
Evaluating Software Architectures for Stability: A Real Options Approach

Rami Bahsoon (Student), Wolfgang Emmerich(Supervisor)
Department of Computer Science, University College London,

Gower Street, London WC1E 6BT,UK
{r.bahsoon, w. emmerich}@cs.ucl.ac.uk

1. Research problem and importance

Architectural stability refers to the extent an
architecture is flexible to endure evolutionary changes in
stakeholders’ requirements and the environment, while
leaving the architecture intact.
 In an evolutionary context, there is a pressing need
for stable software architectures. In this context,
requirements are generally volatile; they are likely to
change and evolve over time. The change is inevitable as
it reflects changes in stakeholders’ needs and the
environment in which the software system works. The
tension between an unstable architecture and the volatile
requirements may entail large and disruptive changes for
the requirements to be accommodated. The change may
“break” the architecture necessitating changes to the
architectural structure (e.g. changes to components and
interfaces), architectural topology (e.g. architectural style,
where a style is a generic description of a software
architecture), or even changes to the underlying
architectural infrastructure (e.g. middleware). It may be
expensive and difficult to change the architecture as
requirements evolve [6]. Consequently, failing to
accommodate the change leads ultimately to the
degradation of the usefulness and the value of the system.

From an economic perspective, the volatility of
requirements is a source of uncertainty that places the
long-term investment in a particular architecture at risk. If
the business goal that the system should be long-lived,
should evolve to accommodate future changes, and
should create future value, stability becomes an important
architectural quality to evaluate an architecture for. The
evaluation is necessary to cope with the incomplete
knowledge in an evolutionary context and mitigate risks
in the long-term investment in a particular architecture.
The evaluation is crucial for analyzing trade-offs between
two or more candidate software architectures for stability;
analyzing the strategic position of the enterprise- if the
enterprise is highly centered on the software architecture
(as it is the case in web-based service providers
companies: e.g. amzon.com); valuing the long-term
investment in a particular architecture; and validating the
architecture for evolution.

Our work addresses the following research question:
can we use an economic approach (real-options theory) to

systematically evaluate the stability of an architecture in
the face of the changing requirements?

The abstract is further structured as follows. Section
2 presents our research claims. Section 3 summarizes our
approach in exploiting options theory to evaluate
architectural stability. Section 4 discusses related work.
Section 5 summarizes our work in progress and expected
contributions.

2. The major research claims

We claim that using strategic value-based reasoning

[10] approach we can evaluate the stability of an
architecture in the face of volatile requirements. We argue
that real options theory [8] is well suited to assist in the
evaluation. A stable software architecture adds to the
software system and to the enterprise owing the
architecture a value. The added value is attributed to
flexibility and the options that flexibility creates over the
evolutionary periods of the software system. The added
value under the stability context is strategic in essence
and not immediate. It takes the form of (i) accumulated
savings through enduring the change without “breaking”
the architecture; (ii) supporting reuse; (iii) enhancing the
opportunities for strategic “growth” (e.g. exploring new
markets; expanding the range of services while leaving
the architecture intact; regarding an architecture as an
asset and instantiating the asset to support new market
products); and (iv) giving the enterprise a competitive
advantage by banking the stable architecture like any
other capitalized asset. An option provides the right to
make an investment in the future, without a symmetric
obligation to make that investment [3, 11]. If conditions
favorable to investing arise, the owner can exercise the
option by investing the strike price defined by an option.
In the architectural context, flexibility adds to the
architecture values in the form of real options- that give
the right but not a symmetric obligation- to evolve the
software system and enhance the opportunities for
strategic growth by making future follow-on investments.
Hence, the value of the investment in an architecture may
not only derive from the direct measurable cash flows of
the investment, but also from the ability of an architecture
to evolve, unlock future growth opportunities, and cope
with uncertainties.

Classical financial techniques, such as Discounted
Cash Flow (DCF) analysis and Net Present Value (NPV),
fall short in dealing with flexibility and uncertainty [11].
These techniques are valid when valuing an ongoing
business or an immediate investment. However, in the
case of valuing the stability of software architectures in
the face of evolutionary changes, the nature of the
investment is long-term and strategic. Real options theory
[8, 11] addresses the inability of these traditional
budgeting techniques to address strategic value under
uncertainty.

In short, to evaluate a software architecture for
stability using a value-based reasoning approach, we need
a technique that is suitable for strategic and long-term
valuation, factors flexibility, and makes the value of the
options created by flexibility tangible (as a way to make
the value of stability tangible). Real options theory
appears to be well suited to satisfy our needs.

3. Exploiting options theory to predict
architectural stability

Approaches to evaluating software architectures for
stability can be retrospective or predictive [7]. Both
approaches start with the assumption that the software
architecture’s primary goal is to guide the system’s
evolution. Retrospective evaluation looks at successive
releases of the software system to analyze how smoothly
the evolution took place. Predictive evaluation provides
“insights” on the evolution of the software system based
on examining a set of likely changes and the extent the
architecture can endure these changes. In [1] we take a
predictive approach to evaluation. We use value-based
reasoning to prediction. We exploit options theory to
predict the stability of software architectures given likely
evolutionary changes. Specifically, we derive a predictive
model from Black & Scholes [2] financial options theory.
Subsequent subsections draw an analogy with [2], make
assumptions, formulate, and interpret the model.

3.1. Option pricing using Black & Scholes

The best-known financial option pricing method (the
seminal work in the field) is that of Black and Scholes [2]
(Nobel Prize winning), which is a solution to a stochastic
calculus problem.

Under the Black and Scholes model, five parameters
are needed to determine the option price. These are the
current stock price (S), the strike price (X), the time to
expiration (T), the volatility of the stock price (σ), and the
free-risk interest rate(r). The price of the stock option is a
function of the stochastic variables underlying stock’s
price and time. The strike price (X) is the price at which
the holder may exercise a contract for the purchase/sale of
the underlying stock; it is also called the exercise price.

The current stock price (S) if exercised at some time in
the future, the payoff from a call option will be the
amount by which the stock price exceeds the strike price.
A call option gives the right to acquire an asset of
uncertain future value for the strike price. The value of a
call option on an asset depends on the value of the asset
itself and the cost of exercising the option. Call options,
therefore, become more valuable as the stock price
increase and less valuable as the strike price increases.
The volatility of the stock price (σ) is a statistical measure
of the stock price fluctuation over a specific period of
time; it is a measure of how uncertain we are about the
future of the stock price movements. The expected value
of a call option is given by E [max (St- X, 0)], where St
denotes the stock price at time t. The call option price, C,
is the value discounted at the risk-free rate of interest. It
calculates to (1).

 C = e –r (T-t) E [max (St- X, 0)] (1)

3.2. Analogy and assumptions

A major insight behind real options theory is that

flexibility in real asset is analogous to financial options:
investing in flexibility is seen as buying options and
exploiting flexibility is seen as exercising them [13].
Having set flexibility as an option problem, the challenge
becomes valuing flexibility: we adopt [2] to valuation.
We map the economic characteristics of the architecture
(under development or evolution) onto the parameters of
the option model (1)- as shown in Table 1. The economic
characteristics include the development (evolution) effort,
schedule, and budget.

Black and Scholes is an arbitrage-based technique; it
requires knowledge of the value of the asset in question in
the span of the market. Software architectures are (non-
traded) real assets. Real options valuation based on
arbitrage-based pricing techniques determines the value
of an asset in question in the span of the market value
using an equivalent twin asset [11]. The twin asset is an
asset with the same risks characteristics as the project (or
asset in question) if the option were “exercised”. To
facilitate valuation using the twin asset, we view the
architecture as a portfolio of requirements- a portfolio of
assets. In this context, we argue that the value of the
architecture is in the value of the requirements it supports
during the system’s operation or tend to support as it
evolves. The application of [2] assumes that the stock
option is a function of the stochastic variables underlying
stock’s price and time. We assume that value of an
evolvable architecture changes with time. It tends to
change in uncertain ways and stochastically with the
cost/value arising from changes in requirements.

Table 1. Financial/real options/software architecture
analogy
Option on
stock

Real option on
project

Case of evaluating
architectural stability

Stock Price Value of the
expected cash
flows

Value of the likely
change

Exercise
Price

Investment cost Estimate of the likely
cost to accommodate the
change

Time-to-
expiration

Time until
opportunity
disappears

Time-to-release (and
deploy) the software
generation

Volatility Uncertainty of
the project
value

“Fluctuation” in the
value of the requirement
as deemed by the
stakeholders; or changes
in market-value over a
specified time

Risk-free
interest rate

Risk-free
interest rate

Interest rate relative to
budget and schedule

3.3. Formulation: Constructing call options to
make the value of stability tangible

Generally speaking, evolutionary changes are
unanticipated. We assume that we can elicit a set of
representative changes in requirements {i1, i2,…, in} that
are likely to occur. Let assume that the value of the
architecture is V, where V corresponds to current stock
price St. As the architecture evolves, the change in ii is
assumed to enhance the architecture value by xi % with a
follow-up investment of Iei, where Iei corresponds to an
estimate of the likely cost to accommodate the change.
This is similar to a call option to buy (xi %) of the base
project, paying Iei as exercise price. Thus, the investment
opportunity in an architecture can be viewed as a base-
scale investment in the architecture plus a call option on
the future opportunity, where the future opportunity
corresponds to the investment to accommodate the
evolving requirement(s). The value of the constructed call
options give an indication of the flexibility of the
architecture to endure the likely changes in requirements
{i1, i2,…, in}. Thus, the value of the architecture
materializes to (2) accounting for V and the expected
value and exercise cost to accommodate ii for i ≤ n. We
assume that the interest rate is equal to zero for the
simplicity of exposition.

3.4. Interpretation

We give a rough interpretation of (2) in the context
of the evaluation for architectural stability. For a likely
change in requirement ik: (a) the option is in the money, if
xkV exceeds the exercise cost (i.e. max (xkV - Iek, 0) >0).
In this case, the architecture is said to be potentially
stable with respect to ik. Generally speaking, the higher
the value xkV, the better the chances to exceed the
exercise price of the option. (b) The option is out of
money, if the value of the call option sinks to zero (i.e.
max (xkV - Iek, 0) =0). In this case, there is no chance that
the option will ever worth something in the future. The
change is said to exhibit future threats on the stability of
the architecture; the architecture is unlikely to be stable
for this change.

Accounting for all the n likely changes in {i1, i2, …,
in}: If the cumulative expected value of the future
investments in all the change tends to zero, it is very
unlikely for the architecture to be stable with respect to
the likely evolutionary changes. Hence, the architecture
does not tend to create any future growth opportunities.
We interpret the strategic value of the investment in an
architecture as the acquisition of a base asset that embeds
growth opportunities. The values of the call options
indicate the ability of an architecture to unlock future
growth opportunities and enhance the upside potentials of
the architecture. In case of trade-offs, we interpret the
strategic value relative to other candidate architectures.
The more an architecture is able to unlock future
opportunities, the more stable and “evolution friendly” it
is likely to be.

4. Related work

 The only evaluation technique to architectural stability
is the work of [7]; it takes a retrospective approach to
evaluation. The approach uses simple metrics like
software size metrics, coupling metrics, and color
visualization to summarize the evolution pattern of the
software system across its successive releases. The
evaluation appears to be expensive and unpractical; it
requires information to be kept for each release of the
software. Yet such data is not commonly maintained,
analyzed, or exploited. The evaluation assumes that the
system already exist and has evolved making this
approach not preventive and unsuitable for early
evaluation.
 Economic approaches to software design appeal to the
concept of static NPV as a mechanism for estimating
value [4]. These approaches, however, are not readily
suitable for strategic reasoning of software development
as they fail to factor flexibility. Real options theory has
been adopted to address this problem: Sullivan [14]
suggested that real options analysis can provide insights

 n

 V+ ∑ E [max (xiV - Iei, 0)] (2)
 i=0

concerning modularity, phased projects structures,
delaying of decisions and other dynamic software design
strategies. Sullivan et al. [13] formalized that option-
based analysis, focusing in particular on the flexibility to
delay decisions making. Sullivan et al. [12] argued that
the modularity in software design creates value in the
form of real options. A module creates an option to invest
in a search for a superior replacement and to replace with
the best alternative discovered, or to keep if it is still the
best choice. The value of such an option could be realized
by the optimal experiment-and-replace policy. Knowing
this value can help a designer to reason about both
investment in modularity and how much to spend
searching for superior alternatives.

5. Ongoing work and concluding remarks

Viewpoint-oriented framework to capture the
options. The options model (2) requires the estimation of
several parameters. The most important are xiV and Iei
which respectively correspond to the expected value of
the ith change and its exercise cost, when to be realized by
the subject architecture. Estimating the cost Iei is a well-
established component in software engineering; it is
outside the scope of our work. To estimate xiV: in
financial options several proxies are available to predict
the value of the financial asset - the most obvious proxy is
simply the historical values of the asset. In real options
such proxies rarely exist and the analyst may need to rely
on experience and judgment in his/her estimations [5].
Real options valuation (based on arbitrage) focuses on
market value and uses the standard deviation of the rate
of return on the twin asset as an input to the valuation of
the asset in question. If the asset value is not directly
observable, it is reasonable to use estimates of the
revenues on the asset to estimate the market value [11].
As the analyst(s) relies on experience and judgment in
his/her estimation of the parameters, the estimates tend to
be subjective. However, back-of-the envelope
calculations, which are based on value estimates (rather
on market value) are yet revealing [12]. It remains an
open challenge to strongly justify precise estimates for
real options in software [12].

Some aspects of follow-up investment in {i1, i2,…,
in} can be justified in terms of the directly observable
cash flows linked to future operational benefits. However,
many aspects that contribute to the market value are
indirectly observable through cash flows. Yet, their
contribution to the added value is crucial for predicting
the stability of the architecture. The process of valuing
the expected return (value) of the follow-up investment in
architectures of large complex systems necessarily
involves many parties- each with their own perspective on
the system defined by their valuation objectives,
assessment regime, skills, responsibilities, knowledge,

and expertise. More, each of the concerned parties might
find it necessary to align the valuation with either the
business, organizational, system, and/or market
objectives. The problem of how to guide the valuation
and introduce discipline in this setting, we term as the
multiple perspectives valuation problem. To address this
problem, we suggest a conceptual viewpoints-oriented
framework- sketched in figure 1. The framework is built
around four main concepts: viewpoint, perspective,
relative view, and view. A viewpoint is a standing or
mental position used by an individual or group of
individuals when examining a universe of discourse. A
perspective is a set of facts observed and modeled
according to a particular aspect of reality. We introduce
the notion of relative view. A relative view integrates the
perspectives of this viewpoint. We define a view as an
integration of the all the relative views.

We assume that the universe and the set of discourse

are: the architecture under evaluation, {i1, i2, …, in};
budget and schedule; and other constraints. A viewpoint
slot maintains the perspective and the relative view. We
assume that there exist m parties {P1, P2, …, Pm}involved
in the evaluation for stability; where Pi corresponds to an
owner of the ith viewpoint. We use the term party to
describe a group of “actors” or “knowledge source” that
advocate this viewpoint. A Pi is interested in knowing
what value the architecture adds to their concerns upon
realizing the change {i1, i2, …, in}. The parties’ concerns
are described by a set of attributes {A1pi, A2pi, …, Akpi}.
An AjPi, for all j≤k, is quantified and assigned an
attribute value taking a valuation strategy. A valuation
strategy is a method, a technique, or a regime used to
assess an attribute. The valuation strategy may be aligned
with the value preposition and objectives (e.g. market,
customer, … etc.). Note valuing these attributes is crucial
to the evaluation of software architecture for stability
relative to the Pi’s standing point. In software it is not
usual to value using a unique criteria; the criteria vary

P1

Viewpoint(VP1)

Perspectives

RV1

Relative View
Resolve conflicts
and integrate

Value
Estimate

Figure 1. Viewpoints framework to capture the options

Model
Attributes

Views
P2

Perspectives

RV2

Viewpoint(VP2)

across viewpoints, with domains, products, and/or
companies. Thus, the attributes may address different
concerns. Their attribute values may be of different unit
scales. However, they all pour in determining the
expected return on the investment. The relative view
integrates the attribute values and determines the value
relative to this viewpoint. The attributes, attributes value,
relative views, and valuation strategy are elements that
constitute the perspective slot in the suggested
framework. To obtain a value estimate from {P1, P2,

…,Pm}, the relative views are integrated to form views.
This can be achieved by building on multi-attribute
analysis methods [15]. Viewpoints research (e.g. [9]) sets
the path for dealing with various problems that may arise
from the integration (e.g. conflicts).

Tuning the interpretation of the option
model. The model is critical to its input {i1, i2,…, in}. To
“tune” the interpretation of the model, we are currently
defining metrics to analyze and “profile” the input. These
metrics tend to measure the extent to which an input is
revealing to modification- measured in relevance to value
and cost- when ii exercises the subject architecture.

“Operationalizing” the model. We are in the
process of formulating a three-phased evaluation method
for evaluating software architectures for stability and
evolution. The first phase captures the options, estimates
the parameters of (2) and “profile” the input using the
metrics; the second phase values the options; and the
third phase assesses stability and interprets the results.

Evaluation. We will empirically evaluate the
approach in an industrial setting with SearchSpace, one of
UCL industrial partners. The evaluation aims to test the
maturity of the approach, its applicability, and the
effectiveness of the predictive model. SearchSpace is
investigating changing one of its products’ architectural
infrastructure from CORBA to EJB. The investment in
the change will increasingly be made on the basis of the
stability that the architectural infrastructure creates with
respect to the forward-looking strategic benefits. Roughly
speaking, changing the product infrastructure from
CORBA to EJB may (or may not) create growth options.
These options may be exercised at a point in the future to
realize certain gains. Evaluating the payoff of these
options may give an indication of the stability that such
change may create.

Concluding remarks. The work is expected to
form a genuine effort on understating the relation
between changes in requirements and the architecture
through strategic value-based reasoning. It aims to assist
stakeholders’ in strategic “what if” analysis, analyzing
the strategic position of the enterprise- if the enterprise is
highly centered on the software architecture (as it is the
case in web-based service providers companies) and
evaluating trade-offs between two or more candidate

software architectures for stability. The intellectual
framework is most critical; it demonstrates that with
value-based reasoning we can improve our ability to
evaluate for architectural stability and develop software
systems that need to adapt to the inevitable evolving
requirements.

6. References

1. Bahsoon, R., Emmerich, W.: ArchOptions: A Real Options-
Based Model for Predicting the Stability of Software
Architecture. In: Proceedings of the ICSE Fifth Workshop on
Economics-Driven Software Engineering Research (2003)
2. Black, F., Scholes, M.: The Pricing of Options and
Corporate Liabilities. Journal of Political economy (1973)
3. Boehm, B., Sullivan, K. J.: Software Economics: A
Roadmap. In: Finkelstein, A. (ed.): The Future of Software
Engineering (2000)
4. Boehm, B.: Software Engineering Economics. Prentice Hall
(1981)
5. Favaro, J. M., Favaro, K.R., Favaro, P. F.: Value-Based
Software Reuse Investment. Annals of Software Engineering.
Vol. 5. (1998) 5 – 52
6. Finkelstein, A.: Architectural Stability, Some Preliminary
Comments.http://www.cs.ucl.ac.uk/staff/a.finkelstein. (2000)
7. Jazayeri, M.: On Architectural Stability and Evolution.
Lecture Notes in Computer Science, Springer Verlag. (2002)
8. Myers, S. C.: Determinants of Corporate Borrowing.
Journal of Financial Economics. Vol. 5(2). (1977) 147-175
9. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for
Expressing the Relationships between Multiple View in
Requirements Specification. Transactions of Software
Engineering, Vol. 20(10).(1994) 760-773
10. Proceedings of the Workshops on Economics-Driven
Software Engineering Research, EDSER 1 to 5. Workshops
held in conjunction with the 21st through 25 th International
Conference on Software Engineering (1999 – 2003)
11. Schwartz, S., Trigeorgis, L.: Real options and Investment
Under Uncertainty: Classical Readings and Recent
Contributions. MIT Press Cambridge, Massachusetts (2000)
12. Sullivan, K. J., Griswold, W., Cai, Y., Hallen, B.: The
Structure and Value of Modularity in Software Design. In:
Proc. ESEC/FSE-9, Vienna, Austria (2001) 99-108
13. Sullivan, K. J.: Chalasani, P., Jha, S., Sazawal, V.:
Software Design as an Investment Activity: A Real Options
Perspective. In: Real Options and Business Strategy:
Applications to Decision-Making. Trigeorgis L.(ed.) Risk
Books (1999)
14. Sullivan, K. J.: Software Design: The Options Approach.
In: 2nd International Software Architecture Workshop, San
Francisco, CA (1996) 15–18
15. Yoon, Y., Paul, K., Hwang, L.: Multiple Attribute
Decision Making: An Introduction, Sage Publications (1995)

