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ABSTRACT
Rapid advances in wireless networking technologies have en-
abled mobile devices to be connected anywhere and anytime.
While roaming, applications on these devices dynamically
discover hosts and services with whom interactions can be
started. However, the fear of exposure to risky transactions
with potentially unknown entities may seriously hinder col-
laboration. To minimise this risk, an engineering approach
to the development of trust-based collaborations is neces-
sary. This paper introduces hTrust, a human trust man-
agement model and framework that facilitates the construc-
tion of trust-aware mobile systems and applications. In par-
ticular, hTrust supports: reasoning about trust (trust for-
mation), dissemination of trust information in the network
(trust dissemination), and derivation of new trust relation-
ships from previously formed ones (trust evolution). The
framework views each mobile host as a self-contained unit,
carrying along a portfolio of credentials that are used to
prove its trustworthiness to other hosts in an ad-hoc mobile
environment. Customising functions are defined to capture
the natural disposition to trust of the user of the device
inside our trust management framework.

1. INTRODUCTION
Portable devices, such as palmtop computers, mobile phones,
personal digital assistants, digital cameras and the like, have
gained wide popularity. Their computing capabilities are
growing quickly, while their size is shrinking, allowing their
pervasive use in our everyday life. Wireless networks of in-
creasing bandwidth allow these mobile units to aggregate
and form complex distributed system structures, as well as
to seamlessly connect to fixed networks while they change
location. The combined use of these technologies enables
people to access their personal information, as well as pub-
lic resources and services anytime and anywhere.
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Each time an interaction takes place, we face an inherent
risk, as we can never be certain of the trustworthiness of the
entities we interact with, or that mediate the interaction.
This risk is not peculiar to mobile settings only, but it char-
acterises any distributed setting, that is, any situation where
we are giving up complete control, thus becoming vulnera-
ble to somebody’s else behaviour. For example, during an
e-commerce transaction, we trust the service provider will
not divulge or misuse our credit card details in any way;
when downloading and executing a piece of software, we
trust it will not harm our device, and so on. In mobile ad-
hoc settings, however, the perceived risk is higher, because
of the easiness with which services and information can be
accessed, the anonymity of the entities we interact with, the
speed at which new entities come into reach while others
disappear, and so on.

In order to advance the goal of anywhere-anytime comput-
ing, and to fully exploit the potential of current technologies
to promote non-trivial interactions among entities, the ex-
posure to risky transactions has to be reduced as much as
possible. An engineering approach to the development of
trust-based collaborations is thus necessary. This requires
the existence of a trust management framework (TMF) that
enables devices to form, maintain and evolve trust opinions.
These opinions are of fundamental importance as they can
be used to drive the configuration of the system in a variety
of ways: for example, to decide from where to download a
file, what service provider to contact, what access rights to
grant, and so on. Trust is obviously not the only aspect that
must be taken into account when making these decisions:
the perceived risk inherent to a transaction, and the quality
of service (QoS) requirements, will all contribute to the final
configuration decisions. For example, low risk transactions
can still take place in untrusted environments, while high
risk transactions may not take place even in highly trusted
environments. Also, a transaction that requires the invest-
ment of large amounts of resources (e.g., bandwidth and
battery) to be carried on in a low trusted environment may
be blocked, because of QoS constraints. Feelings of trust,
risk and QoS can be formed independently of each other,
and thus dealt with separately, before being combined. In
this paper, we are concerned with trust management only.

In traditional distributed systems, trust decisions were mainly
centralised: the existence of clearly-defined administrative
boundaries, and the limited mobility of entities, allowed a
trusted third party (TTP) (e.g., the local administrator) to



store information about the entities belonging to that do-
main; the TTP was then contacted when a trust decision
had to be made (for example, to establish the access rights
of an entity to a resource). This trust management model is
based on assumptions that do not hold in the mobile setting:
first, a globally available infrastructure that holds trust in-
formation is missing, and thus the centralised approach is
inapplicable. Second, while entities are mostly fixed and
known in a centrally administered distributed setting, enti-
ties are dynamic and anonymous in mobile settings. In the
first case, knowing an entity usually coincides with trusting
an entity; in the second case, we often find ourselves hav-
ing to make a trust decision about entities we have never
seen, or about whom we have only partial knowledge. Sim-
ply distrusting the unknown would cut down the possibility
to engage fruitful interactions; on the other hand, we can-
not blindly trust everyone, as anonymity is very appalling
to malicious entities against which we want to be protected.
To foster the vision of the mobile device as an ‘extension’
of the human being, and to promote complex and safe in-
teractions in the mobile and pervasive scenarios, a human-
tailored trust management model and framework have to be
developed that programmers can use to build trust-aware
systems and applications.

A trust management model for mobile ad-hoc systems must
be subjective, that is, it must enable the (user of the) mo-
bile application to form its trust opinions; delegating trust
decisions to an external entity (the TTP) would in fact in-
evitably lose the individuality that is the essence of human
trust. Decentralised approaches have been proposed, where
trust decisions are locally made based on recommendations
that are spread across the network via recommendation ex-
change protocols. However, current approaches fail to be
fully satisfactory for the following two reasons: first, they
completely rely on the assumption that entities have a so-
cial conscience that will make them exchange trust informa-
tion whenever asked, although no incentives are provided
to induce entities to do so. In a resource constrained envi-
ronment, selfishness is likely to prevail over cooperation, for
example, to save battery power. Second, the trust decision
that each entity locally makes tends to be fully automated,
with very little or no customisation allowed. We argue that
a trust management model should be highly customisable
instead, to capture the varying and complex natural dispo-
sition of an individual to trust into computer models. This
should be achieved without causing disruption to the device
computation and communication resources.

Our research goal is to develop a formal abstract treat-
ment of trust that meets the above requirements, and offer
programmers an infrastructure they can use to build trust-
aware systems. In this paper, we advance this goal by in-
troducing hTrust, a human-based trust management model
and framework that a mobile system can exploit to form
trust opinions, without the burden of, for example, keeping
trust information updated, or propagating trust information
in the network. The model is completely decentralised: each
host acts as a self-contained unit, carrying along a portfolio
of credentials derived from its past interactions, and that
it uses to prove its trustworthiness to others. Customising
functions are used to capture the natural disposition to trust
of the user of the device, thus enabling human-tailored trust

reasoning. Although dangers are an intrinsic part of mo-
bile settings, and thus cannot be completely eliminated, our
trust management model exploits these customising func-
tions to dynamically detect malicious behaviours, and con-
sequently isolate untrusted entities from future interactions.

The paper is further structured as follows: in Section 2 we
discuss strengths and limitations of current approaches to
trust management. Section 3 provides a definition of trust
and spells out the principles and assumptions our model is
based upon. In Section 4, we describe our trust management
model in details, and in Section 5 we discuss its suitability
to the mobile setting. Finally, Section 6 concludes the paper
and illustrates some future works.

2. RELATED WORK
Trust comes into play in any computational interaction, that
is, in any situation where full control is given up, and we
have to rely on the behaviour of someone else to complete a
task. The problem of trust management is thus very broad
and it has been dealt with by different research communities.
However, a common limitation to many approaches is that
they deal with only a very narrow subset of the overall trust
management problem, or they provide solutions that are not
consistent with human intuitions of trust (that is, they fail
to capture various facets of human trust).

In distributed systems, the issue of trust has often been re-
garded as how to increase the client’s trust in the behaviour
of the server component. Signatures have been proposed
to convey trust in the code (e.g., Signed Java Archives for
Java and Authenticode for ActiveX); however, a signature
can only convey trust in the identity of the signer: whether
the signer is trusted or not, is an entirely different problem.
Similar considerations apply to public key certificates [13,
2, 18, 7]) that aim to solve the problem of authentication in
distributed settings; however, a signed public key certificate
does not tell you whether the owner is a straight person or
a crook. To increase the client’s confidence in the correct-
ness of third party component’s implementations, various
solutions have been advanced. Proof-carrying code tech-
niques [20] have been proposed to foster the acceptance of
mobile agents; when the component implementation is in-
accessible, and thus independent verification cannot be per-
formed, approaches based on run-time component interface
violations have been suggested (e.g., [9, 16]). The compu-
tational overhead that these approaches impose is, however,
unbearable for mobile devices and thus can only be applied
to traditional distributed systems. More importantly, none
of these approaches say much about the wider notion of an
entity’s trustworthiness: what trust is made of, how it can
be formed, how it evolves. A wider approach to the prob-
lem of trust management is thus necessary, to enable mobile
systems and applications to dynamically reason about trust.

Sultan [15] is a trust management framework that allows
the specification, analysis and management of trust rela-
tionships. Its functioning is based on a central specification
server where trust information is stored and used both for
decision making and analysis. Although well-suited for use
by the system administrator, its applicability to the mobile
distributed setting is thus limited. PolicyMaker [5] takes a
distributed approach to the problem of trust management; it



binds keys to actions that the possessor of the key is trusted
to do. When asked to determine whether a key is allowed to
perform an action, PolicyMaker uses these bindings and a
set of locally defined policies to answer. Similar credential-
based distributed policy management approaches have been
defined (e.g.,[4, 10]); however, issues such as trust evolution
and subjective trust reasoning have not been tackled.

In [1], a trust management model is proposed to give au-
tonomous entities the ability to reason about trust, without
relying on a central authority. Based on direct experiences
and recommendations, each entity is able to derive trust
measures, thus being responsible for its own fate. The ap-
proach relies on the assumption that entities will behave
socially, exchanging recommendations when requested to do
so, although no incentives are provided for this to happen.
Also, no mechanism to dynamically re-evaluate trust deci-
sions is discussed. In [6], a mechanism to detect and isolate
misbehaving nodes at the network (routing and forwarding)
level is proposed. The main advantage of the mechanism is
that it works even without assuming the cooperativeness of
the nodes; however, decisions about what nodes to isolate
are performed in a completely automatic and homogeneous
way. While this approach may work well at the network
level, its lack of subjectivity severely limits its applicability
at the application level, where the user’s disposition has to
be accounted for.

As part of the SECURE project [11, 22], a trust manage-
ment model has been defined that uses local trust policies
to form and dynamically re-evaluate trust, based on past
personal observations and recommendations. The computed
trust values are then exploited to assess risks involved in the
transaction, and then determine what behaviour the entity
must adhere to. While moving a step closer to the defini-
tion of human trust than previous approaches, details about
the local policies and the way they influence trust formation
and evolution are missing. Moreover, the issue of malicious
behaviours is left behind the scene.

Social control mechanisms have been proposed to automati-
cally isolate malicious entities and exclude them from future
interactions, without having to rely on a trusted third party
(e.g., [21]). The underlying assumption is the view of a mo-
bile system as an ecologic system [19], where the interaction
of the participants determines the success of the individual
participant. Although sharing the same basic assumption,
approaches developed to date are fairly limited, in that they
do not capture a variety of aspects peculiar to human trust;
for example, ways to recover from a bad reputation, and
natural disposition to trust unknown entities. In this paper,
we propose a more comprehensive trust management model
that includes these aspects of human trust.

Various formalisms of trust have been proposed, in order to
help reasoning about trust relationships. In [17], an opin-
ion model based on subjective logic is discussed that can
assign trust values in the face of uncertainty; however, the
approach does not describe how to compute these values.
In [8], a formal model for trust formation/negotiation, evo-
lution and propagation is presented; however, the proto-
cols for exchanging recommendations and for dynamically
re-evaluating trust relationships are not provided. Similar

considerations hold for the formal trust models described
in [3] (based on probability theory) and [24] (based on lat-
tice, denotational semantics and fixed point theory). In this
paper, we tackle the problem of trust management from an
engineering point of view, and provide a more operational
model that programmers can actually exploit to build trust
conscious systems.

3. PRINCIPLES OF TRUST
Prior to describing our trust management model, we de-
fine what we mean by trust, and spell out some commonly
accepted characteristics of trust. Despite extensive studies
from sociologists, philosophers, and psychologists, a unique,
precise, and universally accepted definition of trust is still
missing. One of the most commonly accepted definition, and
the one we refer to, is from sociologist Diego Gambetta [12]:

“... trust (or, symmetrically, distrust) is a partic-
ular level of the subjective probability with which
an agent will perform a particular action, both
before [we] can monitor such action (or indepen-
dently of his capacity of ever be able to monitor
it) and in a context in which it affects [our] own
action.”

A first important observation is that trust is subjective: in
particular, it is the degree of belief about the behaviour of
other entities, also called ‘agents’, upon which we depend
(for example, to have a service delivered). These beliefs re-
gard both the intentions (not) to cheat, and the skills to
perform adequately to intentions. Trust is asymmetric, that
is, two agents need not have similar trust in each other, and
context-dependent, in that trust in a specific environment
does not necessarily transfer to another. Trust is dynamic
and it tends to be reduced if entities are misbehaving; vicev-
ersa, it increases if agents are doing well. There is no abso-
lute definition of what ‘doing well’ means, and therefore dif-
ferent observers may have different perceptions of the same
agent’s trustworthiness.

A trust management framework thus characterises as a self-
adjusting system used to form, exchange and evolve trust
information about the agents that populate the network.
We refer to this network as to the social context, in order to
distinguish it from the transactional context, that is a net-
work of producers/consumers that interact to deliver ser-
vices. A transactional context uses the trust information
available from the social context in order to customise the
way transactions take place, that is, to configure the sys-
tem. As pointed out before, risks and QoS issues must also
be taken into account when customising a transaction. In
this paper, we are not concerned with how these three pa-
rameters, that is, trust, risk and QoS, can be combined to
dynamically configure the system. Even before this can hap-
pen, trust opinions about other agents must be formed. In
this paper, we define such a trust management framework.

Closely related to trust management is the issue of iden-
tification: we must be able to bind a trust opinion to an
identity; however, the nature of mobile settings is such that
creation and deletion of identities is very quick and easy,
and malicious agents could exploit it to repeatedly misbe-
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Figure 1: Trust Management Model Overview.

have, without ever being isolated. Authentication systems
based on public-key cryptography (e.g., [7, 18]) do not solve
the issue, as there is nothing there preventing an agent to
have multiple pairs of keys, thus multiple identities, so that
misbehaviors related to one identity cannot be traced back
to another. We do not try to address the issue of identifica-
tion in our trust management framework. We assume each
agent has got a pair of public/private keys (perhaps more
than one), that is managed via an independent public-key
management system (we do not bind ourselves to any in par-
ticular). However, based on this assumption, our TMF aims
to detect potential cheaters (i.e., agents that maliciously cre-
ate new public/private keys to conceal past misbehaviors),
and alert the application about their presence.

4. HTRUST
An overview of the trust management model we have de-
veloped is depicted in Figure 1. The model comprises three
core components: trust dissemination, trust formation, and
trust evolution. Whenever an agent a, called the trustor,
has to decide whether to trust another agent b, called the
trustee, trust information about b has to be collected. In
our model, sources of trust information are both direct ex-
periences and recommendations. Direct experiences repre-
sent the agent’s history; the trust management framework
keeps them in the agent’s local environment. Recommenda-
tions come from other agents in the social context; the TMF
propagates them by means of the trust dissemination com-
ponent. Trust information is then processed by the trust for-
mation component, to predict the trustee’s trustworthiness.
As previously discussed, the decision of whether to interact
or not depends on both the trust opinion just formed, the
risks involved in the interaction, and the QoS requirements
at stake. Assuming the interaction takes place, feedback
about b’s trustworthiness, as perceived by a, is given in in-
put to the trust evolution component, whose goal is to keep
a’s local environment updated.

In the following sections, we describe the core components
of our trust management framework, that is, trust forma-
tion, trust dissemination and trust evolution. As the picture
shows, these components sit in between the applications and
a communication middleware that enables the agent to in-
teract with other agents in the system. The goal of the TMF
is to take the burden of maintaining and propagating trust
information away from the application; at the same time,
subjective reasoning is made possible by means of a number
of customising functions that capture the human disposition
to trust of the entity involved in the trust decision process
(i.e., the user of the device). These functions will be dis-
cussed in the following sections when encountered. While

the discussion proceeds, we will also incrementally describe
what information constitutes an agent’s local environment.

4.1 Trust Formation
We call trust formation the process that enables a trustor
agent to predict a trustee’s trustworthiness before the in-
teraction takes place. In this section, we describe both the
information that the TMF uses to predict the trustworthi-
ness of an agent, and the trust formation function that the
TMF provides to compute a prediction.

4.1.1 Trust Data Model
A trustor a forms a trust opinion about a trustee b based
on: aggregated trust information, that is, trust information
locally kept by the TMF and mainly based on a’s past direct
experiences with b (i.e., interactions happened in the past
between a and b in their transactional context); and recom-
mendations sent to a by other agents in the social context,
who have interacted with b in the past.

Aggregated trust information is kept in the trustor’s local
environment as a set of tuples:

[a, b, l, s, c, k, t],

meaning that agent a trusts agent b at level l to carry on
service s in context c. The trust level l varies in a range
[−1, 1], with −1 meaning total distrust, and 1 meaning blind
trust. The trust level will be higher if interactions happened
in the transactional context have been positive experiences,
and viceversa. Because in mobile ad-hoc settings agents can
have only a partial knowledge of their surroundings, their
trust opinions contain a level of uncertainty. In order to
distinguish between ‘don’t trust’ (i.e., trust-based decision)
from ‘don’t know’ (i.e., lack of evidence), we explicitly model
the degree of knowledge k in the trust opinion expressed.
This knowledge varies in a range [0, 1], with 0 meaning un-
known, and 1 meaning perfect knowledge; the higher the
number of direct experiences happened between the trustor
and the trustee, the higher the degree of knowledge. The
distinction between trust and knowledge has been explicitly
made in [8] first. However, they do not model a third im-
portant parameter, that is time. The trustor’s knowledge k
decays with time; we thus associate, to each tuple, a times-
tamp t, indicating at which time the knowledge k refers to.
In the reminder of the paper, we are only interested in the
parameters l, k and t; we thus simplify the notation and de-
scribe an aggregated trust opinion made by agent a about b
as o = [a, b, l, k, t] ∈ O, O being the set of all trust opinions.
We will discuss in Section 4.3 how the TMF on each agent
maintains aggregated information updated.

Recommendations have a very similar structure to the one
presented above. The main difference is that each recom-
mendation is signed with the recommender’s private key, in
order to prove its authenticity. For example, a recommen-
dation sent by agent x about agent b would look like:

[x, b, l, s, c, k, t]SKx

or, simply, [x, b, l, k, t]SKx . We refer to x and b as to the
agent’s names; they are the piece of information that is
publicly attached to their public key through the public-
key management infrastructure. A recommendation is thus



simply computed by signing the local aggregated trust tu-
ple; we will discuss in Section 4.2 the protocol used by the
TMF to exchange recommendations across the social con-
text. Recommendations are used to form a trust opinion
in two circumstances: to predict the trustee’s behaviour in
case the trustor has never interacted with him before (i.e.,
there is no aggregated trust information to base on); and to
(partially) rely on third-party assessments to form a trust
opinion (trust delegation). For example, an agent a may be
willing to interact with agent b provided that he has been
recommended by agent x (i.e., a delegates to x the formation
of a trust opinion about b).

Not all recommendations are used to predict trust. In hu-
man interactions, we tend to weigh more recommendations
coming from people who have given us good recommenda-
tions in the past (i.e., people with whom we shared opin-
ions), while discarding recommendations coming from un-
known recommenders, or from recommenders with whom we
have divergence of opinions. Information about the trust-
worthiness of an agent as a recommender is thus kept in an
agent’s local environment as a set of tuples:

[a, x, l, s, c, k, t].

We refer to these tuples as to tacit information, as the TMF
tacitly extracts them from observations of direct experiences
using a process that will be described in Section 4.3. The
interpretation of this tuple is the same provided for aggre-
gated trust tuples: a trustor a trusts agent x at level l to
provide recommendations (service s) in a certain context c
(e.g., you may trust x on recommendations about restau-
rants but not about what stock market to invest in). The
trustor has knowledge k at time t about this information.
The higher the number of good recommendations received
by x in the past, the higher the trust level, and viceversa.
Also, the higher the number of recommendations received
from x, the better the knowledge of x; as before, this knowl-
edge decays with time, and we thus have to record at what
time the information contained in the tuple refers to. To
simplify the discussion, we will refer to a recommender’s
trust tuple as r = [a, x, l, k, t] ∈ R, R being the set of all
trust opinions about recommenders.

4.1.2 Trust Formation Function Υ
A trustor a willing to predict the trustworthiness of a trustee
b, uses the trust formation function Υ our framework pro-
vides. A formal definition of Υ can be found in Figure 2.
Given in input an aggregated trust information tuple o ∈ O,
taken from a’s local environment e ∈ E , and a set of recom-
mendations O ∈ ℘(O) coming from the social context, the
trust formation function Υ returns a range of predicted trust
values. We represent the prediction as an interval, rather
than as a single value, to cater for the approximate nature
of trust due to incomplete knowledge. It is up to the mobile
application to decide what value to use from this range.

First, given the aggregated local tuple o = [a, b, l, k, t], a
predicted trust value f is computed, based on the past trust
level l, the trustor’s knowledge k, and the time elapsed since
the last time the tuple o was updated with fresh information.
T is a parameter belonging to the trustor local environment
e, and represents the time interval during which interactions
are observed. A predicted trust range is then derived, based

on the trust level l experienced in the past, and the discrep-
ancy between this value and the prediction f (function Υop

- prediction based on one trust opinion).

Second, a predicted trust range is computed based on the
recommendations received from the social context (function
Υrec - prediction based on m recommendations). For each
recommendation oi ∈ O, the function Υop is used to derive
a predicted trust range; a new lower limit llow and upper
limit lhigh are then computed as a weighed average of the
individual ranges lower and upper limits. These weights
are computed taking into consideration the recommender
i’s trustworthiness l′i, the trustor’s knowledge k′i about the
recommender, and the time elapsed since when i’s last rec-
ommendation was received. The tacit information tuple
r′i = [a, i, l′i, k

′
i, t

′
i] is retrieved from a’s local environment

e using an auxiliary function lookup(i, e). Note that not all
recommendations are used to compute a prediction: only
recommendations coming from recommenders whose quality
qi is greater than a minimum level η contribute to the final
result. Also, to avoid considering the same recommendation
more than once, we assume that only recommendations with
timestamp πtime(oi) > πtime(ri) are processed (πtime is an
auxiliary function used to project a tuple onto its timestamp
field, that is, πtime([x, y, l, k, t]) = t).

Finally, the trust formation function Υ is used to derive a
predicted range of trust values, based on the two ranges pre-
viously computed. We make use here of a customising func-
tion h1 that synthesises a trust range, given two different
trust ranges. This function will vary from agent to agent,
and depending on the natural disposition to trust of the
agent itself. For example, h1 may be chosen to consider the
local aggregated trust information only, thus relying solely
on the trustor’s past experiences (trust reflexivity); vicev-
ersa, recommendations alone can be used (trust transitivity),
for example, when the trustor has no previous knowledge of
the trustee. More generally, a combination of the two will
be used:

h1([l1, l2], [l
′
1, l

′
2]) = [ h2([l1, l2])− |h2([l1, l2]− h2([l

′
1, l

′
2])|,

h2([l1, l2]) + |h2([l1, l2]− h2([l′1, l
′
2])| ]

where h2 is another customising function used to compute
a trust value out of a trust range. For example, a cau-
tious agent that tends to distrust other agents may choose
h2(l1, l2) = l1 (that is, the lower trust value of a range); an-
other agent who naturally tends towards trust may choose
h2(l1, l2) = l2 instead. More generally, h2(l1, l2) = w1 ∗ l1 +
w2 ∗ l2, with 0 ≤ w1, w2 ≤ 1, w1 + w2 = 1; the weights w1

and w2 are chosen depending on the importance given to
trust reflexivity (w1) and to trust transitivity (w2).

4.2 Trust Dissemination
The trust formation function described before uses recom-
mendations to predict the trustworthiness of a trustee b;
these recommendations become particularly important when
b is unknown to the trustor a; a protocol for the dissemina-
tion of recommendations is thus necessary. In this section,
we describe a recommendation exchange protocol that guar-
antees a a minimum set information upon which to base the
prediction, even in the case agents are selfish and, having to
decide whether to answer a request for recommendations, or
to save battery power, choose the latter.



Υop : O → E → [−1, 1]× [−1, 1]

Υop[[[a, b, l, k, t]]]e = [max(−1, l − |l − f |), min(l + |l − f |, 1)] , f = l ∗ k ∗max
“
0,

T − (tnow − t)

T

”
Υrec : ℘(O) → E → [−1, 1]× [−1, 1]

Υrec[[{oi|i ∈ [1, m]}]]e = [llow, lhigh] ,

llow =

P
i{π1(Υop[[oi]]e) ∗ qi|qi > η}P

i(qi|qi > η)
, lhigh =

P
i{π2(Υop[[oi]]e) ∗ qi|qi > η}P

i(qi|qi > η)

qi = max(η, l′i ∗ k′i ∗max
“
0,

T − (tnow − t′i)

T

”
) , r′i = lookup(i, e) = [a, i, l′i, k

′
i, t

′
i]

Υ : O × ℘(O) → E → [−1, 1]× [−1, 1]

Υ[[(o, O)]]e = h1(Υop[[o]]e, Υrec[[O]]e)

Figure 2: Trust Formation Function Υ. The following auxiliary functions are used: π1(l1, l2) = l1; π2(l1, l2) = l2

4.2.1 Exchange of Recommendations
We assume that each trustee agent b carries with him (i.e., in
his local environment) a portfolio of credentials, that is, a set
of letters of presentation that represents the history of the
agent itself. Each letter contains the following information:

[x, b, l, s, c, k, t]SKx

This letter has to be interpreted as done before for recom-
mendations: agent x says he trusts b at level l to carry on
service s in context c; at time t, x was confident in the trust
opinion expressed at degree k. The letter of presentation is
authentic, that is, it can only come from x, as it has been
signed with his private key SKx.

Whenever a trustor agent a has to form a trust opinion
about a trustee agent b, and a cannot rely solely on the
aggregated trust information the TMF has kept locally (for
example, because there is no such information, or because
it is too outdated), the TMF runs the following protocol.

Step 1. a → b : req for credentials(m). The protocol
starts with a sending b (notation a → b) a request to see
his portfolio of credentials; the parameter m indicates the
maximum number of letters a is willing to receive from b.

Step 2. b → a : (oi)SKi , i ∈ [1, m]. The trustee b replies
with a set of at most m letters of presentation (the ones he
considers to be the best for his own reputation).

Step 3. The TMF decrypts the letters of presentation re-
ceived, relying on the public-key infrastructure to receive
the public-keys of the agents that have signed the letters.
The local trust formation function Υ is then used to form a
trust opinion about b, based on the information contained
in the decrypted letters. However, this information may not
be enough, leaving the predicted value still not satisfactory.
In this case, the TMF queries the social context to receive
further recommendations about b. Note that this request
may bring no additional information to a, in case agents in
the social context do not reply. No more information can
now be collected; the function Υ is used one last time to
synthesise a predicted trust interval.

Step 4. At this point, interaction between a and b may or
may not take place in their transactional context; this does

not only depend on the result of the trust formation func-
tion, but also on risks and QoS needs related to the specific
transaction. In case the interaction takes place, our proto-
col demands that, upon its completion, a and b exchange
a letter a presentation: a → b : [a, b, l′, k′, t]SKa , and
b → a : [b, a, l′′, k′′, t]SKb . The tuple signed by b becomes
a letter of presentation for a and vice-versa. This is a far less
demanding assumption than requiring an agent to answer all
requests for recommendations coming from neighbors.

Note that a can read what b has written in the letter of
presentation by decrypting it with PKb. In this case, if b
gives negative feedback to a, a can decide to discard this
letter of presentation and not include it in its portfolio. We
do not consider this concealment to affect our protocol for
the following reasons: if a repeatedly misbehaves, and thus
keeps discarding the letters of presentation received, he will
not build a portfolio to supply to other trustor agents in
order to make himself trusted. Occasional concealments are
harder to be discovered; however, the more recommenda-
tions are collected from the social context, the easier and
quicker the discovery of concealed bad reputation letters.
We will detail in Section 4.3 how malicious agents can be
detected and isolated.

The trust formation function Υ is applied at three differ-
ent stages of the recommendations exchange protocol: prior
to its execution, after the portfolio of credentials has been
obtained from the trustee, and then again once (and if) fur-
ther recommendations have been received from the social
context. Every time, the returned result of the Υ function
is used to decide whether to proceed with the following step
of the protocol or not. This decision depends on a cus-
tomising function h3 : [−1, 1] × [−1, 1] → {0, 1} that, given
in input a predicted trust range, decides whether the pre-
diction is accurate enough (return 1), or whether further
information should be acquired (return 0). What exactly
is enough, depends once again on the natural disposition
to trust of the agent. Possible examples of this function
include: h3(l1, l2) = 0 if l1 < 0 and l2 > 0, 1 otherwise;
that is, if the lower bound l1 is negative (i.e., tends towards
distrust), while the upper bound l2 is positive (i.e., tends to-
wards trust), then ask for more trust information. Another
possibility is h3(l1, l2) = 0 if l2 − l1 > δlmax, 1 otherwise;
that is, if the range of opinions is too broad, ask for more



Φ : [−1, 1]× ℘(O) → E → E
Φ[[(l̃, O)]]e = e \ {[a, b, l, k, t]} ∪ {[a, b, l′, k′, t′]} | o = lookup(b, e) = [a, b, l, k, t] ∧

l′ = h4(l̃, l, h2(Υrec[[O]]e)) ∧ k′ = min(k + kmin, 1) ∧ t′ = tnow

Φ[[(ε, O)]]e = e \ {[a, b, l, k, t]} ∪ {[a, b, l′, k′, t′]} | o = lookup(b, e) = [a, b, l, k, t] ∧
l′ = h4(ε, l, h2(Υrec[[O]]e)) ∧ k′ = k ∧ t′ = max(t, max

i
({πtime(oi), oi ∈ O}))

Figure 3: Aggregation Function Φ.

information to narrow it down.

Note that, when entering a social context for the first time,
an agent has no history, thus no portfolio he can use to prove
his trustworthiness to other agents. Having no history is
distinctive of both genuine newcomers, but also of cheating
agents, that are repeatedly creating new identities to conceal
past misbehaviors. To facilitate the start-up of an agent
x without past, an agent a, that is already a member of
the social context, may send out an introductory message
[a, x, l, s, c, 0, t]SKa to the community. The interpretation
of the message is the same provided for recommendations;
however, the knowledge parameter k is set to zero, to warn
the community that the trust opinion l is not based on a
direct experience but, for example, on the opinion that a
formed about x during a physical encounter. It will then
depend on a’s trustworthiness as a recommender whether,
and how quickly, the newcomer will be accepted by the social
context. In the absence of such an introductory message, the
newcomer may offer (service-specific) incentives to solicit
trust, and thus encourage interactions.

4.3 Trust Evolution
As we discussed in Section 4.1, the trustworthiness of a
trustee agent is predicted based on his trustworthiness dur-
ing past experiences, as perceived by the trustor agent. A
fundamental component of a trust management framework
is thus trust evolution, that is, the continuous self-adaptation
of trust information kept by the TMF in the agent’s local
environment. In this section, we discuss: an aggregation
function Φ, used to maintain information about the trust-
worthiness of an agent as a service provider (i.e., aggregated
trust information tuple), and a tacit information extraction
function Ψ, used to maintain information about the trust-
worthiness of an agent as a recommender (i.e., tacit infor-
mation tuples). Also, we illustrate how the maintenance of
trust information plays a key role in the detection of mali-
cious agents.

4.3.1 Aggregation Function Φ
The TMF of agent a uses the aggregation function Φ to
update the perceived trustworthiness of a trustee b when a
new direct experience between the two agents occurs. Even
in case there is no interaction, the trustworthiness of the
trustee may still be updated, based on the recommendations
received about b from trusted recommenders; the trust in-
formation kept on the mobile device for each agent is thus
minimal (a single aggregated tuple). We assume that only
recommendations coming from agents with quality qi > η
contribute to the newly synthesised trust value (see Figure 2

for a definition of qi); also, we assume that only fresh recom-
mendations are processed (πtime(oi) > πtime(ri), oi being a
recommendation in O, and ri the tacit information tuple
related to recommender i in the agent’s local environment).

Figure 3 contains a formal definition of the aggregation func-
tion Φ. The first equation describes the case where the ag-
gregated tuple o = [a, b, l, k, t], kept in a’s local environ-
ment e, is updated as a result of an interaction occurred
between a and b. The old trust opinion l, held by a prior to
this interaction, is replaced by a new value l′ that depends
on: l̃ ∈ [−1, 1] (that is, b’s trustworthiness as perceived by
a in the just completed interaction), l, and h2(Υrec[[O]]e)
(that is, b’s trustworthiness computed using the newly re-
ceived recommendations O). A customising function h4

combines this three trust opinions to derive the new one.
The general structure of h4 is the following: h4(l1, l2, l3) =
w1∗l1+w2∗l2+w3∗l3

w1+w2+w3
, where l1 corresponds to b’s trustworthi-

ness as perceived by a in the just completed interaction, l2
is the opinion previously held by a about b, and l3 is b’s ex-
pected trustworthiness based on the received recommenda-
tions. Different choices of the weights wi correspond to dif-
ferent dispositions to trust of the agent. Examples include:
w1 = 1, w2 = 1, w3 = 0, that is, equal weight is given to the
newly perceived trustworthiness and the old opinion; this
reflects a human disposition to change trust opinion fairly
quickly. Another example is w1 = 1, w2 = n, w3 = 0, with
n = k/kmin, kmin representing the increment of knowledge
happened in a single transaction; in this case, each of the n
experiences happened between a and b has equal weight in
computing the new trust l′, thus reflecting a more cautious
behaviour, not inclined to change opinion rapidly. In both
cases, the recommendations are not taken into account, as
trust information coming from a direct experience (that is, l̃)
is available. Apart from adjusting the trust level, the knowl-
edge a has got about b is increased; also, the timestamp is
updated to guarantee the freshness of the information.

The second equation considers the case where trust informa-
tion about b is updated solely based on the newly received
recommendations O, without an interaction to have actu-
ally occurred. This is useful, for example, when collecting
information about the trustworthiness of other agents with
whom there has been no previous interaction. In this case,
a new trust opinion is computed solely based on l (i.e., the
old trust opinion held by a), and h2(Υrec[[O]]e) (i.e., the pre-
dicted trustworthiness computed using the newly received
recommendations O). Note that, in this case, the trustor’s
knowledge is not incremented: only direct experiences con-
tribute to uncertainty reduction.



Ψ : [−1, 1]× ℘(O) → E → E
Ψ[[(l′, O)]]e = e \ {ri = lookup(i, e) = [a, i, li, ki, ti], ∀oi ∈ O} ∪ {r′i = [a, i, l′i, k

′
i, ti], ∀oi ∈ O} |

k′i = min(ki + kmin, 1) ∧ l′i =


max(−1, h5(li, δli)) if δli > δmax

min(h5(li, δli), 1) if δli ≤ δmax
,

δli = |l′ − h2(li − |πl(oi)− πl(oi) ∗
T − (tnow − ti)

T
|, li + |πl(oi)− πl(oi) ∗

T − (tnow − ti)

T
|)|

Figure 4: Tacit Information Extraction Function Ψ. The auxiliary function πl has been used to project a
tuple o = [x, y, l, k, t] onto the trust value l.

The aggregated tuple can then be signed with the trustor’s
private key and used at the end of the recommendation ex-
change protocol to provide the trustee a letter of presenta-
tion; also, it is used to answer request for recommendations
coming from other agents in the social context.

4.3.2 Tacit Information Extraction Function Ψ
When agent a has to make a trust decision about agent b
with whom he has no previous direct experiences, there are
only recommendations to rely on. However, as trust is sub-
jective, these recommendations may be conflicting with each
other; in these cases, we would like to weigh more recom-
mendations coming from agents we trust as recommenders
(i.e., whose recommendations we usually agree with), while
weighing less, or even discard, recommendations coming from
agents we do not trust (i.e., with whom we do not share opin-
ions). The TMF thus maintains, on behalf of its agent, a
set of tuples that assesses the trustworthiness of agents as
recommenders. We refer to this set of tuples as tacit in-
formation; its content is updated after an interaction has
occurred, using a tacit information extraction function Ψ
whose formal definition can be found in Figure 4.

The tacit information tuple [a, i, li, ki, ti] ∈ e, containing
information about the trustworthiness li of agent i as a rec-
ommender, is updated based on: the perceived trustwor-
thiness l′ of b with whom a has just interacted, and the
recommendation oi ∈ O about b that recommender i has
given to a. To avoid considering the same recommenda-
tion many times, only recommendations oi with timestamp
πtime(oi) > πtime(ri) are processed. First, the discrepancy
δli between the observed trustworthiness l′ and the opinion
li provided in the recommendation is computed; the uncer-
tainty that time brings is taken into consideration, as the
recommendation may refer to a distant past. A new trust
value l′i for recommender i is then computed, based on both
its past trustworthiness li and the discrepancy δli, using a
customising function h5. An example of h5 is the follow-
ing: if the discrepancy of opinions is lower than a toler-
ance parameter δmax, then i’s trustworthiness is increased:

li =
n∗li+

2−δli
2

n+1
, with n = ki/kmin. Viceversa, if the dis-

crepancy of opinions is higher than the tolerance, the rec-

ommender’s trustworthiness is decreased: li =
n∗li−

2−δli
2

n+1
.

In this case, an equal weight is given to every recommen-
dation received from i in the past (cautious change of opin-
ion); another possibility is to weigh the past as a whole and
the new recommendation equally (rapid change of opinion),

that is, li =
li+

2−δli
2

2
. The lower the tolerance, the stricter

is the trustor in selecting trustworthy recommenders. To
limit the uncertainty of the information processed, as well
as the computational complexity of the model, we do not
consider recommendations about the trustworthiness of rec-
ommenders.

Both the aggregation function and the tacit information ex-
traction function are non-monotone: they adjust the value
of an agent’s trustworthiness based on its behaviour, so
that trust can dynamically be gained (when behaving well)
and lost (when misbehaving). Trust information thus keeps
evolving throughout the lifetime of an agent: the more fre-
quently the agent interacts, the more accurate the agent’s
knowledge of the surroundings becomes, and viceversa.

4.3.3 Malicious Agents Detection
In the social context, malicious behaviours refer to the spread-
ing of: fake bad recommendations, when a single agent, or a
group of agents, start spreading false bad recommendations
to damage some other agent; and fake good recommenda-
tions, when a group of agents aggregate and support each
other to create a false good reputation. Detection of these
behaviours is particularly difficult, as there is no definite way
to distinguish between a simple difference of opinions, and a
real threat. Punishment is even more difficult to perpetrate,
because of the lack of a central authority to enforce it, and
because of the anonymity of agents in mobile systems. We
thus favour an anarchic model (“anarchy engenders trust
and government destroys it” [14]), where each agent is re-
sponsible for his own fate, as far as detection of malicious
agents and punishment are concerned. The TMF supports
the agent by providing a conflict detection mechanism that
relies on the tacit information the TMF maintains on be-
half of its agent. When agent a receives new recommenda-
tions from agent x about some agent b, the function Ψ is
used to compare b’s trustworthiness, as perceived by a, with
that recommended by x: if conflicts of opinions with x hap-
pen sporadically, chances are that they are simply disagree-
ments of trust opinions without any malevolence. However,
if they happen frequently, x’s trustworthiness as a recom-
mender quickly drop towards −1, that is, total distrust. A
boundary value η ∈ [−1, 1] for an agent’s trustworthiness is
defined, so that when x’s trustworthiness drops below η, x
becomes a suspect: recommendations coming from x are now
discarded by the TMF, unless he recovers from this state.
It is possible, in fact, that a mistake is made and a wrong
opinion about x is formed; however, the more a interacts,
the quicker and more likely the TMF will detect these mis-
takes, and thus have the chance to rectify them (“anarchy
engenders cohesion” [14]). In this model, the punishment



Data
Aggregate Trust Information [a, x, l, k, t]
Tacit Information [a, x, l, k, t]
Portfolio of Credentials [x, a, l, k, t]SKx

Parameters
Time Interval of Relevant Observations T
Maximum Tolerate Discrepancy of Opinions δmax

Single Increment of Knowledge kmin

Minimum Trust Level η
Customising Functions

Given two trust ranges, compute a trust
range (used by Υ)

h1

Given a trust range, compute a trust opinion
(used by Υ)

h2

Given a trust range, decide whether the pre-
diction is precise enough (used by the recom-
mendations exchange protocol)

h3

Given three trust opinions, compute a new
one (used by Φ)

h4

Given a trust opinion and a discrepancy,
compute a new trust opinion (used by Ψ)

h5

Table 1: Agent a’s Local Environment

for being a cheater is thus the loss of trust, which results
in isolation from future interactions. After being isolated,
an agent may very easily create a new identity; in this case,
however, he will have no history, and thus other agents will
be reluctant to trust him and start interactions with him.

In order for an anarchic model to work, the assumption that
the number of honest agents is higher than the number of
malicious agents must hold. Also, the social context should
circulate as much trust information as possible, so that con-
cealments are revealed, and conflicts are more quickly de-
tected. To achieve this goal, the recommendation exchange
protocol could end with the newly created letters of presen-
tation (step 4) sent to the social context (instead of using
a private exchange between the two interacting agents), as
part of a more socially inspired protocol. The way the pro-
tocol should run is not enforced by our model.

Note that the mechanism described above allows detection of
misbehaving recommenders, not of service providers, through
analysis of the recommendations they spread around. De-
tection and isolation of malicious service providers (that is,
agents that fail to deliver a service as they have advertised)
sits at the boundary of the social and transactional context
and is not dealt with in details in this paper. An unsatis-
factory transaction has repercussions in the trustworthiness
of the service provider as shown by the aggregation function
Φ; the extent to which a transaction is considered unsatis-
factory, as well as the trust opinion that results from such a
transaction, are outside the scope of this paper.

4.4 Local Environment
Table 1 summarises the information that forms an agent’s
local environment: the data is continuously updated by the
TMF using the aggregation function (to maintain aggre-
gated trust information), the tacit information extraction
function (to maintain tacit information), and during the
agent’s interactions (to maintain a portfolio of credentials).
Parameters and customising functions enable the customisa-
tion of the TMF according to the user’s natural disposition
to trust. Examples of customising functions have been dis-

cussed in the previous sections; it is beyond the scope of this
paper to supply values for the parameters.

5. DISCUSSION
We argue that the trust management model we have de-
scribed in the previous section is particularly well suited for
the mobile setting. First, it does not rely on trusted third
parties, such as server repositories of trust information, or
central authorities with special powers to detect and punish
malicious agent; we favour an anarchic model instead, where
each agent is solely responsible for his own fate.

Second, the resource demands imposed by an implementa-
tion of the framework can be minimal. Recommendations,
for example, are not stored in an agent’s local environment,
but aggregated so that a single tuple is kept, thus minimising
memory requirements per agent; the number of agents for
which trust information is locally maintained then varies,
depending on the trustor’s needs. Tuples can also be pe-
riodically purged (e.g., when outdated tnow − ti > T ), to
further limit memory requirements. A similar consideration
applies to the computational overhead: the more frequently
the recommendation exchange protocol is run, the more ac-
curate the trust information received, the higher the load;
similarly, the more often the tacit information extraction
function is computed, the more precise the selection of good
recommenders, the higher the load. However, the frequency
with which these tasks are executed is not prescribed in our
TMF: each agent has the chance to decide how many re-
sources to invest in trust management (e.g., depending on
the risks inherent to the transactions the agent undertakes,
the resource capabilities of the device, etc.).

One of the major claims of our trust management model
is that it simulates the human approach to trust manage-
ment in the computer world. It does so by means of the
customising functions described in the previous section. A
major concern is then how these functions are selected. We
expect the user of the device to select the ‘trust profile’ that
better describes his natural disposition, from a list of avail-
able profiles that are offered him by the trust management
framework. Attached to each profile is a choice of what
customising functions to use in practice. The level of ab-
straction of the profile can vary from very high level (e.g.,
‘distrust the unknown’) for non-expert users, to very low
(detailed) level for expert users.

Apart from customising functions, the behaviour of our trust
management model depends on a number of parameters, as
listed in Table 1. We have not discussed in this paper pos-
sible values of these parameters. We have implemented a
prototype of our trust management framework in C++, and
we now plan to run simulations using the OMNeT++ [23]
simulation environment, to empirically derive possible val-
ues for these parameters. These simulations will also show
the level of accuracy of the computed trust opinions (e.g.,
no false negatives - all real cheaters should be caught, and
no false positives - no benevolent agent should be charged).

6. CONCLUSION AND FUTURE WORK
This paper has discussed hTrust, a trust management model
and framework that enables the development of trust-aware
systems and applications. In particular, hTrust relieves the



programmer from dealing with trust formation, trust dis-
semination, and trust evolution issues. While doing so, the
framework makes sure to capture the actual human dispo-
sition to trust of the user of the mobile device, by means of
customising functions.

We are currently evaluating an implementation of our trust
management model using the OMNeT++ simulation envi-
ronment. As discussed in the previous section, the outcomes
we expect from this exercise are manifold: empirical values
to associate to the parameters that represent variables in
our model; quantitative evaluation of the impact of these
parameters on the model in terms, for example, of accu-
racy of trust opinions, resource usage, etc. This may lead
to refinements of the model itself. At present, the recom-
mendation exchange protocol propagates trust information
in the social context using a simple flooding algorithm. It
is our plan to integrate our trust management model with
available event-based middleware, and replace the flooding
algorithm with available, more efficient, routing algorithms
for ad-hoc networking. Although not relevant for the dis-
cussion of the trust management model, we realise that an
ontology to encode the information contained in the tuples
(i.e., service description and context) should be defined.

Our research plans for the future include the run-time mon-
itoring of interactions happening in the transactional con-
text, both to provide feedback to the trust evolution com-
ponent of our framework, and to detect (and react to) vio-
lations to the predicted trust level, prior to the completion
of the transaction. On a longer-term basis, we would like to
integrate trust, risks and Qos issues to drive the dynamic
(re)configuration of a system.
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