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ABSTRACT
We demonstrate how XML and related technologies can be
used for code mobility at any granularity, thus overcoming
the restrictions of existing approaches. By not fixing a par-
ticular granularity for mobile code, we enable complete pro-
grams as well as individual lines of code to be sent across the
network. We define the concept of incremental code mobil-
ity as the ability to migrate and add, remove, or replace code
fragments (i.e., increments) in a remote program. The com-
bination of fine-grained and incremental migration achieves
a previously unavailable degree of flexibility. We examine
the application of incremental and fine-grained code migra-
tion to a variety of domains, including user interface man-
agement, application management on mobile thin clients, for
example PDAs, and management of distributed documents.
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1 INTRODUCTION
The increasing popularity of Java and the spread of Web-
based technologies are contributing to a growing interest in
dynamic and reconfigurable distributed system architectures.
Such reconfiguration can be achieved with code migration,
transferring fragments of code across the network, from one
host to another.

The potential mobility range is however wider, starting from
simple data mobility, where information is transferred. Ex-
amples are the actual parameters that are passed to a remote
procedure call or the web page that is returned to a get re-
quest in the HTTP protocol. At a level above this, code
mobility allows the migration of executable code: browsers
loading applet classes from remote servers are very com-
mon examples of code mobility. Java-based technologies,
for instance, Java RMI [16] and Java Virtual Machines, such
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as those built into Web browsers, offer a mobility granular-
ity at a class level. M0 [30], Telescript [19], Obliq [6] are
non Java based mobile code languages and systems. Mo-
bile agents [31, 14], in which code and data move together,
can be considered the highest level of mobility that can be
achieved in a logical context.

Several application domains need a more flexible approach
to code mobility than can be achieved with Java and with
mobile agents in general. This flexibility can either be re-
quired as a result of low network bandwidth or scalability.
The 9,600 baud bandwidth between a server and a GSM
mobile phone cannot cope with downloading large amounts
of Java byte code from a server. Scalability requirements
can mean for example, that applications on several thousand
clients have to be kept in sync and be updated with new code
fragments.

In this paper we show how to achieve more fine-grained mo-
bility than in the approaches that are based on Java. We
demonstrate that the unit of mobility can be decomposed
from an agent or class level, if necessary, down to the level of
individual statements. We can then support incremental in-
sertion or substitution of, possibly small, code fragments and
open new application areas for code mobility such as man-
agement of applications on mobile thin clients, for example
wireless connected personal digital assistants (PDAs), user
interface construction and document management.

This work builds on the formal foundation for fine-grained
code mobility that was established in [21]. That paper devel-
ops a theoretical model for fine-grained mobility at the level
of single statements or variables and argues that the potential
of code mobility is submerged by the capability of the most
commonly used language for code mobility, i.e., Java. In
this paper, we share that vision and focus on an implementa-
tion of fine-grained mobility using standardized and widely
available technology.

It has been identified that mobile code is a design concept
that is independent of technology and can be embodied in
various ways [13] in different technologies. The eXtensible
Markup Language (XML) [5] can be exploited to achieve
code mobility at a very fine-grained level. XML has not been
designed for code mobility, however it happens to have some

1



interesting characteristics, mainly related to flexibility, that
allow its use for code migration. In particular, we will exploit
the tree structure of XML documents and then use XML re-
lated technologies, such as XPointer [20] and the Document
Object Model (DOM) [3] to modify programs dynamically.
The availability of this technology considerably simplifies
the construction of application-specific languages and their
interpreters.

This paper is further structured as follows. In Section 2, we
discuss related work, most notably XML, and alternative ap-
proaches to logical code mobility. In Section 3, we show how
XML supports the definition of high-level languages and
how incremental code mobility can be defined with XML.
In Section 4, we argue that incremental code mobility has
the potential for a set of application areas such as user in-
terface development, management of applications on mobile
thin clients, and consistency management of distributed doc-
uments. We give examples of the application of our approach
in these domains. In Section 5 we demonstrate the imple-
mentation of mobile code systems supported by off-the-shelf
XML products. Section 6 evaluates the approach and identi-
fies strengths and weaknesses. Section 7 contains a summary
of the work done and some future work.

2 OVERVIEW OF XML AND LOGICAL MOBILITY
Physical mobility is concerned with the physical movement
of hosts, such as notebooks, PDAs, mobile phones and wear-
able computers. Logical mobility is the ability to transfer
data and/or code from one host to another by using a net-
work. This paper focuses on logical mobility, though the
approach is also applicable to information that transits be-
tween physically mobile hosts; in fact, Section 4 discusses
how our work can be applied to manage applications de-
ployed on PDAs. Logical mobility encompasses data and
code mobility.

Data mobility is a very common mechanism and often used
to exchange or spread information among different hosts dis-
tributed on a network. Data mobility can be achieved by
passing parameters to remote procedure calls, object requests
or the put and get operations of the file transfer protocol.
With the introduction of the Internet and the World-Wide-
Web the Hyper Text Markup Language (HTML) has been
used as the predominant format for data that moves between
hosts on the Internet.

XML [5] is the basis for next generation markup languages
for the Internet. XML is a subset of the Standard Generalized
Mark-up Language (SGML) [15]. Unlike HTML both XML
and SGML allow users to define their own set of mark-up
tags for structuring documents. These user-defined mark-
up tags are defined in document type definitions (DTDs).
A DTD is a grammar that defines the syntax of documents.
XML documents always declare a reference to their DTD in
order to enable generic parsers to obtain the specification of
the grammar. Thus with the advent of XML, different for-

mats for transferable data can be defined. Many different
DTDs have been standardized to encode specific notations
in XML. Examples of software engineering applications of
XML include the UXF [29] and the XMI [23] DTDs. They
both define transfer formats for UML [4] models.

XML is not only useful for publication of documents on the
World-Wide-Web, but can also be used as an application-
specific transport protocol in distributed system construc-
tion. We report in [11] about the use of XML for the trans-
port of data between different distributed and heterogeneous
components of a financial trading system. That system uses
XML documents as parameters to CORBA object requests.
Moreover, the OMG have requested proposals for the in-
teroperability between their Interface Definition Language
and XML [24] that will address the seamless interchange of
XML documents and equivalent complex values of IDL data
types.

Data and code mobility in Java are supported through ob-
ject serialization and class loading. The status of objects
can be serialized and transferred from one host to another
while the class loading strategies can vary, depending on the
application. For instance, the Netscape class loader down-
loads applet classes from the web server of the containing
HTML page; the Java RMI class loader allows the applica-
tion to download the classes of the objects remotely passed
as parameters at run time. The class of the moved object can
migrate onto the new host or it can be fetched from a remote
server. Many different technologies have been built on top
of these simple mechanisms.

Two more sophisticated mobile code paradigms are classi-
fied in [13] as remote evaluation and mobile agents. Remote
evaluation allows the proactive shipping of code to a remote
host [28] to be executed. Mobile agents are autonomous
objects carrying their state and code that proactively move
across the network. Many new systems have been developed
to support mobile agents [17, 31, 14]. Agent mobility re-
quires the migration of both code and state of the agent at the
same time and they can move proactively performing tasks
on behalf of users.

3 SPECIFYING INCREMENTAL CODE MOBILITY
WITH XML

XML provides a flexible approach to describe data struc-
tures. We now show that XML can also be used to describe
code. XML DTDs are, in fact, very similar to attribute gram-
mars [18]. Each element of an XML DTD corresponds to a
production of a grammar. The contents of the element de-
fine the right-hand side of the production. Contents can be
declared as enumerations of further elements, element se-
quences or element alternatives. These give the same expres-
sive power to DTDs as BNFs have for context free grammars.
The markup tags, as well as the PCDATA that is included
in unrefined DTD elements, define terminal symbols. Ele-
ments of XML DTDs can be attributed. These attributes can
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT KarelProgram (turnon|go|

turnleft| pickbeeper|putbeeper|
turnoff|times)*>

<!ELEMENT turnon EMPTY>
<!ELEMENT go EMPTY>
<!ELEMENT turnleft EMPTY>
<!ELEMENT pickbeeper EMPTY>
<!ELEMENT putbeeper EMPTY>
<!ELEMENT turnoff EMPTY>
<!ELEMENT times (turnon|go|turnleft|

pickbeeper|putbeeper|turnoff|times)*>
<!ATTLIST times howoften CDATA #REQUIRED>

Figure 1: The DTD for Karel’s Instruction Set.

be used to store the value of identifiers, constants or static se-
mantic information, such as symbol tables and static types.
Thus, XML DTDs can be used to define the abstract syn-
tax of programming languages. We refer to documents that
are instances of such DTDs as XML programs. XML pro-
grams can be interpreted and in Section 5 we discuss how
such interpreters can be constructed using XML technolo-
gies. When XML programs are sent from one host to another
we effectively achieve code mobility.

In order to demonstrate these ideas, we consider a very sim-
ple programming language to instruct Karel, the robot. The
language has first been defined in [25]. In this paper we
only consider a subset of it for reasons of brevity. Karel’s
language has a set of primitives. These includeturnon , to
switch the robot on,go to make it proceed one step into its
current direction,turnleft to change the robots current di-
rection by turning left,pickbeeper andputbeeper to get
and dispose of beeper objects andturnoff to turn Karel off.
Moreover, Karel’s programming language includes a number
of control structures for repetition and conditional execution.
Here, we only consider thetimes statement. It repeats a

<?xml version="1.0"?>
<!DOCTYPE KarelProgram SYSTEM "karel.dtd">
<KarelProgram>

<turnon/>
<times howoften="2">

<turnleft/>
<times howoften="2">
<go/>
</times>

</times>
<turnoff/>

</KarelProgram>

Figure 2: An XML Program for Karel.
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Figure 3: The Actions of the Robot.

cycle of commands for a given number of times. Figure 1
shows the syntax of the subset of Karel’s programming lan-
guage defined as an XML DTD.

Figure 2 shows an instance of the DTD in Figure 1. This
instance is an XML program that instructs Karel first to turn
left, then to proceed two steps, turn left again and proceed
two more steps. Karel’s route is shown in Figure 3. If we
imagine that Karel is a real robot, that is instructed from
some control host by sending these XML programs via, for
example, a radio network, we have then achieved logical
code mobility with XML.

Unlike Java programs, which are sent in a compiled form,
XML programs are transferred as source code and then inter-
preted on a remote host. Unlike Java, XML does not confine
us to sending coarse-grained units of code; XML documents
do not need to begin with the root of the DTD, they can also
start with other symbols of the grammar. This enables us
to specify sub-programs and even individual statements. We
refer to such code fragments as XML program increments.
Hence, we can specify complete programs as well as arbi-
trarily fine-grained increments in XML.

As Karel is controlled by a slow radio network, we want to
avoid re-sending the whole program but rather incrementally
send new program increments. Figure 4 shows such a fine-
grained program increment. We can imagine that we want to
change the behaviour of Karel by replacing theturnleft

statement with this increment and thus change the behaviour
of Karel making it turn right instead of left1. Note, that the

1Because the Karel language does not have a primitive to turn right, we

<?xml version="1.0"?>
<!DOCTYPE times SYSTEM "karel.dtd">

<times howoften="3">
<turnleft/>

</times>

Figure 4: XML Code Increment.
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root().child(1,times).child(1,turnleft)

Figure 5: XPointer Address for Increment.

DOCTYPEthat determines the root symbol in this increment is
times rather thanKarelProgram in the full XML program
in Figure 2.

The question that arises is how we specify the insertion or
replacement of program increments. Addressing particular
locations in an HTML document is achieved by “anchors”.
These anchors, however, cannot be defined by users who do
not have control over the document but have to be included
by the author of the document. Likewise in our approach,
the sender of an increment does not have control over the
program once it has been sent. However, we cannot assume
that programmers identify anchors or other labels a-priori
that could then later be used for incremental code insertion
or replacements.

To solve this problem, we use XPointer, an XML-related
standard. XPointer is part of the XLink specification [20]
and overcomes the limitation of HTML by supporting navi-
gations within XML documents. These navigations are capa-
ble of addressing every document component without having
to modify the document itself. We use XPointer to identify
that component of an existing XML program that we want to
replace with a new increment.

Going back to our example, Figure 5 shows an XPointer ex-
pression that determines the Karel program statement that
we want to replace. The XPointer expression starts from the
root of the program and then selects the first statement of
type times , and in that statement it selects theturnleft

statement. Thus, by specifying a fragment of a program in
XML together with an XPointer expression, we can express
incremental code mobility. Figure 6 shows how Karel’s be-
haviour will differ after the new increment has replaced the
turnleft statement.

have to implement turning right by turning left three times.
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Figure 6: The Incremental Change to Karel’s Behaviour.

4 APPLICATIONS
In the preceding section we have presented our ideas through
a deliberately simple example. In this section, we describe
application domains that will benefit from incremental code
mobility with XML. These include user interfaces engines,
the management of applications on portable digital assis-
tants, and the flexible co-ordination of consistency checks
in distributed documents.

User-Interface Engines
The installation and administration of large-scale systems
with thousands of clients is a potential application for in-
cremental code mobility. The departure control system of
airlines that are used to handle check-ins are good exam-
ples. For large airlines or alliances, the clients implement-
ing the user interface of such systems have to be deployed
on several thousand machines, distributed across the globe.
The machines are not necessarily owned by the airlines but
are rather temporarily rented from airport authorities, which
want to keep tight control on updates of software. Thus air-
lines cannot frequently update the software that is installed
on these machines.

It would be possible to accommodate changes by deploy-
ing a Java Virtual Machine on each of these systems and
downloading front-end applications from centralized servers.
The Java approach, however, has two disadvantages. First it
requires code of substantial size to be downloaded from a
server, possibly through slow dial-up networks. Second, the
Java code needs to be changed whenever the user interface
needs to be changed. These limitations can be overcome by
installing a general-purpose user interface engine onto each
of the client machines that interpret high-level user interface
descriptions.

XwingML is a DTD for a user interface description lan-
guage [27]. It provides markup tags for all Java Swing user
interface components and also provides an interpreter for
XwingML documents that generates the desired user inter-
faces. Applying our approach of code mobility with XML,
the high-level descriptions of user interfaces can be sent from
a centralized server to all distributed client hosts. As the user
interface descriptions are rather small compared to the size
of the Java byte code of the full user interface application,
we avoid the first of the problems above. The second limi-
tation is overcome because the user interface description is
just an XML document, which can be generated by server
applications.

Incremental mobility can be applied successfully in this con-
text. If the displayed window needs to be updated, for ex-
ample by adding or replacing some buttons, an XML code
increment can be sent to the user interface engine. The pro-
gram increment can be dynamically integrated with the orig-
inal XML code for the window, thus making the window
change its appearance.
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Application Management on Mobile PDAs
An interesting application for our XML-based approach to
code mobility arises when logical mobility meets physical
mobility. Lightweight computing devices, such as Personal
Digital Assistants (PDAs) are starting to be used for mission
critical computing and, therefore, need to be integrated into
enterprise computing environments. In these settings, it is
important for all PDAs to run the same set of applications.
An example for such a PDA deployment is the New York
Stock Exchange (NYSE). NYSE has equipped its traders
with PDAs, that are used for trade data entry and automated
transmission between trade data and back office trade settling
systems.

The applications that are used in financial markets have
to evolve rapidly. Financial analysts invent new products
known as derivatives on a regular basis. Once such a prod-
uct has been created, the trading applications need to be ad-
justed and be updated to support trading in these new deriva-
tives. If the machines used were wired workstations it would
be feasible to transfer and replace the complete code when
needed, though the incremental approach described in this
paper could also be applied. Our approach becomes essential
when the devices used are thin clients such as PDAs; in this
case incremental code updates are a valuable option, consid-
ering occasional disconnection of PDAs and slow IRDA or
radio network connectivity.

To take advantage of our approach application developers
have to devise an XML-based scripting language for devel-
oping trading applications. They also have to build an in-
terpreter for this language which is then deployed on each
PDA. Whenever an application needs to be changed, a pro-
gram increment can be added to a list of updates that are kept
on the server to which PDAs connect. Once a PDA physi-
cally enters the trading room and establishes connection to
the server, the server first checks the patch-level of the appli-
cations on that PDA. The server will then incrementally send
all application updates that are not yet deployed on the PDA.

The definition of an application-specific language and its
implementation in an interpreter may sound difficult to ac-
complish. It is, however, well supported. The application-
specific language can refer to XWingML or MoDAL [1] for
user interface definition purposes. The implementation of
an interpreter is simplified by the availability of light-weight
XML parsers. Moreover, Java Virtual Machines have already
been developed for PDAs, such as 3COM’s Palm Pilot [26]
and the Symbian operating system that will run on the next
generation of mobile phones.

Consistency Management of Distributed Documents
In [10], we describe an approach for managing the consis-
tency of distributed documents. We assume that documents
are represented in XML themselves. This is a fair assump-
tion, because Microsoft’s Office 2000 can save documents
in XML format, IBM’s Visual Age environment uses XML

<ConsistencyRule id="r1" type="CT">
<id>r1</id>
<Description>
For every instance in a collaboration
diagram there must be a class in
a class diagram with the same name.
</Description>
<Source>

<XPointer>
root().child(all,Package).

(all,CollaborationDiagram).
(all,Collaboration).(all,Instance)

</XPointer>
</Source>
<Destination>

<XPointer>
root().child(all,Package).

(all,ClassDiagram).(all,Class)
</XPointer>

</Destination>
<Condition expsource="origin().attr(CLASS)"

op="equal"
expdest="origin().attr(NAME)"/>

</ConsistencyRule>

Figure 7: A Consistency Rule in XML Format.

as representation scheme for its project repository and most
CASE tools can export UML diagrams in XMI.

The consistency management approach of [10] is based on
a language that can express consistency rules. This lan-
guage is, in fact, an XML programming language and Fig-
ure 7 shows an example consistency rule expressed in the
language.

The rule is based on the UXF DTD [29] for UML and de-
mands that for each object in each collaboration diagram,
there is a class in a class diagram whose name equals the
type of the object. In [10], we also discuss the interpreter
that executes these consistency rules in order to check the
consistency of XML documents. The result of such a check
for a rule is a set of XLink expressions that link consistent
document fragments with each other and inconsistent docu-
ment fragments to an indicator of such inconsistency.

The approach as described in [10] uses one set of rules and
one rule interpreter. This is rather inflexible as every mem-
ber of a software development team has to work against the
same set of rules. Moreover, the centralized interpretation of
rules creates a bottleneck that can be avoided if we have mul-
tiple rule interpreters on each developer’s machine. The rule
interpreter would then only have those sets of rules that the
developer needs to check consistency of the documents she
produced locally. We can even have dedicated interpreters
for particular subgroups of the development team in order
to check consistency between documents produced by dif-
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Figure 8: Consistency Management Architecture.

ferent team members and then at a higher level there can be
rule sets that check for project-wide consistency.

A significant number of rules will be defined for realistic
projects. However, for each developer, only a subset of rules
will be relevant. This subset is determined by the types of
documents that the developer currently modifies and also by
the state of the project. Closer to deadlines more rules may
be enforced than during initial stages. Thus, the sets of rules
that are active at each of our rule interpreters cannot be static
but has to change during the course of the project. In order to
accommodate such changes, the set of rules that are active at
each interpreter have to be changed. As each interpreter runs
a different set of rules, this cannot be achieved using a broad-
cast or a shared storage. New rules have rather to be added
and existing rules may have to be deleted from the rule sets
of individual interpreters. Using our approach, these changes
can be triggered by a consistency supervisor component that
uses incremental code migration to pass the XML-encoded
consistency rules to the different rule interpreters involved.

Figure 8 shows the overall architecture of this approach.
Each developer’s workstation and group and project servers
run an interpreter for XML-consistency rules. The consis-
tency supervisor manages the rule set of consistency rules
that are active for each of these interpreters and moves new
rules incrementally to these interpreters, if necessary.

We have so far shown how we can use XML to define pro-
grams and how we can define the update of code in an incre-
mental fashion. In the next section we describe how we can
utilize off-the-shelf XML technology in order to implement
interpreters for application specific languages and how these
interpreters implement incremental code updates.

5 IMPLEMENTATION OF THE APPROACH
After a programming language has been specified, an inter-
preter for this language needs to be implemented. We first
show how significantly off-the-shelf XML technology, most

import org.w3c.dom.*; //DOM API
import com.ibm.xml.parser.*; //XML Parser

public void execute(String program,
String update_location){

...
//create a new parser for Karel Programs
Parser parser=new Parser("Karel.dtd");
InputStream is;
// parser to read input stream from program
is=new StringBufferInputStream(program);
// root of parse tree for program in inc
Document inc=parser.readStream(is);
...

}

Figure 9: Translating XML Program into an AST.

notably XML parsers and the implementations of the Doc-
ument Object Model (DOM) [3], simplify the construction
of such interpreters. Then, we explain how the communi-
cation between sender and receiver can be achieved using
distributed object technology. Finally, we focus on the im-
plementation of incremental code mobility, demonstrate how
XPointer processors support locating the increment to be up-
dated, and how the DOM supports incremental syntax tree
modifications.

Interpreter Implementation
The first stage of interpreting a program involves the valida-
tion of the syntactic correctness. As a result of that stage,
interpreters produce an attributed abstract syntax tree (AST)
of the program. If the program is written in XML, both tasks
can be entirely delegated to a validating XML parser. We use
IBM’s XML4J [2] but many other validating XML parsers
exist. Figure 9 shows the use of the XML4J parser in our
Java-based Karel interpreter. When invokingparse on the
Karel code of Figure 2 the XML parser will construct the
parse tree that is graphically represented in Figure 10.

KarelProgram

tunroffturnon

turnleft

times
howoften=2

times
howoften=2

go

Figure 10: Abstract Syntax Tree for Karel’s Program.
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The next stage of the interpretation is a static semantic anal-
ysis that checks, for example, the uniqueness of identifiers
or the correct typing of expressions. This is often done while
the interpreter is executing the code in order to avoid several
traversals of the abstract syntax tree. Thus, while traversing
the tree and visiting each node, the interpreter first checks
for violations of the static semantics and then executes the
operation that the node represents. Operations for traver-
sals through ASTs that have been constructed from XML
documents are standardized by the Document Object Model
(DOM) [3] and are implemented in off-the-shelf products,
such as IBM’s XML4J. The DOM traversal operations sup-
port obtaining all the children of a node, querying the type
of the node, obtaining values of node attributes and so on.

Figure 11 shows an excerpt of the Karel interpreter that tra-
verses the abstract syntax tree and executes statements for
each AST node. The actions usually modify some state vari-
ables. In the case of Karel, these state variables indicate
whether the robot has been switched on, its current position
and direction and the number of items that it has picked up.
The interpretation is then performed as a recursive method
execute , which is initially passed the root node of the AST
tree. It then examines the type of node and performs the
appropriate action. For the root node, it recursively calls ex-
ecute for all its child nodes. For instance, for a node of type
go, it adds the current direction to its co-ordinates. We note
that for Karel, the implementation of each command requires
a few lines of code and in total is about 50 lines of Java code.

Code Mobility
In order to support code mobility, an XML program is sent
from a remote host rather than being read it from a local file
system. Any transfer protocol could be used for this purpose,
however in our example we have used Java/RMI [16] due to
its simplicity. XML programs are passed as parameter of
remote invocations. The object invoked implements the in-
terpreter for the XML program. The interpreter understands
all possible XML programs written according to the DTD of
Karel’s language. Figure 12 shows the migration of the code
to the remote host.

In order to facilitate the remote communication that trans-
mits the mobile code, the Karel Interpreter declares the re-
mote interfaceKarel as shown in Figure 13. That interface
is implemented by the Karel interpreter. This enables a con-
troller that resides on one host to send Karel programs for
interpretation on a different host. Note that we do not trans-
fer the DTD together with the code but rather assume that
the DTD is stored locally. This choice derives from the ob-
servation that the interpreter implementation is very tightly
linked to the DTD, because the DTD is the grammar of the
language and every interpreter is dependent on the grammar
of the language that it executes.

Incremental Code Mobility
So far, we have shown how to parse and interpret the pro-

import org.w3c.dom.*; // DOM API
import com.ibm.xml.parser.*; // XML parser

class KarelExecutor {
//the position and direction of Karel:
private int x_pos=5, y_pos=5;
private int x_direction=1, y_direction=0;
private int num_beepers=0; //items #
private boolean on=false;// status

public void execute(Node n) {
if(n.getNodeName().equals("KarelProgram")){

NodeList children=n.getChildNodes();
Node command;
for (int i=0; i<children.getLength();i++){

execute(children.item(i));
}

} else if (n.getNodeName().equals("go")){
if (on) {

x_pos=x_pos+x_direction;
y_pos=y_pos+y_direction;

}
} else ...

}
}

Figure 11: Traversing the AST during Interpretation.

XML

document

HOST1 HOST2

INTERPRETER

DTD

Figure 12: XML Program Migration to Remote Interpreter.

gram, which is passed as the first parameter to theexecute

method in Figure 13. The second parameter is an XPointer
expression. If this XPointer expression is not empty and is
well-formed, it will identify a node in the abstract syntax tree
that needs to be replaced with the program increment that is

import java.rmi.*;
import java.io.*;

public interface Karel extends Remote {
void execute(String program,

String update_location)
throws RemoteException,

UnambiguousInsertException;
} // Karel

Figure 13: Remote Method Invocation for Karel.
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Figure 14: Increment Migration to Robot Site.

passed as the first parameter toexecute . Figure 14 shows
the migration of the increment code. The strategy for im-
plementing incremental code mobility is then as follows: we
first parse the program increment passed as the first parame-
ter and construct an syntax tree for the increment, we evalu-
ate the XPointer expression and replace the node addressed
in the expression with the root node of the syntax tree of the
increment. This replacement is shown in Figure 15.

In order to implement this strategy for incremental updates,
we again take advantage of the DOM. Parsing the program
increment and constructing the AST for it is achieved in the
same way as for the full program. This time, the parser just
creates a tree whose root node type is different from the root
type of the DTD. In case of our Karel increment, a root in-
crement node of typetimes is created.

The evaluation of the XPointer expression for the replace-
ment node can be fully delegated to an XPointer processor.
Again there are several of those processors available and we
use the one that comes with XML4J. Figure 16 shows how
we use the XPointer processor in order to locate the node
that needs to be replaced. The replacement of the code in-
crement is shown at the bottom of Figure 16. We navigate to
the parent node ofreplace and use standard DOM opera-
tions to substitute it with the root node of the syntax tree of
the increment that was sent.

6 EVALUATION
In this section we discuss the advantages and current disad-
vantages of the approach. We also hint at how the disadvan-
tages may be overcome.

times
howoften=2

times
howoften=3

goturnleft

KarelProgram

tunroffturnon times
howoften=2

Code
Replacement

Figure 15: Result of Incremental Code Update on AST.

import org.w3c.dom.*; // DOM API
import com.ibm.xml.parser.*; // IBM parser
import com.ibm.xml.xpointer.*;//IBM xpointer
...
public void execute(String program,

String update_location)
throws RemoteException,

AmbiguousInsertException {
...
// create an XPointer object from
// the update location that is passed
XPointerParser xpp=new XPointerParser();
XPointer xp=null;
xp=xpp.parse(update_location);
// Interpret XPointer object from the
//root node of the previously parsed doc
Pointed nodelist=xp.point(root);
if (nodelist.size()!=1) {

throw new AmbiguousInsertException();
} else {

Node replace=(nodelist.item(0)).node;
Node parent=replace.getParentNode();
//we get the parent node
if (parent==null)

throw new AmbiguousInsertException();
//child replacement with the new code
parent.replaceChild(

inc.getDocumentElement(),replace);
}

}

Figure 16: Evaluating XPointer Expression.

We have demonstrated how XML and its related technolo-
gies can be used for both specifying and implementing in-
cremental code mobility at any granularity. By not fixing a
particular granularity for mobile code, we enable complete
programs as well as individual lines of code to be sent across
the network. The combination of fine-grained and incremen-
tal mobility achieves a degree of flexibility previously un-
available. We have examined the application of incremen-
tal and fine-grained code mobility to user interface manage-
ment, application management on PDAs and management of
distributed documents.

The success of the approach critically depends on the abil-
ity to encode a high-level programming language in an XML
DTD. Our Karel example has demonstrated that this is possi-
ble. The XwingML DTD suggests this can also be achieved
in a scalable way. We can envisage that our approach will be
used to write XML versions of interpreted languages, such
as Javascript. We could then build a compiler that translates
between Javascript and the XML encoding and an XML in-
terpreter that wraps an existing Javascript interpreter.

In the Karel example, we have only shown how incremen-
tality can be achieved by replacing existing fragments. We
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note that this may be overly restrictive. However, the strate-
gies shown here can also be applied to add or delete pieces
of code to or from the original program. To address insertion
points or identify the fragments of deletion, we could use
XPointer in the same way. To implement the changes to the
abstract syntax tree, we could use theinsert anddelete

operations of the DOM.

The interface shown in Figure 13 contains only one possible
method (i.e.,execute ) to replace a fragment of code and
execute the program. However, this is only a simplification
of what is feasible with the approach; the interface can be
extended with other methods, one for each operation that can
be performed (i.e, replace, add, remove, execute), adding a
higher level of flexibility to the ability of manipulating code
(and data) of the remote entity. The primitives to implement
all these operations are provided by both DOM and XPointer.
XPointer enables us to address any node in the tree and DOM
supports incremental insertion, removals and modification to
nodes in the document’s tree representation.

In the example presented in the paper we did not describe
the combination of data and code mobility, in a step towards
agent mobility. To achieve this in our Karel example, we
could change the DTD of Karel’s language and add an en-
coding for the position and other state attributes of Karel. In
this way we can write an XML program containing Karel’s
position initialization. The interpreter would have to be mod-
ified as well in order to be able to obtain the information (i.e.
the initial position), and to initialize Karel’s status correctly.

We used RMI for implementing the migration of the XML
program in the example. The approach, however, is inde-
pendent of the transport protocol, as long as XML is used to
encode the moving code. The advantages of using distributed
object technologies, such as RMI, together with mark-up lan-
guages are reported in [11]. In our context any other trans-
port protocol could have been used. Distributed object tech-
nologies add a significant overhead that is however balanced
through the use of available middleware services such as
transactions, and security. The choice and the trade-off eval-
uation of the transport technology is extremely application
dependent, and beyond the scope of this paper.

The incremental update of the code is done after the robot has
terminated an execution. However, in some applications it
may be convenient to apply the changes to the program while
the program is executing. The user interface application is a
good example. This is feasible in our approach as well. Nev-
ertheless, it would raise problems related to the maintenance
of the program counter and the updating of operations in a
cycle. However, if the language is simple enough this might
be feasible.

Furthermore, incremental updating of code raises a series of
issues related to access control problems: for instance, what
happens if the code is updated twice by different principals?
No one of the parties would know the actual status of the

program. In our perspective we see applications in “code-
distribution” oriented domains, where a single sender has full
control of the code and has the right to update it. If we did
not use RMI, but CORBA to transmit the code, the CORBA
security service could be used to enforce these access rights.

7 SUMMARY AND FURTHER WORK
In this paper we presented an incremental approach to code
mobility using the XML language. The novelty of the ap-
proach is the ability to send code incrementally instead of re-
sending complete updated versions of the code. Java based
technologies launched the idea of object and classes mobil-
ity, allowing a set of new paradigms for communication to
become feasible.

Many theoretical languages have been used to specify and
analyze code mobility [7, 22, 8, 12, 21]. The movement is
specified with different granularities showing that the Java
point of view, where a class is the unit of mobility, was not
the only possibility to be explored.

In this paper we have shown a possible embodiment of these
ideas, and described a set of potential application. We will
now develop one of these applications in order to have a
benchmark that we can use to evaluate the approach. In par-
ticular, we want to study performance issues and understand
the trade-off between space and speed overhead compared to
Java byte code transmission.

We are also interested in exploring the security implications
of code migration and addressing them with the security ser-
vices that object-middleware provides. By implementing in-
terpreters as CORBA objects and using the access control
interfaces of the CORBA Security service, we can guaran-
tee that only authorized principals are performing changes to
code.

In [9] displetsare used to render special tags defined in XML
using Java specific code for displaying formal notation on the
Web. We see possible development of our work with the inte-
gration of this technique; DTDs and Java fragments could be
sent together in order to update the ability of the interpreter
to understand new constructs. We are also interested in pro-
viding support for proactive code mobility by adding specific
XML tags likego, that are available in other mobile code lan-
guages [14]. They are interpreted as movement commands:
this extension introduces many issues related with the dy-
namic modification of code. However, we believe this would
extend the potential of the approach described in the paper
considerably.

We intend to explore the use of this approach in real projects
involving industrial partners in some of the domains that
we mentioned in Section 4. We are currently collaborating
with an industrial partner to develop a flexible user interface
management for business analysis applications and intend to
take advantage of XwingML in this application. Moreover,
we are investigating the use of Symbian mobile phones and
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PDAs as application platforms with an e-commerce provider.
In this setting, we will explore the use of incremental code
mobility for application management purposes.
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