
An Architectural Style for Multiple Real-Time Data Feeds

Neil Roodyn
Cognitech Ltd

City Cloisters, 188-194 Old Street
London EC1V 9FR, UK

neil@cognitech.co.uk

Wolfgang Emmerich
Dept. of Computer Science
University College London

London WC1E 6BT,UK
w.emmerich@cs.ucl.ac.uk

ABSTRACT
We present an architectural style for the integration of multi-
ple real-time data feeds on Windows-NT platforms. We mo-
tivate the development of this style by highlighting different
application areas in which the style has been deployed. We
present the requirements that will be met by the architectural
style and discuss the design of customizable components that
implement the style based on Microsoft’s Component Object
Model.

Keywords
Software Architectures, Architectural Style, Component-
based Development

1 INTRODUCTION
Many systems in the financial industry usedata feedsfor the
exchange of information. A data feed can be considered as
a continuous stream of data. Data feeds are also used in the
transport sector, for example in air traffic control and vehi-
cle tracking systems. Data feeds are produced by one sys-
tem and processed, filtered, viewed and archived by other
systems. An example is the integration of different trad-
ing systems for financial products, which feed data to back-
office systems where these trade data are processed and sub-
sequent financial transactions are started. There are commer-
cial providers of data feeds, such as Reuters and Bloomberg,
which provide subscribers with up-to-date price information
about trades that have recently been completed at the stock
exchanges.

Following multiple data feeds is too labourious for humans
and they are often overwhelmed by the sheer amount of
information that is presented to them. The data feeds of
Reuters and Bloomberg are good examples. They provide
new data items every few seconds, whenever a trade has been
completed at the stock exchange. It is impossible for humans
to follow several of these feeds over prolongued periods of
time. We refer to this situation asinformation overload.

Hence, the need arises to automate the integration of data
feeds so that users can follow only a single stream of data.
That stream is also often filtered such that only those sub-
sets of data are output that a user is interested in. Again, this
need for data integration and filtering is generic and applies
in many settings. Figure 1 contrasts human and automated
feed integration.

Data User Data User

Data Feed Database

Specific System

Data Feed Database

Generic SystemSpecific System

A. Multiple Systems, one for each
data feed

B. Single Generic System,
integrates and filters from
multiple sources

Figure 1: Multiple vs Single Feed Processor

Many data feeds have to be processed as quickly as possi-
ble. Traders at the stock exchange, for example, might miss
opportunities if they are not informed about changes in the
market as they happen. Hence, many of the information
systems used in this setting have real-time response-time re-
quirements. In safety-critical systems, such as cruise control
in aircraft or reactor controls in nuclear power plants, real-
time constraints arehard and could lead to desasters if the
system does not respond in time. The response-time require-
ments in financial systems aresoft in that slow responses do
not render the system incorrect, but they would lead to a low
acceptance of the system.

The platforms used in financial organizations have changed
over the last two years. While they previously employed
mainframes, which were then downsized to UNIX worksta-
tions and servers, institutions now start to deploy Microsoft
operating systems on both servers and workstations, Mi-
crosoft’s SQL Server for database applications and other Mi-
crosoft standard packages. This has resulted in a desire to be
able to also integrate multiple data feeds in soft real-time on
these platforms.

1



The main contribution of this paper is the discussion of an
architectural style that can be deployed for the integration of
multiple data feeds in soft real-time on Windows-NT. We re-
fer to this architectural style asRTD, which stands for Real
Time Data. RTD is customizable to match different demands
for the integration of data feeds. We have licensed the archi-
tectural style to several different technology providers, who
have instantiated RTD for the processing of data feeds in var-
ious application domains.

This paper is further structured as follows. Section 2 relates
the architectural style suggested in this paper to the litera-
ture. In Section 3, we discuss the non-functional require-
ments that drove the development of this architectural style.
We then discuss the architectural style for real-time data feed
processing in Section 4. In Section 5, we describe a partic-
ular example that instantiates the RTD style. We present an
evaluation of the style on the basis of several projects in Sec-
tion 6 and summarize the work in Section 7.

2 RELATED WORK
Our work is largely related to research on architectural
styles [9]. The literature has identified many styles, such
as tuple-spaces, pipelines and filters, client-server and dis-
tributed object architectures. The architectural style pre-
sented in this paper is a refinement of the pipeline architec-
tural style, as a data feed can be considered as a pipeline.
We adapt and refine this architectural style to be suitable to
process real-time data feeds on Windows NT platforms.

Architecture description languages (ADLs) have been devel-
oped over the last decade in order to describe the function-
ality of software components. A good recent introduction to
the literature on architecture description languages is given
by [6]. The most important ADLs proposed in the literature
are UNICON [8], Wright [1] and Darwin [5]. The archi-
tecture description languages that have been developed so
far support the specification of components and the services
they provide, their decomposition into subcomponents and
the different interconnections between componentents. At
the time we started to develop the architecture none of these
languages were available and we did not use an ADL for the
description of RTD. However, we think it would be a worth-
while exercise to do so.

The development to our system is related to research on real-
time systems. Real time operating systems were developed
that had flexible scheduling policies so that processes could
be given priorities flexibly. Microsoft NT, the system this
architectural style is designed for is not such an operating
system. This had several consequences on the architectural
style that we will outline later.

Microsoft have produced guidelines for creating real time
systems for financial market data. These guidelines were
published as a Microsoft whitepaper referred to as Windows
Open Systems Architecture for the Exchange of Real Time
data (WOSA/XRT) [7]. The architectural style introduced in

this paper complies with these guidelines.

We have not only defined an architectural style for multi-
ple real-time data feeds, but we have also implemented the
style in such a way that it can be customized in many dif-
ferent applications. In order to do so, we have employed the
paradigm of component-based development [10]. We have
developed coarse-grained components for all generic com-
ponents of the architectural style and publish a set of inter-
faces to these components.

Our architectural style for multiple real-time data feeds is im-
plemented using Microsoft’s Component Object Model [3].
COM greatly facilitates component based development by
providing an interface definition language (IDL) and mul-
tiple language bindings. We utilized the IDL to define the
interfaces that occur in our architectural style and we used
multiple COM language bindings to implement components
in different languages.

3 REQUIREMENTS
We determined a number of requirements prior to the devel-
opment of the RTD architectural style.

1. The architectural style should be capable of integrating
feeds of any type of data. The feeds might be propri-
etary or be provided by commercial data vendors, such
as Reuters or Bloomsberg. Examples could be as broad
as financial trading data or positions of vehicles that
are automatically tracked. The style should provide a
mechanism to input these data.

2. The style should be capable of taking data feeds from
multiple heterogeneous sources. The style should sup-
port the unification and integration of these data feeds.

3. The style should support the filtering of those informa-
tion from the data feeds so as to reduce the information
overload. The style therefore should have a mechanism
to customize the filter mechanism to the type of data
that is being input to a particular instantiation.

4. The filtered data should be provided to more than one
output program, which would display, print or other-
wise process the data.

5. The style should support the archival of all data that has
been input through the different data feeds.

6. A strategic positioning of the company that developed
the style demanded deployment on the Windows-NT
platform only. This may seem too radical from an aca-
demic point of view, but it enabled the construction of
Windows-NT components that implement generic com-
ponents of the style, while it could still be flexibly cus-
tomized by adding specific components.

These requirements are not only important for developing
the architectural style, but they are also relevant for its use;

2



Application
- fullName:String
- name:String
- visible:Boolean
- dataObjects:DataObjects
- newGroupID:Number
+ Activate()
+ Quit()

IApplication

Feed

+ FeedData()
+ FeedDataIntoGroup()IBAFeed

has

FeedObject
- fileName:String
- name:StringIBAFeedObject

has

FeedObjects

+ enumFeedObjects:IEnumVariant

has

FeedItems

- enumFeedObjects:IEnumVariant

has

FeedItem
- name:String

IBAFeedItem

has

Fields
- enumFeedObjects:IEnumVariant
- count:Number

+ Add()
+ Remove()
+ GetItem()

has

Field
- name:String
- parent:IUnknown
- time:Time
- value:Variant

has

IBAField

IEnumVariant

IEnumVariant

IEnumVariant
1

*

1

*

1

*

1
1

1 1

1 1

1 1

Figure 3: Object Model for Input Component

Data
Feed 57'

,1
38

7
),/7

(
5

2
8
38

7

Data
Client

8
6(

5

Archive

Data
Feed

Data
Feed

Data
Client

Figure 2: Dataflow through RTD

if a new development effort has to meet similar requirements
RTD is a candidate style for the architecture of that system.

4 ARCHITECTURAL STYLE FOR RT DATA FEEDS
The information domain of the system was not easy to define,
as there was not a specific goal for this system but rather to

provide a generic solution to a problem that had been en-
countered numerous times previously. All that could be said
was that any data entering the system could be placed in this
system and then filtered and provided to client programs.
Figure 2 presents an overview of the flow of data through
the RTD architectural style.

This system would filter the data and only keep those data
that the user would require. It would archive the data, it
would be prudent to allow the user to choose what should
be archived and how often. Depending on the inputs and
filtering, huge amounts of data could amass very quickly.

In order to further refine the design each component shown
in Figure 2 was refined. Given that the architectural style
should be targeted to Microsoft operating systems, we chose
to refine this high-level architecture using Microsoft’s com-
ponent object model (COM). Each of the three main building
blocks of the architecture is now examined.

3



Application
- fullName:String
- name:String
- visible:Boolean
- dataObjects:DataObjects
- newGroupID:Number
+ Activate()
+ Quit()

IApplication

has

DataObject
- name:String
- active:Boolean
- dataItems:DataItems
+ Quit()
+ Close()
+ SaveAs()
+Activate

IBARTDObject

has

Request
- name:String

IBARequest

has

Fields
- enumFeedObjects:IEnumVariant
- count:Number
- parent:IUnknown

+ Add()
+ Remove()
+ GetItem()

has

Field
- name:String
- parent:IUnknown
- time:Time
- value:Variant

has

IBAField

IEnumVariant
1

*

1

*

1
1

1 1

1 1

Requests
- enumFeedObjects:IEnumVariant
- count:Number
- parent:IUnknown

+ Add()
+ Remove()
+ GetItem()

IEnumVariant

Figure 4: Object Model for Filter Component

For the definition of these components we exploit a number
of characteristics that are common to any data feed. A data
feed is a sequence of objects that are being fed into RTD.
Each such feed object has a set of data fields that are used by
RTD to make archival and filtering decisions.

Input
The purpose of the Input component is to collect data from
different input feeds, to unify the data and to pass it to the
filter component. Figure 3 uses a Unified Modeling Lan-
guage (UML) class diagram [2] to show the object model for
the input component. COM strictly separates interfaces from
implementations. We therefore use UML interfaces (that are
referred to as lollipops in the literature) to show which COM
interfaces an object implements.

The Application class is the only RTD input class that
can be directly accessed from other, possibly distributed
COM component. These are likely to be implementations of
data feed components that act as adapters and convert pro-

prietary data formats into a form supported by RTD. The
Application class within RTD is a singleton [4], which
means that there will only one instance of that class. In order
to feed data into the RTD system, the data feed components
will need to gain access to aFeed object, from the Applica-
tion object. Data can be entered into the system by invoking
FeedData() and FeedDataIntoGroups() from a Feed

object. The concept of a data group was created in order
to allow the feed component to create links between certain
types of data. AFeed object can get a group identifier from
the Application usingNewGroupId() . A group identifier is
a unique number for the RTD system.

Filter
The purpose of the filter component is to filter the data that is
passed via one of the input components and to select that sub-
set that users are interested in. The object model for the filter-
ing component is shown in Figure 4. Again,Application

is a singleton that acts as a root from where the hierarchy
of filtering related objects can be retrieved. To request that

4



Application
- fullName:String
- name:String
- visible:Boolean
- dataObjects:DataObjects
- newGroupID:Number
+ Activate()
+ Quit()

IApplication

DataObject

+ FeedData()
+ FeedDataIntoGroup()IBAFeed

DataItem
- name:String

IBAFeedObject

has

DataObjects

+ enumFeedObjects:IEnumVariant

has

has

Field
- name:String

IBAFeedItem

has

Values
- enumFeedObjects:IEnumVariant
- count:Number

+ Add()
+ Remove()
+ GetItem()

has

Value
- group:Number
- time:Time
- value:Variant

has

IBAField

IEnumVariant

IEnumVariant

IEnumVariant1

*

1

*

1

*

1 1

1 1

1 1

DataItems
- enumFeedObjects:IEnumVariant
- count:Number

+ Add()
+ Remove()
+ GetItem()

has

has IEnumVariant1
*

1 1

Fields
- enumFeedObjects:IEnumVariant
- count:Number

+ Add()
+ Remove()
+ GetItem()

Figure 5: Object Model for Output Component

particular types of data be collected by an RTD implemen-
tation, a Request object needs to be created within the
DataObject . TheDataObject represents a collection of
Request objects. As an example, aDataObject could rep-
resent the London Stock Exchange and aRequest could
represent British Telecom shares, a particular financial in-
strument. EachRequest object then contains a list of the
data fields to be collected. So an example would be to col-
lect the Bid and Offer fields only.

There is a similarity that can be noted between the archi-
tecture for the filtering and the input. In particular, the
Application , Fields andField class and their respec-
tive interfaces are reused.

Output
The purpose of the output component is two-fold. Firstly, the
output component provides the filtered data to Data clients.

Secondly, it archives the filtered data for later use. The dia-
gram in Figure 5 shows the object model used by the output
component. The structure again reflects the aggregation hi-
erarchy that we exploited also in previous two components.
TheApplication object acts as the single root from which
the hierarchy of available objects can be accessed. The
DataObject class will be the same as the one used for Fil-
tering. If we request for data in the London Stock Exchange
DataObject , it will be the sameDataObject as the one
used to access the data collected for the London Stock Ex-
change. TheDataItem object represents the actual item that
RTD is collecting the data for, so an example again would be
British Telecom. ThisDataItem then contains a collection
of Fields , theseField objects are from the same class as
theFields presented in the Input and Filtering components.
The difference is that now the field can contain a list of val-
ues to represent data ticks from the feed.

5



Exploitation of COM in RTD
In this subsection, we note how the RTD architectural style
exploits Microsoft’s Component Object Model. RTD explic-
itly uses the separation of interfaces and implementations
that is demanded by COM. It also exploits the ability to de-
ploy components within processes as dynamic link libraries
(DLLs) or as separate executable processes (EXE). Finally,
the fact that RTD output has a COM interface enables seam-
less integration with other standard COM packages, such as
applications of Microsoft’s office suite.

RTD strictly follows COM’s principle of separating inter-
faces from implementations. Figures 3-5 have shown the
interfaces that are defined as part of RTD. These interfaces
have generic implementations that were also shown. For cus-
tomizations of the architectural style, however, it is possible
to replace a generic implementation of an interface with a
customized one.

It is transparent for the design and implementation of com-
ponents whether they are deployed as DLLs or as EXEs that
may even run on different machiens. Microsoft’s interface
definition language compiler generates the client and server
proxies needed for (distributed) inter-process communica-
tion. COM deploys these proxies transparently if a transition
is made from a DLL deployment to an EXE deployment.
DLL deployments generally respond very fast because op-
eration invocations are implemented as local method calls.
EXE deployments on the same machine have the benefit that
processes can be launched and terminated independently.
With EXE deployments of data feeds or data clients, failures
in feeds or clients do not affect the server. The same holds
with deployment as EXE servers on different machines and
distributed deployment adds load balancing capabilities. The
fact that the type of deployment is transparent to the design
and implementation of the components allows deployment
decisions to be made by administrators and makes adminis-
tration of RTD based systems very flexible.

The fact that all RTD components have COM interfaces also
enables a smooth integration with other commercial off-the-
shelf software that use COM. In particular, we have inte-
grated RTD output components with Microsoft Office com-
ponents that are used to manipulate the integrated and fil-
tered data feeds further. To facilitate this integration, we have
exploited the ability to extend Office products using Visual
Basic scripts and the fact that every COM component and
therefore also the RTD components can be accessed from
these Visual Basic scripts.

Soft Real-Time Constraints in RTD
5 INSTANTIATION OF RTD STYLE
6 EVALUATION
RTD has been further instantiated in the Black Ace Software
Engineering product named BASE Market Monitor. This
product tracks share prices and news from financial mar-
kets. Feeds have been written to accept data from Datas-

treams Market Eye, Teletext and World Wide Web pages.
Features of RTD have also been used within Cognitechs Mar-
ket Surveillance System and also more recently in the Visual
Global Markets product. These products use more ‘heavy-
weight feeds from ISMA and Reuters respectively. The
BASE Market Monitor product is aimed at smaller investors
and home users. The feeds that is connects to themselves
provide either ‘soft real time or time delayed data. This prod-
uct runs on a single machine and the RTD ‘engine is a single
instance application. Many clients packages then talk to this
‘engine in order to provide different views of the data to the
user, such as tickers, charts and price screens.

The architectural style holds up well to this model. If a single
client fails, it does not bring down any other clients or the
RTD engine, as they each sit in their own protected process
spaces.

The response times and therefore performance of the system
depends heavily on the activity of the feeds. When the mar-
ket is busy, the load increases and the response time drops.
Actual timing measurements have not been taken but exist-
ing users of the system seem content with the performance,
and we are the first to know when there is a problem!

The Market Surveillance System required a ‘harder real time
system. The surveillance team in a stock exchange needs to
know within seconds if market makers or traders are not ad-
hering to the rules of the market place. Initially this system
was written with the European Exchange EASDAQ where
ISMA provide the TRAX data feed. By collecting the data
on a server machine the RTD system was extended to provide
many client machines with the real time data. The classical
client-server model has been used for this system and it is
currently being used by the surveillance team within EAS-
DAQ.

Cognitech then decided to take the architecture further in the
Visual Global Markets product. This product takes full ad-
vantage of the DCOM model and is based on a three tier
architecture. The data provided by Reuters enters a server
machine, where it is also archived. This database server ad-
vises a second server of data changes. This second server
has a set of complex filtering and calculating components.
These middle layer components apply the business rules to
the Reuters data. Several client machines then can be advised
of information that is of use to the end user. To date two dif-
ferent versions of the client have been written. One which
is a fully functional program for filtering, sorting and editing
the data, and the other which is an add-in to Microsofts Ex-
cel application, where the data can be further manipulated.
It is this ability to link to such an industry standard as Excel
which makes the RTD architecture so powerful.

7 SUMMARY AND FUTURE WORK
REFERENCES

[1] R. Allen and D. Garlan. A Formal Basis for Architec-

6



tural Connection.TOSEM, 6(3):213–249, June 1997.

[2] G. Booch, I. Jacobson, and J. Rumbaugh.The Uni-
fied Modeling Language User Guide. Addison Wesley,
1999.

[3] D. Box. Essential COM. Addison Wesley Longman,
1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns: Elements of Reusable Software. Addison
Wesley, 1995.

[5] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schäfer, editor,Software Engineering — ESEC ’95,
Barcelona, Spain, volume 989 ofLecture Notes in
Computer Science, pages 137–153. Springer, 1995.

[6] N. Medvidovic and R. N. Taylor. A Framework for
Classifying and Comparing Architecture Description
Languages. InSoftware Engineering - ESEC/FSE
’97, 6th European Software Engineering Conference,
Zurich, Switzerland, number 1301 in LNCS, pages 60–
76. Springer, 1997.

[7] Open Market Data Council for Windows.WOSA Exten-
sions for Real Time Market Data (WOSA/XRT), ????

[8] M. Shaw, R. DeLine, D. V.Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for Software Ar-
chitecture and Tools to Support Them.TSE, 21(4):314–
335, April 1995.

[9] M. Shaw and D. Garlan.Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

[10] J. Udell. Componentware.Byte, May 1994.

7


