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Abstract—Mobile devices, such as mobile phones and per-
sonal digital assistants, have gained wide-spread popular-
ity. These devices will increasingly be networked, thus en-
abling the construction of distributed applications that have
to adapt to changes in context, such as variations in net-
work bandwidth, battery power, connectivity, reachability
of services and hosts, and so on. In this paper we describe
CARISMA, a mobile computing middleware which exploits
the principle of reflection to enhance the construction of
adaptive and context-aware mobile applications. The mid-
dleware provides software engineers with primitives to de-
scribe how context changes should be handled using poli-
cies. These policies may conflict. We classify the differ-
ent types of conflicts that may arise in mobile computing
and argue that conflicts cannot be resolved statically at the
time applications are designed, but, rather, need to be re-
solved at execution time. We demonstrate a method by
which policy conflicts can be handled; this method uses a
micro-economic approach that relies on a particular type
of sealed-bid auction. We describe how this method is im-
plemented in the CARISMA middleware architecture, and
sketch a distributed context-aware application for mobile
devices to illustrate how the method works in practise. We
show, by way of a systematic performance evaluation, that
conflict resolution does not imply undue overheads, before
comparing our research to related work and concluding the
paper.

Keywords— Middleware, mobile computing, reflection,
context-awareness, conflict resolution, game theory, quality
of service.

I. Introduction

MOBILE computing devices, such as palmtop comput-
ers, mobile phones, personal digital assistants (PDA)

and digital cameras have gained wide-spread popularity.
These devices will increasingly be networked and software
development kits are available that can be used by third
parties to develop applications [1].

Even though devices and networking capabilities are be-
coming increasingly powerful, the design of mobile appli-
cations will continue to be constrained by physical limita-
tions. Mobile devices will continue to be battery-dependent
and users are likely to be reluctant to carry heavy-weight
devices. Wide-area networking capabilities will continue to
be based on communication with basestations, with fluc-
tuations in bandwidth depending on physical location. In
order to provide acceptable quality of service to their users,
and consequently improve user satisfaction of the system,
applications have to be context-aware [2], and able to adapt
to context changes, such as variations in network band-
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width, exhaustion of battery power or reachability of ser-
vices on other devices. This would require application en-
gineers, for example, to periodically query heterogeneous
physical sensors, in order to get updated context informa-
tion, to detect context configurations of interest to the ap-
plication, and adapt accordingly; however, doing so would
be extremely tedious and error-prone.

In order to ease the development of context-aware appli-
cations, middleware layered between the network operating
system and the application have to provide application en-
gineers with powerful abstractions and mechanisms that
relieve them from dealing with low-level details. For ex-
ample, applications must be able to specify, in a uniform
way, which resources they are interested into, and which
behaviours to adopt in particular contexts. The middle-
ware, then, maintains, on behalf of the applications, up-
dated context information, detects changes of interest to
the application, and reacts accordingly.

In the past decade, the development of distributed ap-
plications for wired systems has been greatly enhanced by
middleware systems that succeeded in facilitating the com-
munication between distributed components. Traditional
middleware systems (e.g., CORBA, Java/RMI, MQSeries)
provide application engineers with communication abstrac-
tions that relieve them from dealing with, for example, the
location of distributed components, network failures and
hardware heterogeneity (e.g., for marshaling/unmarshaling
of parameters). These middleware are based on the princi-
ple of transparency [3][4]: implementation details are hid-
den from both users and application designers and are en-
capsulated inside the middleware itself, so that the dis-
tributed system appears to application developers as a sin-
gle integrated computing facility.

Although having proved successful in supporting the con-
struction of traditional distributed systems, we argue that
transparency cannot be used as the guiding principle to
develop the new abstractions and mechanisms needed by
mobile computing middleware to foster the development
of context-aware applications. By providing transparency,
middleware must take decisions on behalf of the applica-
tion; this is inevitably done using built-in mechanisms and
policies that cater for the common case rather than the high
levels of dynamicity and heterogeneity intrinsic in mobile
environments. Applications, instead, may have valuable
information that could enable the middleware to execute
more efficiently, in different contexts.

We argue that reflection [5] offers significant advantages
for building mobile computing middleware. A reflective
system may modify its own behaviour by means of inspec-
tion (i.e., the internal behaviour of the system is exposed)
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and/or adaptation. (i.e., the internal behaviour of a system
can be dynamically changed). For example, applications
may dynamically alter the set of resources that middle-
ware monitors on their behalf, the context configurations
they are interested into, and the behaviours they want to
adhere to. However, while doing so, applications may in-
troduce ambiguities, contradictions, and other logical in-
consistencies. For example, contradictory behaviours may
be requested by the same application to react to a partic-
ular context change, or cooperating applications may not
agree on a common behaviour to be applied. We refer to
these inconsistencies as conflicts.

The novel contribution of this paper is the design, for-
malisation and evaluation of new abstractions and mecha-
nisms that, embedded in a mobile computing middleware
software layer, facilitate the development of context-aware
applications. In particular, we exploit the principle of re-
flection to achieve dynamic adaptation to context changes:
we offer applications an abstraction of the middleware as
a dynamically customisable service provider, where cus-
tomisation takes place by means of metadata, which en-
code middleware behaviour to answer application service
requests in various contexts. Through reflection, the meta-
information can be changed, and therefore the middleware
behaviour tuned, with the risk, however, of incurring con-
flicts. We have designed a microeconomic approach to con-
flict resolution that relies on a particular type of sealed-bid
auction. Our approach treats a distributed mobile system
as an ‘economy’ where applications compete to have the
middleware deliver the quality-of-service they desire. The
mobile computing middleware plays the role of an auction-
eer, collecting bids from applications and delivering services
with the QoS requested by the successful one. We show
why our auctioning mechanism is particularly useful in a
mobile setting and that it achieves fair conflict resolution.

The remainder of the paper is structured as follows:
Section II describes our reflective middleware model; Sec-
tion III introduces the issue of conflicts in a mobile setting,
provides a classification of the types of conflicts we deal
with, and illustrates them using an example of context-
aware application. In Section IV we formalise the microe-
conomic mechanism we propose to solve these conflicts, and
illustrate a comprehensive example, based on the applica-
tion described before, to clarify how the model works in
practise. Section V evaluates our model in terms of usabil-
ity and performance; Section VI compares our approach to
related work, and finally Section VII concludes the paper
and identifies possible future work.

II. The Reflective Model

Mobile applications execute in an extremely dynamic
context: location changes all the time while moving around
with our portable device, and so the services and devices in
reach; local resource availability varies quickly as well, such
as memory availability, bandwidth, and battery power. In
order to provide reasonable quality-of-service to their users,
applications have to be context-aware.

We argue that reflection [5] is a powerful means to build
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Fig. 1. The Reflective Process.

mobile computing middleware that supports the develop-
ment of context-aware applications. The key to the ap-
proach is to make some aspects of the internal representa-
tion of the middleware explicit, and hence accessible from
the application, through a process called reification. Appli-
cations are then allowed to dynamically inspect middleware
behaviour (introspection), and also to dynamically change
it (adaptation), by means of a meta-interface that enables
run-time modification of the internal representation previ-
ously made explicit. The process where some aspects of
the system are altered or overridden is called absorption.
The whole process is depicted in Figure 1(a).

CARISMA, a project carried out at University College
London, is a middleware model that exploits reflection to
enable context-aware interactions between mobile applica-
tions. In our model [6], the middleware is in charge of main-
taining a valid representation of the execution context, by
directly interacting with the underlying network operating
system. By context, we mean everything that can influence
the behaviour of an application, from resources within the
device, such as memory, battery power, screen size and
processing power, to resources outside the physical device,
such as bandwidth, network connection, location and other
hosts within reach, to application-defined resources, such
as user activity and mood.

Applications may require some services to be delivered
in different ways (using different policies) when requested
in different context. For example, a messaging application
may wish to send messages in plain when bandwidth is
high, while exchanging compressed messages when band-
width is low.

To enhance the development of context-aware applica-
tions, CARISMA provides application engineers with an
abstraction of the middleware as a customisable service
provider. In particular, the behaviour of the middleware
with respect to a specific application is described as a set
of associations between the services that the middleware
customises, the policies that can be applied to deliver the
services, and the context configurations that must hold in
order for a policy to be applied. In the example above, an
association is defined between the ‘messaging’ service, the
‘plain message’ policy, and a context where the resource
‘bandwidth’ is high, and another one between the same
‘messaging’ service, the ‘compressed message’ policy, and
a context where ‘bandwidth’ is low. The behaviour of the
middleware with respect to a particular application is rei-
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serviceList ::= service serviceList | ε

service ::= sname policyList

policyList ::= policy policyList | policy

policy ::= pname contextList

contextList ::= context contextList | context

context ::= resourceList

resourceList ::= resource resourceList | ε

resource ::= rname oname valueList

valueList ::= value valueList | ε

Fig. 2. Application Profile Abstract Syntax. sname ∈ S, pname ∈ P,
rname ∈ R, being S, P, R ⊂ Σ∗, respectively, the sets of all valid
service/policy/resource names over our alphabet Σ. value ∈ V, being
V the set of all possible values of resources in R (e.g., IP addresses for
hosts in reach, etc.); oname ∈ O, being O the set of all valid operator
names that can be applied to values of monitorable resources (e.g.,
equals, lessThan).

messagingService
plainMsg

bandwidth > 40%
compressedMsg

bandwidth < 40%

Fig. 3. Customisation of the Messaging Service.

fied in what we call an application profile, as shown in Fig-
ure 1(b)1. Figures 2 and 3 show respectively the profile
abstract syntax and an example of a customised service
encoded using this syntax.

Profiles are passed down to the middleware; each time
a service is invoked, the middleware consults the profile
of the application that requests it, queries the status of
the resources of interest to the application itself, as de-
clared in the profile, and determines which policy can be
applied in the current context, thus relieving the applica-
tion from performing these steps. Our model assumes that
the behaviour of the middleware with respect to a partic-
ular service is determined, at any time, by one and only
one policy, that is, a service cannot be delivered using a
combination of different policies. More policies can logi-
cally be combined; for example, the messaging service can
be provided with a ‘compressed message’ policy, that is a
logical combination of two separate policies, ‘compress’ and
‘send’. However, we regard the combined policy as a new
one, and in the profile we will refer to this new policy, not
to the sequential execution of two distinct policies.

As both the user needs and the context change quite fre-
quently (e.g., due to movement of the device to a different
location), we cannot expect application designers to foresee
all possible configurations. Through a reflective API (Fig-
ure 1(b)), applications can dynamically inspect the con-
tent of their profile (i.e., the current configuration), and
alter it by adding, deleting and updating the associations

1Our reflective middleware model assumes a single user for each
mobile device, though there may be many applications running si-
multaneously on that device, hence, in our model, on the same mid-
dleware instance (this assumption is reasonable for portable devices,
such as PDAs and mobile phones).
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Fig. 4. Roles and Responsibilities in the Reflective Process.

previously encoded. As the behaviour of the middleware
is dictated by the associations encoded in the application
profiles, changing this information means dynamically af-
fecting middleware behaviour (i.e., re-configuration of the
system). If we consider once again the messaging exam-
ple, an application may add an association to its profile
requesting the execution of the messaging service using an
‘encrypted message’ policy, in order to achieve privacy of
information, when both battery and bandwidth availability
are high.

A default profile exists for every application, where each
service that the middleware delivers (to that application)
is associated to exactly one policy, regardless of context.
It is up to the application to decide whether and when
to exploit the power of reflection to alter the information
here encoded, that is, to customise middleware behaviour
in order to achieve better quality of service.

So far we have focused our discussion on the interac-
tion between middleware and applications, leaving the end-
users of the system behind the scene. As Figure 4 illus-
trates, the middleware provides applications a reflective
API (i.e., meta-interface) that they can exploit to inspect
and alter middleware behaviour, as encoded in application
profiles. The target users of our middleware model are
therefore application developers. In customising middle-
ware behaviour, however, end-user requirements and ex-
pectations must be taken into consideration. We there-
fore expect applications built on top of CARISMA to pro-
vide end-users with a user interface through which end-user
preferences can be captured, and used by applications to
encode profiles.

In this paper, we are mainly concerned with the interac-
tion between middleware and applications, thus leaving the
issue of gathering user preferences and synthesising them
in application profiles for future work; however, we will
provide in Section V-B some insights on the complexity of
doing so, and on the amount of work required from the
user to teach the system to behave according to his/her
own expectations.

III. Dealing with Conflicts

The model presented above allows applications to con-
trol the behaviour of the middleware based on current user
needs and context. This is achieved by means of appli-
cation profiles that can be dynamically changed through a
reflective API. Although a middleware based on this model
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supports the development of context-aware applications, it
also opens the door to conflicts. In our model, a conflict ex-
ists when different policies can be used in the same context
to deliver a service, so that the middleware does not know
which one to apply (note that we made the assumption that
a service can be delivered using only one policy at a time).
Reflection gives applications the ‘intelligence’ that trans-
parency takes away in traditional middleware systems. Ap-
plications, however, may not be smart enough to cope with
the new power, and may produce profiles that lead to con-
flicts. In particular, when setting up application profiles,
the following two basic kinds of conflicts may be created.
• Intra-profile conflict: a conflict exists inside the profile
of an application running on a particular device. This class
identifies conflicts that are local to a middleware instance.
• Inter-profile conflict: a conflict exists between the pro-
files of applications running on different devices. This class
identifies conflicts that are distributed among various mid-
dleware instances. A particular case of inter-profile conflict
happens when applications run on the same device (i.e., on
the same middleware instance); we refer to this situation
as an N-on-1 (i.e., N applications on 1 device) conflict.

In order to understand how these types of conflicts arise,
we sketch a conference application that is representative of
the class of context-aware mobile applications that would
benefit from our reflective middleware model; we then dis-
cuss the requirements that a conflict resolution mechanism
must meet, before presenting the details of the mechanism
we have designed. At this stage, we are not interested in
implementation details (in particular, in the language used
to encode profiles); we therefore use the abstract syntax
illustrated before to discuss the following examples.

A. Conference Application

Let us imagine a researcher Alice travelling to a confer-
ence with her own PDA. When arriving at the conference
location, she is provided with a Conference Application to
be installed on her portable device that, based on a wireless
network infrastructure, allows attendees to access the pro-
ceedings electronically, browse through the technical and
social programme, select the talks they wish to attend and
be alerted of the selected ones 10 minutes before they start,
and exchange messages with other attendees. These ser-
vices may have to be delivered in different ways when re-
quested in different contexts, in order to meet the user’s
needs. Let us consider, in particular, the talk reminder
service and the messaging service; through our reflective
middleware model, Alice’s preferences can be taken into
account and used to generate the following associations.
Reminder of the next talk. The reminder function-
ality of the system can capture user attention through
one of the following policies: soundAlert, particularly
useful to capture user attention in noisy and open air
places; vibraAlert, to capture user attention without dis-
turbing anybody else (e.g., while attending a talk); and
silentAlert, to remind the user of the next talk through
a blinking message, for example, while the user is actively
using the portable device. Figure 5 shows an example of

talkReminder
soundAlert

location = outdoor
vibraAlert

location = conferenceRoom
silentAlert

userFocus = on

Fig. 5. Example of Local (Intra-profile) Conflict.

Alice’s associations for the talkReminder service.
The talkReminder is an example of local service, as it

does not require the cooperation of any other party. Let
us consider, for example, the encoding shown in Figure 5,
and let us assume that the service is requested when Al-
ice is attending a talk (i.e., location = conferenceRoom),
and using her PDA to take notes at the same time (i.e.,
userFocus = on). The middleware checks which policy
should be applied and determines that more than one
policy suits the current context (i.e., vibraAlert and
silentAlert). As we made the assumption that each ser-
vice is delivered using one and only one policy at a time,
the middleware is unable to choose which of the context-
suitable policies to apply2. This is an example of intra-
profile conflict.
Exchange of messages. Attendees can exchange mes-
sages using any of the following policies: charMsg, that
delivers one character at a time, plainMsg, to exchange
messages in plain, compressedMsg to exchange compressed
messages, and encryptedMsg to send encrypted messages.

The messagingService is an example of peer-to-peer
service, where any number of peers may participate in the
delivery of the service. In order for the service to be deliv-
ered, all the communicating peers have to agree on a com-
mon policy to be applied. Let us assume, for example, that
Alice, Bob and Claire are willing to exchange messages; let
us also assume that their profiles are the ones illustrated in
Figure 6. Note that no context information is associated
to the plainMsg policy of Bob’s profile: this means that
this policy is always enabled, regardless of current context.
At any time, users may change their preferences through
the user interface that the conference application provides;
the application, in turn, dynamically updates the meta-
information encoded in their profiles, in order to take the
new preferences into account.

% Alice % Bob % Claire
messagingService messagingService messagingService

plainMsg plainMsg plainMsg
battery < 40% bandwidth > 50%

encryptedMsg compressedMsg
battery > 40% bandwidth < 50%

Fig. 6. Example of Distributed (Inter-profile) Conflict.

If the messagingService is requested when battery

2Note that, by removing this assumption, we do not avoid the issue
of conflicts, we just need to formulate it under different terms. In
particular, conflicts would appear as different sets of policies enabled
at the same time; in this case, we should consider whether the order
in which policies appear in a profile is relevant, or whether their
execution is commutative.
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availability is below 40% on Alice’s PDA, and Claire’s
bandwidth is greater than 50%, they all agree on the
plainMsg policy to be applied; but what if Alice’s bat-
tery is greater than 40%, or if Claire’s bandwidth is lower
than 50%? This is an example of inter-profile conflict.

B. Requirements

Whenever a service that incorporates a conflict, either
intra- or inter- profile, is requested, a conflict resolution
mechanism has to be run to solve the conflict and find
out which policy to use to deliver the service, otherwise
applications cannot execute. In designing such mechanism,
the following requirements have to be considered.
Dynamicity. Neither intra- nor inter- profile conflicts
can be detected and resolved statically, that is, at the time
the profile is written by the application and passed down
to the middleware. In case of intra-profile conflict, a pos-
sible static approach would require us to check whether
there is any intersection between the different contexts of
the policies associated to each service. Due to the complex
nature of context (the number of monitored resources may
be large), a static conflict analysis would produce an ex-
plosion in the context information that must be checked,
and would require a consumption of resources (especially
in terms of battery, memory and processing power) that
portable devices cannot bear. Providing the conflict reso-
lution as an external service on a powerful machine that is
contacted on-demand is not feasible either, as this would
require persistent connectivity that in mobile settings can-
not be taken for granted. As for inter-profile conflicts, the
situation is even worse; mobile devices connect opportunis-
tically and sporadically. We cannot foresee which devices
are going to be encountered and, even so, we cannot as-
sume that all of them will be connected and in reach at
the time a profile is modified; this means that the middle-
ware cannot statically check whether the new configuration
is conflict-free. Even assuming that this distributed check
could be statically performed, it would not be worth the
effort, as we would find many more potential conflicts than
what we would actually need, as conflicts manifest them-
selves only with respect to the particular context in which
the service is requested, and the profiles of the participat-
ing peers. As a consequence, a dynamic solution is needed:
conflicts may exist inside or among profiles, but both appli-
cations and middleware can live with these conflicts until
a service which incorporates a conflict is invoked.
Simplicity. The conflict resolution mechanism must be
simple in the sense that it must not consume resources that
are already scarce on a mobile device. Only a low computa-
tion and communication overhead should be imposed, even
if this may occasionally prevent from an optimal solution
to the conflict to be found.
Customisation. Middleware cannot choose how to solve
conflicts independently of the applications that requested
the conflicting service, as only the applications know how
much they value the execution of the various policies. On
one hand, we do not want applications to be questioned
each time a conflict is detected, that is, middleware should

be in charge of carrying out the conflict resolution pro-
cess in an automatic way as much as possible. On the
other hand, it must be possible for the applications to cus-
tomise the conflict resolution mechanism, thus influencing
which policy is chosen and applied, and which others are
discarded.

In the following section, we formally describe a conflict
resolution mechanism that meets these requirements.

IV. Microeconomic Mechanism

When applications participating in the delivery of a ser-
vice cannot agree on which policy must be applied, a dy-
namic conflict resolution scheme is necessary to resolve the
dispute. The conflict resolution mechanism we propose is
based on microeconomic techniques [7]. The motivating
idea is that a mobile distributed system can be seen as an
economy, where a set of consumers must make a collective
choice over a set of alternative goods. Goods represent the
various policies that can be used to deliver a service (not
the resources needed to apply a policy); for example, poli-
cies ‘plainMsg’, ‘encryptedMsg’ and ‘compressedMsg’ are
the goods associated to service ‘messagingService’. Con-
sumers are applications seeking to achieve their own goals,
that is, to have the middleware delivering a service using
the policy that provides the best quality of service, accord-
ing to application-specific preferences.

Simple schemes include, for example, priority assignment
or per capita distribution. However, those do not suit sit-
uations where participation in exchange of goods is volun-
tary on the part of all parties (i.e., the applications), so
that action requires a consensus and mutual perception of
benefit. A better scheme would use an auction protocol.
Auctions allow parties to make decisions independently, on
the basis of private state, revealing only offers and accep-
tance of the offers made by others. Applications may vary
greatly in their preferences and decision processes. An auc-
tion permits greater degrees of heterogeneity than simpler
schemes.

The question we have to answer next is which auction
protocol to use. This is known in microeconomic theory as
a mechanism design problem [8]. A protocol, or mechanism,
consists of a set of rules that govern interactions, by which
agents (i.e., our applications) will come to an agreement.
It constraints the deals that can be made, as well as the
offers that are allowed. We argue that the auction protocol
we have designed [9] can be successfully applied in a mobile
setting, where the requirements listed in Section III-B must
be satisfied.

A. The Protocol

The rules of our auction are very simple: given a set-
ting with N agents that must make a collective choice
from a set of P possible alternatives, each agent submits
a single sealed bid for each element in P . The auction-
eer collects the bids and selects the alternative in P that
maximises social welfare, that is, the alternative with the
highest sum of bids received. Each agent then pays the
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auctioneer an amount of money that is proportional to the
bid they placed on the winning alternative.

In our scenario, the role of the auctioneer is played by
the middleware, which we assume is a trusted entity whose
code and behaviour cannot be interfered with. Applica-
tions are the agents, and the good they are competing for
is the execution of the policy they value most, among a
set of alternatives that correspond to the policies that can
be applied in a particular context to deliver a service. As
previously said, the aim of the middleware is not to se-
lect the policy that received the highest bid (i.e., the one
that maximises the selling price), but, rather, the policy
that satisfies the largest number of applications involved in
the conflict. In our scenarios, in fact, applications are par-
ticipating in the delivery of the same service, rather than
competing for it (i.e., the service will be delivered to all of
them, not only to one or some of them). In these collab-
orative, or at least compromise, scenarios, a solution that
satisfies the total benefit of all the applications is preferred
to one that maximises the revenue of a single one.

Our auction has been inspired by traditional sealed bid
auctions (e.g., first-price and second-price sealed bid auc-
tion [10]). Unlike ascending bid auctions, such as the stan-
dard English auction [11], where the auctioneer, adopting
a possibly long iterative process, continuously raises the
price of the good until only one bidder is willing to meet
the price called, sealed bid auctions consist of a one-step
bid that cuts down the computation and communication
costs when the auction is distributed over space and time,
as in our mobile setting. This meets our requirement of
simplicity. We will show in Section IV-B how customisa-
tion is met by our auctioning mechanism.

In the following, we formalise the steps of our auction-
ing mechanism. We do not discuss here how coordination
among different middleware instances takes place; details
about the algorithm that implements this coordination can
be found in Section V-A. To avoid confusion between an
application (which may exist on different devices) and an
application instance (which runs on a particular device),
we will identify an application instance and the device it
is executing on as a ‘peer’. Peers are partners in the com-
munication process. We call PEER the set of all possible
peers. Under these assumptions, the auctioning process
can be formalised as follows.
Initialisation. As part of an initialisation process, for
every peer peeri, i ∈ [1, N ], a utility function ui : P → R+

that represents the user’s goals (e.g., minimisation of con-
sumption of resources, maximisation of quality of service,
etc.) can be determined. Peers use their utility function
to specify how much they value the use of a policy pj ∈ P
during an auction, that is, ui(pj) = ui,j . Each peer is also
assigned a quota qi by the middleware. The quota qi rep-
resents the maximum amount of money that peeri can bid
during a bidding process, that is, the bid placed by peer
peeri on policy pj is a number bi,j = min{ui,j , qi}.
Service Request. Whenever an application requires the
middleware to execute a service, a command like the one

illustrated below is issued:

command ::= sname peerList

peerList ::= peer peerList | peer

being sname ∈ S the name of the requested service, and
peerList the set of peers involved in the service execution.

Assuming that service sname requires the cooperation of
n ≤ N peers, each peer (or, better, the middleware instance
operating on the device of the peer) computes Pi as the set
of policies that the above running application instance Ai

has associated to service sname in its profile, and that can
be applied in the current context (i.e., according to current
resource availability). More formally, Pi can be defined as
follows:

Pi = F [[serv(sname, peeri)]]Env(peeri)

F being the semantic function defined in Figure 23 in the
Appendix; serv : S × PEER → service a function that,
given a service name and a peer, returns the corresponding
service specification, and Env : PEER → E a function that
computes the current execution environment of a peer.
Computation of the Solution Set. Middleware in-
stances then cooperate to compute the solution set P ∗,
that is, the set of policies that all peers involved in the
execution of the service have agreed upon:

P ∗ = I[[sname]]{peer1...peern}

I being the semantic function described in Figure 22 in the
Appendix.

If the cardinality of P ∗ is zero, that is, the solution set is
empty, a conflict exists that cannot be solved, as peers do
not agree on a common policy to be applied; the conflict
resolution process is terminated with a failure and peers
are notified. If the cardinality is exactly 1, there is an
agreement on the policy to apply (i.e., there is no conflict).
Finally, if the cardinality is greater than 1, there is a con-
flict that can be resolved using one of the policies in P ∗.
In this case, the auctioning process proceeds as below, to
decide which of these policies should be applied.
Computation of Bids. For every peer peeri participat-
ing in the communication process, and for every agreed pol-
icy pj ∈ P ∗, j ∈ [1,m], a bid bi,j is computed, based on the
peer utility function ui and quota qi. Unlike ‘human’ auc-
tions, we make the assumption that all peers participating
in a bidding process bid a price, that is, they cannot refuse
to bid. Middleware instances of bidding peers exchange
the bids they have received, ending up with a merged set
of tuples B∗ specifying how much each peer values the use
of each agreed policy:

B∗ = B[[{p1, . . . , pm}]]{peer1,...,peern}

B being the semantic function shown in Figure 24 in the
Appendix.
Election of the Winner. From the set B∗, middleware
instances participating in the conflict resolution process se-
lect the winning policy p̃ as the one with the highest sum
of the bids placed:

p̃ = W[[B∗]]



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

W being the semantic function defined in Figure 25 in the
Appendix; as shown there, each peer also pays an amount
of money that is proportional to the ‘added’ benefit ob-
tained by applying the winning policy over the other peers.
To understand how the payment is split, let us consider
three peers x, y and z, who bid bx < by < bz respectively
on a winning policy p. Applying p gives an equal benefit of
bx to each peer; moreover, y and z share an added benefit of
by−bx over x, and z enjoys an extra benefit equal to bz−by

over both x and y. Our payment scheme demands that x,
y and z pay 0, (by − bx)/2, and (by − bx)/2 + (bz − by)/1
respectively. Note that, if the winning policy is the one
that has been valued most by all peers (i.e., bx = maxi bi,x,
by = maxi bi,y, bz = maxi bi,z), then no payment is de-
manded, as there was no real conflict to be solved. Note
also that, in case of intra-profile conflicts, the payment is
always zero, as the winning policy is never ‘imposed’ on
anyone, that is, there is no added benefit over anyone. The
rationale for this payment scheme is that applications are
not paying for the resources they use when applying a pol-
icy, but, rather, for the (added) quality-of-service level they
get from it. We assume that ties are broken by selecting a
policy randomly (i.e., a k-way tie is decided by flipping a
‘k-sided coin’, where each policy is chosen with probability
1/k).

If a service sname is requested which requires the coop-
eration of a set of peer peerList, then the whole conflict
resolution mechanism can be summarised as follows:

G : command → P
G[[sname peerList]] = W [[ B [[ I[[sname]]{peerList}

]]{peerList} ]]

A service request may then produce one the following two
results:
• G[[sname peerList]] = pname: service sname is delivered
using policy pname (either because all peers agreed on the
policy, or because pname was the policy selected during a
conflict resolution process);
• G[[sname peerList]] = ε: the service request fails as no
policy can be found that is both agreed on by all peers and
valid in the current context.

The auctioning mechanism has been described in the
general situation where there are different applications run-
ning on different hosts (inter-profile conflict). N -on-1 con-
flicts are detected and solved in the same way as inter-
profile conflicts. However, as the application instances in-
volved are running on the same host (i.e., in our model, on
the same middleware instance), no communication over-
head is required, and the solution set P ∗ can be computed
locally. Intra-profile conflicts can be considered a degener-
ation of inter-profile conflicts, where the number n of bid-
ders is 1, and the solution set coincides with P1 (i.e., the
set of policies that can be applied in the current execution
context, according to peer1 application profile). The auc-
tion proceeds as described above, selecting the policy that
maximises peer1 utility, without communication costs.

Once a conflict has been detected and resolved using the
auctioning mechanism presented above, no further action
is taken. The conflict cannot be removed as it is usually
not local to a profile but distributed among the profiles
of different peers. If the peers involved change, or if the
context changes, there may be no conflict at all. Also, we
assume that each auction is carried out in isolation: we
cannot assume that next time the same conflict arises, the
winning policy will be the same one, as the result depends
on current peer quotas, utility functions and application
profiles. Therefore, each conflict resolution process stands
alone.

There are few questions that need to be answered about
the process described above; in particular, how is an utility
function defined, and how is the quota managed by middle-
ware? We answer these questions in the following sections.

B. Utility Function

Whenever a conflict is detected, either inside a pro-
file (intra-profile conflict) or among various profiles (inter-
profile conflict), user goals, such as privacy of information
for the messaging service, must be taken into account. In
other words, users should be allowed to influence the con-
flict resolution process operated by the middleware as they
are the only ones who know what their goals are at the
moment, and how different outcomes are valued.

Utility functions serve this purpose. A utility function
ui translates user goals with respect to peer peeri into a
value ui,j , that represents the price the user is currently
willing to pay to have policy pj applied, that is, to see its
goals fulfilled. The following holds:

ui,j ≥ 0, ∀i ∈ [1, n], j ∈ [1,m].

As in ‘human’ auctions, values cannot be negative; a value
ui,j = 0 means that policy pj is not relevant to peer peeri,
that is, applying pj does not give any benefit to peeri (this
is a plausible ‘machine’ representation of a ‘human’ refuse
to bid).

Utility functions vary dynamically to reflect changes in
the user goals; however, the value they return is computed
over static policy specifications which estimate the con-
sumption of resources that applying the policy entails, and
the benefits it gives in terms of quality of service. If R ⊂ Σ∗

defines the set of resource names that the middleware mon-
itors, and Q ⊂ Σ∗ the set of benefits achieved by applying
policies in P, then a policy specification can be described
as a domain set PSPEC = ℘({R ∪ Q} × level), being
level ::= ′1′| . . . |′LMAX′ an estimate of resource consump-
tion/benefit achieved which the policy developers compute
before delivering the policy.

The abstract syntax of a utility function is given in Fig-
ure 7, where cb name ∈ (R ∪ Q) is a name that uniquely
identifies a resource or benefit inside a policy specification,
and weight ::= ′1′| . . . |′WMAX′ is a factor that repre-
sents the importance the user associates to a particular
resource/benefit (the higher the weight, the more impor-
tant the resource/benefit). Although we consider the issue
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ufunction ::= addendList

addendList ::= addend addendList | addend

addend ::= cb name weight

Fig. 7. Utility Function Abstract Syntax.

U : ufunction → PSPEC → R+

U [[addend addendList]]ps = U [[addend]]ps + U [[addendList]]ps

U [[cb name weight]]ps =
int(S[[cb name]]ps) ∗ int(weight)

LMAX ∗WMAX ∗RQMAX

Fig. 8. Semantics of Utility Function. S : (R∪Q) → PSPEC → level
is a function that, given a resource/benefit name cb name, and a
policy specification ps, fetches the level associated to cb name in ps (if
the utility function tries to retrieve a value for a resource/benefit that
does not appear in the policy specification, the returned value is 0).
int is a function that given a literal in {′1′, . . . ,′ MAX′}, returns the
corresponding integer value in [1, MAX]; LMAX∗WMAX∗RQMAX
is the maximum bid an application can place, being RQMAX the
maximum number of resources/benefits of interest to an application.

of generating weights that represent user needs as faith-
fully as possible a matter of future research, we will give a
flavour of how these numbers can be obtained from users
and directly used in our system in Section V-B.

Whenever a peer peeri is involved in a bidding process,
its utility function is retrieved and used to find the peer
utility value ui,j for each conflicting policy pj . The seman-
tics of a utility function is presented in Figure 8. As shown,
each value is normalised to vary in a range [0, 1], so that
different bids can be compared effectively, and money fairly
redistributed (see Section IV-C).

As stated before, while policy specifications are fixed,
utility function specifications change over time, as they
have to reflect current user needs. This implies that the
reflective mechanism of our middleware has to allow dy-
namic modification of utility function specifications. This
allows our conflict resolution scheme to fulfil our second
requirement, that is, customisation.

Note that, to avoid incompatibility among the prices bid
during a conflict resolution process, utility functions are
locked at the beginning of an auction, and cannot be mod-
ified until the auction finishes. Thus, applications cannot
‘cheat’ and associate high bids to the policies they value
most, while bidding zero for the others, to increase the
chances to have the policy they value most finally applied,
as this would require applications to change the weights of
their utility functions during the auction.

C. Quota Allocation

When describing the rules of our mechanism (see Sec-
tion IV-A), we specified that each peer peeri is allowed to
bid a value bi,j for policy pj , given that this value is lower
than its current quota qi. We now explain how this quota
is managed.

Whenever an application instance Ai is started, an initial

quota qi = qinit is awarded. Each time Ai participates to
an auction, its quota is decreased by an amount equal to
fi ∈ [0, 1], as defined in Figure 25 in the Appendix. Ai’s
underlying middleware instance collects Ai payments and
stores them in a wallet q(i). We assume that there is no flow
of money from one middleware instance to another (i.e.,
each application instance pays its underlying middleware
instance). Moreover, we assume that there is no explicit
utility transfer among applications (e.g., no money can be
transfered to a peer to compensate for a disadvantageous
agreement).

Every t time units, each middleware instance redis-
tributes the money it has collected in its wallets q(i),
i ∈ [1, n], to the various application instances Ai, i ∈ [1, n].
The amount of money each application instance gets back
is in direct relation to the number of interactions it has
been involved during the last t time units, and in inverse
relation to the amount of money it bid. We define an in-
teraction as a service request which incorporates an inter-
profile conflict (intra-profile conflicts are excluded from the
quota recharging as no flow of money occurs).

In particular, if we indicate with Nt(i) the number of in-
teractions in which application instance Ai was involved in
the last t time units, then the recharging process is carried
out as described below:

qi = qi +
(

q(i)− q(i)
Nt(i)

)
; q(i) =

q(i)
Nt(i)

being q(i) the money currently stored by the middleware
in the wallet associated to Ai, and qi Ai current quota.

This quota redistribution scheme discourages dictatorial
interactions: if an application instance bids very high in
a few interactions, ‘imposing’ its preferred policy over the
others, then only a very low amount of money is returned
during a recharging process. The only way to get money
back from the middleware is to participate in other interac-
tions in a more cooperative fashion (i.e., by bidding lower
and interacting more). For example, let us assume that at
time t0, two application instances A1 and A2 are started
and awarded the same quota qi = 3, i ∈ {1, 2}. During
the following t time units, they are involved in a number of
interactions that cost them altogether the same amount of
money; however, while A1 bid aggressively, paying a lot of
money in few interactions, A2 was more cooperative, pay-
ing low amounts in many interactions. As a result, our
quota redistribution scheme returns money to A2 faster
than to A1 (see Figure 9).

The approach to quota redistribution that we have de-
scribed could be defined as ‘conservative’: at any time, an
application instance Ai has got the same amount of money,
although split differently between its current quota qi and
the corresponding middleware wallet q(i). In other words:

q(i) + qi = qmax

being qmax a fixed amount that is the same for any ap-
plication. At time t0 when an application instance Ai is
started, different choices of qinit and q(i) are possible. In
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Time / Action q1 q(1) q2 q(2)

t0 / Start 3 0 3 0
t1 / Bid 2.1 0.9 2.7 0.3
t2 / Bid 1.2 1.8 2.4 0.6
t3 / Bid 2.1 0.9
t4 / Bid 1.8 1.2
t5 / Bid 1.5 1.5
t6 / Bid 1.2 1.8

t7 / Redistribution 2.1 0.9 2.7 0.3

Fig. 9. Example of Quota Redistribution (with t7 − t0 = t).

particular, any assignment that complies with the following
equations is acceptable:

∀α ∈ [0, 1]
{

qinit = α · qmax

q(i) = (1− α) · qmax

Setting α = 1 favours newly started application instances,
while setting α = 0 favours applications that have been
executing for a long while. The differences among these
possibilities disappear while time passes. It is beyond the
scope of this paper to investigate the optimal choice for
qinit, qmax, t and α.

This concludes the discussion about our auctioning ap-
proach to the conflict resolution problem. In the following
section, we illustrate how this mechanism can be instanti-
ated and used to solve conflicts.

D. Conference Application

In this Section, we present examples of intra- and inter-
profile conflicts that may occur in the conference applica-
tion, and show how our auctioning mechanism is used to
resolve them.

D.1 Intra-profile conflict: Talk Reminder

Let us assume that the talk reminder service can be deliv-
ered using one of the following policies: a soundAlert pol-
icy, a vibraAlert policy, and a silentAlert policy. Each
of these policies requires different amounts of resources to
be used (in particular, battery), and achieves a different
quality of service (in terms of focusing and privacy). The
corresponding policy specifications are shown in Figure 10.

soundAlert: {(battery,6),(privacy,1),(focusing,8)}
vibraAlert: {(battery,10),(privacy,7),(focusing,8)}
silentAlert: {(battery,1),(privacy,10),(focusing,2)}

Fig. 10. Policy Specifications.

Whenever a talk reminder has to be delivered, the appli-
cation profile is consulted to find out which policy to apply.
Let us assume that the application profile is the one illus-
trated in Figure 11(a), and that the talk reminder service
is invoked when the user is attending a talk (i.e., location
= indoor), and battery is lower than 15%, so that both
vibraAlert and silentAlert are enabled (intra-profile
conflict). Note that, although it could be argued that such
a conflict would not exist if the profile were properly writ-
ten (i.e., if a line containing battery > 15% were added

talkReminder
soundAlert

location = outdoor battery 2
vibraAlert privacy 10

location = indoor focusing 10
silentAlert

location = indoor
battery < 15%

(a) (b)

Fig. 11. (a) Application Profile. (b) Utility Function. peer1 aims
at maximising privacy and focusing, without too much interest in
battery consumption.

to the context of the vibraAlert policy), avoiding con-
text overlaps is not so easy. When the number of resources
associated to a context increases, chances of making mis-
takes and of writing profiles with context overlaps increase
quickly. As already argued, a static conflict analysis would
be unmanageable on portable devices, and therefore a dy-
namic solution is needed. We now illustrate how our dy-
namic conflict resolution mechanism works effectively to
solve this conflict, assuming that the utility function is the
one illustrated in Figure 11 (b).
Computation of the solution set. First, the solu-
tion set P ∗ is computed; as only one peer is involved, P ∗

coincides with P1:

I[[talkReminder]]{peer1} = {vibraAlert, silentAlert}

Computation of bids. High weights associated to re-
sources in utility function specifications mean that the user
aims at sparing resources; however, policy specifications
estimate the amount of resources consumed, not spared.
In order to give higher scores (i.e., higher bid prices) to
the policies that reduce resource consumption, we therefore
need to compute the value: LMAX− expected consumption.
For example, if we assume LMAX = 10, WMAX = 10, and
RQMAX = 5 (i.e., battery, bandwidth, focusing, availabil-
ity and privacy), then:

upeer1(vibraAlert) =
(10− 10) ∗ 2 + 7 ∗ 10 + 8 ∗ 10

10 ∗ 10 ∗ 5
= 0.3

Assuming that the peer quota qpeer1 > 1 (i.e., the bid is
not constrained by current quota, as each bid b1,j ∈ [0, 1]),
we obtain:

B[[{vibraAlert, silentAlert}]]{peer1} =
{(vibraAlert, peer1, 0.3), (silentAlert, peer1, 0.276)}

Election of the winner. As only one peer is involved in
an intra-profile conflict, maximising social welfare coincides
with maximising individual utility. The winning policy is
the one that peer1 valued most and no quota adjustment
is needed.

W[[ B[[{vibraAlert, silentAlert}]]{peer1}]] = vibraAlert

D.2 Inter-profile conflict: Messaging

Peers can exchange messages using one of the fol-
lowing policies: a charMsg policy, a plainMsg policy,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

charMsg: {(battery,4),(bandwidth,10),(availability,10)}
plainMsg: {(battery,3),(bandwidth,6),(availability,7)}
compressedMsg: {(battery,5),(bandwidth,4),(availability,5)}
encryptedMsg: {(battery,6),(bandwidth,7),(availability,4),

(privacy,10)}

Fig. 12. Policy Specifications.

% peer 1 % peer 3
messagingService messagingService

charMsg plainMsg
bandwidth > 70%

plainMsg compressedMsg
bandwidth < 70% bandwidth < 40%

compressedMsg encryptedMsg
bandwidth < 35% battery > 60%

encryptedMsg
battery > 50%

% peer 2
messagingService

plainMsg
battery < 50%

compressedMsg
bandwidth < 40%

Fig. 13. Application Profiles.

% peer 1 % peer 2 % peer 3
battery 4 battery 7 privacy 10
bandwidth 3 bandwidth 9
availability 10

Fig. 14. Utility Functions. peer1 aims at maximising availability
without wasting resources; peer2 aims at minimising resource con-
sumption, and peer3 aims at maximising privacy.

a compressedMsg policy, and an encryptedMsg policy.
Again, each of these policies requires different amounts
of resources (in particular, battery and bandwidth), and
achieves a different quality of service (in terms of availabil-
ity and privacy of the message). The corresponding policy
specifications are shown in Figure 12.

Let us suppose that three peers peer1, peer2, and peer3

are in reach of each other and want to start a chat. In
order to do so, they have to agree on a common policy
to be applied to exchange messages. During the lifetime
of the chat, the policy used may change to adapt to new
context configurations where the currently used policy is
no longer suitable. However, when this happens, all the
chatting peers must agree on the new policy to use.

The peers’ application profiles are represented in Fig-
ure 13. Note that peer3 leaves the plainMsg policy always
enabled: this is a good way to reduce the risk of ending a
conflict resolution process with a failure because no agreed
policy could be found. However, this increases the risk of
conflicts and, consequently, the time used to resolve them
(which is anyway rather low, as it will be shown in Sec-
tion V-A). It is up to the application to decide which
strategy is best.

Assuming that the utility functions are the ones shown in
Figure 14, and that the current execution context enables

the following sets of policies:

P1 = {plainMsg, compressedMsg, encryptedMsg}
P2 = {plainMsg, compressedMsg}
P3 = {plainMsg, compressedMsg, encryptedMsg}

for peers peer1, peer2 and peer3 respectively, then the con-
flict resolution process proceeds as described below.
Computation of the solution set. First, the solu-
tion set P ∗, that is, the set of commonly agreed policies is
computed:

I[[messagingService]]{peer1,peer2,peer3} = P1 ∩ P2 ∩ P3

= {plainMsg, compressedMsg}

Computation of bids. Assuming, as before, LMAX =
10, WMAX = 10, RQMAX = 5, and that each peer has a
quota qpeeri

> 1, we obtain:

B[[{plainMsg, compressedMsg}]]{peer1,peer2,peer3} =
{(plainMsg, peer1, 0.22), (compressedMsg, peer1, 0.176),
(plainMsg, peer2, 0.17), (compressedMsg, peer2, 0.178),
(plainMsg, peer3, 0), (compressedMsg, peer3, 0) }

Election of the winner. Bids received for each policy in
the solution set are added, and the policy that maximises
the sum (i.e., social welfare) is selected.

plainMsg compressedMsg
peer1 0.22 + 0.176 +
peer2 0.17 + 0.178 +
peer3 0 0

0.39 0.354

W[[ B[[{plainMsg, compressedMsg}]]{peer1,peer2,peer3}]] =
plainMsg

Finally, each peer quota is adjusted in the following way:

q1 = q1 − 0.22−0.17
1 − 0.17−0

2 − 0
3

q2 = q2 − 0.17−0
2 − 0

3
q3 = q3 − 0

3

V. Evaluation

In this section, we evaluate our approach in terms of
performance and usability.

A. Performance

The performance of CARISMA have been measured
based on our current implementation: the middleware has
been implemented in Java using jdk 1.4.1, while applica-
tion profiles and utility functions have been encoded using
the eXtensible Markup Language [12] (their grammar has
been defined in two associated XML Schema available at
http://www.cs.ucl.ac.uk/staff/l.capra/schema). We chose
to use XML as we believe this language may enhance
context-aware and user-driven interactions between mid-
dleware and applications, supporting a representation of
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information that can be both easily manipulated by ma-
chines, and readily understood by humans. Also, XML re-
lated technologies, in particular, DOM [13] and XPath [14],
and available XML parsers [15] have considerably reduced
the development time. Communication takes place via a
simple message passing mechanism that we have imple-
mented. The middleware platform currently requires only
110Kb of persistent storage, and less than 800Kb of mem-
ory (without considering the memory required by the Java
Virtual Machine and XML parser).

We performed tests on Dell Latitude laptops equipped
with 128MB RAM, Intel Pentium II processors rated at
300MHz, and connected in an ad-hoc network using Cisco
Aironet 340 10Mbps wireless cards. The operating sys-
tem used was Microsoft’s Windows2000 and the Java Vir-
tual Machine version was 1.4.1. We believe these machines
are well-suited to estimate the performance of our mid-
dleware, as they do not outperform the currently avail-
able portable devices (e.g., the Sony Ericsson P800 mobile
phone is equipped with 12Mb internal storage, plus exter-
nal memory stick, and ARM9 200MHz processor; the HP
iPAQ Pocket PC h5450 is equipped with 64Mb RAM and
Intel 400MHz processor; COMPAQ Tablet PC TC1000 is
already extremely powerful, with 256MB RAM minimum
and 1GHz processor).

In order to estimate the scalability of CARISMA in terms
of the number of devices involved in the delivery of a ser-
vice, the number of (possibly conflicting) policies associ-
ated to each service, the number of contexts for each pol-
icy, and the number of resources in each context, we have
implemented a benchmark that allowed us to tune each of
these parameters independently. The charts shown in this
section represent the average of the results obtained over
20 service requests.

In the remainder of this section, we first consider a sim-
ple local service, i.e., a service that involves a single device.
In this simple scenario, we illustrate the basic overheads in-
troduced by reflection, by context-awareness while varying
number of contexts and resources associated to each policy,
and by the conflict resolution mechanism. We then move
to a distributed setting and we analyse the performance of
CARISMA while varying the number of devices involved
in a service request.

A.1 Impact of Reflection

Figure 15 illustrates the overhead introduced by reflec-
tion over a basic mechanism where a service is statically
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Fig. 15. Impact of Reflection.

associated to a policy. This lower bound is represented
in the picture by the intersection of the curve with the Y
axis. As the picture shows, the overhead (in milliseconds)
is more or less linear in the number of policies associated
to the service, and is kept below 1 second even when 10
policies are associated to the same service. This overhead
includes also the evaluation of a simple context configu-
ration made of one context with one resource associated
to each policy (these associations are necessary to avoid
conflicts).

A.2 Impact of Context-Awareness

Fixing the maximum number of policies associated to
a service to 10, Figure 16 shows the impact of context-
awareness on performance. We assume here that, whenever
a service is invoked, the current value of each resource is
already available (i.e., the middleware is probing the phys-
ical sensors at regular intervals to keep updated context in-
formation). The performance results we are discussing do
not consider the time necessary to initialise a sensor and
to process the information gathered through it; we believe
this approach is plausible, as sensors may greatly vary in
nature, and therefore may introduce overheads of different
orders of magnitude (e.g., knowing the amount of battery
left requires much less time than gathering and processing
location information).

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

N. of Policies

m
s.

1 context, 1 resource

3 contexts, 5 resources

5 contexts, 10 resources

 

Fig. 16. Impact of Context-awareness.

As shown, having five or more contexts for each policy,
and ten or more resources for each context, represents a
scalability limit in the performance of CARISMA. This is
due to the fact that the number of comparisons between the
current context and the associations encoded in the profile
grows exponentially with the number of contexts and re-
sources. In our experience with the conference application,
however, this scalability limit was never reached, as having
five policies associated to three contexts with five resources
each, already represented the maximum level of adaptation
we needed (i.e., the worst-case scenario); in this case, the
average amount of time to request a local service is still
below one second.

A.3 Impact of Conflicts

As the following two figures show, the conflict resolu-
tion process has a minor impact on the performance of
CARISMA. First (see Figure 17), the number of utility
function parameters does not influence the performance of
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a service request at all. Also, this chart depicts the perfor-
mance of a local service request where no context is asso-
ciated to the policies (i.e., they are always enabled); com-
paring this chart with the one shown in Figure 15, we can
conclude that the conflict resolution mechanism introduces
a much lower overhead than the simplest case of context-
awareness. In fact, it takes about 900ms. to determine
which policy to apply out of ten, in case a very simple, mu-
tually exclusive (i.e., no conflict) context is provided (one
context with one resource), while it takes less than 400ms.
in case no context is provided and the conflict resolution
procedure has to be executed.

Second, the conflict resolution mechanism adds a negli-
gible overhead over the standard mechanism (inclusive of
context-awareness), as depicted in Figure 18. In case each
policy is associated with the same number of contexts and
resources, the overhead introduced by the conflicts reso-
lution mechanism is almost constant and in the order of
200ms.

We can conclude that a good strategy in developing ap-
plications on top of CARISMA is to associate only minimal
context configurations to the policies, and have the auction
mechanism solve potential conflicts.
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Fig. 17. Impact of Utility Function Parameters.
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Fig. 18. Impact of Conflict Resolution Mechanism.

A.4 Impact of Distribution

The last chart shows the performance of CARISMA in
answering a service request for two plausible profile config-
urations, while varying the number of devices involved in
the delivery of the service. These results have been com-
puted considering an implementation of the auction pro-
tocol that is based on the 3-step communication protocol

shown in Figure 19.

Host nHost 2

Host n−1Host 3

Host 1

Step 1: service request

. . .

Step 2: communication of enabled policies

Step 3: communication of winning policy

Local evaluation of context

Fig. 19. Communication Protocol.

This protocol tries to maximise performance by paral-
lelising the context evaluation step among the n peers in-
volved in a service execution. Whenever an application
running on Host 1 needs a service that requires the cooper-
ation of n−1 other applications running on as many hosts,
these steps are followed.

Step 1: first, Host 1 sends out a service request message
to each of the n−1 peers involved in the service execution.
At this point, all the n peers evaluate their local context
in parallel, and find out the locally enabled policies (i.e.,
the sets Pi, for i ∈ [1, n]). Moreover, although no conflict
has been detected yet, they compute a bid for each of these
policies.

Step 2: the n − 1 peers communicate their own Pi and
corresponding bids back to the requesting host, which now
computes the solution set P ∗. If no conflict is found, the
pre-computation of the bids was a waste of time and re-
sources, but if, on the contrary, a conflict is detected, two
additional communication steps are saved (i.e., to ask the
n− 1 peers to bid for the policies in P ∗, and to communi-
cate these bids back to the requesting host). As the time
taken by the computation of the bids is negligible (i.e.,
few milliseconds), compared to the time taken by two ad-
ditional communication steps, the pre-computation proves
to be worthwhile.

Step 3: once the winning policy has been selected, and
the payments have been computed, the requesting host
sends this information to the n − 1 participating peers,
and the service can be finally delivered.

Individual failures of participating peers, taking place
during the protocol execution, do not compromise its suc-
cess, as long as there are at least 0 < m < n peers con-
nected until the end of the process (the minimum number
of connected peers, m, is application dependent). How-
ever, if the requesting peer fails, the entire service request
is aborted.

As shown in Figure 20, the overhead tends to be con-
stant, and does not increase considerably while increasing
the number of devices involved. The results shown here do
not consider peer failures; in case failures are taken into
account, the overhead depends on the timeout values used
before acknowledging a peer is no more in reach.
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Fig. 20. Impact of Conflicts in a Distributed Setting.

B. Usability

To estimate the usability of our middleware, we have as-
signed a student, with little computer science background,
the task of implementing the conference application on top
of CARISMA. From the student’s report, it emerged that
the most difficult task was to decide which non-functional
parameters the user could tune, and how to map them into
application profiles, while using the abstractions and mech-
anisms provided by CARISMA turned out to be rather
straightforward.

The student decided to allow the end-user of the sys-
tem to tune the importance he/she assigned to both non-
functional requirements (i.e., availability of information,
accuracy and privacy), and to local resources (i.e., mem-
ory, battery and bandwidth), by means of the customisa-
tion windows illustrated in Figure 21. The effort required
from the end-user of the system was rather limited: when
his/her preferences were changing, all he/she had to do was
to input the new preferences through these windows.

Based on these preferences, the student implemented a
synthesising algorithm to write both application profiles
and utility functions. Application profiles were encoding
associations with 2/3 policies per service, each with 1/2
contexts made of 2/3 resources. Utility functions simply
listed the importance users assigned to customisable pa-
rameters (e.g., in the picture above, memory=4, battery=9,
bandwidth=0, availability=8, accuracy=3, privacy=0).

Estimating the end-user efforts in teaching the system to
behave according to his/her own preferences, strongly de-
pends on the level of adaptation the application permits:
the higher the number of parameters that are subject to
customisation, the finer the level of adaptation the system

  

Fig. 21. Conference Application Customisation.

may achieve. However, this would have an impact on the
amount of human effort required, as well as on the complex-
ity of the synthesising algorithm that application engineers
have to come up with. Note that these issues are not in-
trinsic in our middleware model, but apply, in general, to
scenarios where adaptation to changing context and user
requirements is needed; in developing context-aware ap-
plications, therefore, granularity of adaptation has to be
traded against human effort. Further research is needed in
this direction to estimate where the equilibrium lies.

VI. Related Work

Providing a detailed review of the state of the art in the
area of context-awareness, reflection, and mobile comput-
ing is beyond the scope of this paper. A critical literature
review in the area of reflection and context-awareness (and,
more generally, in middleware for mobile computing), can
be found in [16]. In this paper, we compare our work with
what various research communities have done, as far as
conflict resolution is concerned.

The operating systems community has studied the issue
of conflicts in a distributed environment, where conflicts
manifest themselves as processes competing for shared re-
sources. Microeconomic techniques, and auctions in par-
ticular, have been explored; in [17], a market-like bid-
ding mechanism is described which assigns tasks to pro-
cessors that have given the lowest estimated completion
time; similar techniques have been used to manage net-
work traffic [18] and allocation of storage space [19]. We
have demonstrated that game theory can also be success-
fully used to resolve QoS conflicts that arise in the mo-
bile setting; however, the nature of conflicts is fundamen-
tally different, thus requiring different conflict resolution
algorithms. In particular, resource conflicts happening at
the operating system level represent competitive situations
where only one competitor obtains the resources, leaving
all the others without them. In our case, instead, collabo-
ration characterises the nature of the auction better: peers
participating in the delivery of a service will all get the
good (the delivery of the service), but with varying degrees
of satisfaction. Traditional auctions cannot be applied in
this setting, and we had to come up with a novel mecha-
nism to deal with these conflicts.

Despite the extensive research that has been carried out
within the mobile middleware community, the issue of QoS
conflicts has attracted little attention. On one hand, many
systems do not support dynamic adaptation of middleware
behaviour, and thus they avoid the problem of conflicts a
priori. On the other hand, systems which exploit reflection
to improve flexibility and allow dynamic reconfigurability
of the middleware [20][21] generally target a stationary dis-
tributed environment, where context changes (and, conse-
quently, adaptation of middleware behaviour) are much less
frequent than in a mobile setting, so that the problem of
conflicts is less pressing. Data conflicts have been investi-
gated more extensively instead: in order to maximise data
availability in mobile settings, where sudden disconnections
may happen frequently, even for long periods of time, sys-
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tems such as Coda [22], Bayou [23] and Xmiddle [24] give
users access to replicas. They differ in the way they ensure
that replicas move towards eventual consistency, that is,
in the mechanisms they provide to detect and remove con-
flicts that naturally arise in mobile systems. Data conflicts,
however, are fundamentally different from the QoS conflicts
we treat, and therefore these solutions can hardly be ap-
plied; in particular, inter-profile conflicts are not intrinsic
in any profile, but manifest themselves only in relation to
(some) other profiles, and in particular contexts, and there-
fore cannot be removed, but only dynamically solved.

The software engineering community has investigated
the issue of conflicts too. Software development environ-
ments [25][26] have devised mechanisms for specifying con-
sistency constraints between artifacts. They are able to
detect static violations of these constraints and resolve
them automatically (e.g., by propagating changes to de-
pendent documents). Inconsistencies are often found in
requirements documents, indicating conflicts between the
different stakeholders involved. Requirements management
methods and tools therefore include inconsistency detec-
tion and resolution mechanisms. The KAOS method [27]
uses a goal-oriented approach to decompose requirements
and formalises them using a temporal logic. Conflicts are
detected by reasoning about the temporal logic formulae
and conflict resolution strategies [28] can be applied so
that requirement conflicts are not come down to design.
Other requirements engineering approaches [29] leave in-
consistencies in specifications and use an appropriate logic
to continue reasoning, even in the presence of an inconsis-
tency. These approaches, however, are of limited use in a
mobile setting where the nature of conflicts is such that
they cannot be detected statically at the time an applica-
tion is designed but, instead, they can only be detected
and resolved at run-time. Also, they must be resolved,
otherwise applications cannot execute.

Our work is more closely related to approaches that mon-
itor requirements and assumptions during the execution of
systems. Fickas and Feather’s approach towards require-
ments monitoring [30] uses a Formal Language for Express-
ing Assumptions (FLEA). FLEA is supported by a CLISP-
based run-time environment, which can alert requirement
violations to the user. For mobile systems, however, this
is insufficient and a more proactive approach to resolving
conflicts is required. Robinson and Pawlowski [31] have
developed a so-called “requirements dialog meta-model”,
which supports not only the definition and monitoring of
goals, but also the re-establishment of a dialog goal in case
of a goal failure. Goal monitoring is performed actively,
so that violations are detected immediately; however, this
requires a consumption of resources that hand-held devices
cannot bear.

In the Distributed Artificial Intelligence (DAI) commu-
nity, game theory [7] has been extensively applied to treat
negotiation issues. Negotiation mechanisms have been
used both to assign tasks to agents, to allocate resources,
and to decide which problem solving tasks to undertake
(e.g., [32] [33]). These scenarios typically involve a group

of agents operating in a shared environment. Each agent
has its own private goal; a negotiation process is put in
place that, through a sequence of offers and counter-offers,
explores the chance for agents of achieving their (possibly
conflicting) goals, at the lowest cost. Despite similarities
with our scenario, there are a number of assumptions that
differentiate our work from previous results obtained in the
DAI community. In particular, in DAI the quality of the re-
sult is valued much more than the cost of achieving it; as a
consequence, negotiation mechanisms are usually iterative
processes which carry on until an (optimal) agreement is
reached. In a mobile setting, instead, resource constraints
call for simple conflict resolution mechanisms that do not
waste (scarce) resources. Moreover, the nature of goals is
fundamentally different. In DAI, a goal can be seen as
a task composed of atomic operations that the negotia-
tion mechanism is able to assign to different agents; in our
setting, goals are rather indivisible units that suggest the
quality of service levels that applications are wishing to
achieve to the middleware.

Also relevant to our work is the research on quality of
service provision in a mobile computing environment [34].
QoS requirements are defined by all applications and a
negotiation mechanism is put in place to reach an agree-
ment between all parties; as a result of context changes, a
dynamic renegotiation of the contract may be necessary.
The approaches we have analysed usually target a spe-
cific domain (e.g., multimedia applications over broadband
cellular networks), mainly focusing on bandwidth alloca-
tion [35]. Moreover, applications have a rather limited way
of influencing the policies that are chosen to meet QoS re-
quirements. Our middleware aims at being general and
uses reflection to give applications the power to influence
the way adaptation is achieved. This may lead to disagree-
ments among applications to reach the quality-of-service
level they wish.

VII. Conclusion and Future Work

The increasing popularity of portable devices and recent
advances in wireless networking technologies are facilitat-
ing the engineering of new classes of applications, which
present challenging problems to designers. To accommo-
date the new requirements of mobility, and, in particular,
the need for context-awareness and adaptation, middleware
platforms for mobile computing must be capable of both
deployment-time configurability and run-time reconfigura-
bility.

In this paper we have described CARISMA, a mobile
computing middleware that exploits reflective techniques
to enable mobile application designers to address these re-
quirements. Besides enabling dynamic adaptation to con-
text, reflection may also cause conflicts. We have demon-
strated how CARISMA uses micro-economic techniques ef-
fectively in order to solve conflicts that arise in the mo-
bile setting. In particular, we have modelled a mobile dis-
tributed system as an economy, where applications com-
pete to have a common service delivered according to their
preferred quality-of-service level; in this economy, the mid-
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dleware plays the role of an auctioneer, collecting bids from
applications and selecting the policy that maximises social
welfare. This approach is particularly suited in the mobile
setting as it meets the requirements of dynamicity, simplic-
ity and customisability that are typical of this environment.
We have evaluated CARISMA in terms of performance and
usability, and the results obtained have confirmed the suit-
ability of our middleware in the domain we target.

Future improvements and extensions of CARISMA span
towards different directions. Despite being a very powerful
means, reflection enables adaptability and flexibility only
in those contexts that middleware designers have consid-
ered likely to be unstable at design time. However, in a
mobile ad-hoc setting, mobile hosts cannot forecast all the
possible contexts they are going to encounter, and therefore
which protocols (i.e., behaviours) they are going to need;
new behaviours may be delivered from time to time to cope
with unforeseen context configurations and new application
needs. A future direction of research is to exploit mobile
code techniques to overcome this limitation, by download-
ing new protocols either from a service provider or from
other peers in reach which use the same behaviour [36] [37].
Moreover, only a minimum set of behaviours can be stored
on a device, so to avoid wasting memory; by exchang-
ing information about what services, code and resources
are available with other peers, different behaviours can be
downloaded only when needed (if needed). Reflection can
be combined with mobile code techniques to allow applica-
tions to select from where to download protocols based on
application-specific information (e.g., trusted hosts, quality
of service, etc.).

To accommodate dynamicity requirements, services and
policies are installed and uninstalled on the fly; moreover,
different application needs result in different system con-
figurations, that vary over time. The changing interactions
among distributed services and policies may alter the se-
mantics of the applications built on top of our reflective
middleware. The development of safe customisable middle-
ware becomes, therefore, an issue. A first step towards the
definition of a formal semantics for specifying and reason-
ing about the properties of, and interactions among, mid-
dleware components can be found in [38]. These principles
have been used, for example, in [39] to manage changes
in large-scale distributed systems while ensuring applica-
tion QoS requirements. The principles they use are based
on a two-level architecture where the application, at the
base level, interacts with the middleware, at the meta-level,
via middleware-defined core services that are then used to
initiate other activities. The similarity of this approach
with our architecture makes us think that similar princi-
ples could be investigated to develop a formal semantics of
composition within our reflective middleware framework.

Currently, each host has a local view of context; an in-
teresting extension would be to enable each host to have
a broader view of its environment and allow it to gather
context information from any peer directly (or indirectly)
connected to it. In [40] [41], a middleware that tackles this
issue has been presented. The new definition of context

presented can be easily integrated in CARISMA; there are,
however, open questions that still need answering, related
to the binding and re-binding of external sensors.

Another direction of research that is worth mentioning
is service discovery. Traditional naming and trading ser-
vice discovery techniques developed for fixed distributed
systems cannot be successfully applied in mobile settings,
where intermittent rather than continuous network con-
nection is the norm. However, service discovery for mo-
bile settings has not yet gained significant attention. Two
notable exceptions are the Jini specification [42] and the
work by Handorean and Roman [43]. A disadvantage com-
mon to both approaches is that they do not take quality
of service requirements into account when deciding which
service to use. We believe that QoS-aware service discov-
ery would fit naturally in our framework, where application
needs are made explicit and used to decide how a service
should be delivered in current context. Currently, these
needs are taken into account only locally; a future direc-
tion of research would be to make use of this information to
discover services available in an entire ad-hoc network that
would deliver the user the best QoS, according to current
user-specific requirements.

Last but not least, a study that puts together middleware
practitioners, HCI experts and requirement elicitation ex-
perts is necessary to estimate the amount of work required
from application engineers to develop context-aware ap-
plications, and from end-users to learn how to use these
systems.

Acknowledgements

The authors would like to thank Zuhlke Engineering Ltd.
for supporting Licia Capra; Luca Zanolin for the useful dis-
cussions we had while developing the ideas described in the
paper; Ken Binmore and Pedro Rey-Biel for their insights
into the microeconomic aspects of the paper; finally, we
thank the anonymous reviewers of a previous version of
the paper, who have produced detailed reviews and much
helped to produce this new extended version.

References

[1] Sun Microsystem, Inc., “CLDC and the K Virtual Machine
(KVM),” http://java.sun.com/products/cldc/, 2000.

[2] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing
Applications,” in Proc. of the Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, Dec. 1994, pp. 85–
90.

[3] ISO 10746-1, “Open Distributed Processing – Reference model,”
Tech. Rep., International Standardization Organization, 1998.

[4] W. Emmerich, Engineering Distributed Objects, John Wiley &
Sons, Apr. 2000.

[5] B.C. Smith, “Reflection and Semantics in a Procedural Pro-
gramming Language,” Phd thesis, MIT, Jan. 1982.

[6] L. Capra, W. Emmerich, and C. Mascolo, “Reflective Middle-
ware Solutions for Context-Aware Applications,” in Proc. of RE-
FLECTION 2001. The Third International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns,
Kyoto, Japan, Sept. 2001, vol. 2192 of LNCS, pp. 126–133.

[7] K. Binmore, Fun and Games: a text on game theory, Lexington:
D.C. Heath, 1992.

[8] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory, Oxford University Press, 1995.

[9] L. Capra, W. Emmerich, and C. Mascolo, “A Micro-Economic
Approach to Conflict Resolution in Mobile Computing,” in Pro-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

ceedings of the 10th International Symposium on the Founda-
tions of Software Engineering (FSE-10), Charleston, South Car-
olina, USA, Nov. 2002, pp. 31–40, ACM Press.

[10] William Vickrey, “Counterspeculation, auctions and competitive
sealed tenders,” Journal of Finance, vol. 16, no. 1, pp. 8–37,
1961.

[11] Paul Milgrom, “Auctions and Bidding: A Primer,” Journal of
Economic Perspectives, vol. 3, no. 3, pp. 3–22, 1989.

[12] T. Bray, J. Paoli, and C. M. Sperberg-McQueen,
“Extensible Markup Language,” Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210, World
Wide Web Consortium, Mar. 1998.

[13] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le
Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood,
“Document Object Model (DOM) Level 1 Specification,”
W3C Recommendation http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001, World Wide Web Consortium, Oct.
1998.

[14] J. Clark and S. DeRose, “XML Path Language (XPath),” Tech.
Rep. http://www.w3.org/TR/xpath, World Wide Web Consor-
tium, Nov. 1999.

[15] The Apache XML Project, “Xerces Java Parser,”
http://xml.apache.org/xerces-j/index.html, 2000.

[16] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich, “Mid-
dleware for Mobile Computing (A Survey) ,” in Networking 2002
Tutorial Papers. 2002, vol. 2497 of LNCS, pp. 20–58, Springer.

[17] T. W. Malone, Richard E. Fikes, K. R. Grant, and M. T.
Howard, “Enterprise: A market-like task scheduler for dis-
tributed computing environments,” in The Ecology of Computa-
tion, Bernardo A. Huberman, Ed., pp. 177–205. North-Holland,
Amsterdam, 1988.

[18] J. Sairamesh, D. Ferguson, and Y. Yemini, “An Approach to
Pricing, Optimal Allocation and Quality of Service Provisioning
in High-speed Packet Networks,” in Proc. of Conference on
Computer Communications, Boston, Massachusetts, Apr. 1995.

[19] D. Ferguson, C. Nikolaou, and Y. Yemini, “An Economy for
Managing Replicated Data in Autonomous Decentralised Sys-
tems,” in Proc. of International Symposium on Autonomous
and Decentralised Systems, Los Alamitos, CA, 1993, pp. 367–
375, IEEE Computer Society Press.

[20] T. Ledoux, “OpenCorba: a Reflective Open Broker,” in Re-
flection’99, Saint-Malo, France, 1999, vol. 1616 of LNCS, pp.
197–214, Springer.

[21] G.S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An Ar-
chitecture for Next Generation Middleware,” in Proc. of Mid-
dleware ’98. Sept. 1998, LNCS, pp. 191–206, Springer Verlag.

[22] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel,
and D. Steere, “Coda: A Highly Available File System for a
Distributed Workstation Environment,” IEEE Transactions on
Computers, vol. 39, no. 4, pp. 447–459, Apr. 1990.

[23] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spre-
itzer, and C.H. Hauser, “Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System,” in Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP-15), Cooper Mountain, Colorado, Aug. 1995, pp. 172–
183.

[24] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich,
“XMIDDLE: A Data-Sharing Middleware for Mobile Comput-
ing,” Int. Journal on Personal and Wireless Communications,
vol. 21, no. 1, pp. 77–103, April 2002.

[25] G. Engels, C. Lewerentz, M. Nagl, W. Schäfer, and A. Schürr,
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Appendix

I. Semantics

I : S → ℘(PEER) → ℘(P)
I[[sn]]{peer peerList} = I[[sn]]{peer} ∩ I[[sn]]{peerList}

I[[sn]]{peer} = F [[serv(sn, peer)]]Env(peer)

Fig. 22. Computation of the Solution Set. Given a service name sn,
the semantic function I computes the set of policies that all peers
involved in the service delivery agree.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

F : service → E → ℘(P)
F [[sn policyList]]e = F [[policyList]]e

F [[policy policyList]]e = F [[policy]]e ∪ F [[policyList]]e
F [[pn contextList]]e = {pn} if valid[[contextList]]e = >

∅ if valid[[contextList]]e = ⊥

valid : contextList → E → bool

valid[[context contextList]]e = valid[[context]]e ∨ valid[[contextList]]e
valid[[context]]e = valid[[resourceList]]e

valid[[resource resourceList]]e = valid[[resource]]e ∧ valid[[resourceList]]e
valid[[rn on valueList]]e = eval((rn, on, valueList), e)

valid[[ε]]e = >

Fig. 23. Application Profile. Given a service specification service, the semantic function F evaluates, in current context e ∈ E, the set
of locally enabled policies. E = ℘(R × V) represents the set of all possible execution contexts (e.g, {(Memory, 8), (Battery, 4)}); eval is a
boolean function that returns true if the value of resource rn in the execution context e is among the values obtained by applying the operator
on to valueList (e.g., eval((Memory, inBetween, [2, 7]), {(Memory, 6)}) = >, while eval((Memory, lessThan, [5]), {(Memory, 6)}) = ⊥).

B : ℘(P) → ℘(PEER) → ℘(P× PEER× R+)
B[[{p1, . . . , pm}]]{peer peerList} = B[[{p1, . . . , pm}]]{peer} ∪ B[[{p1, . . . , pm}]]{peerList}

B[[{p1, . . . , pm}]]{peer} =
m⋃

j=1

{(pj , peer, min{qpeer, upeer,j})}

B[[{p}]]{peerList} = {(p, , 0)} No conflict

B[[∅]]{peerList} = ∅ No agreement

Fig. 24. Computation of Bids. Given the set of agreed policies, and the list of participating peers, the semantic function B associates a bid
to each couple (policy, peer).

W : ℘(P× PEER× R+) → P
W[[{(pj , peeri, bi,j), ∀i ∈ [1, n], j ∈ [1,m]}]] = p̃ |

p̃ ∈ {π1(pj , peeri, bi,j), ∀i ∈ [1, n], j ∈ [1,m]}

∧
n∑

i=1

π3(p̃, peeri, bi,̃) = max
j∈[1,m]

n∑
i=1

π3(pj , peeri, bi,j)

∧ pay(qmw(i), fi, qi), ∀i ∈ [1, n]
W[[{(p, , 0)}]] = p No conflict

W[[∅]] = ε No agreement

fi =


a. 0 if ∀k ∈ [1, n] π3(p̃, peerk, bk,̃) = maxj∈[1,m] π3(pj , peerk, bk,j)

b.
∑

l∈{s|s∈[1,n]
∧bs,̃≤bi,̃}

bl,̃−max( {bs,̃|bs,̃<bl,̃, s∈[1,n]}∪{bmin,̃} )
#{bs,̃|bs,̃≥bl,̃, s∈[1,n]}∗#{bs,̃|bs,̃=bl,̃, s∈[1,n]} ,

bmin,̃ = min{bi,̃, i ∈ [1, n]} otherwise

Fig. 25. Election of the Winning Policy. Given the set of tuples (policy, peer, bid), the semantic function W selects the policy that maximises
social welfare. πi(a1, a2, . . . , an) = ai projects a tuple onto the ith value; #{a1, a2, . . . , an} = n computes the cardinality of a set; qmw(i)
retrieves the quota of the middleware on top of which peer peeri is executing; finally, pay(q1, x, q2) = (q1 + x, q2 − x) both increases the
middleware quota q1, and decreases the peer quota q2, of the specified amount x.


