
OGSA First Impressions - A Case Study Re-engineering a Scientific Application
with the Open Grid Services Architecture∗

Ben Butchart, Clovis Chapman and Wolfgang Emmerich
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{B.Butchart |C.Chapman|W.Emmerich }@cs.ucl.ac.uk

Abstract

We present a case study of our experience re-engineering
a scientific application using the Open Grid Services Ar-
chitecture (OGSA), a new specification for developing Grid
applications using web service technologies such as WSDL
and SOAP. During the last decade, UCL’s Chemistry de-
partment has developed a computational approach for pre-
dicting the crystal structures of small molecules. However,
each search involves running large iterations of computa-
tionally expensive calculations and currently takes a few
months to perform. Making use of early implementations
of the OGSA specification we have wrapped the Fortran
binaries into OGSI-compliant service interfaces to expose
the existing scientific application as a set of loosely cou-
pled web services. We show how the OGSA implementa-
tion facilitates the distribution of such applications across a
large network, radically improving performance of the sys-
tem through parallel CPU capacity, coordinated resource
management and automation of the computational process.
We discuss the difficulties that we encountered turning For-
tran executables into OGSA services and delivering a ro-
bust, scalable system. One unusual aspect of our approach
is the way we transfer input and output data for the For-
tran codes. Instead of employing a file transfer service we
transform the XML encoded data in the SOAP message to
native file format, where possible using XSLT stylesheets.
We also discuss a computational workflow service that en-
ables users to distribute and manage parts of the computa-
tional process across different clusters and administrative
domains. We examine how our experience re-engineering
the polymorph prediction application led to this approach
and to what extent our efforts have succeeded.

∗This research is supported by EPSRC grant: GR/R9720/01
as part of the Materials Simulation project and a NERC award:
NER/T/S/2001/00855 as part of the E-Minerals project

1 Introduction

We discuss our experience re-engineering a scientific
application using the Open Grid Services Infrastructure
(OGSI) [16], a new specification for developing Grid ap-
plications using web service technologies such as WSDL
[4], SOAP [3] and WSIL [1]. Making use of early releases
of Globus Toolkit 3 [14], the first implementation of the
OGSI specification, we have wrapped Fortran binaries into
OGSI-compliant service interfaces to expose the existing
scientific application as a set of loosely coupled web ser-
vices. We demonstrate how this re-engineering effort has
improved the scalability, reusability and robustness of the
application. We discuss how OGSI compliant middleware
facilitated the development process and what the OGSI pro-
gramming model offers in comparison to other Grid middle-
ware solutions or more general distributed technologies. We
evaluate what we have learnt from this exercise and how we
intend to build on this experience to create a robust, reusable
grid infrastructure to serve as a platform for a wide variety
of resource hungry applications.

2 Motivation

The Open Grid Services Architecture (OGSA) [16] is an
attempt to integrate web services technologies with exist-
ing grid standards so that developers of grid applications
can benefit from broad commercial support for web services
standards. Our aim is to road test this emerging technology
at an early stage of its development using real scientific ap-
plications. We hope that putting OGSA through its paces
with these applications will provide valuable feedback to
the OGSA and grid community and promote the adoption
of this technology by scientists.

1

3 Case Study

A computational method for predicting the crystal struc-
tures that could be adopted by a given organic molecule
would be of great value to the molecular material indus-
tries. During the last decade, SL Price’s group at UCL has
developed a computational approach of searching for the
global minimum in the lattice energy that is relatively suc-
cessful for predicting the crystal structures of small, rigid,
organic molecules [12, 2]. However the method is com-
putationally intensive and the search described in [12, 2]
took a few months to perform. Studies on larger molecules,
which are more typical of manufactured organic materials
such as pharmaceuticals, are not feasible without access to
large grids or HPC resources.

Figure 1. computational process of poly-
morph prediction application

Apart from the limitation of running code on a single
processor, scientists must painstakingly check output files
to determine whether particular results are valid and copy
files from one machine to another so different parts of the
process can run on platforms most suitable for a particular
calculation. This lack of automation and resource coordi-
nation frequently results in errors forcing a total or partial
rerun of the analysis.

The process developed by SL Price’s group combines
functionality from a number of different Fortran programs
into a larger computational workflow illustrated in Figure
1. The highlighted activities represent the two main Fortran
programs that have the most impact on processing time. De-
pending on the complexity of the input to these functions, a
single computation can take anywhere from 5 to 90 minutes
to complete on an Intel 686 Linux platform.

Two programs constitute a nested loop in the workflow,
with the first program,molpak , undergoing 29 iterations

and the second program,dmarel , running 50 times for
eachmolpak iteration. The only dependency between
these computations is that thedmarel process cannot start
until themolpak run has completed. Otherwise each of the
29 molpak computations and the 29*50dmarel compu-
tations can run independently of one another. This raises
the possibility of runningmolpak anddmarel computa-
tions in parallel across a large network of hosts radically
improving performance of the system through parallel CPU
capacity (Figure 2). Below we describe how we were able
to achieve this by exposing themolpak anddmarel com-
putations as distributed OGSI-compliant web services. De-
ploying this distributed version of the polymorph prediction
application on a Beowulf cluster of 80 Intel 686 processors
we were able to reduce the time taken for a scientist to per-
form an analysis on a compound such as aspirin from 3-4
months to around 20 hours. While we attribute some of this
improvement to automation of the computational workflow
we estimate that at least 50 days can be gained from running
computations in parallel across nodes in the cluster.

Figure 2. parallel model of polymorph predic-
tion process

4 Re-Engineering Scientific Programs as
OGSI Services

4.1 Why choose OGSA?

Web services technologies offer the Grid community a
simple solution to heterogeneity and interoperability. The
use of XML to provide both the description of service in-
terfaces (WSDL) [4] and as a communication protocol be-

2

tween services (SOAP)[3] means that a service can be de-
ployed on any platform and coded in any programming
language that supports the web services model. Tools for
automatic generation of client and server code greatly im-
prove productivity and maintainability of applications. The
OGSA specification augments these standard web services
technologies with off the shelf reusable services for dis-
covery and registration of services (Registry service), dy-
namic creation of service instances (Factory Service), asyn-
chronous notification of service state changes (Notification
Service) and resolving service addresses (Handle Resolver
service). Altogether, OGSA compliant web services pro-
vide a powerful programming model for the development
of grid applications.

But we recognize that most of this functionality is avail-
able already in various existing Grid or distributed object
technologies. Mature Grid middleware toolkits such as
Globus Toolkit 2 (GT2) [9] or CONDOR [15] offer registry,
job management and notification services. There is no need
for server and client stub creation since the various services
conform to predefined interfaces, which have implementa-
tions supporting various OS and hardware platforms. So
what exactly does OGSA offer us that we did not have be-
fore? The answer is a consistent and unified programming
model for developing extensible services for Grid applica-
tions. The predefined services that GT2 provides are mostly
independent of one another and have few if any common
features. Since there is no common interface shared by all
services, throwing together a system by combining individ-
ual services requires mastery of each API and effort enhanc-
ing one service is unlikely to improve or even work properly
with other services. On the other hand, CONDOR offers a
set of services that are very tightly coupled so that it is dif-
ficult to extend or replace individual components without
completely reworking other components. OGSA offers de-
velopers a common framework for developing grid services
that is both extensible and consistent.

The Grid service interface, from which all other services
are built, provides common functionality and semantics that
all services share. This common framework ensures com-
patibility between all OGSI compliant services making it
much easier to aggregate and reuse services. Below we de-
scribe in detail how we were able to reuse core OGSA ser-
vices in exactly this way to create our own higher level ser-
vice infrastructure enabling us to deploy the existing poly-
morph prediction application across a large cluster of pro-
cessors.

4.2 Architecture

Figure 3 shows the key components of the polymorph
prediction application and interactions between them. Each
rectangle represents an OGSI compliant web service and

Trader

VORegistry

Compute Service

Process EngineData Service

check status

register

persist result

KEY:

delegate process

FactoryService

Client

register

start process
retrieve results

OGSI Web Service

SOAP

create instance
deploy service

search

manage computation
request instance

Figure 3. Service based e-science architec-
ture

arrows correspond to SOAP requests with the arrowhead
showing the direction of the request from the service caller
to the service provider.

The client initiates a new process by sending a request to
the process engine service. The process engine assumes re-
sponsibility for managing a computational workflow speci-
fied by the client. The process engine decides which com-
pute service it needs to invoke next and contacts the trader
service to get a reference to a corresponding service in-
stance. The trader searches the VORegistry to obtain a set
of references to instances of the required service type. It
then checks the status of each service instance to determine
whether the service instance is ready to perform a compu-
tation. If the trader finds an available service instance, a
reference is returned to the process engine. If no service
instance is available to run the computation, the trader asks
the VORegistry for a factory service instance which it can
use to create new instances of the target service. If no ser-
vice instances are available and no new service instances
can be created the trader sends a fault message back to the
process engine, which waits for a certain amount of time be-
fore re-sending the request. Once the trader has returned a
valid service reference the process engine invokes the com-
pute service. The compute service executes the native For-
tran binary on the resource. When the compute service re-
turns the process engine triggers the next computation in the
workflow or persists the result by invoking the data service.
As well as invoking individual compute service instances
the process engine may also delegate part of the workflow
to another process engine instance.

Here we are using OGSI as a communication mechanism
between distributed computations of a computational work-
flow. Instead of maintaining process relevant state in the

3

service instances we rely on the process engine to coor-
dinate correlated messages between services. In this way
we separate workflow logic and meta-data from the logic of
computational components. This ensures that the compu-
tation service interfaces are purely concerned with discrete
scientific functions and are not bound to a particular chore-
ography.

4.3 Service Wrapping Legacy Code

Most Grid middleware platforms offer some kind of job
management service that allow users to run existing binary
codes such as Fortran programs as remote services across a
set of networked resources. At a minimum we expect such
Job Manager services to handle I/O streams, command line
arguments and provide mechanisms for starting, terminat-
ing and monitoring jobs. Fortran codes usually use files to
read input data and often use files as output. Most Grid
platforms resolve this problem by providing some kind of
file transfer system that enables users to copy input and out-
put files to and from the particular resource where they are
required.

There are a number of difficulties with this approach.
First, transferring whole files across a network is waste-
ful since usually only a small part of the transferred data
changes between requests. Our experience with the crystal
polymorph application suggests that often 80% or so of the
input file remains the same for each request, with maybe
just a few keywords or data blocks changing between jobs.
Results are hard to analyse in file format since data are
rarely organised in a way that optimises searches. The dis-
tribution of relevant data across files makes aggregation and
comparison of results inflexible. Applications that scien-
tists write to analyse their results are not easy to reuse since
they are tied too closely to particular file formats. Finally
data are not represented in a consistent way with each ap-
plication having a slightly different format for the same data
structures.

The approach we have adopted is to expose the For-
tran codes as web services that make the underlying bi-
nary codes completely transparent to the user. The interface
of the binary codes including the input/output file formats,
command line arguments and I/O streams is wrapped up
in a web service interface that simply defines a set of op-
erations and data structures. The wrapper is configured to
use two conversion functions, one to convert the input data
structures to the necessary input files and one to convert the
output files to the specified output parameter.

Only non-redundant data is transferred across the net-
work and users are not exposed to the full complexity of the
underlying native interface and file formats. Also we rep-
resent data in a generic format. This means that we only
need to write converters for the same data type once per

application. Reuse of analysis tools is more likely as data
is represented in the same way regardless of which appli-
cation generated it. Extracting just the relevant data from
output files allows users to store, search and aggregate their
results far more efficiently facilitating use of database and
data warehousing tools. By bundling a number of binaries
into the same wrapper complexity of the interface can be
hidden further (possibly at the expense of reusability) since
a set of separate interfaces is presented to the user as a single
operation.

One technique we have employed for converting input
structures to the necessary Fortran input files is to intercept
the SOAP message before it arrives at the Job Manager ser-
vice and use an XSLT [5] processor to generate the input
file from the body of the SOAP message. Unfortunately
the mechanism for intercepting the SOAP message is a non
standard feature of the Axis SOAP Engine [14] and is not
portable to other Web Service platforms. The need to use
such mechanisms highlights the restrictions imposed by the
RPC messaging style. If the Job Manager instead used the
document messaging style the SOAP header could be used
to redirect the message to an XSLT service.

Overall we believe this wrapping strategy is a far more
efficient, reusable and pragmatic approach to job manage-
ment than solutions that expose users to the interfaces and
file formats of the underlying binary code.

4.4 Deployment

The graphic below shows how we have deployed the
polymorph application on a large Beowulf cluster (Figure
4). In the diagram we abstract deployment of services into
three operational layers. The node layer at the bottom rep-
resents the private network and file system of a single sys-
tem or cluster. These resources are not directly accessible
to the outside world and can communicate only with other
node layer services or with services operating in the domain
layer. Domain layer services control access to node layer
services and are responsible for the efficient utilisation and
sharing of resources they control. External access to the do-
main layer is offered by services at the Grid layer that pro-
vide an interface to the outside world and coordinate work
across different domains.

The service based architecture we have developed is flex-
ible in the way it allows users to deploy a service at any op-
erational layer. In the deployment shown above, for exam-
ple, the computational process engine service is deployed at
both the domain layer and the grid layer. But the constraints
that the network topology imposes on the visibility of ser-
vices means that these service instances play different roles
on each layer. At the domain layer the process engine acts
as a job broker, farming out individual computations to ser-
vices operating on resources it administers in the node layer.

4

Data Manager
 Service

Compute Service

Computational Process Service

VO Registry Service

Computational Process
Service

Node Layer

Domain Layer

Grid Layer
Trader Service

Trader Service

Factory Service

VO Registry Service

Factory Service

Figure 4. Deployment of service across three
administrative tiers

At the Grid layer the process engine acts as a process bro-
ker delegating parts of the overall computational workflow
to services deployed on the various domains it administers.
We could go further and deploy a process engine service at
the node layer, delegating part of the domain layer workflow
to one of the nodes it administers, which would then farm
out computations to a subset of its peers. This flexibility
ensures that the overall system is scalable since responsi-
bilities can be distributed more evenly across available re-
sources.

5 Lessons Learned

The experience we have gained from deploying early im-
plementations of the OGSA specification to re-engineer the
polymorph prediction application has given us some insight
into how OGSA works in practice and what areas we need
to address to make development of OGSI-enabled Grid ap-
plications easier in the future.

A major technical difficulty we encountered was over-
loading of servers operating at the domain layer affecting
services such as the process engine, the trader and VOReg-
istry service. We found that our application did not scale
well to large clusters consisting of 50+ processors. The
problem arose from the tendency of individual events such
as job completion to occur close together overloading co-
ordinating services with too many requests at once. In the
polymorph prediction processdmarel jobs are submitted
in batches of 50 after eachmolpak run, leading to a spurt
of simultaneous activity. This kind of behaviour is typical
of real world computational workflows and demonstrates
the importance of testing middleware on real applications.
A short term solution to this problem was to upgrade and
reconfigure services running on the domain layer and re-

deploy some of these services on a second system. Also we
controlled job submissions so that only tendmarel jobs
were run for a particularmolpak iteration at any one time.
Although these measures solve the problem in the short
term they do not provide a real solution to scalability of the
application but merely expand the point at which perfor-
mance starts to deteriorate. The real solution is to break up
a large cluster into a set of smaller clusters by deploying co-
ordinating services on resources in the node layer. To make
this possible we need a mechanism for delegating parts of
the computational workflow to other workflow managers.
We are currently evaluating web service coordination spec-
ifications such as the Business Process Execution Language
[7] to provide such a mechanism.

An area of difficulty we did not expect was exception
handling. The crystal polymorph application generates a
number of error conditions that we found surprisingly diffi-
cult to deal with. How error conditions are identified varies
considerably. It could just mean checking an output file for
a keyword such as ”INVALID” or ”SYSTEM FAILURE”.
The executable might itself throw an exception and return
and error code that the job manager service will have to
interpret. One situation that caused particular difficulty in-
volved parsing an output file for keywords delimiting a par-
ticular dataset, analysing the dataset for certain conditions
such as the presence of negative numbers (but only where
the power was less than 4) and then repeating the job after
incrementally removing all thus identified data elements in
reverse order, not including the first and last elements in the
dataset, which are ignored. Such complex rules are tricky
and painful to implement in a language like Java that is not
brilliant at parsing unstructured text. Worse still, the sci-
entists often find it difficult to specify such rules clearly as
they have not previously needed to automate and formalize
their working practices. Indeed, the process of automating
the system helped to improve the scientists’ understanding
of their own methodology. To emphasize this point it is
worth mentioning that we have already changed the rule dis-
cussed above three times and are still not entirely sure that
the algorithm is scientifically optimal. So our experience
demonstrates the importance of systematically investigating
what can go wrong, eliciting requirements from scientists
and crucially testing whether the elicited requirements are
in fact valid.

We were a little surprised to discover that the Core Ser-
vice specification for OGSA does not include functionality
for job scheduling and dynamic service deployment given
how important these features are to any Grid application.
Although many deployments will merely integrate with ex-
isting job scheduling systems we thought that some default
job scheduler similar to our trader service would be pro-
vided. A simple interface that allows users to specify a
registry containing schedulable service instances, define a

5

scheduling policy, establish user credentials and determine
what service data is relevant to scheduling decisions would
prove extremely useful. It would not be difficult to pro-
vide different implementations or extend such an interface
to integrate existing resource management systems. This
situation forced us to design and implement our own sched-
uler interface but with no guarantee that this will conform
to other people’s designs and implementations of OGSA.

Also missing are standardized procedures for deploy-
ment of services. There is no standard mechanism for trans-
ferring implementation code and native legacy codes, nor is
there an archive structure and deployment descriptor speci-
fication such as exists for J2EE web and enterprise appli-
cations. We have had to write OS dependent scripts for
deployment of services across the cluster, copying files to
each node and restarting all servers. Given the concept of
a virtual organization [10], it is reasonable to expect that a
user can deploy applications without any knowledge of the
topology or physical characteristics of the network. It really
should be as easy as a J2EE deployment, where a set of class
files and deployment descriptors are organized into a stan-
dard package structure, bundled into an archive, dropped
into thewebapps directory of a local server, thereby auto-
matically replicated on all other servers in the cluster.

A further deployment issue that OGSA does not ade-
quately address is the need for dynamic deployment of ser-
vices. Although it is possible to deploy new service in-
stances dynamically using corresponding factory service in-
stances there is no way of dynamically deploying a factory
service itself. Worse still, the deployment mechanism for
such persistent services is platform specific. This means
that the topology of nodes that can host a particular ser-
vice remains static and is configured manually for each sys-
tem. Although we can increase or decrease the number of
instances running on this set of nodes to meet fluctuations
in demand we cannot change the distribution of service ca-
pability across the total set nodes.

Early on we identified control of the computational
workflow as an important area for development of Grid in-
frastructures. Our experience working with the crystal poly-
morph application shows that scientists often need to mod-
ify the computational workflow to support a particular anal-
ysis, sometimes adding a new computation or applying dif-
ferent computational strategies to the same analysis. So we
need to enable scientists to change their workflows easily,
preferably without assistance from software engineers.

The scientific application we have worked with demon-
strates that fine-grain control of the computational process
can have a big effect on efficient utilization of available re-
sources. Most Grid middleware makes scheduling decisions
at the single job (compute service) level but few consider the
effect on the computational process as a whole. We believe
also that delegation of computational workflow across ad-

ministrative domains would encourage more use of smaller
clusters and reduce overuse of larger systems. In a situa-
tion where users have to break up the computational process
manually to run across different systems users will naturally
favour the larger and faster systems and ignore smaller sys-
tems which require the same effort to set up but offer rela-
tively little additional compute resource. Also the effect of
system failure is not as great since the overall computational
process is more evenly distributed spreading the risk across
several systems.

6 Related Work

The Globus Toolkit 3 (GT3) [14] has developed signif-
icantly since we began our work with preview releases. In
particular many new high level services for job submission,
data aggregation, file transfer and resource allocation have
been built on top of the existing core OGSI services men-
tioned in this paper. The GT3 architecture is however dif-
ferent from the one we developed from the same set of core
services. In particular, our approach to job submission and
workflow differs from the GT3, where a complex compu-
tational process such as the polymorph application is gen-
erally submitted as a single job, having first copied input
files to available resources using a file transfer service. The
GT3 model is further complicated by vertical integration of
authentication and authorization protocols, something we
have not yet attempted in our prototype. The Globus toolkit
now includes a deployment archive structure (GAR) that re-
solves some of the deployment issues discussed above, al-
though this is something that really needs to be standardized
in the OGSA specification.

7 Conclusions and Further Work

On the whole our first impressions of OGSA have been
positive. Within a few months we were able to produce a
usable prototype of the crystal polymorph application dis-
tributed across 80 machines, improving performance of the
system through parallel CPU capacity, coordinated resource
management and automation of the computational process.
The exploitation of web services technologies contributed
considerably to this success allowing us to quickly turn
Fortran binaries into self-describing distributed services.
We have been able to exploit the XML basis of web ser-
vices through the use of XML conversion languages such
as XSLT. We were able to develop our own scheduling ser-
vice based on core OGSA services such as the Registry Ser-
vice and Factory Service. Our future work will focus on ex-
ploiting emerging Web Services standards such as the Busi-
ness Process Execution Language [7], Security Assertion
Markup Language [8] to create a reusable and robust grid
infrastructure.

6

Acknowledgements

Many thanks to Dr. Carole Ouvrard, Dr Graeme Day and
Professor Sally Price of University College London Chem-
istry department.

References

[1] K. Ballinger, P . Brittenham, A. Malhotra, W. Nagy, and S. Pharies.
Web Services Inspection Language Specification (WS-Inpection) 1.0
. IBM and Microsoft, 2001.http://www.w3.org/TR/SOAP .

[2] T. Beyer, G. M. Day, and S.L. Price. The prediction, morphology
and mechanical properties of the polymorphs of paracetamol.The
Journal of the American Chemical Society, 123:5086–5094, 2001.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendel-
sohn, H. Frystyk Nielsen, S. Thatte, and D. Winer.Sim-
ple Object Access Protocol (SOAP) 1.1. W3C, 2000.
http://www.w3.org/TR/SOAP .

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1. W3C, 2001.
www.w3.org/TR/wsdl .

[5] J. Clark. XSL Transformations. W3C, 1999.
http://www.w3.org/TR/1999/ REC-xslt-19991116 .

[6] J. Clark and S. DeRose. XML Path Language (XPath).
W3C, 1999. <http://www.w3.org/TR/1999/
REC-xpath-19991116> .

[7] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Execu-
tion Language for Web Services, Version 1.0. BEA Sys-
tems, IBM, Microsoft, 2002. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnbiz2k2/html/ bpel1-0.asp.

[8] Farell et al. Security Assertion Markup Language
(SAML). OASIS. http://www.oasis-open.org/
committees/security/docs/ .

[9] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. Intl J. Supercomputer Applications, 11(2):115–128, 1997.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration. The
Globus Project, 2002. http://www.globus.org/
research/papers/ogsa.pdf .

[11] W. Hoschek. The Web Service Discovery Architecture.
In Proc. of the Int’l. IEEE/ACM Supercomputing Confer-
ence (SC 2002), 2002. http://edms.cern.ch/file/
342747/1/wsda2002-1.pdf .

[12] W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko,
P. Erk, A. Gavezzotti, D. W. M. Hofman, F. J. J. Leusen, J. P. M.
Lommerse, W. T. M. Mooij, S. L. Price, H. Scheraga, M. U. Schmidt,
B. P. van Eijck, P. Verwer, and D. E. Williams. Crystal structure
prediction of small organic molecules: a second blind test.Acta
Cryst., B58:647–661, 2002.

[13] P. Prescod.Slippery SOAP: The Two Sides of SOAP (scratchpad),
2003.http://www.prescod.net/soap/views/ .

[14] T. Sandholm and J. Gawor. Globus Toolkit 3 Core -
A Grid Service Container Framework, Beta Draft. The
Globus Project, 2003. http://www-unix.globus.org/
toolkit/3.0beta/ogsa/docs/ gt3 core.pdf .

[15] T. D. Thain, T. Tannenbaum, and M. Livny. Condor and the
Grid. In F. Berman, A.J.G. Hey, and G. Fox, editors,Grid Com-
puting: Making The Global Infrastructure a Reality. John Wi-
ley, 2003. http://media.wiley.com/ product data/
excerpt/90/ 04708531/ 0470853190.pdf .

[16] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Marique, T. Sandholm, D. Snelling, and
P. Vanderblit. Open Grid Services Infrastructure. The
Globus Project, 2003. http://www-unix.globus.org/
toolkit/3.0beta/ogsa/docs/ specification.pdf .

7

