1

fi
viRui

H

σi
, (4.17)

fi =
σ2
i

σ2
i + ǫ

.

Hence, the matrix (MHM+ ǫI)−1MH will be the regularised inverse. From

Eqs (4.16), (4.18) two conclusions could be deduced: first, the regularised in-

verse is never singular; second, the impact of M small singular values could be

mitigated by picking the proper regulator value, i.e. small singular values σi

could be redeemed if the filtering factors fi are conveniently set.

On the other hand, despite the mitigation of the noise effect, a large regula-

tor also increases the cost norm
∥
∥
∥R −MS̃

∥
∥
∥

2

2
by adding the regularisation term.

In other words the regularisation introduces a kind of error to the initial LS

problem. Thus, a proper choice of the regulator value should take into account
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the trade off between the regularisation noise introduced in the system and the

mitigation of the noise amplification that already exists in the system.

The literature is rich of methods (e.g., L-curve, min norm product, U-curve

and others) determining the optimum regulator in the unconstrained LS prob-

lem Eq. (4.3), i.e. where the solution can be any real number [75], [76], [77], [78].

However, to the author’s knowledge there is no such a method for applications

that solve the integer LS (ILS) problem such as the SEFDM detection. The

section below describes the regulator effect on the linear detection.

4.6.2 Linear detection and the regulator effect

In order to investigate the effect of the regularisation process, simulations are

performed for noiseless (Eb/N0 = ∞) and noisy (Eb/N0 = 5dB) SEFDM sys-

tems. The constellations of the transmitted symbols and the solutions (ZF and

regularised) of the unconstrained LS problem, i.e. before the slice operator, are

compared. In addition, small and large values of the regulator ǫ are applied

in order to observe the result of weak and strong regularisations, respectively.

Finally, the constellation of the outputs of the receiver correlators are used to

study the internal interference of the system.

Fig. 4.5 illustrates a comparison between a noiseless OFDM signal of 32

carriers and an equivalent, in terms of symbol rate and carriers, SEFDM that

suffers from relatively small orthogonality violation at α = 0.9. It is easily

deduced that in the ideal OFDM case the projections matrix reduces to an

N -dimensional identity matrix, I. Consequently, the correlators recover the

transmitted symbols exactly. However, when the regularisation is applied to

the ideal matrix it can be seen that the larger the regulator, the more the

solution points are biased towards the center of the constellation diagram.

This could be explained simply by considering Eq. (4.16) after setting

M = IN

S̃ = (IHIN + ǫI)−1IHR, (4.18)
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Figure 4.5: Constellation diagram for a noiseless 32 SEFDM signal for an or-

thogonal (α = 1) separation of carriers (left) and a small violation (α = 0.9) of

orthogonality (right).

S̃i =
Si

1 + ǫ
, i = 1, . . . , N.

However, from Fig. 4.5 (a), it is clear that for a small loss of orthogonality

even in the ideal channel (i.e. without noise and fading), the correlators out-

puts (red points) deviate from the transmit constellation points due to system

internal interference. Notwithstanding, the matrix is invertible and ZF detec-

tion that achieves the exact solution (black points) can be implemented. As

far as the regularised solution is concerned, it seems that it works better with

a small regulator (yellow-light points) since a large regularisation (green-dark

points) decreases the decision area of the slice operator.

Simulations were repeated for a matrix with worse properties α = 0.75.

Fig. 4.6 depicts results that certify that the system interference increases with

the deterioration of matrix M properties. Nevertheless, the exact solution can

be still achieved by the inversion of the matrix which is still computationally

94



CHAPTER 4. LINEAR AND ITERATIVE DETECTORS

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Q

I

32SEFDM (α=0.75, E
b
N

0
=∞)

 

 
TX

RX

ε=10−0.5

ε=10−9

ZF

−2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Q

I

32SEFDM (α=0.75, E
b
N

0
=∞)

 

 
TX

RX

ε=10−0.5

ε=10−3

ZF

(a) Small regulator - ǫ = 10−9. (b) Large regulator - ǫ = 10−3.

Figure 4.6: Constellations for a noiseless 32SEFDM with α = 0.75. A small

(ǫ = 10−9) or a large (ǫ = 10−3) regulator is applied. ǫ is also set to 100.5,

corresponding to the 1

Eb/N0

value for Eb/N0 = 5 dB.

manageable. In addition, it appears that the regularised solution points are

more concentrated around the ideal constellations when the regulator is small.

This is logical since for ǫ→∞ this process reduces to the ZF detection.

Consequently, it could be concluded that in a noiseless environment the

exact solution could be achieved by ZF detection as long as the projections

matrix is numerically invertible. Furthermore, a regularised solution appears

to be better when the regulator is small because its points are better dis-

tributed in the constellation diagram. On the contrary, when the regularisation

becomes stronger the points are moved towards the diagram center reducing

consequently the effective decision area.

It is interesting to investigate whether these results are repeated in case of

a noisy (Eb/N0 = 5 dB) SEFDM signal. Fig. 4.7 shows that in the OFDM

case the regularised and ZF solutions are similar. A great change is observed

though when the orthogonality principle is violated, i.e. α = 0.9. It is clear that
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(right) in presence of noise, Eb/N0 = 5 dB.

the noise is overly amplified in ZF due to the bad conditioning of M matrix.

On the contrary, the regularised solution appears to work better with a large

regulator. This is expected since as the regularisation grows the condition the

regularised inverse is improved. Consecutively, the noise enhancement is less.

To resume, it became clear that a weak regulator should be preferred in

case of a noiseless environment since it does not bias significantly the exact

solution. On the other hand, a large regulator appears to be better for the

detection of noisy SEFDM signals since the points of the regularised solution

appear to be less spread. Thus, a slice operator would probably generate less

wrong decisions.

4.7 MMSE SEFDM detection

In order to mitigate the complexity of ML and reduce the noise enhancement

in ZF, the performance of the Linear MMSE detection is further investigated.
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Such comprises the following optimisation problem

min. E
{(

S− Ŝ
)2
}

,

s.t. S ∈ QN , (4.19)

where Ŝ is the MMSE estimate and E {·} denotes the expected (or mean) value.

Ignoring the constraint of S ∈ QN , Eq. (4.19) reduces to

min. E
{(

S− S̃
)2
}

, (4.20)

where S̃ is the solution of the unconstrained MMSE problem. Assuming fur-

ther that S̃ is generated after multiplying (equivalent to filtering) the statistics

vector R with a matrix G, Eq. (4.19) is reduced to

min. E
{

(S−GR)2
}

. (4.21)

According to the orthogonality principle [35], the error of the unconstrained

linear MMSE estimation is uncorrelated with the observation vector R. There-

fore, the following condition must be met [71]

E
{

R(S− S̃)
H
}

= 0⇐⇒ E
{

RRH
}

G = E
{

RSH
}

. (4.22)

Replacing R with MS + N, according to the linear statistical model, the

mean terms of the RHS and LHS of Eq. (4.22) are reduced to

E
{

RRH
}

= E
{

MSSHMH
}

+ E
{

NNH
}

+ E
{

MSNH
}

+ E
{

NSHMH
}

,

E
{

RSH
}

= E
{

MSSH
}

+ E
{

NSH
}

. (4.23)

M is deterministic; assuming the noise mean value E {N} is zero and the

noise and the signal covariance matrices E
{

NNH
}

and E
{

SSH
}

are equal to

σ2I and σ2
sI, respectively, it is concluded that

E
{

RRH
}

= MMH +
σ2

σ2
s

I,

E
{

RSH
}

= M, (4.24)
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where σ2 and σ2
s are the noise and the signal power, respectively. From Eqs

(4.22) and (4.24), the MMSE matrix G is derived as

G = MH
(

MMH +
σ2

σ2
s

I

)−1

. (4.25)

Consequently, S̃ is given by

S̃ = MH
(

MMH +
σ2

σ2
s

I

)−1

R, (4.26)

where the ratio σ
2

σ2
s

represents the inverse of the Signal to Noise Power ratio

(SNR) [79], [80].

Finally, to recover the solution of the initial SEFDM constrained problem

of Eq. (4.19) a slicing operator is applied on the outcome of Eq. (4.26), i.e.

Ŝ =




MH

(

MMH +
σ2

σ2
s

I

)−1

R







. (4.27)

It is clear that in case of zero noise in the system, MMSE reduces to the

ZF detection since the term MH
(

MMH
)−1

is equal to the Moore - Penrose

pseudoinverse [53] of matrix M. However, in case of noise presence the MMSE

detection constitutes a special case of Tikhonov regularisation where the regu-

larisation term, σ
2

σ2
s
I, dynamically adapts to the noise level. Consequently, the

overall BER performance of MMSE detection is expected to be better than

ZF because the noise is less amplified as shown in section 4.6.2. In addition,

the MMSE matrix is never singular and consequently MMSE detection is not

limited by the singularity of the projections matrix like the ZF method.

Figs 4.8 and 4.9 show simulation results for MMSE detection as opposed

to ML and ZF cases. The theoretical BPSK single carrier result [52] serves

as a lower bound for the BER vs the Eb/N0 performance. It is obvious that

MMSE appears to be a compromise between ML overly complexity and ZF bad

error performance. However, it still performs inefficiently as the number of the

carriers increases and/or their frequency separation decreases.
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4.8 A combination of MMSE and ML

Linear detection techniques are superior to ML in terms of algorithmic complex-

ity at the expense of sub-optimal detection error rates. Motivated by relevant

studies in the area of MIMO systems [81], [82] the combination of linear MMSE

and brute force ML is proposed as a compromise between them. In particular,

the detector of the receiver makes use of the correlators outputs to determine a

first estimate Ŝ of the SEFDM symbol based on the MMSE criterion and then

it applies ML in a small subset of the possible transmitted SEFDM symbols

that are close enough to the MMSE estimator. We can define the SEFDM sym-

bols subset as a neighborhood D of the S̃ vector. In particular, D is composed

from the SEFDM symbols Si that meet the following condition

Si ∈ D if dH(S′i, Ŝ′) ≤ P,

P = 0, . . . , N log2M, (4.28)

where dH is the Hamming distance between the binary version of the SEFDM

symbols S′i and the binary version of the MMSE estimate Ŝ′. Consequently,

the introduced MMSE-ML detection solves by exhaustive enumeration the fol-

lowing optimisation problem

min. ‖R −MS‖22 ,

s.t. S ∈ D ⊂ QN . (4.29)

The algorithmic complexity of the proposed method depends on the number

of calculations of both the MMSE and the ML parts of the algorithm. The

former has a complexity of polynomial order O(N3) over the number of carriers

N . To determine the complexity of the latter, it is calculated the size of the

MMSE neighborhood D, since this is equal to the number of the executed ML

comparisons. The length of the expanded binary SEFDM symbols is equal to

N× log2M . Consequently, the size of D will be equal to the sum of all possible
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combinations of N× log2M bits taken dH at a time with dH taking values from

1 to P (see Eq. (4.28))

size(D) =
dH∑

i=1

(
N log2M

i

)

=

dH∑

i=1

(N log2M)!
(N log2M − i)!i!

, dH = 1, . . . , P. (4.30)

Each of the ML comparisons requires O(N2) calculations. Thus, the total

number of flops required by the local search will be approximately given by

N2
dH∑

i=1

(N log2M)!
(N log2M − i)!i!

, (4.31)

where dH = 1, . . . , P . It is clear that the order of complexity of the ML part

of the combined MMSE-ML will be O(N2+dH ). Consequently, the order of

complexity of the entire algorithm will be






O(N3) for dH = 0 ∨ dH = 1

O(N2+dH ), otherwise.
(4.32)

It is apparent that for dH equal to zero the introduced scheme reduces to

MMSE. For dH equal to unity, the number of necessary comparisons isN log2M ,

as opposed to the MN comparisons required for the ML implementation over

the entire group of SEFDM symbols. Table 4.1 provides the ratio γ of the

number of ML over MMSE-ML comparisons for various SEFDM signal dimen-

sions. Simulation tests were performed using MATLAB in order to confirm the

theoretical analysis. This work modelling assumed perfect knowledge of the GS

basis and that the only channel effect is AWGN. Bit Error Rate (BER) simu-

lations were performed for the proposed MMSE-ML scheme for up to N = 48

SEFDM carriers with minimum frequency separation equal to 0.3 of the inverse

of the SEFDM symbol period, ∆f = 0.3
T , and a fixed value of Energy Per Bit

to Noise Density Ratio (Eb/N0) equal to 5 dB. Carriers were modulated either

by real BPSK or complex QPSK symbols. In all simulations, ML and/or ZF

detection curves were used as reference points.
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BPSK BPSK QPSK QPSK

Carriers γ, dH = 1 γ, dH = 2 γ, dH = 1 γ, dH = 2

2 2 1.33 4 1.6

4 4 1.60 32 7.11

8 32 7.11 4096 481.88

16 4096 481.88 > 1010 > 8× 106

Table 4.1: Ratio γ of ML over the MMSE-ML Comparisons
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Figure 4.11: BER of MMSE and MMSE-ML detection versus α = ∆fT for

N = 4 BPSK SEFDM. Eb/N0 is 5 dB and dH = 1.

Figs 4.11 and 4.12 show BER versus the carrier distance that is described

as a fraction of the inverse of the SEFDM symbol period, ∆fT . Simulations

were performed for a small number (N = 4) of BPSK and QPSK SEFDM

carriers. MMSE-ML measurements were taken with Hamming distance dH = 1

for BPSK carriers and dH = {1, 2} for QPSK carriers.
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Figure 4.12: BER of MMSE and MMSE-ML detection versus α = ∆fT for

N = 4 QPSK SEFDM. Eb/N0 is 5 dB and dH = {1, 2}.

Both figures show that MMSE is superior to ZF but inferior to ML for

BPSK and QPSK SEFDM signals. MMSE-ML performs close to ML for BPSK

SEFDM carriers. However, the BER in QPSK case depends on the selected

Hamming distance.

Further studies were performed for a larger number of BPSK carriers N =

4, 8, 24, 36, 48 and an MMSE neighborhood of 2 × N size as derived from Eq.

(4.28) with dH = 1. Fig. 4.13 shows that concatenating MMSE-ML detection

introduces only a small error penalty as the number of BPSK SEFDM carriers

increases.

In addition, BER measurements were taken for various Eb/N0 values, for a

fixed ∆fT = 0.75. Fig. 4.14 shows that BPSK performance almost matches

the ML case. On the contrary, Fig. 4.15 shows that in the QPSK case the

error performance depends on the length of the selected Hamming distance.

For dH = 1, it appears that the proposed heuristic suffers local minima. As

a result, MMSE-ML performs worse than MMSE even for a small number of
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Figure 4.13: BER of MMSE-ML detection versus α = ∆fT for N =

{4, 8, 24, 32, 48} SEFDM. Eb/N0 is 5 dB and dH = 1.

carriers. As the latter increases a larger Hamming distance (dH ≥ 2) is required

to improve the single MMSE detection.

To estimate the computational complexity of the proposed methods, the

CPU (Pentium (R)4 3GHz) execution time was measured in different simula-

tions scenarios. All simulations implemented the detection of 1000 SEFDM

symbols for Eb/N0 = 5 dB and ∆fT = 0.75. In addition, MMSE-ML was

evaluated for Hamming distances dH = {1, 2, 3}.
Figs 4.16 and 4.17 illustrate a comparison of indicative CPU times between

ZF, MMSE and MMSE - ML detection. It is clear that ZF and MMSE require

less computational effort. MMSE - ML with dH equal to unity has simula-

tion time comparable to that of MMSE . However, the order of its complexity

increases with the size of the MMSE neighborhood.
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Figure 4.14: BER of MMSE and MMSE-ML detection versus Eb/N0 for N =
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T and dH = 1.
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Figure 4.16: CPU execution times for ZF, MMSE, and MMSE-ML detection for

BPSK SEFDM symbols of N = 2 to 16 carriers. ∆fT set to 0.75.
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Figure 4.17: CPU execution times for ZF, MMSE, and MMSE-ML detection for

QPSK SEFDM symbols of N = 2 to 16 carriers. ∆fT set to 0.75.
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4.9 Summary and Discussion

In this chapter the error performance of the SEFDM linear detection, using

techniques like zero forcing (ZF), as well as iterative cancellation (IC) meth-

ods were investigated. Although these methods exhibit a reasonable complex-

ity for medium size SEFDM, they result in a big degradation in their error

performance due to either M ill - conditioning and/or the error in the can-

cellation process, respectively. Therefore, regularisation techniques that could

partially amend M condition were considered and consecutively a minimum

mean squared error (MMSE) detection was applied. The latter technique ap-

pears to be significantly superior, in terms of error performance, to ZF.

However, the MMSE detection error rate still degrades with the increase

in N and/or the decrease in ∆f . Consequently, a combination of MMSE with

brute force ML was proposed as a sufficient compromise between ML error per-

formance and MMSE algorithmic cost efficiency. This new method performs a

local search around a first MMSE estimate Ŝ. The extent of this search depends

on a predefined parameter that constrains the Hamming distance between Ŝ

and the vectors - hypotheses that should be enumerated. Although MMSE-ML

was expected to be sub-optimal since it suffers from local minima, it appeared

to perform reliably and with affordable complexity for BPSK SEFDM with up

to N = 48 carries. Notwithstanding, for higher constellations, e.g. 4-QAM,

the method seemed to be computationally inefficient due to the larger number

of enumerations that was required for a good error performance.
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Chapter 5

Sphere decoders

5.1 Introduction

As already seen in the previous Chapters 3 and 4, the detection of the SEFDM

signals in the system proposed in [29] reduces to an optimisation problem with

discrete inputs. Moreover, if the information symbols have integer inphase (I)

and/or quadrature (Q) components, the SEFDM detection becomes an Integer

Least Squares problem that is well known to be NP hard to solve by applying

an exhaustive search over the entire feasible set [86]. Consequently, approaches

other than a brute force ML must be followed so that a practically fast detection

for the SEFDM is met. Chapter 4 investigated linear detection techniques

like ZF and MMSE that are based on the constraints’ relaxation of the ML

optimisation problem. It has been shown that although such methods offer

solutions of fixed and polynomially bounded complexity, they suffer from the

introduction of a severe error penalty. Consequently, they are inappropriate for

the SEFDM detection since their error performance considerably degrades with

the increase of the deliberate overlapping of the transmitted signal sub-bands.

This chapter is concerned with developing a new approach to address the

complexity - error rate issue discussed above, but from a different perspective;

the initial SEFDM ML detection program is not relaxed but it is attempted
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to be solved optimally by splitting the problem of the overlapped SEFDM

carriers detection into a number of separate sequential steps. In particular, the

dynamic programming algorithm that is called SD is examined. The SD was

first proposed by Fichke and Pohst in 1985 [87] to solve the problem of finding

the shortest vectors in a given lattice. Extensive research has taken place on the

application of SD in diverse areas of communications such as the Lattice Code

Decoding [88], [89], the MIMO systems [90], [91], [92], the Multi-User detection

of Multi-Carrier CDMA (MC-CDMA) systems [93] and even the reduction of

the Peak to Average Power Ratio (PAPR) of OFDM systems [94], [95].

The following sections entail a detailed description of the concept of this

well known algorithm and discuss its most important issues like the radius

calculation, the reordering strategies and its algorithmic complexity. As far as

the latter topic is concerned, this work mainly refers to the initial SD paper [87]

as well as the work published by Hassibi and Vikalo [86], [74], [96] and Jalden

and Ottersten [97], [98].

In parallel, the chapter investigates the application and performance of di-

verse SD versions to the SEFDM detection problem. These SD versions are

based either on the real decomposition [99] or the complex SD [100]. Vari-

ous comparisons are demonstrated in terms of computational effort and error

rates for different SEFDM systems. In addition, these comparative studies

identify the limitations of the SD detection due to the particularities of the

SEFDM model, and overcome the effect of the SEFDM projections matrix ill

conditioning and its potential numerical singularity by applying regularisation

techniques like the Tikhonov variant proposed by Cui and Tellambura in [101].

Finally, this work findings are summarised and the conclusions regarding the

use of SDs for a feasible real time SEFDM detection are discussed. Possible

areas of further research of SD algorithm with regard to the properties of the

investigated SEFDM system, are also underlined. The starting point of this

chapter is based on the block diagram of the SEFDM system proposed in [29],
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combined with a SD as illustrated in Fig. 5.1 below.
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Figure 5.1: A general block diagram of an SEFDM system combined with a

Sphere detector.

5.2 SD for the SEFDM detection

The Sphere decoder was first proposed by Fichke and Pohst [87] as a compu-

tationally efficient method of finding the shortest - in terms of the Euclidean

norm ‖·‖2 - vector X in a given lattice Λ 1, i.e. the solution of the following

optimisation problem

min. ‖MX‖22 , (5.1)

s.t. X ∈ Z
N ,

where M is the generator matrix of the lattice Λ.

In order to formulate the SEFDM detection as a Shortest Vector (SV) prob-

lem, it is considered that the linear transformation MS of the transmitted data

symbols, S = [S1, S2, . . . , SN ], constitutes a lattice Λ whose generator matrix

1A Lattice in this context is a mathematical representation of vectors in a Euclidean space.

A brief introduction to Lattice theory is in Appendix B
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M is the matrix of the projections of the SEFDM carriers onto the GS or-

thonormal base (see Section 3.2). Furthermore, the following assumptions are

made: First, Si take values over a discrete alphabet QN of elements with integer

in-phase (I) and/or quadrature (Q) components (i.e. the modulation scheme

can be either M -PAM or M -QAM). Second, M is non singular and therefore

its square Grammian matrix MHM is positive definite. It is also assumed that

Λ is translated so that it is centered around the statistics vector R. As a result,

the optimal SEFDM detection decision reduces to the following SV problem

min.‖R −MS‖22,
s.t. S ∈ QN ⊂ Z

N
⇔

min.‖W‖22,
s.t. W ∈ R − Λ

(5.2)

where W are the vectors of the translated by R lattice Λ.

From an optimisation point of view, SD solves exactly the LS problem of the

ML detection as described in Section 3.7 but subject to an extra constraint; the

value of the cost function (i.e. the square of the Euclidean norm ‖R −MS‖
2
)

of the ML problem must be less than a predefined or precalculated real value

C. Consequently, Eq. (5.2) reduces to

min. ‖R −MS‖22,

s.t. ‖R −MS‖22 ≤ C,

S ∈ QN . (5.3)

It is apparent that geometrically the constraint implies that SD investigates

only the lattice points MS that lie within an N -dimensional hypersphere whose

center and radius are the statistics vector R and the parameter C, respectively

(see Fig. 5.2). Hence, depending on the proper selection of an efficient radius,

SD avoids an exhaustive search, thereby it is more computationally efficient

and achieves the optimal solution faster than brute force ML.

Before proceeding with the detailed description of the SD steps, it must be

noticed that the SD algorithm introduced in [87] solves the problem in the real
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R(R1,R2)

Cr

Figure 5.2: Sphere search in a 2-dimensional Lattice.

space, i.e. all the vectors and matrices of the linear model have elements that

are real. However, due to the baseband representation of the SEFDM signal

in this model, the cross correlations matrix M as well as the data symbols

vector S are complex. In order to overcome this model inconsistency, we apply

a technique widely used that proposes the expansion of all the matrices in the

model using a kind of real decomposition [99], [92], [91] as

R
′

=






Re{R}
Im{R}




 , M

′

=






Re{M} Im{M}
−Im{M} Re{M}




 ,

S
′

=






Re{S}
Im{S}




 , N

′

=






Re{N}
Im{N}




 . (5.4)

where the Re{·} and Im{·} operators denote the real and imaginary parts of

the argument matrix, respectively. This decomposition expands M matrix and

S, and R vectors respectively into M′, S′, and R′ of 2N × 2N , 2N × 1 and

2N × 1 dimension, respectively. It should be noticed that the decomposition

process doubles the dimension of the problem from N to 2N .
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Hence, the constraint of the Eq. (5.3) is converted to

∥
∥R′ −M′S′

∥
∥2

2 ≤ C =⇒

(ρ′ − S′)TM′TM′(ρ′ − S′) ≤ C, (5.5)

where ρ′ is the expanded 2N × 1 vector of the unconstrained ML estimate

M−1R. Note that the Left Hand Side (LHS) of the inequality of the second

line represents the equation of an ellipsoid that is centered at the ZF estimate

and whose generator matrix is the Grammian matrix M′TM′.

Assuming that M′ is non singular, M′TM′ is positive definite. Conse-

quently, the latter can be decomposed using Cholesky method and it can be

written as a product of an upper triangular matrix L and its transpose LT such

as M′TM′ = LTL. Thus, Eq. (5.5) reduces to

∥
∥L(ρ′ − S′)

∥
∥2

2 ≤ C, (5.6)

Thanks to the triangular form of L, the detection problem can be split in

a number of 2N consecutive steps corresponding to each of the dimensions of

the SEFDM signal. Developing the Euclidean norm, Eq. (5.6) reduces to

C ≥ (l2N,2N (ρ′2N − S′2N ))2 +

(l2N−1,2N−1(ρ′2N−1 − S′2N−1) + l2N−1,2N (ρ′2N − S′2N ))2

+ . . . , (5.7)

where li,j , S′i, and ρ′i (i = 1, . . . 2N and j = 1, . . . 2N) are the elements of the

L, S′ and ρ′ vectors, respectively. By examining each of the square terms in

separate step, the search in the 2N -dimension hypersphere is reduced into 2N

consecutive 1-dimensional spheres, i.e. linear intervals, searches. According to

the LHS of Eq. (5.7), the following inequality stands for the 2N th term

l22N,2N (ρ′2N − S′2N )2 ≤ C2N = C, (5.8)

Developing Eq. (5.8) the following lower and upper bound (LB and UB,

respectively) are derived for the search interval of the 2N -dimension
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LB =

⌈

−
√
C2N

l2N,2N
+ ρ′2N

⌉

≤ S′2N ≤
⌊√

C2N

l2N,2N
+ ρ′2N

⌋

= UB, (5.9)

where the operators ⌈·⌉ and ⌊·⌋ denote rounding, respectively, to the nearest

larger or smaller integer that span a single dimension of the lattice (this is

equivalent to the integer values of the I and Q components of the modulation

scheme). The possible values of the data symbols within the 2N th linear interval

are enumerated. Then, the first point, i.e. the lower bound, is considered.

Following (5.7) the radius is updated according to

C2N−1 = C2N − l22N,2N (ρ′2N − S′2N )2, (5.10)

and the following inequality is solved

(l2N−1,2N−1(ρ′2N−1 − S′2N−1) + l2N−1,2N (ρ′2N − S′2N ))2 ≤ C2N−1. (5.11)

Replacing ρ′2N−1 with ξ′2N−1 given by

ξ′2N−1 = ρ′2N−1 +
l2N−1,2N

l2N−1,2N−1
(ρ′2N − S′2N ), (5.12)

the inequality (5.11) reduces to

l22N−1,2N−1(ξ′2N−1 − S′2N−1)2 ≤ C2N−1. (5.13)

Then, the algorithm proceeds with the enumeration of the points in the (2N −
1)th dimension applying (5.9) similarly to the first step. The same process is

iterated until the last dimension. For the ith dimension the following iterative

formulas are used

Ci = C −
2N∑

l=i+1

2N∑

j=l

l2ij(ρ
′
j − S′j)2, (5.14)

ξi = ρ′i +
2N∑

j=i+1

lij
lii

(ρ′j − S′j). (5.15)

In addition, the radius Ci is linked to Ci−1 according to

Ci−1 = Ci − l2ii(ρ′i − S′i)2. (5.16)
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When, SD reaches the last level, i.e. i = 1, a candidate vector M′S′ is identified

as a point within the sphere when the value of the respective Euclidean norm

‖R′ −M′S′‖22 is smaller than the initial radius C. The condition to be met is

that can also be written as

∥
∥R′ −M′S′

∥
∥2

2 =
2N∑

i=1

2N∑

j=i

(

lij(ρ′j − S′j)
)2
< C. (5.17)

Setting i = 0 and i = 1 in Eqs (5.14) and (5.16), respectively, we have that

C0 = C2N −
2N∑

l=1

2N∑

j=l

l2ij(ρ
′
j − S′j)2, (5.18)

C0 = C1 − l211(ρ′1 − S′1)2. (5.19)

Equating the RHS of both equations, we conclude that

2N∑

l=1

2N∑

j=l

l2ij(ρ
′
j − S′j)2 = C2N − C1 + l211(ρ′1 − S′1)2. (5.20)

Consequently, from (5.20) Eq. (5.17) reduces to

C2N − C1 + l21,1(ρ′1 − S′1)2 < C. (5.21)

From a spanning tree view point, SD traces in depth a tree of N + 1 levels.

The number of the branches of each node is equal to the size of the modulation

alphabet, e.g. for BPSK this is 2, as seen in Fig. 5.3. The transition from

a ‘parent’ i + 1 to a ‘child’ i tree node determines the decision about the ith

transmitted data symbol. The overall dimension of the search space (i.e. the

number of tree nodes) is MN + 1, where M is the constellation cardinality and

N is the number of carriers. Every time a complete path is found, a point

within the sphere is enumerated. Note that in the real decomposition based

SD, the tree has double depth, i.e. 2N + 1 levels.

A flow chart illustrating the SD algorithm is drawn in Fig. 5.4.

5.2.1 SD radius derivation

The computational efficiency of SD algorithm depends on whether the num-

ber of the candidate points that lie within the hypersphere is sufficiently small.
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Figure 5.3: Spanning tree of a typical Sphere Decoder.

Apparently if the radius of the sphere is too big, all the lattice points will be in-

vestigated and SD will reduce to a brute force ML with exponential complexity

over the size of the lattice. On the other hand, if the radius is too small there

is a strong likelihood that no point is found and the execution of the algorithm

proves to be fruitless. Consequently, the proper definition of the initial radius

is decisive for the achievement of a practical detection.

In the literature, many different proposals regarding the radius precalcula-

tion have come to the light. As mentioned in [89] and [74], an obvious candidate

should be the lattice covering radius (see Appendix B) since it guarantees the

existence of at least one point within the sphere. Notwithstanding, its deriva-

tion is also an NP hard problem [74].

Another typical approach is to set the initial radius to be equal to the

distance from the sphere centre (i.e. the statistics vector R) to a pre-calculated

first estimate like ZF or MMSE estimates [102], [93], i.e.

C =
∥
∥
∥R −MS̃

∥
∥
∥

2

2
, (5.22)

where S̃ is the value of the first estimate. The main disadvantage of this

approach is that in case the initial estimation deviates significantly from the

optimal point, for example due to the matrix M bad conditioning or low SNR,
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Figure 5.4: Flow chart of a Sphere Decoder based on real decomposition (RSD).
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the complexity can be extremely high.

A more practical choice of C is suggested in [89]. In particular, it is proposed

to derive the radius according to the noise variance σ2. In [100] and [74] a

more thorough description of this technique is given. According to the linear

statistical model the cost function of the SD problem is equal to the norm of

the noise variables at the output of the correlators, i.e.

1
σ2
‖R −MS‖22 =

1
σ2
‖N‖22. (5.23)

The term ‖N‖22 in the Right Hand Side (RHS) of (5.23) comprises the sum

of the squares of 2N standard independent Gaussian variables with variances

σ2. Consequently, it represents a χ2 random variable U [71] with 2N degrees

of freedom. The probability of such a variable being smaller than a value C/σ2

is given by

P {U ≤ C} =
∫ C

0

UN−1

2NΓ (N)
e−U/2dU, (5.24)

where Γ(·) stands for the well known Gamma function.

C could be set to be equal to a scaled, by a real k > 1, variance of the noise

vector, i.e.

C = k2Nσ2, (5.25)

and then calculate k so that the probability of Eq. (5.24) is very high, e.g.

P
{
U ≤ 2kNσ2

}
= 0.99. The disadvantage of this method is that there is

always a likelihood of a detection failure (i.e. no point found in the sphere).

In this case, the above probability and consequently the radius of the sphere

should be increased until a solution is achieved. In order to overcome this

limitation, the idea of reordering the enumerated points at each step of the

algorithm has been applied [91], [103], [90]. The following paragraph describes

a reordering strategy called Schnorr-Euchner (SE) enumeration, as proposed

in [102]. SE enables setting initial sphere radius equal to very large values so

that the probability of no point being found in the sphere approaches zero.
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5.2.2 Schnorr-Euchner (SE) enumeration

While in the original Fichke-Pohst (FP) enumeration [87] the search starts from

the point closer to the lower bound defined in eq. (5.9) and then moves towards

the upper bound, in SE strategy the points at each level are reordered so that

the search starts from the candidate that is closest to the center of the SD one

dimensional spheres. According to Eqs (5.9) and (5.15) the middle point is

given by

ξi = ρ′i +
2N∑

i+1

li,j
li,i

(

ρ′j − S′j
)

. (5.26)

Then, the enumeration of points at the i level takes place from the left to

the right in the following order

⌊ξi⌉ , ⌊ξi⌉+ β, ⌊ξi⌉ − β, ⌊ξi⌉+ 2β, ⌊ξi⌉ − 2β, . . . , (5.27)

where ⌊·⌉ the denotes the rounding operator that rounds to the nearest integer.

The step β depends on the modulation alphabet that is used, e.g. for QN =

{±1,±3, . . .}N , β = 2.

Fig. 5.5 shows the difference between SE and a typical FP enumeration.

Instead of the so called natural spanning of typical FP, in SE the points are

spanned in a ‘zig-zag’ order from the interval center ξi.

The main advantage of the method is that there is no need for a precise

definition of the initial radius. It is enough to set C to a sufficiently large

value, depending on the dimension of the problem and the SNR, that can be

even ∞ [103], [91]. Thus, the probability of a detection failure (in terms of no

point found at the end of the algorithm execution) becomes zero.

It is also clear from Eq. (5.9) that the first point that is enumerated corre-

sponds to the real decomposed version of the ZF estimate, Ŝ′
ZF

. Consequently,

at the first step of the SE SD variant the radius of the hypersphere is reduced

to the distance from this estimate that is equal to
∣
∣
∣R′ −M′Ŝ′

ZF

∣
∣
∣

2

2
. The smaller

this quantity is the faster the search of the tree. Therefore, in the ideal case
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Figure 5.5: Intervals spanning in typical FP and SE enumeration strategies. The

spanning takes place in a numerical order from number 1 to number 4.

of no noise the calculational effort is minimum since the lattice point corre-

sponding to the Ŝ′
ZF

coincides with the sphere center and the SD detection is

accomplished after the execution of the first step only. In this case, SD com-

plexity is upper bounded by the pre-calculation of the ZF estimate, where the

complexity is of cubic order due to the required inversion of M′.

5.2.3 SD Complexity

From the previous paragraphs, it has become apparent that the main issue in

the SD implementation is not its error performance, since if the radius has

been chosen properly the optimum solution is achieved, but its computational

efficiency. The latter obviously depends on the number of the lattice points

that are investigated and consequently on the size of the SD spanning tree.
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This is equal to the total number of tree nodes given by

N∑

i=0

M i, (5.28)

where M is the constellation cardinality and N is the dimension of the problem.

As a consequence, the author conjectures that the complexity will depend not

only on the problem size but it will also be data dependent since larger data

modulation alphabets compose larger SD trees.

In [87] a first analysis about the SD complexity was given. In particular, the

main result was the derivation of an upper bound for the number of arithmetic

operations required by the algorithm to converge, that is given by [87],

1
6

(2(2N)3 + 3(2N)2 − 10N) +
1
2

((2N)2 + 24N − 7)

×
(

(2
⌊√

Clmin
⌋

+ 1)

(
⌊4Clmin+2N−1⌋

⌊4Clmin⌋
)

+ 1

)

, (5.29)

where l−1
min is the lower bound for the eigenvalues of the Grammian M′TM′,

which in SEFDM case (see Section 3.5.5) tends to zero as the number of the

carriers increases and/or their frequency separation decreases. Although this

complexity bound has been reported as an extremely loose one [74], the above

formula indicates that the complexity of the SD SEFDM detection will in-

evitably increase in these two cases.

In [86] and [74], Hassibi and Vikalo observed that the problem solved by

SD is a random integer LS problem. Based on this, they derived formulae for

the expected complexity in two different scenarios. Firstly, they considered

that there is no knowledge about the statistics vector, i.e. it is an arbitrary

point. They stated the expected number of points visited in SD will be at least

equal to the expected number of points P visited in an arbitrary i-dimensional

sphere, i = 1, . . . , 2N of radius C. This is proportional to the sphere volume

given in Eq. (11) and found to meet the following bound [74],

P ≥ π
k
2

Γ
(
k
2 + 1

)CK (5.30)
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Developing this inequality under the assumption that at least a point is found,

they concluded that

P ≥ 1√
π
δ

2N
2δ

+ 1
2 (2N)

1
2δ
− 1

2 , (5.31)

where δ = 2N/k. For a fixed δ it appears that when the received point is

arbitrary, the SD expected complexity increases exponentially in N .

Secondly, in SEFDM detection in presence of AWGN, as in most of the

communications cases where SD is applied, the statistics vector is a point of

the lattice MS disturbed by additive Gaussian noise with known variances

σ2 (also see Section 5.2.1. Based on this and the assumption that M is also

random , in [74] and [96] it was shown that in a such a system the expected

complexity could be polynomial for specific SNRs and problem dimensions.

The last conclusion is also consistent with results given by Jalden and Ottersten

in [97] that prove that SD expected complexity is O(MβN ), where β ∈ [0, 1]

and depends on the SNR. Furthermore, for large SNR values β << 1 implying

that for moderate N the complexity is dominated by polynomial terms.

Motivated by the last conclusions, the following investigate the performance

of different variants of SD adapted to the properties of our SEFDM system and

identify the possible SNR areas for which a real-time detection for a moderate

size SEFDM signal can be achieved. For the discussion below, the following

SEDFDM particularities should be underlined:

• First, the generator matrix M is not a matrix with independent random

entries but it is a deterministic matrix whose elements values depend only

on the number of SEFDM carriers and their frequency separation;

• The SEFDM-SD detection modelling involves techniques like SE reorder-

ing and radius update that have not been taken into account in the lit-

erature and above derivations. Although published closed formulae do

not stand for this case, the expected complexity of such SD variants is no

greater than the one calculated in [96].
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Figure 5.6: BER versus ∆fT comparison between ML and RSD 4-QAM and

16-QAM SEFDM detection with N = 2 carriers.

5.2.4 Real SD (RSD) Numerical Results

In this work the initial design of the SD detector is based on the real decom-

position technique. In addition, the SE enumeration strategy was followed

and arbitrarily set the initial radius to a very large value. Moreover, perfect

knowledge of the IMGS base at the receiver side was assumed and that the

only channel impairment is AWGN. A pseudocode of the real decomposed SD

(RSD) implementation based on Python symbolics [104] is shown in Fig. 5.7.

BER measurements were taken for up to N = 24 carriers with minimum

frequency separation ∆f = 1
2T . In addition, carriers were modulated either by

4-QAM or 16-QAM baseband symbols. In all simulations, MMSE curves were

used as a performance reference.

Fig. 5.6 provides a brief comparison of ML and SD detection methods for

the smallest (N = 2) dimensional SEFDM signals. The result confirms the

theoretical expectations since both schemes have identical performance.

Figs 5.8 and 5.9 show the evaluation of the error performance of the SD
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def   SD (M, R, N, C, lattice_points)  

R’=decomp{R},M’=decomp{M}        

L = cholesky(M’TM’)

 = M’-1R’

i=2N,  Ci= C,  i= i

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i

i = enum{lattice_points, LBi, UBi}

i = sortSE{Ai, i}

Mi = length{Bi}, xi=0

while i<=2N:

Si= Bi,x

xi+=1

if nodes_counterlevel> Mi:

i+=1

continue

elif i>1:

i-=1

Ci = Ci+1 - li+1,i+1
2( i+1 - Si+1)2

i= i + li, (i+1):2N/li,i x ( i+1:2N - Si+1:2N)

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i}

Ai = enum{lattice_points, LBi, UBi }

Bi = sortSE{Ai, i}

Mi = length{Bi}, xi = 0

elif CN-1 – C1+l1,1
2( 1-S1)2 < C:

C = CN-1 – C1+l1,1
2( 1 - S1)2

CN-1 = CN-1 – C0+l1,1
2( 1 - S1)2

  = S, i = 2N

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i}

Ai = enum{lattice_points, LBi, UBi }

Bi = sortSE{Ai, i}

Mi = length{Bi}, xi = 0

Solution = recomp{ }

return [Solution]

Figure 5.7: SD pseudocode based on a Python implementation.
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detection versus the normalised carriers frequency separation of the FDM sig-

nal, ∆fT . Simulations were performed for 4-QAM SEFDM SD detection with

N = 2, 4, 8, 16 carriers and 16-QAM SEFDM SD detection with N = 2, 4, 8

carriers. All measurements were taken for a fixed value of Energy Per Bit to

Noise Power Spectral Density Ratio (Eb/N0) equal to 5 dB. From both fig-

ures it is apparent, for both 4-QAM and 16-QAM SEFDM, as the distance

between the carriers decreases there is an error penalty as opposed to the sin-

gle carrier error rate. Nevertheless, SD appears to be considerably superior to

MMSE for all frequency separation points. Moreover, for 4-QAM modulation

case SD achieves the OFDM, or equivalently the single carrier, performance

(BER ≤ 10−2) for ∆fT ≥ 0.8. Some useful insight about this observation is

given in [32], [33]. According to the authors, the Euclidean distance between

the transmitted 4-QAM SEFDM symbols does not shrink until this ∆fT point.

Consequently, the effect of the noise and the respective BER in the SEFDM

systems are expected to remain the same with those in the OFDM case.
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Figure 5.8: BER versus ∆fT of 4-QAM SEFDM RSD detection for N =

{2, 4, 8, 16} carriers.
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Figure 5.9: BER versus ∆fT of 16-QAM SEFDM RSD detection for N =

{2, 4, 8} carriers.

Simulations for different Eb/N0 values for a fixed 0.75 ∆fT frequency sepa-

ration. In particular, Figs 5.10 and 5.11 illustrate the system BER performance

versus Eb/N0. It is interesting that in 4-QAM case, the lack of orthogonality

introduces a small error penalty (≤ 0.5 dB) for up to 24 carriers. It must be

mentioned that the 24 carriers case result was based on the simulation of only

100 SEFDM symbols, due to the long simulation time, and therefore it can

be only indicative. In 16-QAM the error grows rapidly with the number of

the carriers and introduces an approximate 2 dB penalty. However, SD still

performs better than the MMSE detector.

In addition to the error performance, evaluation has come out for the com-

putational complexity of the SD method measuring the number H of the visits

to the nodes of the SD spanning tree. All simulations were based on the de-

tection of 100 SEFDM symbols for Eb/N0=5 and 8 dB, and for ∆fT = 1, 0.75.

Fig. 5.12 depicts the results for N = {4, 8, 16} 4-QAM SEFDM carriers. It

is clear that the calculation complexity is not fixed but dependent on the pro-
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Figure 5.10: BER versus Eb/N0 of 4-QAM SEFDM RSD detection for N =

{2, 4, 8, 16} and N = 24 carriers over 104 and 102 SEFDM symbols, respectively.
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Figure 5.11: BER versus Eb/N0 of 16-QAM SEFDM RSD detection for N =

{2, 4, 8} carriers.
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jections matrix properties and the noise in the system. As far as the former

is concerned, it can be observed that the complexity vastly increases with the

number of carriers and/or as the reduction of the frequency separation. Re-

garding the latter, it can be seen that SD computational effort is also influenced

by the SNR level. It can be clearly seen that the high noise system (Eb/N0 = 5

dB) requires almost double the number of operations to achieve the optimal

solution. Fig. 5.13 illustrates similar results for 16-QAM. It is obvious that

there is a further degradation of the detection complexity due to the higher

modulation level scheme.
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Figure 5.12: Visits to the SD tree nodes for 4-QAM RSD detection.

5.3 Complex Sphere Decoding (CSD)

As already mentioned, one of the main factors that affects the SD complexity

is the dimension of the problem which in the SEFDM detection is equal to

the number N of the SEFDM carriers. However, the real version of SD (RSD)

requires the real decomposition of the matrices of the SEFDM model due to the
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Figure 5.13: Visits to the SD tree nodes for 16-QAM RSD detection.

complex nature of the projections matrix M, before applying the SD algorithm

(Fig. 5.7). Consequently, the dimension of the model matrices and of the

detection problem is doubled. As a result, SD searches for the optimum solution

in a spanning tree which has a number of levels that is double that number

of the carriers. In order to avoid the aforementioned doubling of the problem

dimension a Complex version of SD (CSD) [100], [93] [105] could be applied.

The analysis in the following sub-sections examines, for simplicity reasons,

the application of CSD for the detection of SEFDM modulated only by M -PSK

symbols though this is not an actual constraint [100].

5.3.1 CSD Description

It is assumed that at any SEFDM dimension the lattice points lie exactly on

the diameter of a circle of a fixed radius r = 1. Hence, each of the transmitted

symbols Si can be written as

Si = rejθi
∣
∣
∣
∣θi ∈ A =

{

0,
2π
2M

, . . . , (2M−1)
2π
2M

}

, i = 1, . . . , N, (5.32)
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where θi is the phase corresponding to the ith carrier M -PSK symbol and A is

the set of possible phases of the M -PSK symbols.

Then, each of the SEFDM symbols S = [S1, S2, . . . , SN ] can be represented

by a vector of phases Θ = [θ1, θ2, . . . , θN ]. Thus, the SD program described in

Eq. (5.3) can be transformed into the following equivalent problem

min.
∥
∥
∥M(Ŝ

′

ZF − ejΘ)
∥
∥
∥

2
, (5.33)

s.t.
∥
∥
∥M(Ŝ

′

ZF − ejΘ)
∥
∥
∥

2
≤ C,

Θ ∈ AN ,

where Ŝ
′

ZF
= [Ŝ

′

ZF,1, Ŝ
′

ZF,2, . . . , Ŝ
′

ZF,N ] is the vector of the signal ZF esti-

mator ŜZF = M−1R whose elements are expressed in spherical coordinates

(r̂ZF,i, θZF,i) such as

Ŝ
′

ZF,i = r̂ZF,ie
jθ̂ZF,i , i = 1, . . . , N. (5.34)

It should be mentioned that complex SD fits better the introduced SEFDM

model since thanks to the triangular shape of the matrix M, the Cholesky

decomposition step at the initialisation stage of the SD algorithm can be ne-

glected. Consequently, the problem is directly decomposed into a number of

steps equal to the number of the SEFDM carriers. After developing the norm

of Eq. (5.34) the following inequality must be met for the N th dimension

(corresponding to the first SD step)

(

ŜZF,N − SN
)2
≤ CN
m2
N,N

, (5.35)

where CN is the sphere radius at the first SD step. The transformation of SN

and ŜZF,N according to Eqs (5.32) and (5.34) leads to

(

r̂ZF,Ne
jθ̂N − rejθN

)2
≤ CN

m2
N,N

⇒

r̂2
ZF,N + r2 − 2r̂ZF,Nr cos(θ̂ZF,N − θN ) ≤ CN

m2
N,N

, (5.36)
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where mN,N is the N th diagonal element of the projections matrix. Solving

(5.36) with respect to θN results in

− cos−1(k) + θ̂ZF,N ≤ θN ≤ cos−1(k) + θ̂ZF,N , (5.37)

where

k =
1

2r̂ZF,Nr

(

r̂2
ZF,N + r2 − C

m2
N,N

)

. (5.38)

Multiplying both sides of (5.37) by 2M

2π and rounding to the nearest integer

leads to the following
⌈

2M

2π

(

θ̂ZF,N − cos−1(k)
)
⌉

≤ λN ≤
⌊

2M

2π

(

θ̂ZF,N + cos−1(k)
)
⌋

, (5.39)

where λN = 2M

2π θN while ⌈·⌉ and ⌊·⌋ denote the ceiling and floor functions,

respectively.

The previous equation shows that the problem finally reduces to a number

of separate enumerations of integers between the lower and upper bounds.

The difference with the RSD is that those integers do not reflect the actual

modulation symbols values but the order of the symbols points on the M -PSK

constellation circle. A schematic of the CSD search at the ith signal dimension

is given in Fig. 5.14.

It is apparent that at each step the algorithm enumerates the integers that

correspond to the phases of the lattice points (see Eq. (5.32)) that are within

the hypersphere. From a geometrical point of view at each dimension i the

search interval is not any more a line between the lower and the upper bounds

as in RSD, but it is defined as the arc of the M -PSK constellation circle between

the intersection points of the latter with a circle whose center is ŜZF,i and the

radius equal to Ci.

The steps described above for the N th dimension are repeated for the re-

maining dimensions (signal carriers) in a similar manner with the RSD until a

full path across the SD spanning tree is found. It is notable that the proper
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Figure 5.14: A single dimension search for Complex Sphere Decoding (CSD).

implementation of the previous calculations requires that 0 ≤ cos k−1 ≤ π and

not −π/2 ≤ cos k−1 ≤ π/2. [100].

Before proceeding with simulation results it should be mentioned that CSD

can be combined with multi-amplitude modulation schemes considering that

M -QAM (M > 4) symbols lie on circles of different size. Hence, the problem

solution will be given by solving Eq. (5.37) for all the different values of the

circle radius r [100].

5.3.2 CSD Results

In order to evaluate the system performance, BER in the presence of AWGN

was also measured. In addition, SE reordering was also performed, similarly

to the RSD case, to overcome the problem of the radius initial setting. Figs

5.15 and 5.16 show BER versus ∆fT curves in the complex SD detection.

It can be seen that CSD achieves optimum performance for both BPSK and
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Figure 5.15: Complex SD detection BER for BPSK SEFDM systems.

QPSK modulations. However, due to the large computational cost the size of

the detected SEFDM signal is limited in this study to 40 and 24 carriers for

BPSK and QPSK, respectively. For the same reason, simulations for 24 QPSK

SEFDM carriers were performed for only 1000 SEFDM symbols.

The CSD computational complexity has also been evaluated for different

noise values, input data formats (BPSK or QPSK) and the matrix M properties

that change with the number of SEFDM carriers and their frequency separation.

The number H of visits to the SD tree nodes was used as a measure of the

computational effort required by the algorithm.

Figs 5.17 and 5.18 show that the main factor that affects complexity is the

matrix M. As the number of carriers grows and/or their frequency separation

decreases, the triangular matrix M tends to become singular as its diagonal ele-

ments (eigenvalues) value approach zero. Consequently, the number of required

arithmetic operations increases unacceptably.

Furthermore, the noise variance as well the format of the input data play

a significant role. QPSK appears to be computationally more expensive than

134



CHAPTER 5. SPHERE DECODERS

0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

← ∆fT

B
E

R
 (

E
b/

N
o=

5d
B

) 
→

 

 
02CSD, QPSK
04CSD, QPSK
08CSD, QPSK
16CSD, QPSK
24CSD, QPSK

Figure 5.16: Complex SD detection BER for QPSK SEFDM systems.

BPSK since the size of the tree in QPSK is larger. In addition, noise augments

complexity since the radius of the sphere is a function of noise and consequently

the number of the lattice points included in it, depend on its size.

Finally, Fig. 5.19 shows the significant impact that the use of CSD has on

the complexity of the algorithm. In particular, the numbers of the tree nodes

visits for a fixed number of carriers N = 16 in case of RSD and CSD detection

are compared. Eb/N0 was set either to 5 or 8 dB and ∆fT was equal to 0.75.

The above studies clearly demonstrate that CSD algorithm performs much

faster than RSD especially when the matrix M properties start degrading. This

is attributed to the avoidance of doubling the matrices dimension.

Hence, this work findings about CSD for the SEFDM system proposed

in [29], may be summarised in the following:

• First, the complex SEFDM projections matrix M is by definition upper

triangular, allowing thus omitting the Cholesky decomposition step in the

initialisation step of the SD algorithm;
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Figure 5.17: CSD detection complexity for BPSK SEFDM systems. The number

of SEFDM carriers varies between 4 and 16.
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Figure 5.18: CSD detection complexity for QPSK SEFDM systems. The number

of FDM carriers varied between 4 and 16.
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Figure 5.19: CSD vs RSD detection complexity for QPSK SEFDM systems.

• According to this work’s numerical results, CSD offers a significant im-

provement as opposed to the RSD variant due to the avoidance of dou-

bling the dimension of the detection problem;

• Nevertheless, a fast solution is still constrained by the properties of the

matrix M. As the latter tends to be singular with the increase of number

of carriers and/or the decrease in their frequency separation, the detection

problem becomes ill-posed. A possible improvement could be offered by

the application of regularisation techniques for ill-posed Least Squares

problems like the Tikhonov method [106].

5.4 Regularised Sphere Decoding (RegSD)

5.4.1 SEFDM Grammian Matrix and SD

Efficient detection of SEFDM signals depends on the properties of the covari-

ance matrix M (i.e. the Gram matrix) that appears in the SEFDM linear
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H
H

H
H

H
H

H
HH

N

α
0.7 0.75 0.8 0.85 0.9 0.95 1

8 4.25 2.93 2.12 1.6 1.27 1.07 1

16 33.9 14.71 6.97 3.6 2.03 1.28 1

24 290.11 78.88 24.46 8.59 3.42 1.58 1

32 2554.8 435.3 88.2 21.1 5.9 2 1

40 22860 2440 323 52 10 3 1

Table 5.1: Gram Matrix M Condition Number for Varying α and N

statistical model. The Gram matrix is positive semidefinite upper triangular,

so its eigenvalues equate to its diagonal elements. In the OFDM case the or-

thonormal base coincides with the SEFDM carriers and consequently M = IN.

On the other hand, in the SEFDM case, with decreasing carrier spacing α

and/or increasing number of carriers N , the Gram matrix eigenvalues decrease

rapidly and M as well as MHM tend to become singular. Table 5.1 depicts M

condition number (ratio of the largest to the smallest eigenvalue) to illustrate

this effect. For large condition number, suboptimum linear detection techniques

such as ZF and MMSE, do not result in good BER performance [107], [108]

and optimum detection methods like RSD and CSD are not directly applicable.

Therefore, other detection techniques have to be explored. The section below

examines RegSD detection.

5.4.2 RegSD for SEFDM Detection

The applicability of SD mainly depends on the invertibility of the Gram matrix

M. However, as explained in section 5.4.1, one of the main limitations of the

introduced non orthogonal FDM system is that M becomes ill-conditioned as α

decreases and/or N increases. In order to ease the severity of this effect, a Reg-

ularised SD algorithm [106], [101], [109] is used. In particular, to decrease the

matrix M condition number, regularisation is used by introducing a quadratic
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regulator to the cost function of (5.3). Noting that the term SHS is constant

for constant modulus schemes (e.g. equal to N), it is possible to transform the

original optimisation problem (5.3) into an equivalent problem

min.
{

‖R −MS‖2 + ǫSHS
}

, (5.40)

s.t. S ∈ QN ,

where ǫ is an arbitrarily selected constant and (·)H denotes the Hermitian

matrix. The above norm could be developed obtaining

min. {RHR −RHMS− SHMHR + SH(MHM + ǫIN)S},

s.t. S ∈ QN . (5.41)

The full matrix A = MHM+ǫIN could also be Cholesky decomposed. The

latter is guaranteed to be positive definite, thanks to the added term ǫIN, so

that A = DHD, where D is an upper triangular matrix. Consequently, the

optimisation problem reduces to

min.
{

RHR −RHMS− SHMHR + SHDHDS
}

, (5.42)

s.t. S ∈ QN .

To apply SD to the regularised optimisation problem, the constraint below

has to be met

RHR −RHMS− SHMHR + SHDHDS ≤ C + ǫSHS. (5.43)

P is set to A−1M
H

R and the term PHDHDP is added to both sides of

Eq. (5.43), resulting in the following

PHDHDP−PHAS− SHAP + SHDHDS ≤ C ′

⇐⇒ ‖D (P− S)‖2 ≤ C ′ , (5.44)

where:

C
′

= C + ǫSHS−RHR + PHDHDP. (5.45)
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H
H

H
H

H
H

H
HH

N

α
0.7 0.75 0.8 0.85 0.9 0.95 1

8 3.15 2.96 2.72 2.26 1.66 1.19 1

16 4.53 4.44 4.31 4.07 3.59 1.93 1

24 5.50 5.40 5.31 5.19 4.85 3.50 1

32 6.33 6.21 6.10 6.01 5.81 4.93 1

40 7.05 6.92 6.80 6.70 6.57 5.80 1

Table 5.2: Matrix D Condition Number for Varying α and N , for ǫ = 1

N

Next, the well known iterative steps of SD, based on the previous formula,

are applied. Thanks to Tikhonov regularisation the singular values σ′i of the

Cholesky matrix D are given by

σ
′2
i = σ2

i + ǫ, i = 1, . . . , N (5.46)

where σi are the singular values of the projections matrix M. Since ǫ > 0,

then D is never singular. In addition, numerical results depicted in Table 5.2

demonstrate that its condition is significantly better than that of M (shown in

Table 5.1).

It must also be mentioned that the RegSD based SEFDM detection can be

easily expanded to higher level QAM schemes since non-constant modulus 2

M -QAM symbols (M > 4) can be expressed as linear combinations of 4-QAM

symbols [101], [110]. Finally, in the implementation of the RegSD, the Schnorr-

Euchner (SE) enumeration strategy, as applied to MIMO systems in [103], was

followed. RegSD pseudocode based on Python symbolics is demonstrated in

Fig. 5.20.

2RegSD detection for SEFDM could also involve higher level M -QAM since non-constant

modulus M -QAM can be expressed as linear combinations of 4-QAM symbols [110], [101].
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Figure 5.20: RegSD pseudocode based on a Python implementation.

5.4.3 RegSD Results

In order to confirm the above theoretical analysis, a number of simulations were

performed for different numbers of carriers and frequency distances between

them. In the following two sets of results are presented. First, the feasibility

of the introduced SEFDM system is investigated by measuring the algorithmic

complexity of the RegSD detector. Second, the system concept was validated

through BER measurements.

In terms of algorithmic complexity, this work used as a performance measure

the logarithmic function log (·) of the number H of the visits to the RegSD

tree nodes, averaged over 1000 SEFDM symbols. Complexity variations were

measured versus the number of carriers N and the frequency separation α =

∆fT . In terms of system performance, BER measurements were conducted for

up to N = 32 carriers with minimum frequency distance equal to α = 0.7 of the

inverse of the SEFDM symbol, i.e. ∆f = 0.7
T . In all simulations, the carriers

were modulated by 4-QAM.

Fig. 5.21 demonstrates a first comparison between the typical and regu-

larised versions of SD, both based on real decomposition. It is clear that the

regularisation benefits increase as the condition of the matrix M deteriorates.

In particular, for a 4-QAM SEFDM signal of 16 carriers and α = 0.75 it can

be observed that RegSD runs almost 1000 times faster than RSD.

The following discussion investigates the impact of the Gram matrix condi-

tion number and of the noise variance on the computational cost of the proposed
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Figure 5.21: Comparison between RegSD and RSD. The number of SEFDM

carriers N was either 8 or 16. The modulation scheme was 4-QAM and the

Eb/N0 was set to 5 dB. The RegSD parameter ǫ was set to 1

SNR
.

RegSD receiver.

In the complexity measurements, the regularisation factor ǫ was set to either

σ2, so that P is equal to the MMSE estimate, or 1
N . Fig. 5.22 shows the

SD complexity for different sizes of the SEFDM signal and a fixed value of

Eb/N0 = 8 dB. It is clear that for frequency separation α < 0.9 and for N >

16 carriers the complexity highly increases. Furthermore, it is demonstrated

that as N increases, or equivalently as the Gram matrix condition number

deteriorates substantially (see Table 5.1), RegSD requires less operations when

the regularisation parameter is set to ǫ = σ2 as opposed to ǫ = 1
N .

In Fig. 5.23 the measurements were repeated after reducing the amount

of noise in the system so that Eb/N0 = 15 dB. The complexity appears to

be independent of the carriers frequency separation for N ≤ 40 carriers and

∆f ≥ 0.75
T . This confirms theoretical expectations since the number of the

RegSD arithmetic operations depends on the number of MS points (SEFDM
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Figure 5.22: Average number of visits of RegSD tree nodes over 1000 SEFDM

symbols. The number of SEFDM carriers was N = 4→ 24 and ǫ was 1

N or 1

SNR
.

symbols transformed by M) that lie within a hypersphere of C radius. As the

noise level in the system decreases, the value of the radius decreases and fewer

points are enumerated within the sphere.

The complexity for a fixed value of ∆fT = 0.75 for diverse values of Eb/N0

was also investigated. Fig. 5.24 shows that complexity is independent from the

noise only for a small number of carriers (N = 8). However, in the high SNR

area (Eb/N0 > 13 dB) complexity becomes insensitive to noise for N ≤ 24.

Summarising the results, it is concluded that RegSD complexity varies with

the noise and the matrix M properties. In particular, the number of arithmetic

operations significantly rises as the Gram matrix condition number degrades as

well as with increasing noise. Nevertheless, a tolerable cost could be achieved

under specific constraints, i.e. N ≤ 40, ∆fT ≥ 0.75, and Eb/N0 > 15 dB.

Error rate simulations were also performed for diverse values of ∆fT as

well as for different noise values. Fig. 5.25 shows that with Eb/N0 = 8 dB the

system approximates the BER of an OFDM scheme if the frequency separation
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between the SEFDM carriers is reduced to 0.7
T . Finally, it must be underlined

that the regulator ǫ value does not affect the detection error rate thanks to the
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equivalence between (5.3) and (5.40). In addition, Fig. 5.26 shows that the

SEFDM system with up to 32 carriers and a discount of 25% in the bandwidth of

an equivalent OFDM system, approximates the OFDM performance for Eb/N0

between 5 and 10 dB.

5.5 Summary and Discussion

This chapter addressed the issue of computationally effective optimal detection

for non orthogonal SEFDM signals. New algorithms are derived for both the

real (RSD) and complex (CSD) versions of the SD detection for SEFDM and the

simulation testing of the error performance and complexity of both algorithms.

We conclude that CSD is superior to RSD in terms of computational complexity

thanks to the avoidance of doubling the depth of the SD tree and the faster

initialisation step that takes advantage of the upper triangular nature of the

SEFDM system projections matrix. Notwithstanding, it was also found that
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the applicability of both SD variances is limited by the severe ill-conditioning

of the system Grammian matrix. This is due to the system inherent ICI caused

by the deliberate overlapping of the SEFDM sub-bands.

In order to overcome this problem, potential regularisation techniques were

explored and the application of the Cui and Tellambura technique, that is based

on a modification of the Tikhonov method for the ML unconstrained problem,

was explored. In particular, the ill-posed SEFDM ML problem is regularised

by adding an extra square term into the LS objective function. It was shown

by mathematical derivation and simulation results that the singular values of

the new matrix are never zero and that its condition number is significantly

improved.

In addition, comparisons between RSD and RegSD were performed and

showed that the latter greatly speeds up the SEFDM detection. Consecutively,

it was demonstrated that in the region of Eb/N0 > 10 dB the proposed RegSD

receiver could afford the computational cost of an optimal detection for a 4-

QAM SEFDM signal of N = 32 carriers with frequency separation reduced
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by 25% in relation to an equivalent OFDM system. Moreover, it appears that

in higher SNR regimes, i.e. Eb/N0 > 15 dB, the signal dimension could be

probably doubled.

Although this work provided some useful insight about the possibility of

accomplishing feasible optimal detection for non-orthogonal SEFDM systems,

there are still issues that need further clarification. A first important topic is

the effect of the regularisation in terms of noise addition in the system. In

particular, despite the fact the condition of the regularised inverse matrix is

improved, some of the complexity reduction benefit is lost because the radius

of the hypersphere is also increased due to the addition of the regularisation

penalty term. Thus, the proper choice of the regulator ǫ value should be con-

sidered.

Literature is rich of methods (e.g., L-curve, min norm product and U-curve)

determining the optimum regulator in the unconstrained regularised LS prob-

lem, i.e. where the solution can be any real number [75], [76], [77], [78]. How-

ever, there is no such a method for the RegSD application that solves the integer

LS (ILS) problem. It must be noticed that in [101], [111] the regulator is set

by experimentation, leaving thus a gap for further research of this problem.

Another approach to the same topic could be the investigation of a kind

of partial Tikhonov regularisation following the idea introduced in [112]. This

would aim to the reduction of the norm of the smoothing term and consequently

of the artificial noise introduced in the problem. This could result in a further

reduction of SEFDM RegSD complexity.

Finally, we believe that a derivation of a closed formula for the expected

complexity of SD over the noise (taking into account the special structure of the

SEFDM projections matrix M) may shed some more light on the effect of the

noise on the complexity of an SEFDM sphere detector and assist in determining

the SNR regimes that allow practical applications of the SEFDM-SD detection.
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Chapter 6

Convex optimisation for

SEFDM detection

6.1 Introduction

As already seen in the introductory chapters, in the presence of AWGN, the

SEFDM detection reduces to a combinatorial optimisation problem. Verdú

in [72] showed that a similar ML problem for Multi User Code Division Multi-

plex Access (MU-CDMA) detection can be classified as an integer linear pro-

gram and proved that is consequently NP hard to be solved. Moreover, he

provided a useful discussion about the possibilities of alternatives based either

on investigations for special cases or the application of heuristics that could

achieve a faster suboptimal yet accurate enough solution.

Driven by the former observation, research results were later presented

demonstrating that a polynomial time solution is tangible when the model co-

efficients matrix exhibits special properties [123], [124], [125], [126]. Yet, these

cases are strictly limited to MU-CDMA scenarios and therefore are out of the

scope of this thesis investigations.

In Chapter 5 the problem has been similarly approached by applying dy-

namic programming techniques like different versions of the SD. It was demon-
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strated by modelling and through simulation results that a reliable fast detec-

tion could be achievable under special conditions, i.e. for medium size SEFDM

systems working in high SNR regimes. However, the proposed technique may

prove to be impractical in low SNR even for medium size signals.

In this chapter, work to bridge this gap is attempted following the latter

approach suggested by Verdú. To be more specific, the ML detection is reformu-

lated to a semidefinite program that can be solved in polynomial time because

to its convex nature [127], [128]. The reformulation method used is well known

in the literature and is based on the relaxation of the constraints of the initial

NP hard problem. In particular, it was first introduced in communications by

Ma et al. [129] as well as Tan et al. [130] for the detection of synchronous MU-

CDMA systems. Hence, the fixed complexity of SDP and its sufficient accuracy

stimulated further research in different fields like MIMO [131], [132], [133] and

more recently spectrally efficient multicarriers systems [46], [48].

Jalden et al. [134], [135] as well as Kisialiou et al. [136], [137] further at-

tempted to derive optimality conditions for the SDP solution. They showed

that SDP can achieve the exact ML estimate when the noise level and the coef-

ficients matrix properties comply with specific conditions. Interestingly, initial

investigations also showed that a typical SEFDM SDP detector approximates

the ML detection but the relaxation gap, i.e. the gap between the optimum and

the SDP estimate, broadens as the projections matrix becomes ill conditioned.

In the literature, there are several techniques for the mitigation of the afore-

mentioned gap like the use of Gangster operators [138] or the introduction of

cutting planes, i.e. linear inequalities that constrain the feasible set of the SDP

program [139], [46].

Following the idea of constraining the feasible set of an optimisation prob-

lem, this chapter describes a novel combined SDP-ML algorithm that constrains

the feasible set of the original ML problem according to a first SDP estimate.

This is conceptually different from existing solutions that apply constraints to
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the feasible set of the relaxed problem (not the original ML problem as we use

in the new design). Furthermore, in order to reduce the computational effort of

the combined SDP-ML detection a novel SD based algorithm, that implements

exactly the above concept, is designed and constructed in software. This algo-

rithm appears to be significantly faster than a typical SD in low SNR regimes

and for SEFDM signals with N ≤ 48 carriers, with no more than 1 dB power

penalty.

6.2 SDP for the SEFDM detection

Chapter 3 demonstrated that in AWGN the optimum ML detection of the

SEFDM signal reduces to the following combinatorial LS problem

min. ‖R −MS‖2

s.t. S ∈ QN , (6.1)

This section will explore convex optimisation techniques to solve this prob-

lem, trading error performance for a fixed computational cost. In particular,

it will be adopted a series of reformulation steps of the ML detection problem,

which will ultimately lead to an SDP detection problem. In the reformulation,

the elements of the vector/matrices in Eq. (6.1) will be represented in their real

decoupling versions - rather than their original complex versions - by applying

conventional real decomposition methods [130]. Consequently, the problem di-

mension is effectively doubled from N to 2N . It will also be assumed that the

information symbols take 4-QAM values so that the transformed information

symbols take values in the binary 2N -tuples, {±1}2N . 1 Hence, it is possible

1Note that SDP detection for SEFDM could be easily expanded for higher level M -QAM

since non-constant modulusM -QAM can be expressed as linear combinations of 4-QAM sym-

bols [110]. Furthermore, relaxations suitable for problems set on higher cardinality alphabets

(e.g. M -PSK or 16-QAM) have already been proposed in the literature [139], [132], [133].
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to write the problem (6.1) as

min. S̃TM̃TM̃S̃− R̃TM̃S̃− S̃TM̃T R̃

s.t. S̃ ∈ {±1}2N , (6.2)

where (·)T denotes the transpose of a matrix and R̃, M̃ and S̃ are the real

versions of the matrices, R, M and S, respectively.

Adding an extra slack variable S̃2N+1 = 1, and thereby increasing the di-

mension of the problem by one, the cost function of Eq. (6.2) becomes

S̃TM̃TM̃S̃− R̃TM̃S̃− S̃TM̃T R̃ = xTLx, (6.3)

where L and x are block matrices given by

L =






M̃TM̃ −M̃T R̃

−R̃TM̃ 0




 , x =






S̃

S̃2N+1




 . (6.4)

According to the definition of matrices inner product [53] the Right Hand

Side (RHS) of Eq. (6.3) is equal to

xTLx =
(

LTx
)T

x =
〈(

LTx
)

,x
〉

= Tr{
(

LTx
)

,xT } = Tr{LTxxT } (6.5)

where 〈·〉 denotes the matrices inner product and the operator Tr{·} denotes

the ‘trace’ function. The Hermitian nature (by its construction) of the block

matrix L makes the RHS of Eq. (6.5) is equal Tr{LX}, where X = xxT .

The square matrix X =






S̃S̃
T

S̃

S̃T 1




 has the following properties: its diag-

onal elements should be equal to unity, its eigenvalues cannot be negative and

finally it is of rank 1. Consequently, Eq. (6.2) is equivalent to

min. Tr{LX}

s.t. diag{X} = e

X � 0

rank{X} = 1, (6.6)
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where the curly inequality � indicates that X = xxT is a positive semidefinite

matrix (see Appendix C). In addition, e is a (2N+1)×1 vector of ones and the

diag{·} operator generates a (2N + 1)× 1 vector that includes all the diagonal

elements of the argument matrix. Finally, the rank{·} operator provides the

rank of the square matrix X.

The ML problem in (6.1) is non convex because of the non convex domain

QN of the objective function. Hence, the equivalent problem of (6.6) is also non

convex (see Appendix C). Consequently, it is still NP hard. However, convexity

can be accomplished by relaxing the constraints of Eq. (6.6) after discarding

the non affine rank{X} = 1. Thus, Eq. (6.6) is transformed to

min. Tr{LX}

s.t. diag{X} = e

−X � 0. (6.7)

Further, this problem is an SDP owing to the positive semidefinite con-

straint X � 0, so that it can be very efficiently solved using well known Inte-

rior Point Methods (IPM) [140] applied for the solution of such programs with

linear objectives and constraints.

It would be useful to mention that this is not the only way to reformulate

the ILS problem of the ML detection to an SDP program. Another approach

is to solve the so called bi-dual problem [132], i.e. the dual (see Appendix C)

of the dual, of the primal ML detection as this is described in Eqs (6.1) and

(6.6). This is always convex yet not equivalent to the initial non-convex primal

problem described in Eq. (6.1).

Finally, it is necessary to underline that SDP is a sub-optimum technique

since its solution does not always coincide with the solution of the initial ML

problem. In order to decrease the so called relaxation gap between these two

solutions, a new technique, combining SDP with brute force ML, has been

designed and will be introduced below.
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6.2.1 Recovery of the SEFDM symbol

The outcome of the SDP is not the desired vector S̃ but the square matrix

X. Yet, a method for the recovery of the estimate Ŝ of the SEFDM symbol is

needed. In the literature, a number of different methods are proposed. In this

paragraph, the most common ones are described, that can be categorised in the

following: i) the rank-1, ii) the dominant eigenvector and iii) the randomisation

techniques.

i) Starting by the simplest, the rank-1 method [131] is based on the assump-

tion that SDP returns the exact solution of the ML problem. This implies that

rank{X} = 1 and consequently X last column should correspond to the vector

xT =






S̃

1




. Hence, the last column of the optimal X is chosen and a slicing

function sign{·} is applied over the first 2N elements of the column. The final

SDP estimate of the SEFDM symbol Ŝ is given by

Ŝ = sign{Xi,2N+1}, i = 1, . . . , 2N, (6.8)

with

sign{Xi,2N+1} =







+1 , Xi,2N+1 > 0

−1 , Xi,2N+1 ≤ 0
.

Another approximation is the so called Dominant EigenVector (DEV) method

[139] that comprises of the following steps:

1. The solution of (6.7) matrix X is eigenvalue decomposed so that X =

Udiag(λi)UT , where λi are its eigenvalues and U the matrix of its eigen-

vectors ui, i = 1, . . . , 2N + 1, respectively;

2. Pick up the vector vm =
√
λmum that is associated to the maximum

eigenvalue λm;

3. Set x =







vm if vm[2N + 1] ≥ 0

−vm if vm[2N + 1] < 0
;
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4. Then, Ŝ = sign{x}.

Finally, the randomisation process [129], [136] and [128] is described in the

following:

1. Generate a vector vm applying the first two steps of the DEV method;

2. For each of the 2N + 1 entries of the estimate x̂ of the x vector, set up a

Bernoulli distribution with the following probabilities

P {x̂i = 1} = 1+vm,i
2 ,

P {x̂i = −1} = 1−vm,i
2 ;

3. Set x̂i = −x̂i if x̂2N+1 = −1, ∀i.

4. Create a number of K random outputs [x̂1, x̂2, . . . , x̂2N+1]T and choose

the one that minimizes the cost of RHS of Eq. (6.3).

5. Set the SDP FDM solution ŜSDP equal to the first 2N entries of the

selected random output x̂.

Since, in the literature there is no close formula for the performance of the

above heuristics, some preliminary simulations were run in order to evaluate

their suitability for the SEFDM detection. In particular, BER was measured

for all three different techniques for a fixed size N = 8 or N = 16 SEFDM

signal, different values of α = ∆fT and for a fixed Eb/N0 of 5 dB.

Fig. 6.1 demonstrates findings that show that until the α = 0.8 point

the DEV and the randomisation techniques are quasi-optimal while the rank-1

starts deviating from the optimal solution (as represented by the Regularised

SD curve). It is further observed that as the matrix condition deteriorates

with increased N and reduced α, due to α reduction, this gap broadens and

the randomisation appears to work better. Hence, in the modelling it is this

method that is applied since cases where the projections matrix is severely ill-

conditioned, due to the overly ICI among the SEFDM sub-bands are the cases

of interest in this research.
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Figure 6.1: (a) Comparisons of recovery methods of the transmitted SEFDM

symbol from the SDP estimate. ‘DEV’ and ‘Rand’ correspond to the Dominant

Eigenvector and the Randomisation techniques, respectively. (b) Complexity of

SDP versus the size of the SEFDM signal.

6.2.2 SDP Complexity

In the SDP implementations, the CVX optimisation tool [141], [142] was used.

CVX provides the user with an easy way of formulating convex optimisation

problems in Matlab language. Then, CVX calls the Self Dual Minimization

(SeDuMi) solver for the solution of the introduced convex programs.

The SeDuMi solver applies well known primal-dual Interior Point Methods

(IPM) [143] that have a polynomial order of complexity [140]. The solution of

SDP based on IPM is O(N3.5). This is because IPM approximate the solution

through an iterative process. The complexity of each iteration is O(N3) while

for a good accuracy the number of iterations required is at most O(N0.5) [139].

It is noted that the real decoupling has an effect on the process complexity

since it results in the doubling of the dimension of the SEFDM detection prob-

lem. Consequently, the computational effort for each iteration is O((2N)3) and

the overall IPM O((2N)3N0.5).

Nevertheless, the advantage of the SDP relaxation is that it has a fixed

155



CHAPTER 6. CONVEX OPTIMISATION FOR SEFDM DETECTION

complexity, insensitive to the noise in the system in contrast to the Sphere

Decoders studied in Chapter 5. Fig. 6.1 shows indicative simulation results

for the normalised average SDP detection time of one SEFDM symbol for N

ranging from 4 to 64 sub-carriers, α ∈ {0.8, 0.9} and Eb/N0 ∈ {5, 10} dBs. It is

apparent that the SDP complexity depends only on the signal dimension and

is immune to the noise and M ill conditioning.

6.3 A new SDP based Boxed ML detection

In SDP-ML technique, a two step procedure is used. Initially, the SDP estimate

S̃ of the originally transmitted symbols S is generated. Subsequently, it is used

the ML principle in a neighborhood, D, of S̃. The neighborhood consists of

the set of transmitted symbols whose binary representation is within a certain

Hamming distance parameter, ρ, from the binary representation of S̃. This

procedure is commonly known as boxed ML [144].

The neighborhood D consists of the set of transmitted vectors S obeying the

relationship: dH
{

S′, S̃
′

}

≤ ρ where dH {·, ·} represents the Hamming distance

operator , S′ represents the binary version of S, and S̃
′

represents the binary

version of S̃, i.e.

S ∈ D iff dH
{

S′, S̃
′
}

≤ ρ (6.9)

A block diagram of the proposed receiver is given in Fig. 6.2.

To demonstrate the way the proposed algorithm works, a numerical example

is given for a 4-QAM SEFDM signal of only N = 2 sub-carriers with α = 0.8.

The 2× 2 complex projections matrix M of the SEFDM system is

M =






1 −0.1892 + 0.1375i

0 0.9723




 . (6.10)

The actually transmitted SEFDM symbol S and a random generation of
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the statistics vector R are, respectively

S =






1.0 + 1.0i

1.0− 1.0i




 , R =






−0.2401 + 0.9511i

1.5583− 1.2897i




 . (6.11)

After the real decoupling process, the SDP calculates an estimate of the

SEFDM symbol whose real decoupled version S̃ is

S̃ =












−1.0

+1.0

+1.0

−1.0












, (6.12)

that obviously diverges from the optimal solution S. If ρ = 1, the following

neighborhood D is created by flipping the binary version of S̃ (2× log2 4) = 4

times by 1 bit at a time

D =


















-1

+1

+1

-1












,












+1

+1

+1

−1












,












−1

-1

+1

−1












,












−1

+1

-1

−1












,












−1

+1

+1

+1


















, (6.13)

Finally, the metric of the problem of Eq. (6.1) is calculated over the columns

of D that is a subset of the initial feasible set (|D| = 5 while
∣
∣
∣QN

∣
∣
∣ = 16, where

|·| denotes the set cardinality).

The combined SDP-ML estimate Ŝ is

Ŝ =






1.0 + 1.0i

1.0− 1.0i




 , (6.14)

that is apparently equal to the transmitted symbol.

6.3.1 SDP-ML Complexity

The complexity of the proposed method depends on the number of calcula-

tions of both the SDP and ML components of the algorithm. The former has
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polynomial complexity of order O((2N)3N0.5) over the number of sub-carriers

N [140]. The computational cost of ML depends on the size of the SDP neigh-

borhood D, since this determines the number of the executed ML comparisons.

The length of the expanded SEFDM symbols is equal to N × log2M . Conse-

quently, the size of the neighborhood D will be equal to the sum of all possible

combinations of N × log2M bits with k flipped bits taken at a time, where k

runs from 1 to ρ, i.e.

size(D) =
ρ
∑

k=1

(
N log2M

k

)

+ 1,

=
ρ
∑

k=1

(N log2M)!
(N log2M − k)!k!

+ 1. (6.15)

The unity term is due to the inclusion of the Ŝ in the brute force part.

It is apparent that for ρ equal to unity, the number of necessary boxed

ML comparisons is N log2M , as opposed to the MN comparisons required for

the ML implementation over the entire group of SEFDM symbols. Table 6.1

provides the ratio γ of the number of ML over SDP-ML comparisons for various

4-QAM SEFDM signal dimensions and ρ equal to 1 or 2.

ρ γ,N = 8 γ,N = 16 γ,N = 32

1 4096 > 108 > 1017

2 480 > 106 > 1015

Table 6.1: Ratio γ of ML over the SDP-ML Comparisons

6.3.2 Numerical Results

Simulations were performed to investigate the efficiency of the SDP-ML detec-

tion. A pseudocode for the SDP in this work modelling is given in Fig. 6.3.

Results were taken for different numbers N of 4-QAM modulated SEFDM

sub-carriers with normalised frequency separation α ∈ [0.5, 1]. Eb/N0 range was
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def  SDP (M,R)

=decouple{M},    

   =decouple{R}

cvx_begin sdp

variable x(2N+1, 2N+1)

minimize(Tr{Lx])

diag(x)==ones(2N+1,1)

x==semidefinite(2N+1)

cvx_end

SDP=randomise{x}

M
~

R
~

0
~

~~~~

MR

RMMM
L

T

TT

Figure 6.3: Pseudocode for the SDP implementation using the CVX tool. The

shadowed part corresponds to the CVX SDP formulation.

set from 0 to 8 dB. In all simulations, the number of iterations of the randomi-

sation process [136] was set to be equal to 10. In addition, the performance

curves corresponding to MMSE and SD receivers were used for comparison

purposes.

Fig. 6.4 demonstrates the complexity of the single SDP and the proposed

SDP-ML techniques versus α. In particular, the normalised simulation time

was used as an indicative measure of comparison. Results were taken for dif-

ferent numbers of SEFDM sub-carriers and a fixed value of Eb/N0 equal to 5

dB. The Hamming distance parameter ρ was set to be either 1 or 2. From

the simulations outcome two conclusions are made: First, the computational

effort required by both schemes, SDP and SDP-ML, is fixed with respect to

α. Second, the SDP-ML detection with ρ = 1 approximates the single SDP

in terms of complexity. However, for ρ = 2 the simulation time of the former

appears to be approximately 100 times larger than the latter. Therefore, it is

heuristically concluded that ρ = 1 would be a suitable choice for a practical

implementation of the introduced scheme.

In Fig. 6.5 the BER performance of the SDP and SDP-ML based detec-

tion techniques is evaluated. Measurements were taken for 8 to 32 SEFDM
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sub-carriers, with frequency separation ranging from the OFDM (α = 1) to the

half OFDM (α = 0.5) ones. In addition, Eb/N0 was set to a fixed value of 5

dB. Results show that for small signal dimensions (N = 8, 16) and for α ≥ 0.8

SDP performs close to optimum. However, as α further decreases and/or the

dimension of the SEFDM signal N increases the relaxation gap opens as a con-

sequence of the deterioration of the projections matrix M condition, resulting

in a significant detection degradation. Notwithstanding, for N > 8 it is appar-

ent that the relaxation gap with the SDP-ML detection is much smaller than

in the case of the SDP.

Fig. 6.6 illustrates the BER versus Eb/N0 curves for the SDP and SDP-ML,

respectively. The normalised frequency separation α of the SEFDM sub-carriers

was fixed and equal to 0.8 since it appears from Fig. 6.5 that for this value

the relaxation gap is relatively small. Results show that for N = 8 and 16

SEFDM performance is very close to ideal/Single Carrier (SC). However, as

N increases it can be seen that the relaxation gap results in diverging from

the ideal OFDM case. Nevertheless, in all simulations SDP performed better

than the linear MMSE detector that is actually a looser than SDP relaxation

of the ML problem [129], [145]. Furthermore, it is notable that for α = 0.8 and

N = 32 the proposed SDP-ML method offers a modest 1 dB Eb/N0 gain with

respect to the single SDP detection.

Fig. 6.7 also shows the error performance of the SDP-ML detection versus

Eb/N0 for different dimensions of the SEFDM signal and with varying α. In

the figure, the BER value of 6× 10−3, correspondent to a single carrier Eb/N0

of 5db, is plotted as a reference line for the sake of comparison. It appears that

as the size of the signal increases and/or α decreases extra power is required

so that the SDP-ML with ρ = 1 detection achieves this BER target.

Finally, Fig. 6.8 demonstrates the Spectral Efficiency (SpE) of the SDP-ML

4-QAM SEFDM scheme with ρ = 1, versus the Eb/N0 required to achieve a

BER of 6×10−3. The SpE of such SEFDM systems with 16 and 32 sub-carriers
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is compared to the SpE of a symbol rate/equivalent OFDM. The Shannon limit

for the normalised capacity of a band-limited AWGN channel [52] serves as an

upper bound. It is clear that SEFDM is superior as opposed to OFDM for

α ≥ 0.8 (that achieves a SpE of 2.5). Notwithstanding, the larger SEFDM

with N = 32 sub-carriers does not offer absolute SpE benefit for α = 0.7

though the SEFDM signal occupies a smaller bandwidth than OFDM. This is

due to the power penalty that should be paid because of the degradation of the

error performance of the SDP-ML detection as the size of the SEFDM signal

increases and/or the SEFDM sub-carriers frequency separation decreases.

6.4 Pruned Sphere Decoder (PSD)

Motivated by the SDP-ML finding, this work proposes a modified SD version

that could implement faster the SDP-ML method thanks to the reduction in

the computation of the brute force ML part. The apparent benefit of such
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an arrangement could be a further increase in the dimension of the detectable

signal thanks to the smaller computational effort and/or the use of a larger

than 1 Hamming distance parameter.

1. In particular, the proposed algorithm involves two consecutive steps:

Initially, the SDP estimate S̃ of the transmitted SEFDM symbol is calculated.

Furthermore, the new radius C ′ of the RegSD hypersphere is derived according

to Eq. (5.45) as

C ′ =
∥
∥
∥R −MS̃

∥
∥
∥

2
+ ǫS̃T S̃−RTR + PTDTDP. (6.16)

Consequently, S̃ lies on the surface of the RegSD sphere.

2. An extra condition is added in the RegSD implementation of Section 5.4

so that the algorithm never traces the RegSD tree paths that correspond to

the SEFDM symbols that have larger Hamming distance from the calculated

S̃ than a selected ρ value. This pruning results in reducing the RegSD in the

min. ‖D (P− S)‖2,

s.t. ‖D (P− S)‖2 ≤ C ′,

S ∈ {±1}2N ,

dH = HD
{

S, S̃
}

≤ ρ, (6.17)

where the HD {·, ·} operator calculates the Hamming distance between the

argument vectors and ρ is the heuristically predefined value of dH that could

range from 0 to N log2M (i.e., the length of the binary representation of S̃).

Fig. 6.9 provides a flow chart of the pruned SD algorithm. The red dot-

ted lined boxes correspond to the add-in modifications of the algorithm. It

is obvious that the main alteration is the addition of an if loop that checks

the Hamming distance between the path and the respective part of the SDP

estimate at each visited tree node. Should dH ≥ ρ at a node, the algorithm

cuts the attached subtree and continues the search going backwards.
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Figure 6.9: A flow chart of the Pruned Sphere Decoding (PSD) algorithm.
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In order to simplify the understanding of the pruning of the PSD tree, the

following example is provided: a BPSK SEFDM signal of N = 3 carriers is

assumed. The full RegSD tree has 23 = 8 different paths that correspond

to the full feasible set of the ML optimisation problem. If the derived S̃ is

[−1,+1,+1]T and the Hamming distance is ρ = 1 then the pruned SD tree

includes only 4 (out of 8) paths as shown in Fig. 6.10. As a consequence, it will

be expected that the number of the visits to the SD nodes will be significantly

reduced as opposed to the full SD at the expense of a penalty in the optimality

of the achieved BER.

Moreover, as opposed to the SDP-ML, the pruned SD is expected to achieve

the same error performance for the same given dH without necessarily tracing

all the 4 paths of the pruned SD tree as in the boxed ML case.

6.4.1 PSD modelling and Simulation Results

An algorithmic implementation of the PSD was done through MATLAB coding

in order to evaluate performance. A set of simulations was run for varying

number of SEFDM carriers N and frequency separation ranging from α = 1

(OFDM) to α = 0.5 (half OFDM). The proposed scheme was also tested for

-1

-1

-1 -1 -1 -1

-1

+1

+1+1

+1+1+1+1

Figure 6.10: Full (all lines) and Pruned (dotted lines) SD tree. The SDP esti-

mate is represented by the bold solid line.
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various values of the parameter ρ of the added constraint of Eq. (6.17).

In all cases, the error performance and complexity of the proposed PSD

algorithm were compared through simulation to those of the SDP-ML approach,

as well as to the optimal RegSD. As far as the error performance is concerned,

the BER, versus the normalised frequency separation α or the Energy of the

bit over the Noise power density Eb/N0, was used as a measure of comparison.

Moreover, the complexity was evaluated in terms of simulation time and visits

to the RegSD tree nodes for the comparison with SDP-ML and simple RegSD,

respectively. A simplified pseudocode for this work implementation is given in

Fig. 6.11.

6.4.2 PSD Error Performance

Fig. 6.12 depicts the error performance of the PSD scheme versus the nor-

malised frequency separation α of the SEFDM carriers. The PSD results are

compared to the SDP-ML detection error rates for different number of carriers

N and values of the Hamming distance parameter ρ. In addition, the BER

curves of the simple RegSD detection for N = 8 and N = 16 represent the

optimal detection for these SEFDM signal dimensions. It is apparent that in

all cases the performance of the PSD method is equivalent to the performance

of the SDP-ML scheme with the same ρ. Furthermore, the proposed scheme

offers a suboptimal solution since it diverges from the RegSD curves especially

after the α = 0.8 point. However, as the condition for the Hamming distance

relaxes (i.e. ρ becomes larger) the performance difference between RegSD and

PSD results decreases. In particular, it is notable that for N ≤ 32 and ρ ≤ 2

PSD approximates the optimal detection.

The simulations were repeated for α = 0.8 and Eb/N0 that ranged from 0

to 7 dB. In Fig. 6.13, it can be seen that PSD achieves exactly the SDP-ML

performance for ρ = 1. In addition, it is observed that for N = 32, a larger

ρ = 2 improves further the PSD performance offering an almost 2 dB
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def    PSD (M, R, N, SNR, lattice_points, )

S’   = SDP(M,R)

A = MHM+(1/SNR)IN

D = cholesky(A)

P = A-1MHR

C   = (R-MS’)H(R-MS’)+(1/SNR)–RHR+PHDHDP

D’=decouple{D}, P’=decouple{P}        

 = P’, L=D’

i=2N,  Ci= C,  i= i

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i}

i    = enum{lattice_points, LBi, UBi}

i = sortSE{Ai, i}

Mi = length{Bi}, xi=0

while i<=2N:

Si= Bi,x

xi+=1

dH=HD{S(i:2N),S’(i:2N)}

if dH>  & xi<= Mi:

continue

else:
if xi> Mi:

i+=1

continue

elif i>1:

i-=1

Ci = Ci+1 - li+1,i+1
2( i+1 - Si+1)2

i= i + li,i+1:2N/li,i ( i+1:2N - Si+1:2N)

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i}

Ai = enum{lattice_points, LBi, UBi }

Bi = sortSE{Ai, i}

Mi = length{Bi}, xi = 0

elif CN-1 – C1+l1,1
2( 1-S1)2 < C:

C       = CN-1 – C1+l1,1
2( 1 - S1)2

CN-1 = CN-1 – C1+l1,1
2( 1 - S1)2

  = S, i = 2N

LBi = ceil{- (Ci/li,i2)+ i}

UBi = floor{ (Ci/li,i2)+ i}

Ai = enum{lattice_points, LBi, UBi }

Bi = sortSE{Ai, i}

Mi = length{Bi}, xi = 0

Solution = recomp{ }

return [Solution]

Figure 6.11: Pseudocode for PSD. The shadowed areas depict the modifications

in the proposed algorithm as opposed to a typical Sphere Detector.
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Figure 6.12: Error Performance of the proposed PSD scheme versus α.

gain as opposed to the simple Semidefinite Programming (SDP) detection.

Results depicted in 6.14 show that PSD achieves a quasi optimal BER for

N ≤ 48 upon the selection of the proper value for the Hamming distance

parameter. Heuristically, this is found to be ρ = 1, 2 and 3 for N = 16, 32

and 48, respectively. It is notable that for N = 48 a small tightening of the

dH constraint so that ρ = 2, introduces no more than an extra 0.5 dB of error

penalty.

6.4.3 PSD Complexity

The computational complexity of the proposed method was evaluated and com-

pared to the SDP-ML and the full tree RegSD methods. Fig. 6.15 shows the

simulation time required by the SD or the ML parts of the pruned SD and

SDP-ML, respectively. All the results were normalised over the values of the

32SDP-ML with ρ = 1. It is clear that PSD performs faster than an equivalent,

i.e. using the same ρ, SDP-ML scheme. For example, it can be seen that for the

detection of an SEFDM signal with N = 32 and α = 0.8, PSD performs almost
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Figure 6.13: Error Performance of the proposed PSD scheme versus the Eb/N0.
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Figure 6.14: Quasi-optimal error Performance of the proposed PSD scheme

versus the Eb/N0 for N ∈ {16, 32, 48} and ρ ∈ {1, 2, 3}, respectively.

15 times faster than the SDP-ML with ρ = 2. This improvement is due to the

SD that investigates only the fraction of the SEFDM lattice points [73] with a
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Figure 6.15: Complexity comparison between PSD and SDP-ML detection.

specific Hamming distance dH from S̃ that are within the SD hypersphere.

In addition, in Fig. 6.16 the complexity of the pruned SD is compared to the

complexity of a simple RegSD that traces a full tree. We see that in the PSD

case the number of the visits to the tree nodes is significantly lower than that

of the RegSD, even though a Schnorr Euchner [103] reordering strategy is used.

In particular, for all combinations of N and α, results show that the number

of the node visits is reduced by at least 30% with respect to the single RegSD

algorithm. In addition, for N = 32 and α = 0.8 PSD with ρ = 1 and 2, appears

to use 70 and 15 times, respectively, fewer visits to the tree nodes than RegSD.

Furthermore, PSD forN = 48 and ρ = 2 appears to be computationally cheaper

than RegSD for a smaller dimension N = 32 SEFDM signal. This is clearly

due to the addition of the Hamming distance dH constraint as described in Eq.

(6.17). Consequently, the relaxation of this constraint (i.e. the increase of the

parameter ρ) results in a degradation of the PSD computational complexity.

Furthermore, Fig. 6.17 depicts the simulation time of the Sphere decoder

part as a percentage of the entire PSD detection simulation time. Four different
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Figure 6.16: Complexity comparison between PSD and a full tree SD.

scenarios are examined; for N = 32 with ρ = 1 or 2 and for N = 48 with

ρ = 2 or 3, respectively. It is observed that for ρ < 3, the PSD algorithm

computational cost is dominated by the initial SDP calculation step. This

could be further reduced by using more appropriate SDP implementations for

SEFDM as discussed in the conclusions chapter of the thesis.

Finally, PSD and typical SD are compared in terms of distribution of node

visits at each level of the SD tree. In particular, possible benefits are explored

as offered by PSD in low SNR regimes, represented by an Eb/N0 value of

5 dB, and for large dimension 4-QAM SEFDM signals, i.e. N is 32 or 48.

It is notable that this means that the actual dimension of the PSD and SD

problems are 64 and 96, respectively, due to the decoupling process. Figs 6.18

and 6.19 show that the distribution of tree visits for PSD is much lower than

for a typical SD. In addition, the tighter dH , the better the distribution of the

points as expected because of the larger pruning of the SD tree. This is quite

important for practical implementations where the size of the tree matters as

stated in [146].
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tectors for SEFDM. N = 32, S ∈ {±1± j}N , α = 0.8 and Eb/N0 set to 5 db.

6.5 Summary and Discussion

Motivated by recent results in the area of MIMO and MU-CDMA detection,

this chapter considers the examination of the possibility of a fast and adequately
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reliable suboptimal detection for the SEFDM system described in Chapter 2.

The so called Semidefinite relaxation method is well known in the literature

and is based on the reformulation of the Maximum Likelihood problem into

a convex Semidefinite Program. Initial simulation results show that the error

penalty incurred by the relaxation using SDP detection depends on the prop-

erties of the matrix M of the SEFDM system model. As the number of the

SEFDM sub-carriers increases and/or their frequency separation decreases the

matrix becomes ill conditioned and the SEFDM detection deteriorates. In or-

der to mitigate the opening of the relaxation gap, i.e. the difference between

the optimal and the SDP solution, a combined SDP-ML scheme is introduced.

Simulation results show that for 4-QAM SEFDM systems of moderate size

(N ≤ 32), a bandwidth reduction of 20% could be achieved with respect to

an equivalent OFDM system at the expense of a small error rate degradation.

Furthermore, the SDP-ML complexity is insensitive to the noise level. Conse-

quently, SDP-ML could represent a feasible solution in low SNR environments
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in contrast to optimal typical Sphere Detectors whose practicality is limited

due to the overly increase of complexity with the problem dimension and the

noise level in the system.

Notwithstanding, larger SEFDM signals require the application of an ex-

haustive search over a larger subset of possible solutions, incurring thus a sig-

nificant increase of the SDP-ML computational complexity. On such basis this

chapter proposed a new modified Sphere Decoder algorithm, termed Pruned

Sphere Decoder (PSD), that implements faster the combined Semidefinite Pro-

gramming and brute force ML. The number of branches of the PSD tree is

restricted due to the addition of an extra constraint so that the feasibility set

includes only the SEFDM vectors that have a predefined Hamming distance dH

from an initial SDP estimate. It was shown by simulation that for dH ≤ 2 the

new scheme achieves a quasi-optimal error performance for SEFDM systems

with N ≤ 48 and ∆fT = 0.8 in low SNR regimes. In addition, PSD offers the

same solution in terms of BER with an equivalent combined SDP-ML scheme

but in a fraction of the computational effort. Finally, simulation results showed

that PSD significantly reduces the required effort for the tree search of an op-

timal SD at the expense of a small penalty in the BER and the initialisation

cost of the SDP calculation.

As far as the SDP calculations is concerned, it is notable that almost all

simulations times were dominated by the time required for the SDP. In order

to reduce this, other implementations than the one based on the Boyd’s CVX

tool [141], [142], as used in the modelling of this chapter, could be explored. To

mention but a few, SDP solutions for complex systems that avoid doubling the

dimension of the SDP program, efficient SDP formulations for large dimension

optimisation problems like the one proposed in [147], or finally solutions tailored

for the SEFDM case.

Finally, over the past few years, there has been a wealth of research in the

area of designing new detection algorithms, specifically in the area of MIMO
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communication systems. The application of such algorithms to the SEFDM

detection problem is outside the scope of this work. However, it may well be

of interest to researchers to compare the performance of similar algorithms,

in terms of system performance and computational complexity, to the new

algorithms reported in this chapter. Of the newly published material, we outline

two relevant and recent developments. First, the SD outlined by Barbero et

al. [115], [113] propose a quasi-optimal SD that is not necessarily faster than a

typical SD but more suitable for hardware implementation because of its fixed

complexity. This is contrasted to the algorithm proposed in this chapter where

the complexity is random, although polynomially bound but the operation is

expected to be faster than SD. Second, new work by Stojnic et al. [148], [118],

[117] proposes a combined SDP-SD algorithm with aims similar to those of the

author of this thesis; i.e. to find a faster than SD solution to large dimension

problems in low SNR. The authors also propose an intelligent "pruning" of the

typical SD by using a similar to this work SDP initialisation step and then

calculating tight bounds at each level enumeration. This results in a better

error performance than the technique reported in this chapter as it achieves

an optimal solution. However, further investigations and comparisons should

be included in future work in order to examine if the novel PSD is faster, and

consequently more suitable for SEFDM detection, thanks to the use of the

Hamming distance constraint instead of the their bounds calculations.
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Chapter 7

Conclusions

This thesis has dealt with the problem of designing reliable and computation-

ally tangible receivers for spectrally efficient FDM systems. Such systems are

designed to occupy less than the OFDM bandwidth by squeezing the frequency

separation between the adjacent FDM sub-bands. The problem was split into

two parts: first, the generation of a receiver base that optimises the SEFDM de-

tection in presence of additive white Gaussian noise. Second, the derivation of

optimal detector was done with detector’s limitations in terms of error rate and

computational complexity were investigated. In addition, different approaches

to design computationally tangible detection algorithms were proposed follow-

ing either sub-optimal techniques or techniques suitable under special signal

and noise conditions.

In Chapter 2, the principles of multicarrier signals representation were

given, with discussion of the advantage of using orthogonal bases in terms

of ease of signal detection and noise minimisation. Yet, this is not the case

in frequency dispersive channels where the use of orthonormal bases suffers

poor localisation due to the wide spread of signal in the frequency domain.

Notwithstanding, the work of this thesis was limited to the simpler scenarios
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where the signal is corrupted by noise only 1. In addition, the Mazo limit for

faster than Nyquist transmission and recent work on the dual Mazo limit were

shortly discussed. The latter reveals that the Euclidean distance between the

transmitted signal waveforms does not shrink when the frequency separation

of the rectangularly shaped signal carriers is larger than 80% of an equiva-

lent OFDM system. This result motivated the rest of this work that mainly

comprises investigations of detection techniques for such systems.

Chapter 3 included a detailed description of the first SEFDM system intro-

duced by Rodrigues and Darwazeh in [29]. Initially, for the sake of system com-

pleteness recent proposals for the signal generation upon digital transformations

were described with emphasis on recent work at UCL [73], [60]. Regarding the

receiver demodulator, it was found and shown by simulation that the Gram

Schmidt method used in the introductory work [29] suffers severe numerical

errors. As a result, it is inefficient for the generation of a large dimension or-

thonormal projections base. Hence, the use of the modified and the iterative

modified GS variances was proposed. It was shown by simulation that IMGS

is able to generate an orthogonal base for large dimensional SEFDM signals.

Further to this, the Lowdin method - typically used in the field of quantum

chemistry - was also used leading to the generation of orthonormal functions

that are closer in the least square sense to the initial FDM carriers. Following

the derivation of an orthonormal base, the noise variables at the output of the

receiver correlators were proven to be independent with zero mean and vari-

ances equal to the noise channel power spectral density. As a result, the noise

is not colored and therefore joint probability of correct detection as expressed

by the maximum a posteriori criterion reduces to a well known combinatorial

least squares problem. A first solver based on an exhaustive enumeration of

the possible transmitted SEFDM waveforms was designed and implemented in

1Recent work based on the regularised SD detection of Chapter 5 using a more complete

channel model and accounting for the effects of time dispersive channels such as ISI and

frequency selective fading, has shown promising results and is reported in [149].
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software. The simulation results confirmed dual Mazo limit discussed in chap-

ter 2. In particular, it was found that the SEFDM systems conveying BPSK

and 4-QAM data symbols achieve the same error rates as equivalent OFDM

systems as long as the normalised carriers frequency separation α is ≥ 0.8.

Nevertheless, the initial results were limited to 8 carrier SEFDM systems due

to the exponential increase of the detection complexity over the constellation

cardinality M and the signal dimension N . Motivated by Verdu’s recommen-

dations in [72], where he also proved that such combinatorial problems are non

polynomial hard, two different approaches were followed in this thesis in order

to find a fast and reliable detection; either apply fixed and polynomial com-

plexity algorithms that are sub-optimal (Chapters 4 and 6) or investigate the

possibility of an optimal solution under special circumstances, e.g. very low

noise in the system (Chapter 5).

Chapter 4 provided the results of this work’s first investigations in linear

detection techniques. Initially, zero forcing was applied as a relaxation of the

initial optimal maximum likelihood problem. It was shown that this technique

eliminates the system inherent interference. Yet, it suffers severe error penal-

ties due to the ill conditioning of the receiver projections matrix. In order to

cope with the latter effect regularisation techniques of the ML problem were

investigated. In particular, it was shown that the noise enhancement at the

output of the demodulator can be decreased if the correlators outputs are fil-

tered using a regularised projections matrix. Consecutively, a minimum mean

squared error (MMSE) detector was derived and shown to constitute a special

case of Tikhonov regularisation where the regulator is defined according to the

receiver SNR. MMSE performance was also evaluated and it was proven that

MMSE offers great improvement relative to ZF. Nevertheless, MMSE was con-

siderably sub-optimal when the signal dimension increases and/ or the carriers

frequency separation decreases. In order to narrow the error rate gap between

ML and MMSE a new combined method was designed and implemented. In
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particular, the ML exhaustive search was limited to a subset of transmitted

waveforms whose binary versions deviate from the binary version of an initial

MMSE estimate up to a predefined Hamming distance. It must be mentioned

that the creation of this subset would not require a priori knowledge of the en-

tire feasible set of SEFDM transmitted symbols, for it was created by flipping

the bits of the binary version of the MMSE estimate. It was also shown that

the number of floating operations required by the ML part of this technique

depended on the value of the Hamming distance parameter ρ. The tighter

the latter, the smaller the feasible subset and the computational complexity.

It was demonstrated by simulation that MMSE-ML with ρ = 1 approximates

optimal detection for BPSK SEFDM signals with N ≤ 48. However, similar

4-QAM SEFDM detection suffers from local minima. Consequently, such de-

tection requires a relaxation of the Hamming distance constraint that renders

MMSE-ML detection unfeasible.

Chapter 5 approached SEFDM detection from a different perspective. In

particular, the potential of the popular lattice detector called Sphere decoder

was examined. The SEFDM system was modelled as a lattice whose generator

matrix is the SEFDM system projections matrix. Then, the solution search

space was reduced to the volume of a hypersphere that extends around the

observations vector. SD achieved the optimal solution by applying dynamic

programming, i.e. splitting the detection into a recursive process comprising

N consecutive steps. The SD search process is equivalent to an in-depth search

of a spanning tree. Initially, the standard real and complex variants of SD

were examined. It was found by simulation that both schemes achieve the

optimal solution but complex SD performs faster since it searches a smaller

in depth tree. It was also confirmed that SD complexity is greatly affected

by the noise and the internal interference of the system. Furthermore, the

SD implementation is not possible as soon as the projections matrix becomes

numerically singular. To overcome this particular limitation, the application
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of a regularised variance of SD (RegSD), introduced by Cui and Tellambura

in [101], was proposed. Through detailed modelling it was shown that RegSD

reduces considerably SD complexity and that a tangible detection of medium

sized SEFDM signals could be accomplished in high SNR regimes, i.e. when

Eb/N0 ≥ 10dB.

However, the detection in low SNRs still posed open research questions.

Therefore, Chapter 6 examined fixed complexity convex optimisation tech-

niques. In particular, the ML problem was reformulated to an equivalent

optimisation problem. By relaxing the non convex constraints of the latter,

the SEFDM detection is reduced to a semidefinite program (SDP). This is a

linear optimisation program that is solved using - well known from linear pro-

gramming - interior point methods. Simulation were run for different signal

settings and confirmed that SDP is a better relaxation, in terms of error rate,

than both ZF and MMSE. Notwithstanding, the SDP solution is sub-optimal

due to the growth of the feasible set. In addition, it was seen that the relax-

ation gap, i.e. the gap between the SDP and the optimal solution, widens with

the worsening of the projections matrix condition. In order to reduce the gap,

a similar to MMSE-ML combined method of chapter 4, an SDP-ML combined

method was designed. It was found that this constrained ML performs sat-

isfactorily for 4-QAM SEFDM when the system dimension is relatively small

N ≤ 16. Yet, larger dimensions require a larger Hamming distance parameter.

Finally, to speed up the SDP-ML method, a modified sphere decoder was intro-

duced. The new method limits the enumeration of the brute force ML at the

feasible transmitted symbols that have a specific Hamming distance from the

SDP estimate and they further lie within the SD hypersphere. It was shown

by simulation that this novel pruned SD (PSD) reduces significantly the sim-

ulation time required by SDP-ML. Consequently, the use of larger than unity

Hamming distance parameters is possible and reliable detection for larger di-

mensions N ≤ 48 could be accomplished. Moreover, it was demonstrated that
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PSD requires much fewer visits to the spanning tree nodes than the regularised

SD, especially when the ill condition of the projections matrix and/or the noise

in the system increase.

Overall, this thesis provided investigations of possible detection techniques

for spectrally efficient FDM systems that suffer severe intercarrier interference

due to the deliberate overlapping of the individual sub-bands. Through various

studies, it was shown that the optimal detection of such a system in AWGN

can be reduced to a combinatorial LS problem that can be solved without error

penalties for SEFDM signals with α ≥ 0.8. Furthermore, it was demonstrated

that tangible solutions could be accomplished by a regularised sphere decoder

for small dimension SEFDM signals of N ≤ 48 under high SNR conditions. In

addition, a sub-optimal novel SD modification was also proposed as a comple-

mentary solution for the detection of such signals in low SNR regimes.

7.1 Proposals for future work

Despite this work contributions, research for computationally efficient detection

techniques for SEFDM is still an open area. In addition, this work investiga-

tions revealed collateral gaps that need to be filled in. In particular, in the

author’s view it is worthy to investigate further the following issues:

• The properties of the projection matrix. It was shown by simu-

lation that for ‘sufficiently’ large number of carriers or small frequency

separation, the receiver base functions tend to be linear dependent and

the matrix tends to singularity. Nevertheless, there is no mathematical

definition for the above mentioned ‘sufficiently’. Therefore, it would be

useful to attempt a mathematical derivation of a closed formula for the

decay rate of the matrix singular values and identify a numerical bound

after which the matrix becomes practically singular. Hence, the limits

for a feasible implementation of an SEFDM system in terms of signal
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dimension and carriers frequency separation would be identified. A pro-

posed area of research could be in the field of the finite dimensional linear

independent Gabor frames [37], [150];

• The expected complexity of the sphere decoder. It would be desir-

able to derive mathematically the expected SD complexity over the noise

taking into account the special properties of the SEFDM detection, i.e.

that the coefficients matrix is an ill conditioned upper triangular matrix.

Consequently, the SNR regions where SD could be applied with a reason-

able complexity could be defined. Examples of such research efforts can

be found in [74], [96] and [97];

• The optimum regulator for the Cui and Tellambura regularised

SD [101]. As proven by simulation, the regulator value plays an im-

portant role since it determines the regularisation efficiency. Yet, the

regularisation process adds some artificial noise in the system that af-

fects negatively SD performance in terms of complexity. Consequently,

the derivation of the optimal, from the complexity perspective, regulator

constitutes a crucial matter. In Chapter 5, it was mentioned that there

are such derivations for the unconstrained LS problem. To the author’s

knowledge there is no similar method for the regularisation of the integer

LS problem representing the regularised sphere detection. Consequently,

this leaves a research gap to be filled;

• The effect of the projections matrix ill conditioning on the

semidefinite programming. It was seen by simulation that the open-

ing of the SDP relaxation gap increases as the inherent interference of

the SEFDM system deteriorates with the number of the carriers and/or

the decrease in their frequency separation. Causes of this degradation

could be revealed through detailed algorithmic analysis, so that suitable

regularisation techniques could be applied;
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• The implementation speed of SDP. This is another essential issue.

Although it is well established in the literature that the complexities

of SDP and MMSE are comparable, the actual simulation time of the

former was considerably larger in our simulations. A possible cause of

this could be the use of the CVX tool [141], [142] that probably slows the

SDP process. In any case, techniques that speed up the SDP solution

of problems with size similar to the SEFDM signal dimension should be

investigated;

• Further investigations on the introduced pruned SD. This novel

SD appears to be very efficient especially when the condition of the pro-

jections matrix is bad. Consequently, its applicability in different systems

like ill conditioned MIMO [151] or ill conditioned CDMA systems [152]

should be examined. Within the same scope, it would be useful to com-

pare PSD with other fast SD variants like the fixed complexity SD [115]

or the SDP-SD proposed in [117]. Finally, it would be useful to study

further PSD complexity. A recommended start point could be to demon-

strate that the PSD worst case complexity is bounded by the complexity

of the equivalent SDP-ML scheme described in chapter 6. As already

shown, the order of the latter increases according to the heuristic Ham-

ming parameter;

• Studies of other SEFDM detection tecniques. New approaches

could be based on the Likelihood Ascent Sequence (LAS) method that

was recently proposed for the detection of MIMO systems [153], [154].

LAS appears to be a very promising technique since it converges to the op-

timal error rate in problems of large dimension. In addition, proposals for

practical LAS detectors implementations based on Field Programmable

Gate Array (FPGA) have already come to light [155]. Alternative detec-

tions could be based on Truncated Singular Value Decomposition (TSVD)
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or partial Tikhonov regularisations [75], where the level of truncation or

regularisation are determined according to the properties of the SEFDM

projections matrix (as in Chapter 3). Finally, the author would rec-

ommend further research for recent findings in the integer programming

domain.

To conclude, this work should extend to subjects other than the detection in

AWGN so that the SEFDM system description becomes realistic. For example,

the detection techniques should be tested in the presence of fading channels.

Notwithstanding, note that some initial results of SEFDM system studies in

AWGN and fading are to be presented in [149]. In addition, other important

issues are the sensitivity to frequency and phase offsets and to amplifier non

linearity as well as the Adjacent Channel Interference (ACI). Regarding the

latter, it is interesting to mention that a significant merit of OFDM is its

sharp edged 50 dB bandwidth that results into a low ACI level. Consequently,

a similar SEFDM behavior should be confirmed. Finally, SEFDM research

should lead to real systems implementations. Such work is already underway

at UCL and FPGA based prototypes are expected in 2011.

Overall, the different detection techniques designed in this thesis confirm

the practicability of SEFDM signals and systems. Much work is yet to be done

to optimise further the detection techniques and to study their different effects

on SEFDM systems under realistic performance scenarios.
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matrix SVD

In the following, a simple proof for Eq. (5.46) is provided. A Singular Value

Decomposition (SVD) of matrix M is:

M = UΣVH , (1)

where U and V are two square N ×N orthonormal matrices and Σ is a N ×N
diagonal matrix with diagonal elements the singular values σi, i = 1, . . . , N of

M. Thus, the Grammian MHM is:

MHM =
(

UΣVH
)H

UΣVH = VΣHUHUΣVH ⇐⇒

MHM = VΣHΣVH = VΣ2VH . (2)

Consecutively, the regularised matrix A is:

A = MHM + ǫI = VΣ2VH + ǫI⇐⇒

A = VΨVH , (3)

where Ψ is the following diagonal matrix:

Ψ =












σ2
1 + ǫ 0 · · · 0

0 σ2
2 + ǫ · · · 0

... 0
. . . 0

0 · · · 0 σ2
N + ǫ












. (4)
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From Eqs. (3) and (4) it is obvious that the eigenvalues ψi, i = 1, . . . , N

of A are:

ψ = σ2
i + ǫ, , i = 1, . . . , N. (5)

Since ǫ > 0 the regularised A has non zero eigenvalues and it is always

positive definite. Hence, it can be Cholesky decomposed and written as the

Grammian of an upper triangular matrix D. The squares of the singular values

σ
′

i of the latter are by definition equal to ψi. From Eq. (5) is concluded that:

σ
′2
i = σ2

i + ǫ. (6)
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Appendix B: Preliminaries on

lattice theory

Lattice theory is a mathematical frame work that describes the operation over

partially ordered sets known as lattices. Such sets are central to the operation

of Sphere Decoders. In this section, the basic concepts and defintions of Lattice

theory, taken from [156] are outlined as they will aide understanding of the SD

concept.

Definition 1: Let u1,u2, . . . ,uN beN linear independent vectors on p-dimensional

Euclidean space Rp (N ≤ p). A lattice Λ is the set of vectors:

b1 × u1 + b2 × u2 + . . .+ bN × uN | b1, b2, . . . , bN ∈ Z , (7)

where Z is the set of all integers. In other words, the lattice Λ is composed of

the linear combinations of the vectors ui subject to the constraint that their

coefficients are integer numbers.

The matrix whose columns are constituted by the lattice vectors ui,with i =

1, . . . , N , is called the lattice generator matrix M, i.e.:

M =
[

u1 u2 . . . uN

]

. (8)

In matrix representation, M generates the lattice Λ in the following way:

Λ = {MB} , (9)

where B is the vector column of the integer coefficients [b1, b2, . . . , bN ]T .

Definition 2: A deep hole of a lattice Λ is the furthest point of the Euclidean

189



APPENDICES

space Rp from Λ.

Definition 3: The lattice covering radius is the minimum distance of the

lattice from a deep hole.

x

y

Lattice points 

Deep hole

0-1

0

-1

+1 +2

+2

+1

g

g Covering radius

Figure 1: Illustration of a 2-dimensional integer lattice. The (1/2, 1/2) point is

a lattice deep.

Fig. 1 illustrates the integer 2-dimensional lattice and the respective sphere

packing. In addition, the deep holes and the covering radius of the lattice are

demonstrated.

Definition 4: The volume d(Λ) of a lattice Λ is equal to the determinant of the

generator matrix det (M), with det(·) denoting the determinant of a matrix.

Definition 5: The volume of a N -dimensional hypersphere of radius ρ is:

VNρ
N , (10)

where VN is the volume of the N -dimensional hypersphere with radius ρ = 1:

VN =
π/2n/2

n/2!
. (11)

In lattice sphere packings, ρ is also called the packing radius.

Definition 6: The density ∆ of a lattice sphere packing is given by the pro-
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portion of the space occupied by the sphere layers, i.e.:

∆ =
sVNρ

N

d(Λ)
, (12)

where s is the number of the spheres in the lattice packing.

A very typical example of lattices is the cubic or integer lattice Z
N that

consists of all the integer N -tuples, i.e.:

Z
N = Λ |ui = ei, i = 1, . . . , N , (13)

where ei, . . . , eN is the N -dimensional standard basis. A generator matrix

of Z
N is simply the N -dimensional identity matrix IN . Its packing radius is

ρ = 1/2, its covering radius is
√
N/2 and its density is equal to VN2−N .

191



Appendix C: Preliminaries on

convex optimisation

The following paragraphs cite basic convex optimisation definitions, utilised in

Chapter 6 that would be useful for this thesis reader.

Definition 1. Convex Sets - A set S ⊂ RN is a convex set if:

∀x, y ∈ S, θx+ (1− θ) y ∈ S, with θ ∈ [0, 1] (14)

In other words a set is convex when it contains the cord that joins any two

points in the set. Examples of a convex and non convex set are given in Fig. 2

(a) and (b), respectively.

Definition 2. Convex cone - It is the set of all points x in a convex set S

so that:

x = θ1x1 + θ2x2 ∀x1, x2 ∈ S, with θ1 ≥ 0, θ2 ≥ 0 (15)

In other words it is the set that contains all the conic combinations of the

points in the set S. It must be mentioned that a conic set is always convex.

An example of a cone set is the positive semidefinite cone SN+ , i.e. the set of

all the symmetric positive semidefinite matrices X of N dimension.

Definition 3. Matrix inequality - It is the generalised inequality set over

the positive semidefinite cone, i.e.:

X �
SN+

Y⇐⇒ Y −X �
SN+

0⇐⇒ Y −X ∈ SN+ (16)
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Definition 4. Convex function - A function f(x) is convex when its domain

S = dom{f} is convex and ∀x, y ∈ S:

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) (17)

Examples of convex functions are all the linear functions and all the norms.

Figure 2: Convex and non-convex sets and functionsrepresentations.

Definition 5. Convex optimisation problem - An optimisation problem of

the following general form:

min. f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , n (18)

is convex when the objective f0(x), its domain and the inequality constraints

fi(x) are convex, and the equality constraints are affine. The parameters m

and n can be any integer numbers. It must be noticed that the feasible set, i.e.

the set of the objective domain points that meet the problem constraints, of a

convex optimisation problem is also convex [144].

Proposition 1: Any locally optimal point of a convex problem is (globally)

optimal. The proof is given in [144].

Proposition 2: Equivalent convex problems: Two convex optimisation

problems are equivalent if the solution of one is obtained from the solution

of the other and vice-versa [144]
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Definition 6. Semidefinite program - A convex optimisation problem is

classified as a Semidefinite program when it can be formulated as follows:

min. cTx

s.t. x1F1 +x2F2 + . . .+ xnFn + G � 0

Ax = b, i = 1, . . . , n (19)

where c,x,Fi,G,A,b are vectors/matrices and Fi,G ∈ SK , i.e. they are

symmetric matrices of k dimension. The inequality constraint is commonly

called the Linear Matrix Inequality (LMI).

Definition 7. Lagrangian and Lagrange dual functions - The Lagrangian

function L of an optimisation problem as described in equation (18) is given

by:

L(x, λ, ν) = f0(x) +
n∑

i=1

λifi(x) +
m∑

j=1

νihi(x) (20)

where the Lagrangian multipliers λi and νi are called dual variables. It is

apparent that the Lagrangian is the linear combination of the objective with

its constraints.

The Lagrange dual g is the minimum of the Lagrangian over x, i.e.

g(λ, ν) = inf
︸︷︷︸

x∈D

L(x, λ, ν) (21)

where D is the domain of the objective function and inf denotes the infimum.

The Lagrange dual is important thanks to its lower bound property, i.e. for

λ ≥ 0, g(λ, ν) ≤ p∗. Hence, it is a useful tool for a derivation of a lower bound

for the solution p∗ of any primal optimisation problem.

Definition 8. The dual problem - The (Lagrange) dual problem is the

following optimisation problem:

max. g(λ, ν)

s.t. λ � 0 (22)

194



APPENDICES

It must be noticed that the solution of the dual problem g∗ is by definition the

best lower bound for the solution of the primal problem.

Definition 9. Weak and strong duality: When the solution p∗ of the primal

optimisation problem and its dual g∗ are the same, then the duality is called

strong. Otherwise, when the duality gap, i.e. p∗ − g∗, is non zero the duality

is called weak.

Definition 10. KKT conditions: The Karush-Kuhn-Tucker (KKT) condi-

tions for the problem of Eq. (18) are the following:

1. fi(x) ≤ 0 and hj = 0 for i = 1, . . . , n and j = 1, . . . ,m, respectively;

2. λi ≥ 0 for i = 1, . . . , n;

3. λifi = 0 for i = 1, . . . , n;

4. ∇xL = 0

Proposition 4: For a convex optimisation problem, the strong duality

holds if and only if the KKT conditions are met. Note that if the problem is

not convex KKT conditions fulfillment is necessary but not sufficient for the

strong duality.

The interest reader could find in [144], [127], [157], [128] detailed analysis

and descriptions of convex optimisation and semidefinite programming for a

variety of different applications.
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