A Fine-Grained Model for Code Mobility

Cecilia Mascolo!+®, Gian Pietro Picco??, and Gruia-Catalin Roman®

! Dip. di Scienze dell'Informazione, Universita di Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
mascolo@cs.unibo.it
2 Dip. di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, 20133 Milano, Italy
picco@elet.polimi.it
3 Dept. of Computer Science, Washington University
Campus Box 1045, One Brookings Drive, Saint Louis, MO 63130-4899, USA

roman@cs.wustl.edu

Abstract. In this paper we take the extreme view that every line of
code is potentially mobile, i.e., may be duplicated and/or moved from
one program context to another on the same host or across the network.
Our motivation is to gain a better understanding of the range of con-
structs and issues facing the designer of a mobile code system, in a setting
that is abstract and unconstrained by compilation and performance con-
siderations traditionally associated with programming language design.
Incidental to our study is an evaluation of the expressive power of Mobile
UNITY, a notation and proof logic for mobile computing.

1 Introduction

The advent of world-wide networks, the emergence of wireless communication,
and the growing popularity of the Java language are contributing to a grow-
ing interest in dynamic and reconfigurable systems. Code mobility is viewed by
many as a key element of a class of novel design strategies which no longer as-
sume that all the resources needed to accomplish a task are known in advance
and available at the start of the program execution. Know-how and resources are
searched for across the networks and brought together to bear on a problem as
needed. Often the program itself (or portions thereof) travels across the network
in search of resources. While research has been done in the past on operating sys-
tems that provide support for process migration, mobile code languages offer a
variety of constructs supporting the movement of code across networks. Java [5]
and Tcl [4] derivatives support the movement of architecture-independent code
that can be shipped across the network and interpreted at execution time. Obliq
[2] permits the movement of code along with the reference to resources it needs
to carry out its functions. Telescript [11] is representative of a class of languages
in which fully encapsulated program units called agents migrate from site to site.
Location, movement, unit of mobility, and resource access are concepts present
in all mobile code languages. Differentiating factors have to do with the precise

definitions assigned to these concepts and the constructs available.

Language design efforts are complemented by the development of formal
models. Their main purpose is to gain a better understanding of fundamental is-
sues facing mobile computations. Of course, such models are expected to play an
important role in the formulation of precise semantics for mobile code languages
and constructs, to serve as a source of inspiration for novel language constructs,
and to uncover likely theoretical limitations. Basic differences in mathematical
foundation, underlying philosophy, and technical objectives led to models very
diverse in flavor. The 7-calculus [8] is based on algebra and treats mobility as
the ability to dynamically change structure through the passing of names of en-
tities including communication channels. Several extensions have been proposed,
many of which provide an explicit notion of location [1,9]. In particular, the am-
bient calculus [3] emphasizes the manipulation of and access to administrative
domains captured by a notion of scoping. Mobile UNITY [6] is a state transition
system in which the notion of location is made explicit and component interac-
tions are defined by coordination constructs external to the components’ code.

The work reported in this paper is closely aligned with the investigative style
of the formal models community but directed towards identifying opportunities
for novel mobility constructs to be used in language design. We are particularly
interested in examining the issue of granularity of movement and in studying the
consequences of adopting a fine-grained perspective. Simply put, we asked our-
selves the question: What is the smallest unit of mobility and to what extent can
the constructs commonly encountered in mobile code languages be built from a
given set of fine-grained elements? Proper choice of mobility operations, elegant
and uniform semantic specification, formal verification capabilities, and expres-
sive power are several issues closely tied into the answer to the basic question
we posed.

In the model we explore here the units of mobility are single statements and
variable declarations. Location is defined to be a site address and units can move
among sites, can be created dynamically, and can be cloned. Complex structures
can be constructed by associating multiple units with a process. The process is
the unit of execution in our model. In the simplest terms, a process is merely a
common name that binds the units together and controls their execution status.
All the mobility operations available for units are also applicable to processes. In
addition, processes have the means to share code and resources via a referencing
mechanism limited strictly to the confines of a single site. A reference can be
thought of as a name that allows one process to access some code or data in
some other process. References across sites are not permitted but they survive
movement, e.g., access is restored when the two processes meet again. As such,
unit reference and unit containment have distinct semantics with respect to both
scoping rules and mobility.

Mobile UNITY provides the notational and formal foundations for this study.
The new model can be viewed to a large extent as a specialization of Mobile
UnNiTY. This enables us to continue to employ the coordination constructs of
Mobile UNITY and its proof logic. The result is a small set of macro definitions

that map the fine-grained model proposed here to the standard Mobile UNITY
notation, and a specification of the semantics of mobility constructs in terms of
the coordination language that is at the core of Mobile UNITY.

This application of Mobile UNITY is novel. Mobile UNITY has been used pre-
viously in the definition of high level transient interactions (e.g., transiently and
transitively shared variables) in both a physical and logical mobile setting [6],
in the formal specification and verification of Mobile IP [7], and in the specifi-
cation and verification of mobile code paradigms (e.g., code on demand, remote
evaluation, and mobile agents) [10].

The structure of the paper is the following. Section 2 contains an infor-
mal overview of the model, Section 3 introduces the overall structure of the
model, Section 4 gives a description of the mobility primitives of our model,
and Section 5 defines their formal semantics. Finally, in Section 6 we draw some
conclusions.

2 Model Overview

We now give an informal overview of our model. We consider a network com-
posed of sites. They are the physical locations on which computations take place.
Sites may represent physical hosts or separate logical address spaces within a
host, e.g., an interpreter. Sites may contain units that represent code or data. A
code unit need not contain a complete specification of a code fragment, it may
even be a single line of code. The variables used in the code units are consid-
ered “placeholders” and they do not carry a value (i.e., their value is undefined).
Units representing data contain a single variable declaration and they carry the
actual value of the variable. The model provides a sharing mechanism between
values of variables with the same name in code and data units, thus code can
change values of variables in data units during execution.

Because code and data can be split across units, we need to include some
notion of composition and scoping. For this purpose we introduce the concept of
process. Processes are unit containers that reside on the sites. Unlike units they
carry an activation status—they can be active, inactive, or terminated. Processes
define restricted scopes for the units on the sites. Units can be placed inside a
process, i.e., in its “private space”. Such units are said to be contained by the
process!. The scope of a unit contained by a process is the private space of that
process, i.e., the space on which the unit is located. The binding mechanisms
defined by the model allow sharing among variables with the same name in the
same scope. The scope of a unit that is not contained in any process (i.e., located
directly on the site space) is restricted to the unit itself. In Figure 1.a we show
an example. The scope of unit v contains also unit w, and vice versa, as they are
both contained in process P, while unit u is not contained in any process and
its content is not shared with anyone else.

Because it is often necessary to have sharing of units among processes at

! The model presented in this paper is kept simple by not allowing processes to contain
other processes. We are investigating this enhancement at the present.

Fig. 1. Processes, units, and scoping rules. Solid lines represent the containment rela-
tion among sites, processes, and units, while dotted lines represent references to units.
Dashed rectangles represent a common scope for units.

the same location (e.g., to specify the sharing of a common resource), we allow a
process to reference a unit contained in another process at the same location. In
such a case, the referenced unit is considered to be in the scope of both processes.
Processes can also reference units not contained in any process (i.e., located di-
rectly in the site). These units can be thought of as library classes or resources
provided by the site to all processes located there. Figure 1.b shows an evolution
of the system from Figure 1.a: here unit u is referenced by process P, and units
u, v, and w are in the same scope. Unit w is referenced by process @: since units
z, y, and w are in the same scope, sharing applies. Notice that units z and y are
not in the scope of unit v.

A process is a unit of execution in the sense that its status constrains the
execution of the code belonging to units inside its scope. A process has an ac-
tivation status that can be manipulated by specific operations. The code units
inside the scope of the process can only be executed when the process is active.
Processes constrain the mobility of units as well: the movement of a process
implies the movement of all the units contained in it. Referenced units however,
are not moved along with the process that refers to them as they are not part
of its private space. Furthermore, the binding mechanism inhibits the access to
referenced units whenever the referencing process and the referenced unit are
not on the same site. It is important to notice, however, that references to units
are not discarded at the time of the move; when a referenced unit and the cor-
responding process become colocated on any site the binding is re-established.

The model also provides mechanisms to generate and duplicate components,
to explicitly terminate processes, and to establish or sever a reference between
a process and a unit. In the next section we present the structure of the model
in some detail.

3 Overall Model Structure

In this section we introduce our model for fine-grained mobility and examine its
relation to the Mobile UNITY notation. A Mobile UNITY specification is com-

System Swapping
Program Q(i) at \
declare
z: integer [| y: integer
initially
2<10]y<10

Components
([i:0<1i< N ::Q(i).\ = location(%))
Interactions
Q)2 Qi) when Q) = Q)
engage max{Q(i).z,Q(j).z}
end

Fig. 2. A simple Mobile UNITY system exhibiting random movement.

posed of several programs, a Components section, and an Interactions sec-
tion. The program is the basic unit of definition and mobility in Mobile UNITY.
Figure 2 shows a Mobile UNITY system for reordering values of variables. Distri-
bution of components is taken into account through the distinguished location
variable A associated to each program.

The declare section contains the declaration of program variables. The sym-
bol | acts as a separator. The initially section constrains the initial values of
the variables. In the example of Figure 2, z and y are initialized to an arbitrary
value less than 10. The assign section contains the program statements. In the
example, statement s is an assignment guarded by the clause following the if.
The two values of the variables are swapped if the value of the first one is greater
than the other. The statements m; and my account for mobility, by modifying
non-deterministically the location of Q.

The Components section defines the components existing during the life of
the system. Mobile UNITY does not allow dynamic creation of new components.
Each Mobile UNITY program contains an index (i.e., i in the example) after the
name of the program (i.e., Q). This allows for the creation of multiple instances
of the same program in the Components section. In Figure 2, for instance, N
different instances of program @ are instantiated and placed at various initial
locations by using a function location (whose details are left out), and the index
value?.

The Interactions section contains statements that provide communication
and coordination among components. In the example, the Interaction section
allows the sharing of values between the two variables z of different programs
when the programs containing them are at the same location. Only some of the

2 The three-part notation (op quantified_variables : range :: expression) is used
throughout the paper: the variables from quantified_variables take on all possible
values permitted by range. If range is missing, the first colon is omitted and the do-
main of the variables is restricted by context. Each such instantiation of the variables
is substituted in ezpression producing a multiset of values to which op is applied.

Program p('z,'Q,i) Program p(’s,'Q,i)
declare z: integer declare z: integer [| y: integer
initially 2z < 10 initially 2 = L [y= L
assign skip assign z,y:=vy,z ifz >y
end end

Fig. 3. Two units resulting from a reinterpretation of the program shown in Figure 2.

program instances end up sharing the values of variables z, depending upon their
initial location and their subsequent moves. The Mobile UNITY construct ~ de-
fines transient sharing of values for as long as the when condition holds. The
engage statement defines a common value to be assigned (atomically) to both
variables as the when condition transitions from false to true. In this example
the value assumed by the two variables is the maximum over their individual
values. It is possible to specify also a disengage statement that defines the
values the two variables would respectively be assigned to whenever the when
predicate is no longer true. If no disengage is specified, the variables retain the
values they had before the when condition became false, as in our example.

A Mobile UNITY computation consists of a fair interleaving of statement
executions, including the statements present in the Interactions section. The
sharing construct has a higher priority and is executed any time a change in the
values of the variables involved in the sharing happens.

Mobile UNITY considers a program to be the smallest unit of mobility. In this
paper we want to allow mobility of a variable declaration or of a line of code. For
this purpose, we set out to reinterpret the syntax of a standard Mobile UNITY
program such that every variable declaration and every labeled statement is in-
terpreted as a stand-alone program, henceforth called a unit. A program now
becomes only a static unit of definition. Statements and declarations as well as
processes become the units of mobility. With this interpretation, the declaration
of z in Figure 2 corresponds to the unit p(’z, ‘Q, i) in Figure 3. The name of
all the units is now the constant p. Each unit is indexed by its name, the name
of the program in which it is defined, and by its instance discriminator. This
representation is designed to facilitate the search for units present at some lo-
cation using the name and/or place of definition. We use a quote to distinguish
the actual components from their names, in particular for the first two indices
which range over finite enumerations. This notation allows the same names to
be present in different program contexts. Notice that a unit capturing a decla-
ration also contains the corresponding initialization statement for the declared
variable. This is the definition of what we call a data unit. As will be shown
in the next section, the annotation var is used to distinguish between variables
present in pure data units and those appearing in code units. For code units
(i.e., units containing statements), the first index of the unit is the label of the
statement defined in the program. For instance, Figure 3 shows a code unit with
name p(’s, 'Q, i) derived from the statement labeled with s in Figure 2. The
statement is copied in the assign section of the unit. All the variables used in
the statement are declared and initialized as unbound, i.e., L. This initialization

underscores the fact that this unit contains only code, and that the variables are
mere placeholders, i.e., do not contain real values.

Finally, processes are needed to organize units into executable assemblies.
Each process has an index, like a unit, in order to allow multiple instances of
the same process. Processes can be instantiated and placed on an initial location
from within the Components section. Since processes are dynamic components
we attach to them a status variable w that can assume the values ACTIVE, IN-
ACTIVE, and TERMINATED. In order to overcome the difficulty of dynamically
creating components in Mobile UNITY we assume to have a sufficiently large
number of instances of components initially located in a sort of “ether”. We for-
malize this by saying that they reside (implicitly) at the location A = e. In this
manner, whenever we need to duplicate or instantiate a new component we can
simply change the location of some component in the ether from e to an actual
location.

The sharing defined in the Interactions section of Figure 2 is given by the
designer. We introduce in our model an automatic sharing mechanism allowing
variable sharing inside the scope of a single process. As mentioned in Section 2,
variables with the same name in the same scope share the same value. Thus, if
a process contains two units both declaring a variable x their values are shared
by definition.

4 Mobility Constructs

The previous sections illustrated the overall structure of our model, and how it
differs from Mobile UNITY, in terms of both syntactic differences in the way a
specification is textually laid out and semantic differences related to the units of
execution, mobility, and definition. Central to our model is the interplay among
the notions of execution, scoping, containment, and location. Mobility not only
determines the set of resources that are available at a given location, but also
allows the dynamic reconfiguration of the code and data associated with a given
process. In this section we describe in more detail the set of constructs defined
in our model. In the next section, we will use Mobile UNITY to give formal se-
mantics to these constructs.

In order to keep the presentation grounded in a practical example, we con-
sider a mobile code version of the well-known leader election problem for a set of
nodes networked in a ring configuration. For the sake of simplicity, our solution
will employ a single token, whose value is updated at each node by comparing
it with the value of the identifier of the node on which the token is located.
The algorithm is trivial, because it is guaranteed to find the leader in exactly
one round. However, the interesting aspect of our solution is not the algorithm,
rather the way the distributed computation is deployed into the network.

We assume that no nodes are initially able to take part in a leader election.
The distributed algorithm is started by injecting into the ring a process that
contains the necessary knowledge about the distributed computation—a voter.
This process clones itself repeatedly until the whole ring is populated with vot-

ers. Interestingly, voters do not contain the logic associated with the token, i.e.,
they do not know how to compare the node’s value with the token’s value—the
poll strategy. The knowledge about this key aspect of the algorithm is injected
into the ring in a separate step of the computation in the form of a code unit
which is placed on an arbitrary node of the ring. Each voter is able to detect the
presence of the poll code unit on its node and move it into its own scope, thus
effectively enabling the execution of the unit. The poll code unit has access to a
node-level data unit that contains the node value. This enables the comparison
needed to vote. Again, a self replicating scheme is employed, where each voter
passes on a copy of the unit to the next node in the ring. This structure of the
system, where the poll strategy is kept separate and is loaded dynamically into
the voter, enables the dynamic reconfiguration of the ring. This happens when
a new code unit that contains a different poll strategy is injected in the ring.
Again, voters detect its presence on their sites and replace the old strategy with
the new one. Finally, when the token is injected into the ring, the actual leader
election starts.

Our example, despite its simplicity, highlights many of the leitmotifs of mo-
bile code: simultaneous migration of the code and state associated with a unit
of execution, dynamic linking (and upgrade) of code, and location-dependent
resource sharing. For instance, our solution can be easily adapted to an active
network scenario where a new service (in our case the ability to perform leader
election) is deployed in the network, and some of its constituents (in our case
the poll strategy) are dynamically upgraded over time.

A formal specification of our leader election algorithm is shown in Figure 4,
while Figure 5 shows its graphical representation. The specification uses the
fine-grained mobile code constructs of our model. The upper part of the specifi-
cation contains three program definitions. NodeDefinition specifies a single data
unit z associated with a node. Note how the type declaration for this integer
variable is prepended by the keyword var which characterizes the variable as a
data unit. Similarly, TokenDefinition specifies a data unit associated with the
variable token. The values of these two variables are accessed (through shar-
ing) by code units specified by the program PollActions. The latter contains a
single statement poll, which describes the polling strategy. As discussed in the
next section, the formal semantics of the model prescribes the execution of this
statement to be prevented when the corresponding code unit is not within the
scope of any process. Thus, the comparison in poll is performed only when the
corresponding code unit is co-located in a voter process that also contains the
data unit corresponding to token. In this case, the binding rules of the model,
expressed using the transient variable sharing abstraction provided by Mobile
UNITY, effectively force the same value in both token variables, hence enabling
the comparison specified by poll. Simultaneously, an additional auxiliary boolean
variable voted is set to signal to the enclosing voter, again by means of sharing
of the variable voted, that the token needs to be passed along the ring.

Voters are specified by the program VoterActions, that declares the variables
mentioned so far and an additional boolean startup that is used to determine

System LeaderElection
Program NodeDefinition

declare
z: var integer
end
Program TokenDefinition
declare
token: var integer
end
Program PollActions
declare
token: integer [| z: integer [| voted: boolean
assign
poll: token,voted := min(z, token), true
end
Program VoterActions
declare
voted: var boolean [| startup: var boolean [| token: integer [| z: integer [| k: integer
initially
voted = false || startup = true
assign

startVoter: (put(voter, thisNode, next(thisNode)) if next(thisNode) # node(0)
|| reference(z, thisNode) || startup := false) if startup
| inkCode: { move(poll,thisNode, here)
|| put(poll, thisNode, next(thisNode)) if next(thisNode) # node(0)
|| destroy(poll, here)) if exists(poll, thisNode)
| passToken: move(token, thisNode, here) if exists(token, thisNode)
|| { move(token, here, next(thisNode))
|| voted := false) if voted A exists(token, here)
end
Components
([i: 0 < i< N :: newData(NodeDefinition, x, node(t), 7))
[newData(TokenDefinition, token, node(0), L)
[newCode(PollActions, poll, node(0))
| newProcess(VoterActions, voter, node(0), ACTIVE)

end
here = A
Auxiliary definitions: thisNode = head(\)
next(n) = the node following n in the ring

Fig. 4. Specifying leader election in Mobile UNITY extended with fine-grained mobile
code constructs. The Interactions section is assumed to embody the semantics of the
refined model (see Section 5).

whether it is necessary to perform some initialization tasks, i.e., cloning the
voter itself on the next node to perform the initial deployment of processes in
the ring, and acquiring a reference to the node’s value. These tasks are per-
formed simultaneously by the statement startVoter, which also resets startup
to prevent the creation of multiple clones of the voter. In startVoter, cloning is
performed by the put operation. It executes only if the voter that is invoking
the operation does not immediately precede in the ring node(0) where the whole
computation started. Thus guarantees that each node hosts a single voter. The
statement uses some of the auxiliary definitions shown at the bottom of the fig-
ure. In particular, here and thisNode are just renamings of the location variable
A in the voter and of the head function that operate on it, respectively. They
serve the sole purpose of improving readability. While the location of a process
is always set to the name of a site (as processes reside directly on the site),

Fig. 5. Leader election with mobile code.

unit location can refer to sites or to processes. In the latter case, the location
is defined as the concatenation of the name of the site the unit reside on and
of the name of the process that holds it. This is useful in invoking the put op-
eration whose most general form is put(name, prog,id,locationg.s;) where the
first three parameters are the three indices of the component to be copied and
locationges is a location that represents the destination of the copy. Another
form, put(name,location ., locationgest), is also provided. It is actually used
in the example to “query” the scope defined by location,, for the second and
third indices of the component given the name (i.e., first index).

As will become clearer in the next section, copying takes place behind the
scenes by picking a fresh component from the ether and setting its location to the
one passed as a parameter. Like most of the operations provided in our model,
the put operations is defined on components, i.e., both on processes and units.
In the case of processes the copying is performed recursively on the process and
on all its constituent units. In the case of put, the bindings that a process may
have established are not preserved as a consequence of this copy operation, i.e.,
all the variables are restored to their initial values. This represents a “weak”
form of copying. Our model provides also a stronger notion with the clone op-
eration, which preserves all the bindings owned by the process.

The statement start Voter establishes also a reference to the variable z, whose
value is contained in a data unit instantiated on each site. To understand in
more detail this latter aspect, let us take a brief detour and jump temporarily
to the Components section, to look at the initial configuration of the system.
The first statement uses the operation newData to create a data unit named

z using the definition provided in the program NodeDefinition, assigns to it the
value 4, and places it on the i* node. Since the statement is quantified over the
number N of nodes in the system, each node hosts an instance of the data unit
as a result of the operation.

Similarly, the other three statements in the Components section create on
the first node the data unit for the token, the code unit for the poll strategy,
and the voter process, respectively. Given the nature of our model, which enables
movement to the level of a single Mobile UNITY variable or statement, it is inter-
esting to note how VoterActions actually represents the unit of definition for a
number of units, namely, the data units corresponding to voted and startup, and
the code units corresponding to startVoter, linkCode, and passToken. In princi-
ple, each of these could be moved or copied independently. Since this is not the
case in this example, they have been grouped together under VoterActions. This
simplifies the text of the specification by minimizing the number of Program
declarations, and also enables the creation of a single process that automatically
contains instances for all the aforementioned units by using newProcess. Fi-
nally, note how the value of a process is its activation status, i.e., either ACTIVE
or INACTIVE.

Now, let us return to the reference operation in startVoter. Thanks to the
binding rules, this operation establishes a transient sharing between the variable
in the data unit z defined in NodeDefinition and the declaration in the voter.
Similarly to what was described for put, only the name of the data unit z is
specified, while its identifier is determined by implicitly querying the node. The
model provides also the inverse operation unreference.

The statement linkCode takes care of replicating the poll strategy and, possi-
bly, of substituting the new poll code for the old one. It executes only when the
exists function in the guard evaluates to true. The function exists, formally in-
troduced in the next section, effectively models the aforementioned query mech-
anism, and enables linkCode to execute only when a code unit with name poll
is found on the node. If the unit is found, the move operation brings it within
the process, thus enabling its execution. Simultaneously, a copy of the unit is
sent to the next node in the ring via a put, provided that the next node is not
node(0). At the same time, if a pre-existing poll unit is found in the process the
destroy operation removes it from the system.

Finally, passToken handles the movement of the token. Again, the query
mechanism is used to get implicitly the identifier of any token data unit present
on the node and move it within the process to establish the proper bindings.
After the poll is performed, i.e., voted is set to true, the token is moved from the
scope of the voter to the next node in the ring.

5 Formal Semantics

Our general strategy is to reduce the new model for code mobility to a special-
ization of the standard Mobile UNITY notation and proof logic. The first step,
explained in the previous sections, shows how we reinterpret a notation which

find (u, |

) min 4,5 u; ;. A =1z (u,4,5))
find(u, i, 1)

)

)

(
(min j :wi ;. X =1:(u,4,7))
(3, jrug ;. a=1)

(Fj s ui ;. A=1)

exists(u,
exists(u, 4,1

Fig. 6. Specification of the functions find and exists.

looks very close, if not identical, to that of Mobile UNITY by simply treating
each variable declaration and statement as a separate, independent program.
Multiple instantiations of each such fine-grained program, called a unit, are de-
fined in the Compomnents section. Once this transformation from a concrete to
an abstract syntax is completed, the parts of the model still missing are the me-
chanics of data sharing within the confines of each process, the control over the
scheduling of statements for execution, and the definition of the various mobility
constructs. Our strategy is to capture all these semantic elements as statements
present in the Interactions section of the Mobile UNITY system and to disallow
the designer from adding anything else to the Interactions section. The result
is a specialization of Mobile UNITY to the problem of fine-grained mobility. The
fact that the entire semantic specification can be reduced to a small set of coor-
dination statements attests to the flexibility of Mobile UNITY. In the remainder
of the section we consider in turn the topics of scoping, statement scheduling,
and mobility constructs. From now on we use the compact notation c; ; to mean
p(e,i,7), i.e., the instance j of the component named ¢ extracted from program
i. Throughout this section we also assume that:

— Each component, (i.e., data unit, code unit, or process) ¢;; is character-
ized by its location (¢;;.)A), request field (c;;.p) designed to hold mobil-
ity commands the system is expected to execute on its behalf, and type
(¢i,j-T € {DATAUNIT, CODEUNIT, PROCESS}).

— Each process g; ; is also characterized by an implicitly specified set of con-
tained units (those located within the process), a set of referenced units
(gi,j.77), and its activation status (g;,j.w € {ACTIVE, INACTIVE, TERMINATED}).

The designer does not need to refer to any of these attributes even though they
are essential to the formal semantic definition.

When writing code, the designer will typically refer to a component’s name
(e.g., ¢) rather than its fully qualified name (e.g., ¢; ;) consisting of the three
indices (i.e., ¢, i, j) defining the component name, program, and index, respec-
tively. Given the name, the other identifiers can be extracted easily by employing
the functions find and exists defined in Figure 6.

The find function finds an instance of the component named u on the location
I. The name of the program the unit is derived from (i.e., i) can be added as a
parameter in order to constrain the search only to units derived from a partic-
ular program definition; the same is true for the function exists. Processes, like
other units, also have three indices: the first index is the name of the process,
the second is the name of the program the units in the process are derived from

(e.g., the process voter created with newProcess in the Components section
of Figure 4), and the third is the instance discriminator.

Scoping Rules. Since a code unit can only access its own variables, the mecha-
nism by which we establish scoping and access rules is that of forcing variables
with the same name and present in the same scope (i.e., contained in the same
process) to be shared. This can be readily captured by employing one of the
high level constructs of Mobile UNITY, transient variable sharing across pro-
grams (A.a ~ B.b when p). The predicate p controlling the sharing simply
needs to capture the scoping rules. Figure 7 shows how these rules can be stated
as two Mobile UNITY coordination statements. Statement 1 handles sharing be-
tween a variable in a data unit and a variable in a code unit, while statement 2
defines the sharing between two variables in data units.

Statement 1 states that variables® w; .z and wj .z share the same value
when u; ;, is a data unit and w; is a code unit, and the two units are within the
same process, or either the data unit or the code unit is referenced by the pro-
cess owning the other unit and the two units are on the same site. The engage
value is the value of the variable in the data unit. The two disengage values are
the actual value shared for the data unit variable, and the undefined value for
the code unit variable, respectively—variables in code units are not supposed to
carry a value unless they are sharing it with a data unit. The function sharing
tells if two units have a common “parent” (a parent can be the process within
which they are located or the one which references them), i.e., the units are in
the same scope. In turn, sharing uses the functions childOf(v; x, u;), that de-
termines whether v; ; is child of u;; (i.e., v, is a unit contained in u;), and
referencedBy(v; k., u;,5), that determines whether v; j is referenced by w; p.

Statement 2 defines sharing between variables in two data units. The vari-
ables must have the same name in the same scope. Sharing takes place under the
same conditions of statement 1, except that both variables are in data units. The
engage clause forces the two variables to share the maximum value. Different
policies can implement a different semantics for reconciliation of values. As no
disengage is specified the variables retain the values they had before the when
condition became false. The update of all shared variables must happen in the
same atomic step as the assignment to any of them. However, sharing is speci-
fied separately from the (possibly many) assignments that may change the value
of a variable. To accomplish this, Mobile UNITY has a two-phased operational
model where the first phase involves an ordinary assignment statement execution
and the second is responsible for propagating changes to shared variables. We
call the statements that execute in the second phase reactive statements. Logi-
cally, the set of reactive statements are executed to fixed point right after each
non-reactive statement and one reactive statement may trigger the execution of

3 The formulae in Figure 7 and following assume that variable sharing is well-defined,
i.e., it takes places only among variables which actually appear in the specification of
a unit according to the program definition. Also, distinguished variables like A and
7 are never shared. The formal definition of these conditions is omitted for the sake
of brevity.

Ui p T R W) T when wu; ;.7 = DATAUNIT A wj .7 = CODEUNIT A
(us,n-A = wj k.\ # head(u; n-A) V
(1) (sharing(us,n, wj) A head(u; n-A) = head(w;j x-A)))
engage u; pn.%
disengage u; .z, L
Ui h-T R Wj kT when u; .7 = wj .7 = DATAUNIT A
(wi,j.A = wj k.A # head(wj x.A) V

@) (sharing(w;,p, wj k) A head(u; p.A) = head(w; x.\)))
engage max(u; -, W; k-)
inhibit u; 5.s when u; .7 = CODEUNIT A
3) ((Vp, m,n : Py, n.T = PROCESS A (childOf(u; h, Pm,n) V

referencedBy (u; h, Pm,n)) it Pm,n-w 7 ACTIVE) V
3zt usp.x = 1Y)

Auxiliary definitions:

sharing(w;i, p, wj k) = (Ip, m, n :: (childOf(w; x, Pm,n) A referencedBy (u; h, Pm,n)) V
(childOf(wi, h, Pm,n) A referencedBy(wj ks Prm,n)))
true if vj . A = u;p.Ao (u,i,h)

childOf (v, wi,n) = {false otherwise

true if (v,j, k) € uin.y

referencedBy (vjk, ui,n) = {false otherwise

Fig. 7. Establishing bindings among units using transient variable sharing and state-
ment inhibition.

other reactive statements. Transient sharing is ultimately defined using reactive
statements [6], but this is outside the scope of this paper.

Statement Scheduling. In Mobile UNITY, each statement is assumed to be
executed infinitely often in an infinite execution, i.e., weakly fair selection of
statements is the basis for the scheduling process. The coordination constructs
of Mobile UNITY include a construct for guard strengthening called inhibit.
In inhibit s when p, for instance, the statement s continues to be selected as
before, but its effect is that of a skip whenever the condition p is not met. We take
advantage of this construct in statement 3 of Figure 7 to inhibit statements not
in the scope of an active process, and statements that have unbound variables.
A variable appearing in a statement is always unbound if it is not shared with a
variable present in a data unit.

Mobility Constructs. The designer views the move construct as a mechanism
by which a component at one location is relocated to another. The new location
may be a known site or a known process. This form of the move construct:

move(compName, current Location, new Location)

is actually a special instance of the more general form in which the identity of
the unit is already known. One can simply determine the identity by employing

the function find as in?
move(find(compName, current Location), new Location).

If multiple instances of the same unit exist one is selected®. In order to explore
the manner in which we assigned semantics to the mobility constructs associated
with our model we will focus our presentation on the general form of the con-
struct. Moreover, we will assume that the unit in question is a process named ¢
with identifier (7, 7) destined for location :

move(q, i, j,1).

Our general strategy is to treat the operation as a macro reducible to a simple
local assignment statement to the distinguished variable p (see Figure 8):

pi= (REQ, MOVE, q, i:j7 (l))

where the first two fields of the record stored in p indicate the propagation status
(i.e., an initial request) and the nature of the request (i.e., a move).

We delegate the actual execution of the operation to a series of coordination
statements built into the Interactions section. The coordination statements
propagate the request to the contained units and ultimately carry out the mi-
gration of the individual components to the new location. All these actions are
executed atomically because they are encoded as reactive statements that exe-
cute to fixed point before the system is allowed to take any other action. The
first thing that happens is to have the request transferred in the form of a com-
mand to the process ¢q. The result is that g; ;.p is assigned the request with a
propagation status of EXEC:

qij-P = (EXEC: MOVE, q, i: j: (l))

while the attribute p of the unit issuing the request is cleared. Of course, in
general it might be the case that a unit requests its own movement and one
needs to distinguish between the two cases as made evident in Figure 9.

If, for the sake of simplicity, we assume that the only units contained by ¢
are dy,» and s, the next reaction being triggered leads to having the process
ready to start the move, a fact indicated by dropping the propagation status

gi,j-p = (MOVE, (1))

while simultaneously propagating the command to the contained units (see Fig-
ure 9), e.g.,

dm,h-P = (EXEC7 MOVE, d, m, h, (l o (Q: i, .7)))
Sk,n-P = (EXEC7 MOVE, s, k, 7, (l o (Q7 2 .7)))

Figure 9 defines the function F that computes, in a command-specific man-
ner, the arguments needed by the contained units. In this case, the location to
where they need to move is the relocated process. Since further propagation is
no longer possible the commands drop the propagation status in the next step

4 Throughout, we assume that move((q,i,j),1) is unambiguously reducible to
move(q, i, j.).
5 We chose to pick up the instance with minimum index.

move(u, i, j,
put(u,i,j,k,1
clone(u, i, j, k, 1
destroy(u i,

1)
)
)
j)
activate(u, i, j)
j)
j)
)
)
)

(REQ, MOVE, u, i, , (1))
(REQ, PUT, u, %, j, (getld(u i),1)) || k := getid(w, ¢)
(REQ, CLONE, u, 1, j, (getld(u i),1)) || k := getid(u,)
(REQ,DESTROY u, 4,7, ())
(REQ, ACTIVATE, u, %, j, ())
deactivate(u, i, j (
terminate(u, i, j (
new(u k.1 (
reference(u, i, j, v, k, h
unreference(u, i, j, v, k, h

REQ, DEACTIVATE, u, i, j, ())

REQ, TERMINATE, u, 1, j, ())

REQ, NEW, getid(u), (l)) || & := getid(u)
(REQ,REFERENCE u, i, j, (v, k, h))
(REQ, UNREFERENCE, u, ¢, j, (v, k, h))

TTTTTTTDDD
[T R

getid(name) = find(name, €)

Auxiliary definitions: getid(name, i) = find(name, i, €)

Fig. 8. Mapping mobility constructs to Mobile UNITY statements.

wj.-p= L if wjr # uin || wi,n-p = (EXEC, command, u, i, h, args)

4
) reacts-to w; x.p = (REQ, command, u,i, h,args)
wi p.p = (command, args) || (|| v,n, m : childOf(vy m,u; n) A toPropagate(command) ::
(5) VUn,m.p = (EXEC, command, v, n, m, F(command, u, i, h,args))

reacts-to u; p.p = (EXEC, command,u, i, h,args))

.7:(MOVE u, i, h, (1)) = (1 o (u,i,h))
Fi u, %, b, ((u, J,)= ({lo(u,j,k
Return values for F: }_(CEEE; wih, EEU i g lg; _ El E“ i gg
}'(DESTROY u, i, h, () = ()

Fig. 9. Modeling the actions of the run-time support.

dm,h'p = (MOVE7d7 m, h7 (l o (q727.])))
Sk,n-P = (MOVE7S7k7n7 (l (q7 7.])))

The last step is the change in location of each of the units (Figure 10). Given
the semantics of Mobile UNITY, this may happen in any order but the reactive
statements will be executed again and again until fixed point is reached, i.e.,

GjA=1 A dm,h.)\ZlO(q,i,j) A Sk,n.)\ZlO(q,i,j)

All other constructs function in a similar manner except that not all the com-
mands are propagated to the contained units. For instance, terminate affects
only the status of the process. The function toPropagate used in Figure 9 is de-
signed to control the propagation process: the propagating constructs are move,
put, clone, and destroy. The construct getid returns the three-part identity of
a component located in the ether. A minimal lexicographical value for the triplet
is selected. The complete list of commands and the corresponding formalization
appear in Figures 8 and 10.

wi p A :=1 if (u; .7 = PROCESS = | = head(l)) A u; p.w 7 TERMINATED A u; n.\ 7 € ||
w; p.p:= L reacts-to u; n.p = (MOVE, (1))

Wj kA, Wy k-w =L, us p.w if (w; .7 = PROCESS => | = head(l)) A u; n. A # € ||

w; p.p:= L reacts-to u; ,.p = (PUT, ((u, j, k), 1))

Uj Ay Uj -w = [, u; p.w if (u; p. 7 = PROCESS = | = head(l)) A u; .\ # € ||

wip-p =L || (V& :: uj p.¢ := u; p.¢) reacts-to u; p.p = (CLONE, ((u, j, k), 1))

(9) wip A= L if u;p.A# €| ujn.p:= L reacts-to u; .p = (DESTROY, ())

Wi p.w = ACTIVE if u; p.w = INACTIVE A u; .7 = PROCESS A u;j p A Z € || uin.p = L

(10) reacts-to u; j.p = (ACTIVATE, ())

(11) Ui, p-w := INACTIVE if w; j.w = ACTIVE A u; 1.7 = PROCESS A ui p-A 7 € || us n-p:= L
reacts-to u; j.p = (DEACTIVATE, ())

(12) W; p.w = TERMINATED if u; j.w 7 TERMINATED A u; p.T = PROCESS A ui n.\ # € ||
i p.p = L reacts-to u; p.p = (TERMINATE, ())

(13) wip A =1 if u; .7 = PROCESS = [= head(l) || u;,p-p:= L
reacts-to u; p.p = (NEW, 1)

(14) wi py i= ui,p.y U {(v,4,k)} if vj .7 # PROCESS A uj p.T = PROCESS A u; p A # € A

v kA # € || uip-p = L reacts-to u; j.p = (REFERENCE, (v, j, k))

(15) wi,n-y :=uin-v \ {(v,4,k)} || win.p := L reacts-to u; j.p = (UNREFERENCE, (v, j, k))

Fig. 10. Migrating components.

6 Conclusions

This paper can be regarded as a follow-up on our earlier work on modeling mobile
code paradigms using Mobile UNITY [10]. By contrast, the model presented
in this paper adopts an unusually fine level of granularity by considering the
mobility of code fragments as small as single variables and statements. Our
primary goal was to demonstrate the feasibility of specifying and reasoning about
computations involving fine-grained mobility. Nevertheless, the study has been
instrumental in helping us develop a better understanding of basic mobility
constructs and composition mechanisms needed to support such a paradigm.
Composition and scoping emerged as key elements to the construction of complex
units out of bits and pieces of code. The need for both containment and reference
mechanisms was not in the least surprising given current experience with object-
oriented programming languages but it was refreshing to rediscover it coming
from a totally new perspective. The distinction between the units of definition,
mobility, and execution proved to be very helpful in structuring our thinking
about the design of highly dynamic systems. The necessity to provide some form
of name service capability (the find function) appears to align very well with the
current trend in distributed object processing. The next step is to revisit fine-
grained mobility from a more pragmatic perspective, one which will encompass

both the design of a fine-grained mobile code system and its use in distributed
applications.

Acknowledgments. This paper is based upon work supported in part by the
National Science Foundation (NFS) under grant CCR-9624815.

References

1.

10.

11.

R. Amadio. An Asynchronous Model of Locality, Failure, and Process Mobility. In
Proc. of the 2** Int. Conf. on Coordination Models and Languages (COORDINA-
TION °97), LNCS 1282. Springer, 1997.

. L. Cardelli. A language with distributed scope. In Proc. 22" ACM Symp. on

Principles of Programming Languages (POPL), 1995.

L. Cardelli and A. Gordon. Mobile Ambients. Theoretical Computer Science,
240(1), 2000. To appear.

R. Gray. Agent Tcl: A transportable agent system. In Proc. of the CIKM Workshop
on Intelligent Information Agents, 1995.

J. Kiniry and D. Zimmerman. A Hands-On Look at Java Mobile Agents. IEEE
Internet Computing, 1(4), 1997.

P.J. McCann and G.-C. Roman. Compositional Programming Abstractions for
Mobile Computing. IEEE Trans. on Software Engineering, 24(2), 1998.

P.J. McCann and G-.C. Roman. Modeling Mobile IP in Mobile UNiTY. ACM
Trans. on Software Engineering and Methodology, 1999. To appear.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes I. Information
and Computation, 100(1), 1992.

R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5), 1998.
G.P. Picco, G.-C. Roman, and P. McCann. Expressing Code Mobility in Mobile
UNITY. In Proc. 6 Buropean Software Eng. Conf. (ESEC/FSE’97), LNCS 1301.
Springer, 1997.

J. White. Telescript Technology: Mobile Agents. In J. Bradshaw, editor, Software
Agents. AAAT Press/MIT Press, 1996.

