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Abstract The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar
wind. The combination of both ground- and space-based observations at Earth has enabled considerable
progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to
the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune’s cusp in 1989, but highly
inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly study the
polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during
two passes through Saturn’s southern polar magnetosphere. Our main findings are that (i) Cassini directly
encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via
magnetopause reconnection, (ii) magnetopause reconnection and entry of plasma into the cusp can occur over
a range of solar wind conditions, and (iii) double cusp morphologies are consistent with the position of the cusp
oscillating in phase with Saturn’s global magnetospheric periodicities.

1. Introduction

The magnetospheric cusps are an important site of plasma entry into the terrestrial magnetosphere and play
a key role in the transfer of energy and momentum from the solar wind to the magnetosphere. Ground-based
and in situ observations at Earth have made much progress in the study of the cusp and the coupling of
the solar wind-magnetosphere-ionosphere through the polar magnetosphere, see, for example, Smith and
Lockwood [1996] and Cargill et al. [2005], and references therein for recent reviews. In situ observations of
the polar magnetospheres of the outer planets are restricted to some observations at Jupiter and Neptune.
Voyager 2 fully explored Neptune’s cusp in 1989, and the particle and field observations have been discussed
thoroughly by Szabo et al. [1991] and Lepping et al. [1992]. During the encounter of Ulysses with Jupiter in
1992, auroral hiss was observed during the inbound leg at lower latitudes [Stone et al., 1992] and data showed
that Ulysses passed through open field lines on its inbound leg [Phillips et al., 1993] and polar cap field lines
on its outbound leg [Bame et al., 1992; Cowley et al., 1993]. High-latitude observations in Saturn’s magneto-
sphere, made by the Cassini spacecraft in 2006-2009, present the most recent opportunity to study the polar
magnetosphere of another rapidly rotating giant planet and to examine the role of solar wind forcing in these
magnetospheres. Most recently, Jasinski et al. [2014] presented a case of magnetosheath-like ion and electron
distributions in Saturn’s northern cusp, indicating reconnection with the solar wind at the magnetopause.
Furthermore, the ion time-energy spectrograms showed evidence of stepped ion dispersions that are
suggestive of bursty reconnection at the magnetopause.

Reconnection at the magnetopause is a fundamental process which opens the magnetosphere and allows
solar wind plasma to enter the system; the plasma in the terrestrial magnetosphere is dominated by plasma
of solar wind origin. The first observations of magnetosheath plasma in Earth’s polar magnetosphere showed
that fluxes of electrons and protons with magnetosheath-like distributions were observed just poleward of
the last closed field line, near 75-79° magnetic invariant latitude, identified by a sharp decrease in the flux
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of >10keV electrons as one moved onto open magnetic field lines [Heikkila and Winningham, 1971; Frank,
1971; Russell et al., 1971]. Subsequent work, especially utilizing the multispacecraft capabilities of Cluster,
has shown the terrestrial cusp to be a broad complex region with a variety of interesting boundary layers,
some of which are formed by the complex nonsteady nature of dayside and high-latitude (lobe) reconnection
[e.g., Cargill et al., 2005]. The effects of magnetopause reconnection and its time variability can be identified
via latitude-energy and pitch angle-energy dispersions [e.g., Reiff et al., 1977; Burch et al., 1982; Lockwood and
Smith, 1994]. The orientation of the interplanetary magnetic field (IMF) plays a significant role in determining
the motion of newly opened flux tubes at the dayside magnetopause [e.g., Cowley and Owen, 1989; Cooling
et al.,, 2001] which contributes to the complex spatial morphology of the cusp, which can be separated into
multiple entry regions [e.g., Wing et al., 2001; Zong et al., 2008; Pitout et al., 2009; Abe et al., 2011].

Identifying the signatures of magnetopause reconnection at Saturn has been the focus of a number of
studies using in situ Cassini data. Lai et al. [2012] searched for evidence of flux transfer events by surveying
71 magnetopause crossings over a 4 h local time interval centered on 1200 Saturn local time and up to
~30° latitude but did not find evidence of local magnetopause reconnection. McAndrews et al. [2008] used
two case studies to show evidence of reconnection on the dawn flank and also of lobe reconnection.
Desroche et al. [2013] have shown that due to the combined effects of diamagnetic drift and flow shear,
magnetopause reconnection is generally favored on the dusk flank and at higher latitudes away from the
subsolar point. Evidence for reconnection at higher latitudes (>24°) was also presented by Badman et al.
[2013] who also showed that bursty reconnection was present during compressions of Saturn’s magneto-
sphere. In related work, Fukazawa et al. [2007] used a global magnetohydrodynamic simulation of Saturn'’s
magnetosphere to show that the largest energy input into the polar cusp region was during northward
(B, > 0) IMF and with a magnetopause reconnection site located northward of the subsolar point. These
modeling studies therefore support the idea that magnetopause reconnection generally occurs away from
the subsolar point and is more concentrated in the dusk sector.

At Earth, the orientation of the IMF is known to strongly affect the location of cusp auroral emissions [e.g., Wing
et al, 2004, and references therein]. Under southward IMF (B, < 0) the cusp auroral emission is located on or
close to the main oval and shifts poleward under northward IMF (B, > 0) when lobe reconnection takes place.
The sign of the east-west component of the IMF (B,) shifts the cusp emissions in magnetic local time. Bunce et al.
[2005] studied the role of the IMF at Saturn and developed models of the flows and currents in the ionosphere
produced by low-latitude dayside and high-latitude lobe reconnection. This modeling has shown that the sign
of IMF B, affects the position of the cusp aurora, as it does at the Earth. Bunce et al. [2005] have also shown that
the direct entry of magnetosheath electrons into Saturn’s cusp would not be expected to produce measurable
auroral emissions. However, pulsed reconnection at Saturn’s magnetopause may produce field-aligned current
systems that are of sufficient intensity to produce spot-like auroral emissions near the cusp.

Pallier and Prangé [2001] first identified high-latitude auroral emissions at Jupiter that did not corotate and
remained close to noon in magnetic local time and so were interpreted as the optical signature of the
Jovian cusp. Gérard et al. [2004] found similar features in Hubble Space Telescope (HST) images of Saturn’s
southern far ultraviolet aurora where they noted the appearance of a bright (10-20kR) spot located at
approximately 15° colatitude which was slightly poleward of the main auroral oval, somewhat distributed
by ~1 h of local time either side of noon. Gérard et al. [2005] studied HST images of Saturn’s southern auroral
emissions in concert with upstream solar wind observations when Cassini was ~0.2 AU upstream of Saturn.
Bright auroral spots were found at the onset of a period of minor compression in the solar wind. Gérard
et al. [2005] interpreted auroral spots in the noon sector as the result of field-aligned currents produced by
pulsed reconnection at the magnetopause [Bunce et al, 2005]. Radioti et al. [2011] and Badman et al.
[2013] have provided evidence for reconnection occurring at multiple locations on Saturn’s magnetopause.
Bunce et al. [2008] presented evidence for a crossing of auroral field lines connecting Cassini to Saturn’s main
auroral emission. During one period discussed in this study Cassini moved equatorward from the polar cap
through a population of magnetosheath-like plasma inside the magnetosphere and then into a region of
hot electrons with evidence of field-aligned currents. Bunce et al. [2008] interpreted this region of
magnetosheath-like plasma as particle entry in the cusp.

In this report we present two detailed case studies which discuss observations from the polar cap, midalti-
tude cusp, and dayside boundary layers on two separate passes of Cassini at high invariant latitudes. lon
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energy-pitch angle dispersions that are presented are interpreted as evidence for magnetopause reconnec-
tion driving particle entry in the cusp from different reconnection sites on the magnetopause. The entry in
the cusp is often unsteady providing evidence that magnetopause reconnection is unsteady as well as occur-
ring at different locations on the magnetopause during a given pass at high latitudes. It is argued that the
position of the southern polar cusp periodically oscillates in a manner that is decoupled from motions driven
by the upstream solar wind and is, therefore, probably related to global periodicities in Saturn’s magneto-
sphere. Evidence is presented for boundary layers separating the cusp from the closed magnetosphere
and for a hot electron population which is associated with Saturn’s main auroral emission that is on closed
magnetic field lines. The paper is organized into the following sections: in section 2 we describe some of
the physics of rapidly rotating magnetospheres and discuss how this may modify the signature of the cusp
compared to understanding based on the terrestrial magnetosphere. Instrumentation and data reduction
are described in section 3. The trajectory of Cassini during the two case studies is presented in section 4.
The case studies are presented in sections 5 and 6. We conclude with a discussion in section 7.

2. Physics of the Cusp at Giant Planets

The rapidly rotating magnetospheres that surround Jupiter and Saturn differ from the terrestrial magneto-
sphere in a number of important ways. These differences may affect interpretations of cusp behavior and
properties that are based on understanding gained from the study of the terrestrial magnetosphere.

Most of the plasma in the Saturnian magnetosphere originates from within the magnetospheric cavity due to
mass loading in the vicinity of the icy satellites, such as Enceladus and Dione, and in the E-ring torus (see
Arridge et al. [2012] for a recent review). lon populations in the magnetosphere vary greatly with radial
distance but are typically a mixture of cold (<100eV), warm (100-1000eV), and hot (energetic) (>1keV)
populations. The electrons can similarly be divided into cold (<20eV), warm (~100eV), and hot (>500eV)
populations. The energetic populations are typically power law tails on the warm populations, such that
the warm and hot populations can be described using Kappa distributions. Centrifugal forces are important,
and cold/warm heavy ions are centrifugally confined to the equator and form an equatorial plasma sheet in a
similar manner to the equatorial confinement of iogenic plasma in the Jovian magnetosphere [e.g., Hill and
Michel, 1976]. Lighter ions and electrons and more energetic populations have much larger centrifugal scale
heights than the cold/warm ions and are free to fill magnetospheric flux tubes to high latitudes [e.g., Sergis
et al, 2011]. However, because the heavy ions dominate the ion composition, polarization electric fields exist
which pull the lighter species toward the equator in order to maintain charge quasi-neutrality [e.g., Maurice
et al., 1997]. As a consequence, the plasma at high latitudes should be dominated by hot electrons and
energetic ions (light and heavy species) as these can overcome the field-aligned electrostatic potential, which
is of the order of tens of volts at Saturn [Maurice et al., 1997].

The structure of the upstream solar wind at Saturn has been the focus of a number of studies [e.g., Jackman
et al., 2004, 2008; Jackman and Arridge, 2011]. Typically, the upstream medium is organized into a pattern of
corotating interaction regions (CIRs) which arrive quasiperiodically at Saturn once or twice per solar rotation
period. These CIRs are separated by rarefaction regions where the solar wind has a relatively low dynamic
pressure and the IMF has a very low field strength <0.1 nT. Inside a CIR the dynamic pressure and field
strength are much higher and the clock angle of the field undergoes rapid changes in orientation
[Jackman et al., 2004]. Due to the large heliocentric distance of Saturn, the IMF is significantly wound up with
an average spiral angle of 86.75° [Jackman et al., 2008; Jackman and Arridge, 2011]. Thus, the average IMF has
a dominant B, component and newly opened field lines will tend to contract eastward and westward (in
different hemispheres) due to the tension force on the newly opened flux tubes [e.g., Cooling et al., 2001].

The rate of production of open flux, the reconnection voltage, has been estimated at Saturn using a
“half-wave rectifier” function that produces mean reconnection voltages of 41.8kV [Jackman and Arridge,
2011] but peak voltages of 100-400kV in CIRs and 10kV or less in rarefaction regions [Jackman et al.,
2004]. However, these estimates assume that the efficiency of dayside reconnection is the same as that at
the Earth and the validity of this assumption has been the subject of some debate [e.g., Scurry and Russell,
1991; Masters et al., 2012; Masters, 2015]. While the dynamic pressure and field strength increase in CIRs—
thus providing more favorable conditions for reconnection—the rapid oscillations in clock angle will
modulate the reconnection rate and location on the magnetopause where reconnection can occur.
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The scale of the Jovian and Saturnian magnetospheres also introduces further important differences. Saturn’s
equatorial radius is almost 10 times larger than that of Earth, and the subsolar magnetopause is around twice
as far from the planet (in units of planetary radii) at Saturn compared to Earth; therefore, the linear size of the
magnetosphere is around a factor of 20 larger than the terrestrial system. The Alfvén wave travel time from
the magnetopause to the ionosphere is of the order of an hour. A 1 keV proton on a newly reconnected field
line with a reconnection site near the subsolar point at Earth will take around 5 min to traverse the ~20 R
distance (1 Re=6378km) from the X line to a spacecraft in the midaltitude cusp. For a distance of 25Rs
(1 Rs=60,268 km) in the Saturnian magnetosphere a 1keV proton will take around an hour to travel from
the reconnection site to the cusp.

The morphology of particle signatures in the cusp is dependent on the spacecraft speed, vs, the convection
speed of the plasma, v, and the effective speed of the open/closed field line boundary at the spacecraft, vg,
which is clearly related to the reconnection rate. In the Earth’s magnetosphere at low altitudes vs is much
larger than vg or v and so the cusp is essentially at rest compared to the spacecraft speed. In the high-
altitude cusp, however, the spacecraft speed is essentially irrelevant since vs is much smaller than vz or v.
In the midaltitude cusp vs can be similar to vz and v thus providing a mixture of time-dependent signatures
[Lockwood and Smith, 1994].

At Saturn, the speed of the open/closed boundary due to dayside reconnection can be estimated using
published estimates of the dayside reconnection voltage (assuming no tail reconnection) and the magnetic
flux through the polar cap, using the flux function from Cowley and Bunce [2003] with zonal internal field
coefficients g° (to third order) from Cao et al. [2011]. Since dayside reconnection increases the magnetic flux,
®@, through the polar cap, the size of the polar cap, 9, increases. By taking derivatives of the flux function we
can write the rate of change of @ as a function of the reconnection rate, d®(6)/dt, and hence calculate the
colatitudinal speed of the boundary.

do@) d [, 5.1 ofRs\ 3, R\> 1 o/ Rs\| | do
it _dg{Rssmé’g1 | +595c0s6( — +2g3(5c059 1) p it (1

Using a dayside reconnection voltage of 400kV, the open/closed boundary will move equatorward at
~0.006°/h, corresponding to a speed of 100m s~ at a distance of 10 Rs. This small boundary speed compared
to Earth is due to the much larger amount of magnetic flux through Saturn’s polar cap compared to Earth.

The open/closed boundary is also expected to move due to oscillations in the magnetosphere. Despite the
near axisymmetry of the Saturnian internal magnetic field, magnetospheric periodicities have been noted
since the Pioneer and Voyager flybys (see Carbary and Mitchell [2013] for a recent review). Recent studies
using Cassini data have argued for the presence of rotating sheets of field-aligned currents [e.g.,
Southwood and Kivelson, 2007; Provan et al., 2009a; Andrews et al., 2010] which modulates the field configura-
tion at high invariant latitudes, causing the cusp to spatially oscillate at a period close to that of the planet’s
rotation. Nichols et al. [2008] have used UV auroral images of Saturn’s southern main auroral oval to show that
the main oval oscillates at a period close to that of other magnetospheric periodicities [e.g., Provan et al.,
2009b] with an amplitude of around 1°. Using the results of Nichols et al. [2008], we estimate a speed of
~120km/s for the speed of the open/closed boundary at a distance of 10 Rs (assuming it moves rigidly with
the oscillation of the auroral oval). Hence, we expect the boundary motion to be mainly controlled by this
oscillatory motion at high invariant latitudes.

In the events presented in this study the spacecraft is geometrically in the midaltitude cusp (see the trajectories
in Figure 1). The spacecraft speed relative to the planet is typically ~6 kms™". To estimate an upper limit for the
solar wind-driven convection speed of the plasma, we estimate the solar wind convection electric field and
assume that this maps into the magnetosphere with 100% efficiency to provide an upper limit to the convection
speed. Using veyw =400 km s~ and IMF B,=0.5 nT, we obtain Eqyy=0.2mVm™" such that v, given by Esw/B, is
equal to 10kms™" for a magnetospheric field strength of 20 nT. However, Saturn’s magnetosphere is also
rapidly rotating and the corotational convection electric field also plays a role. This is not important at Earth
when calculating v The ionosphere in the polar cap typically subcorotates at a rate equal to one third of rigid
corotation [Stallard et al, 2004] resulting in an azimuthal convection speed of 27kms™ ' at 13Rs and 45°
latitude. The spacecraft speed is therefore smaller than either solar wind-driven convection speed or
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Figure 1. Cassini trajectory and mapped ionospheric footprint for the two case studies in this paper. Because the upstream
conditions and hence the magnetospheric magnetic field are different in each case, two pairs of panels are shown, one for
(a and b) rev 37 and one for (c and d) rev 38. Figure 1a shows the trajectory of Cassini on rev 37 (red), with rev 38 (gray) for
comparison, projected onto the X-Z plane in KSM coordinates. The field lines are traced using the Khurana et al. [2006]
magnetospheric magnetic field model with the pressure set to match the estimated upstream conditions. Figure 1b presents
the mapped ionospheric footprint of Cassini on rev 37 (red) compared with rev 38 (gray) and a statistical UV auroral oval
[Carbary, 2012]. The footprint is mapped from Cassini’s location by tracing the field lines in a simple field model consisting of a
ring current model (scaled to match the magnetopause subsolar distance) [Bunce et al., 2007] and third-order internal field
model [Cao et al., 2011]. Figures 1c and 1d present the same information but for rev 38 (blue) with rev 37 (gray) for comparison
and where the field models have been adjusted for the different upstream conditions. In all panels squares indicate the
beginning of each day, and the bold segment indicates the intervals covered by Figures 4a, 4b, 11¢c, and 11d).

subcorotational flow. Hence, in the rest frame of the open/closed boundary, the satellite speed is comparable
to or smaller than that of the plasma convection speed, and hence, in the geometrical midaltitude cusp at
Saturn the observed particle signatures should have more in common with the high-altitude cusp signatures
at Earth.

In comparing terrestrial observations of the cusp to the observations in this study at Saturn we must consider
that (a) plasma composition and energy spectra at high latitudes will not necessarily reflect those at low
latitudes, (b) dayside reconnection is more likely in CIRs but may well be bursty, (c) the particle signatures
have more in common with the high-altitude regime at Earth combined with low-altitude cusp effects due
to the long transit times for a particle from the magnetopause to the spacecraft, (d) the cusp might oscillate
in position due to magnetospheric periodicities, and (e) the IMF spiral angle is large at Saturn providing a
significant IMF B, component which will affect the motion of newly opened field lines and possibly also
the location of the reconnection site.

3. Instrumentation and Data Reduction

This study uses data from the Cassini magnetometer [Dougherty et al., 2004], Cassini plasma spectrometer
(CAPS) [Young et al., 2004], magnetospheric imaging instrument (MIMI) [Krimigis et al., 2004], and radio and
plasma wave science (RPWS) [Gurnett et al., 2004].

Data from the magnetometer are taken from the fluxgate magnetometer at a cadence of 1s and are
presented in spherical polar coordinates (Kronographic Radial-Theta-Phi—KRTP), based on the kronographic
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position of the spacecraft, where e, is along a vector from the planet to the spacecraft, ey points in the
direction of increasing colatitude, and e, points azimuthally around Saturn in a prograde direction.

Plasma data come from the CAPS suite of instruments, specifically the electron spectrometer (ELS) and ion
mass spectrometer (IMS). ELS is a hemispherical top-hat electrostatic analyzer measuring electrons between
0.6 and 28750 eV/e with an energy resolution of 16.7%. Each of the eight anodes has an angular resolution of
20°x 5.2° providing a 160° X 5.2° instantaneous field of view, which is extended by rotating the instrument,
which sweeps out ~200° of azimuth in ~4 min providing ~2z sr total field of view. ELS captures data at a
cadence of 2s which is sometimes downsampled/averaged internally in the CAPS data processing unit
before transmission to the ground. Pitch angle distributions are accumulated over a 4 min azimuthal sweep
of the instrument. Electron moments are calculated by integrating these pitch angle distributions to produce
density and temperatures parallel and perpendicular to the field (C. S. Arridge et al,, in preparation, 2016).
Previous techniques [Lewis et al., 2008; Arridge et al., 2009] used numerical integration of one-dimensional
electron energy distributions with the assumption of isotropy in the spacecraft frame. Such moments are
susceptible to anisotropies in the electron distribution and can produce unrealistic time variations in density
and temperature as the instrument samples different regions of velocity space. This new technique combines
samples from azimuthal sweeps to generate 2-D distributions in pitch angle and energy thus removing
such effects.

IMS is a hemispherical top-hat electrostatic analyzer measuring positive ions between 1 and 50 280 eV/q with
an energy resolution of 16.7%. Each of the eight anodes has an angular resolution of 20°x 8.3° providing a
160° x 5.3° instantaneous field of view, which as for ELS is also extended to almost ~2z sr total field of view
with azimuthal scanning. The highest time resolution data available from IMS is 4s. IMS also has a time of
flight section to obtain energy-resolved mass per charge spectra with a mass resolution of 12.5%. Counts
were scaled with energy-dependent efficiencies (H. T. Smith, Calibration constants for data, private commu-
nication, 2013) for H" and W* (taken to be O*) and with an average of H," and He™* since they cannot be
separated in IMS. Uncertainties in compositional ratios are based on counting statistics.

The MIMI charge energy mass spectrometer (CHEMS) instrument is used to provide energetic ion composi-
tion with an energy range of 3-220keV/e, a mass per charge resolution of ~8%, and a mass resolution of
~15%. The low-energy magnetospheric measurements (LEMMS) sensor provides energetic ion and electron
fluxes from 0.03 to 160 MeV for ions and 0.015 to 5 MeV for electrons. Plasma wave data are provided by the
RPWS instrument which includes three nearly orthogonal electric field antennae, in order to detect AC
electric fields between 1Hz and 16 MHz. Calibrated high-frequency (kilometric) emissions were produced
using the method of Lamy et al. [2008].

4, Trajectory and Data Overview

Figure 1 shows the trajectory (Figures 1a and 1c) of Cassini projected onto the noon-midnight meridional
plane and its mapped ionospheric footprint (Figures 1b and 1d) for Cassini revolutions (revs) 37 (Figures 1a
and 1b, 8-24 January 2007) and 38 (Figures 1c and 1d, 24 January to 9 February 2007).

During rev 37, on 13 January 2007, Cassini crossed the tail plasma sheet and passed into the southern mag-
netotail lobe moving toward the dayside via the dawn flank. Cassini remained in the southern magnetic
hemisphere until late on 17 January 2007. During the 16 January 2007 principal case study interval (indicated
by the bold interval on the trajectory) Cassini was at high magnetic latitudes, magnetically mapping to near
the statistical UV auroral oval, and located between 1000 and 1200 Saturn Local Time (SLT) in the magnetic
field region where we might expect to see the cusp. During rev 38, Cassini followed a trajectory through the
magnetosphere that is very similar to rev 37, although at a somewhat larger radial distance in the cusp
region. The field lines are more stretched corresponding to the lower upstream dynamic pressure during this
event (see sections 5 and 6 for more details of the upstream conditions).

Figure 2 presents an overview of the data from rev 37 and 38. In both cases Cassini starts in a region where
the plasma electron data are at the instrument noise level, the field strength is high and smoothly varying,
and the energetic ion and electron fluxes are at the instrument noise level. We identify this region as the polar
cap (indicated by the symbol PC). Following this interval Cassini enters a region with high field strength
(although not as high as the polar cap and there are notable occasional depressions in the field strength)
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Figure 2. Overview of data for (a—c) rev 37 and (d-f) rev 38. Figure 2a shows energetic ion and electron differential number
fluxes (DNF) (cm™2s™ ' s~ " keV™ ") measured by MIMI/LEMMS, Figure 2b shows an omnidirectional electron spectrogram

in units of differential energy flux (DEF) (eV m2s s eV71) and where the distributions have been filtered to remove

low signal-to-noise bins and shifted to account for the spacecraft potential, and Figure 2c shows the field magnitude.
Figures 2d-2f show the same measurements for the rev 38 interval. Ephemeris data are shown below each set of panels,
and the bars/labels above each set of panels indicate the identified magnetospheric regions where PC indicates the polar
cap, M indicates the magnetosphere, C/BL indicates the cusp/boundary layer, S indicates the sheath, and S/W indicates the
sheath/solar wind.

and large fluxes of low-energy plasma electrons, consistent with magnetosheath plasma which is interpreted
as magnetosheath particle in the cusp/boundary layers. These layers are alternately mixed with higher-
energy plasma consistent with closed field lines before entering a region that we identify as the magneto-
sphere proper with higher fluxes of electrons and energetic particles on closed field lines.

In the rev 38 case (Figures 1d-1e) we can see that a significant compression of the magnetosphere occurred
around the middle of 2 February 2007 where Cassini enters the magnetosheath and also briefly the solar
wind, thus providing an opportunity to compare and contrast the particle entry into the cusp and the
particles in the adjacent magnetosheath. Even though the spacecraft is at a slightly larger radial distance
during this orbit, entry into the magnetosheath and solar wind at such distances reflects an unusually high
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Figure 3. Upstream conditions during the January 2007 event. (a) Measured left-hand (therefore from the Southern
Hemisphere) circularly polarized SKR power integrated between 3-1000 kHz (black) and 3-30 kHz (red). (b-f) Solar wind
conditions propagated from 1 AU using the MSWiM model [Zieger and Hansen, 2008], showing Figure 3b the solar wind
speed, Figure 3c the solar wind number density, Figure 3d the solar wind dynamic pressure, Figure 3e the tangential
component of the IMF in the RTN (radial-tangential-normal) coordinate system, and Figure 3f the IMF field strength. The
tangential direction is approximately in the —y KSM direction; therefore, negative By is approximately duskward. The
propagations have an arrival time uncertainty of +15 h; therefore, three time series are plotted, no lag (green solid curve),
—15h lag (blue dash-dot curve), and +15 h lag (red dash-dotted curve). The time series has also been lagged by +14 h
(black solid curve) to match the sharp increase in SKR power observed at 0600 UT on 16 January 2007 indicated by the
vertical dotted line. The interval covered by Figure 4 is indicated by the gray bars on each panel.

solar wind dynamic pressure. More details on the solar wind conditions are in sections 5.1 and 6.1. Toward the
end of the interval Cassini has moved into the Northern Hemisphere in the afternoon local time sector and
once again sees lower energy plasma, consistent with the cusp, before returning to the polar cap. We
tentatively identify this lower energy plasma region as a mantle. In the rest of this paper we focus on the
Southern Hemisphere observations at the beginning of these intervals.

5. Case Study: 16 January 2007 (Rev 37)

5.1. Upstream Conditions

Figure 3 presents the upstream conditions during the event as obtained from the MSWiM solar wind propa-
gation model [Zieger and Hansen, 2008] which propagates solar wind observations from 1 AU to Saturn using
a 1.5-D MHD model. These data are provided at a 1h time resolution. Zieger and Hansen [2008] have
comprehensively investigated the accuracy of these propagations and have shown, using the arrival times
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of solar wind shocks, that the temporal uncertainty is £15 h when Earth and Saturn are near apparent opposi-
tion (as they are during the events covered in this study). Hence, Figure 3 shows the solar wind propagations
along with lagged time series to account for this uncertainty. A large solar wind disturbance arrived at Saturn
on 6 January 2007, and the solar wind returned to a quiescent state on 14 January 2007 before another
smaller enhancement occurred on 16 January 2007.

Figure 3 also shows the power of left-hand circularly polarized extraordinary mode (X-mode) emissions
known as Saturn kilometric radiation (SKR), as measured by the RPWS instrument on Cassini and integrated
between 3 and 1000 kHz. The left-handed emissions originate from the Southern Hemisphere. Desch [1982]
and Desch and Rucker [1983] have shown that SKR power is mainly controlled by the dynamic pressure of the
solar wind. We have therefore used the SKR power to attempt to correctly lag the solar wind propagations. An
increase in SKR power is found at 0600 UT on 16 January 2007, and an increase in solar wind dynamic
pressure is found in the solar wind time series 14 h before. Hence, we lag the solar wind propagations by
+14h to align the increase in dynamic pressure with the increase in SKR power.

During the interval of the 16 January 2007 event the predicted dynamic pressure is 0.042 +0.005 nPa and
the IMF field strength 0.31 +0.03 nT, which is mainly contained in the tangential component of the IMF
(in radial-tangential-normal (RTN) coordinates). During this period the tangential direction in Kronocentric Solar
Magnetspheric coordinates is (0, —0.92, —0.38); hence, a negative tangential component is oriented approxi-
mately duskward. The normal component in the propagations is essentially uncorrelated with observations,
and the radial component cannot be propagated due to the 1.5-D nature of the MHD code. Using the model
of Kanani et al. [2010], the average dynamic pressure during the event corresponds to a magnetopause subsolar
distance of 19+ 3 Rs which is a typical value [e.g., Achilleos et al., 2008]. The quiet interval on 14 January 2007
corresponds to a subsolar magnetopause distance of 28 +5Rs. Hence, the arrival of the compression at 0600
UT on 16 January 2007 corresponds to a significant compression of Saturn’s magnetosphere.

5.2. Overview and Interpretation

Figure 4 presents an overview of the magnetic field, plasma/particle, and plasma wave observations during
the 16 January 2007 event. The composition data were derived by summing counts in CHEMS, and in the IMS
time of flight system, from the straight-through detector. To improve the counting statistics of the composi-
tional data, the counts were summed within the intervals identified in the CAPS/ELS data. Electron pitch
angle distributions were analyzed during the course of this study but provide an ambiguous result due to
the lack of full pitch angle coverage (the accessible pitch angle range is typically ~45°-170°) in the downward
(precipitating) direction and to significant temporal variability in the data which aliases computed pitch angle
distributions. Hence, electron pitch angle distributions are not presented for this event and will be the subject
of future study.

At 0900 UT energetic particle (Figure 4b), plasma electron (Figure 4c) and plasma ion fluxes (Figure 4d) are at
or near the noise level consistent with very low plasma densities. The electric field wave power shows
considerable enhancement at low frequencies with a cutoff at ~110 Hz. Auroral hiss is commonly observed
at high latitudes in Saturn’s magnetosphere and generally consists of a whistler mode emission below the
electron cyclotron frequency, with a sharp cutoff at the electron plasma frequency [Gurnett et al., 2009]. In this
region the ELS data are at the instrumental noise level and so the electron density can be considered to have
an upper limit of ~500 m~3 [Arridge et al,, 2009]. The electron plasma frequency corresponding to this upper
limit is ~200 Hz, and the electron cyclotron frequency is higher; hence, we attribute these emissions to auroral
hiss. The CHEMS energetic ion composition indicates measurable fluxes of water group ions (W), H,*, and
He**.The latter is a characteristic of solar wind plasma, but W* and H,+ are characteristics of closed magnetic
field lines, where W originates from neutral plasma chemistry in the inner magnetosphere as a result of
internal mass loading and H," originates from Titan.

After 0955 UT, and until 1127 UT, fluxes of low-energy ions and electrons are observed where the electron
temperature (Figure 4h) of 20 eV is consistent with a magnetosheath population. The electron fluxes are quite
unsteady producing a factor of ~4 variations in the electron density. Figures 4e and 4f show the fraction of
counts in CAPS/IMS and MIMI/CHEMS produced by various species. Each panel sums to 100%, but the scales
have been reduced to focus on the relative counts of species other than H*. The plasma ion composition
(Figure 4e) appears to be devoid of heavy ions, but the ratio of ions with mass per charge (m/q) of
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Figure 4. Overview of the January 2007 cusp crossing. The labels at the top of the figure show the identified regions: polar
cap (PC), cusp, boundary layer (BL), and magnetosphere. (a) A frequency-time spectrogram of the electric field from RPWS
with the electron cyclotron frequency overlaid in white (calculated from the measured magnetic field strength); (b) an
energy-time spectrogram of energetic electrons from LEMMS; (c) an energy-time spectrogram of plasma electrons from
CAPS/ELS that has been filtered to remove bins with poor signal-to-noise and corrected for spacecraft potential; (d) an
energy-time spectrogram of plasma ions from CAPS/IMS that has been filtered to remove bins with poor signal-to-noise;
(e) relative abundances of plasma ions measured by the straight-through (ST) time of flight sensor in CAPS/IMS; (f) relative
abundances of energetic ions measured by CHEMS; (g) magnetic field data in spherical polar coordinates (KRTP coordinates);
and (h) electron moments derived from CAPS/ELS where black lines are the number density and blue is the temperature.
Ephemeris information is provided at the bottom of the plot where invariant latitudes were estimated using a simple dipole
plus current sheet model [Bunce et al., 2007; Cao et al., 2011].

2 amu/q (m/q=2) to H" counts is 3.7 £ 0.3%. He** and H,"* have an m/q of 2 amu/q, and in the solar wind we
would expect He™ to dominate with around 4% He™™, whereas in the magnetosphere H," originates from
Titan. Thomsen et al. [2010] have shown that the abundance of ions with m/q=2 relative to H* in the
magnetosphere is around 20% inside 20 Rs (in the equator) and around 5% beyond this distance. Hence, a
ratio of ions with an m/q of 2 to H* of 20% is indicative of magnetospheric plasma, whereas a value smaller
than that indicates either solar wind plasma composition or magnetospheric plasma at high latitudes
where the H," is more concentrated toward the equatorial regions. The energetic ion composition
(Figure 4f) is W*/H": 7 £ 2%, H,*/H": 5+ 2%, and He™ 10 + 3%. The relatively high He** fraction is suggestive
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of the presence of magnetosheath/solar wind plasma. In plasma ion data, a dispersion can be seen in the
low-energy edge of the ion distribution, which increases with time from 0955 to 1127 UT. The field strength
(Figure 4g) is ~20nT; however, its direction and stability are not consistent with an excursion into the
magnetosheath which is usually characterized by very strong magnetic fluctuations.

The line at 1127 UT marks a compositional boundary based on the observations presented in Figure 4f.
Between 1127 UT and 1151 UT there is no net field-aligned current (FAC) (no significant gradient in the
azimuthal magnetic field component), the W* fraction increases in energetic ions and also the thermal
plasma (0 to 0.10+0.08%—not visible on the scale of this plot), and the plasma electrons exhibit some
energization with a drop in density by a factor of ~5.

From 1151 to 1521 UT the plasma electrons have temperatures of 100-1000 eV and high fluxes of energetic
electrons are observed. The energetic ion composition shows a significant population of W* and H,", and in
the warm plasma ions we see significant W* (W*/H* of 0.2 +0.1%) and m/q =2 species (m/q=2to H" of 8.8
+0.7%). In this region a decrease in the azimuthal component of the magnetic field can be seen, consistent
with a layer of field-aligned current [e.g., Bunce et al., 2008]. The intense plasma wave emissions observed
under 50 Hz are consistent with shot noise from energetic electron impact on the electric field antenna
[e.g., Zouganelis, 2008].

From 1521 to 1803 UT the electron temperature drops to values consistent with that observed from 1127
to 1151 UT and the energetic electrons drop close to near-background levels (a similar region is also
observed from 1901 to 2050 UT with a short excursion back into the region with hot electrons). The
plasma composition maintains a large water group ion component, but the He™/H" ratio increases by
a factor of 2 at the beginning of the interval, moving to a factor of 20 after 1728 UT. The intense interval
from 1728 to 1803 UT has a significant diamagnetic depression and contains a mixture of thermal
ion populations.

To determine the flow direction of the ions, Figure 5 shows ion counts plotted as a function of look direc-
tion around the spacecraft. This also enables us to identify what directions around the spacecraft are not
visible to IMS. These data are presented as a polar projection of OAS coordinates which is a spacecraft-
centered frame where S is a vector from the spacecraft to Saturn, O is a vector which is obtained from
Sx(QxS), and A is a vector along Sx O and completes the right-handed set. In this projection the polar
angle Opas is the angle between a vector and S such that #oas=0° represents a direction toward Saturn
from Cassini (the center of each plot), and 90° is perpendicular to the Cassini-Saturn line (the inner circle
on each plot). The outer circle on each plot is from the direction diametrically opposite to Saturn. lon counts
in the inner circle are coming from “in front” of Cassini and between the outer and inner circles come from
“behind” of Cassini. The angle around S is identified as an azimuthal angle where counts from the left (right)
half have a component in the corotational (anticorotational) direction, from the upper (lower) half are
coming from “above” (“below”).

In Figures 5a, 5¢, and 5e ions with an energy/charge of 724.1 eV/q are found near Goas~84°-100° and
dons ~ 340°-348° which indicates ions flowing antisunward, duskward, and in downward, with a vector
approximately (—0.48, 0.42, —0.77) in KSM coordinates; thus, these ions are flowing poleward with a signifi-
cant component in the direction of azimuthal convection. The energy of these ions indicates a speed of
370 km/s, but this is an upper limit to the speed since it assumes that the ions are cold. In reality some of this
energy is due to thermal motions of the ions. This calculation assumes H* which is consistent with the
measured composition. In Figures 5b and 5d we find hot ions flowing approximately antiparallel to the
magnetic field but where some of the ions (at angles between the 180° pitch angle direction and
Hoas~90°) are obscured by parts of the spacecraft bus [e.g., Young et al, 2004]. In Figure 5f we find
higher-energy ions also moving in the poleward and duskward directions.

Returning to Figure 4, from 1803 to 1901 UT and 2050 UT onward the spacecraft once again encounters a
region of hot electrons and magnetospheric plasma composition.

The region between 0955 and 1127 UT is interpreted as magnetosheath particle entry into the cusp due to
the plasma composition, magnetosheath-like electron distributions, and low energetic electron fluxes. The
ion dispersion is such that the more energetic ions are found at the equatorward edge of this region similar
to a normal sense ion dispersion found in the terrestrial cusp [e.g., Reiff et al., 1977]. This sense of dispersion is
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Figure 5. lon counts measured by CAPS/IMS as a function of look direction around the spacecraft in a polar projection of the
OAS coordinate system. The solid arcs show the boundaries between IMS anodes, and the dashed lines show the center of the
anodes. The orange circle shows the direction to the Sun, the green square shows the direction of ideal corotation, and red
and blue triangles show 0° and 180° pitch angles. lon counts are shown on a logarithmic scale from two IMS energy bins
724.1 eV/q (left) and 2.433 keV/q (right). (a and b) show data from 17:34:42 to 17:38:25 UT, (c and d) from 17:51:46 to 17:54:57
UT, and (e and f) from 17:54:58 to 17:58:41 UT.

a characteristic of magnetopause reconnection equatorward of the spacecraft. Thus we argue that Cassini is
in the cusp on open field lines and observing magnetosheath plasma that has entered previously entered the
magnetosphere via dayside reconnection. The bursty electron fluxes observed in the cusp may be the signa-
ture of unsteady magnetopause reconnection. Because of the incomplete pitch angle coverage of CAPS, we
only have observations of ions and electrons to a pitch angle of ~45° and so we do not directly see precipitat-
ing (planetward-moving ions) and only directly see ions that have mirrored at low altitudes and are moving
antiplanetward. It is not clear if there is ongoing injection of plasma from the magnetosheath; hence, part of
this region might be properly referred to as the start of the “mantle” [e.g., Rosenbauer et al., 1975]. However,
the ion energy-pitch angle dispersions show significant planetward fluxes at a pitch angle of ~45°; hence, we
retain the identification of this region as the cusp but recognize that we are also probably observing the start
of the mantle.

The extended region from 1155 to 1521 UT contains hot electrons and a magnetospheric ion composition
and so could conceivably be located on closed field lines equatorward of the cusp. This is also the region
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where we infer the presence of upward FAC connecting to Saturn’s main auroral emission [Bunce et al., 2008].
The boundary region from 1127 to 1155 UT separates the cusp from the auroral field lines, appears to corre-
spond with zero FAC, and contains plasma with a composition intermediate between the cusp and the closed
region. The increasing fraction of water group ions suggests this layer is on closed field lines, but the solar
wind composition of thermal ions (with a mass per charge of two) and presence of He*" seen in the energetic
particle composition suggest some mixing of solar wind and magnetospheric plasma, potentially via chaotic
energetic ion trajectories. However, from the modified thermal electron populations and magnetic field
rotations we interpret this region as a boundary layer, possibly representing the high-latitude extension or
low-altitude projection of the low-latitude boundary layer. This layer may be on closed field lines although
the lack of pitch angle coverage does not allow us to search for bidirectional electron beams that are
characteristics of closed field lines.

The region before 0955 UT is interpreted as the polar cap on open magnetic field lines due to the (i) very low
plasma and energetic particle fluxes, (ii) the observation of auroral hiss, and (iii) its location poleward of the
cusp. Although the energetic ion composition indicates the presence of magnetospheric ion populations, the
gyroradius for a 40 keV W* ion is around 0.1 Rs and so finite gyroradius effects might allow W+ ions to access
the open field region. Alternatively, these ions could have a pitch angle near 90° and thus are slowly moving
along the field line.

Another boundary layer is identified from 1521 to 1803 UT. The presence of magnetosheath-like electron
distributions might suggest a reentry into the cusp, supported by the increased amount of He**. However,
the large W* component and the fact that the electrons are accelerated compared to the magnetosheath
suggest that this is a reentry into the boundary layer that was observed from 1127 to 1155 UT.
Interestingly, the W* fraction is typically larger in the boundary layer than in the adjacent auroral region,
which might be produced by centrifugal confinement of heavy ion plasma in the closed field region but
viscous mixing of magnetospheric and solar wind plasma in the boundary layer at lower latitudes combined
with lower azimuthal velocities (due to viscous mixing) resulting in less centrifugal confinement. The two-
population ion distribution found between 1728 and 1803 UT can be interpreted in two ways: (i) poleward
convection due to newly opened field lines and azimuthal convection associated with IMF B, and partial
corotation or (ii) azimuthal motion due to partial corotation of a boundary layer. From the width of the
distribution in energy and angle the ion population appears to be warm suggesting magnetospheric ions
rather than magnetosheath ions. Also taking into consideration the high number of W* counts, we interpret
this as a boundary layer where the plasma has become mixed with water group ions from the magneto-
sphere that are subcorotating.

In summary, the spacecraft starts in the polar cap and moves through a region with magnetosheath-like
plasma that we identify as particle entry into the cusp due to dayside reconnection. At the equatorward
boundary of the cusp we see a boundary layer that is conceivably on closed field lines, before entering a
region with hot electrons probably mapping to the location of Saturn’s main auroral emission, but which
do not have sufficient thermal energy flux to directly produce auroral emission [Bunce et al., 2008]. Cassini
then alternates between this region and the boundary layer region before remaining on magnetospheric
field lines at the end of the event.

5.3. lon Dispersions and Dayside Reconnection: Estimating the Distance to the Reconnection Site

At Earth the energy-latitude dispersions are produced by the differing time of flight of ions injected at the
magnetopause during magnetic reconnection. These ions not only have a field-aligned component of
motion but are also on flux tubes that are moving in a global sense under the influence of solar wind-driven
poleward convection [e.g., Reiff et al., 1977]. Due to rapid planetary rotation at Saturn, some azimuthal disper-
sion might also be present due to partial corotation on open field lines combined with azimuthal convection
associated with IMF B,. The observation of an energy-time dispersion in Figure 4 suggests that reconnection
at Saturn’s magnetopause is the cause of the particle injection. To estimate the field-aligned distance to the
reconnection site, we use the observed energy-pitch angle dispersions.

Burch et al. [1982] demonstrated that due to magnetic mirroring and ions of various energies having differing
times of flight along the field line from a reconnection site, the ions should exhibit an energy-pitch angle
dispersion in the cusp. Electrons are not expected to exhibit such a dispersion due to pitch angle scattering

ARRIDGE ET AL.

SATURN’S SOUTHERN POLAR CUSP 3018



@AG U Journal of Geophysical Research: Space Physics

10.1002/2015JA021957

Energy/q [eV/q] Energy/q [eV/q] Energy/q [eV/q] Energy/q [eV/q] Energy/q [eV/q] Energy/q [eV/q] Energy/q [eV/q]

Energy/q [eV/q]

10000
1000
100
10
1010
9 [T
ilo H
10°
1010
E 10° E
10°
1010
i 10° w
108
1010
10° Luoﬁ
—== T "=m
10 10°
1010
i 10° w
10°
1010
E 10° E
10 108
10000 10
1000
10° E
100
10 2007-01-16 18:05:07 = 108

0 30 60 90 120 150 180
Pitch angle [deg]

of the electrons during their transit from the magneto-
pause to the cusp. Equation (2) shows the ion energy cutoff
as a function of pitch angle and time since reconnection

So _ 2
: B /2
E(ag,t) = 7;7:’2 {I ds {1 _ é:) sinZao] }
Si

where m; is the ion mass, t is the time since reconnection, s
is the position along a field line, ds is an element along that
field line, By and ag are the field strength and ion pitch
angle at the observation point, and B(s) is the field strength
along the field line.

)

Figure 6 shows measured ion energy-pitch angle dispersions
in the cusp. We also analyze the ion observations in the
boundary layer between 1521 and 1803 UT. The solid points
show the measured low-energy ion cutoffs extracted by
searching for where the ion flux drops below a signal-
to-noise ratio of 4. The solid curves are a model fit of these
cutoffs to equation (2) where both the distance to the
reconnection site D=s,—s; and the transit time t are free
parameters (the observation point, s,, is known from the
spacecraft position). The model was fitted using nonlinear
least squares using the Levenberg-Marquardt algorithm
[Markwardt, 2009, and references therein] to minimize the
difference between the model and the observed low-energy
ion cutoffs.

The results of this analysis are presented in Table 1. During
the first particle injection in the cusp the mean distance is
50+ 20Rs and is inconsistent with reconnection near the
subsolar point but perhaps consistent with reconnection
toward the flanks of the magnetosphere. In the boundary
layer, ion energy-pitch angle dispersions are still observed
suggesting mixing in the boundary layer due to reconnec-
tion. Hence, this boundary layer is possibly on open field
lines. The mean distance to the reconnection site in this
boundary layer is significantly smaller at 24 +2 Rs, more
consistent with a subsolar reconnection site, although the
magnitude of the azimuthal field component indicates that
the reconnection site is probably displaced in azimuth.
These results demonstrate that the magnetosheath parti-
cles can access high latitudes due to magnetopause
reconnection, possibly at more equatorial regions.

Figure 6. Measured energy-pitch angle ion dispersions during the
16 January 2007 event. In each panel we show a measured
dispersion in differential energy flux (DEF), where the gray regions
indicate no pitch angle coverage. The low-energy ion cutoffs are
automatically extracted by searching for when the ion flux drops
below a signal-to-noise ratio of 4. The uncertainty on this energy is
taken as twice the energy resolution of IMS. The solid curve shows a
fit of equation (1) to these ion cutoffs. Dispersions (a—-d) during the
first interval in the cusp and (e-h) during the boundary layer.
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Table 1. Field-Aligned Distance to the Reconnection Site Duringthe 16 5.4, Periodic Encounters With the
January 2007 Event as Estimated From Observed lon Energy-Pitch Angle
Dispersions and a Fit to Equation (2)

Date D (Ro) 7 (h) From Figure 4 it can be seen that the cusp

and boundary layer are encountered qua-

Cusp/boundary Layer

16 January 200710:24:19 70£60 107 siperiodically. Such a morphology is also
16 January 2007 10:57:55 50+30 542 periodically. >uch phology
16 January 2007 11:04:51 50+ 40 543 seen in the terrestrial cusp and has been
16 January 2007 11:25:07 40+ 20 341 interpreted as a spatial structure and as
16 January 2007 11:32:03 8060 5+4 the consequence of a strong By compo-
1\6 January 2007 11:38:59 ‘5‘8 = ig i = ; nent of the IMF [Wing et al, 2001; Pitout
verage et e . )
16 January 2007 17:24:35 1643 11+02 €l 2009 Abe et al, 2011] or as a tem
16 January 2007 17:38:27 4010 30+08  Poral effect when the magnetosphere
16 January 2007 17:44:51 24+6 21405 oscillates causing the location of the cusp
16 January 2007 17:51:47 21+5 1.8+0.3 to also oscillate [Zong et al, 2008]. In
16 January 2007 17:58:43 30+8 22205 gyupport of the former interpretation for
16 January 2007 18:05:07 18:£5 0601 these data at Saturn, the nominal spiral
Average 24+2 1.8+0.1 ! P

angle of the IMF at Saturn’s location is
87° Jackman and Arridge, 2011] produ-
cing a nominally large B, component.

However, Cassini observations of the Saturn system have shown the magnetosphere to oscillate with a period
of ~10.7 h, close to that of Saturn’s planetary rotation period, producing oscillations in magnetic fields, plasma,
energetic particles, energetic neutral atoms, and associated radio emissions [e.g., Carbary and Mitchell, 2013].
Nichols et al. [2008] reported observations and modeling showing that Saturn’s southern auroral oval oscillates
in position, with an amplitude of several degrees, in phase with these magnetospheric oscillations. With the
open/closed field line boundary located at the poleward edge of the auroral oval the cusp position should
therefore also oscillate at this period. Nichols et al. [2008] presented fits to the auroral data thus providing a
time-dependent model for the location of the auroral oval that can be used to infer the location of the
open/closed field line boundary relative to the spacecraft.

Using the fits from Nichols et al. [2008], we transform the ionospheric footprint of Cassini into the frame of the
moving auroral oval, effectively providing a remapped invariant latitude and magnetic local time which takes
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Figure 7. Cusp crossing data with Cassini's mapped invariant colatitude remapped into the rest frame of the auroral oval
using the results of Nichols et al. [2008]. (a) An energy-time electron spectrogram from CAPS/ELS, (b) electron moments
from CAPS/ELS where the black trace is the density and the blue trace is the temperature, and (c) the remapped invariant
colatitude (black line) and the extent of the statistical auroral oval.
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also been lagged by —16 h (black solid curve) so that the increase in dynamic pressure corresponds to the magnetopause
crossing observed at 1126 UT on 2 February 2007. The interval covered by Figure 9 is indicated by the gray bars in each panel.

into account the current systems associated with the periodic phenomena. Figure 7 shows this remapped invar-
iant colatitude as a function of time along with electron data from CAPS/ELS for the January 2007 event. The
blue curves in Figure 7c show the poleward and equatorward edges of the auroral oval from Carbary [2012]
at the local time of the spacecraft. During this period Hubble Space Telescope images of the aurora are available
for 0531-0541 UT on 16 January and 0321-0330 UT on 17 January [Bunce et al.,, 2008]. The observations show
that the colatitude of the auroral oval fell from ~15° to ~10° between the two images. Using an average of these
two colatitudes, we adjust the Carbary [2012] oval to better match the observed oval position—although we
recognize that the oval position is contracting during this period, we do not attempt to model this time
dependence. At the start of the interval the spacecraft is poleward of the auroral oval (the remapped invariant
colatitude is below the model auroral oval colatitude) but approaches the oval as the spacecraft enters the cusp.
The spacecraft moves through auroral oval field lines [see also Bunce et al., 2008] and equatorward of the oval
before undergoing a poleward motion approaching but not crossing the oval field lines again when the
boundary layer is encountered. At the end of the interval the spacecraft is equatorward of the oval and
oscillations of the oval are not of sufficient amplitude to allow the spacecraft to re-encounter the open field
lines. The multiple encounters with the boundary layers between 1600 and 2000 UT on 16 January might be
due to time dependence of the auroral oval position, possibly produced via solar wind pressure variations.

5.5. Summary

During the interval studied Cassini starts in the polar cap before passing through magnetosheath particle
entry into the cusp that is associated with magnetopause reconnection occurring at a reconnection site
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Figure 9. Overview of the February 2007 cusp crossing in the same format as Figure 4. The period in the magnetosheath is
denoted by “MS” in the bars at the top of the figure.

50+ 20Rs from the spacecraft, thus somewhere on the flanks of the magnetopause. Cassini then passes
through auroral field lines before the oscillation of Saturn’s high-latitude magnetosphere moves Cassini
closer to the open/closed field line boundary and thus onto boundary layer plasma that sits between the
cusp and the auroral field lines. Eventually, the high-latitude magnetosphere rocks back moving Cassini
back onto auroral field lines before passing through onto closed magnetospheric field lines. The final
boundary layer encounter is interpreted as a dynamical event. From auroral imaging we know that the
oval is contracting at this time and hence this would tend to move Cassini in the opposite direction to
that which is observed. Hence, we argue that dynamic pressure variations are most likely responsible for
this behavior.

6. Case Study: 1/2 February 2007 (Rev 38)
6.1. Upstream Conditions

Figure 8 presents the propagated upstream conditions during the event in the same format as Figure 2.
Before the cusp passage Saturn was in a solar wind rarefaction region with a very low solar wind dynamic
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pressure of 0.0014+0.0003nPa corre-
sponding to a subsolar magnetopause
distance of 38 +6Rs. Rather than using
increases in SKR power to identify the
correct lag for the solar wind time series,
we use the magnetopause crossing
observed at 1126 UT on 2 February
2007 (see Figure 9 and section 6.2) in
the in situ fields and particles data. The
solar wind time series was lagged by
—16 h to match the increase in dynamic
pressure with this magnetopause cross-
ing. From this lagged time series we
can see that a solar wind forward shock
arrived at Saturn on 31 January, and a
large increase in solar wind dynamic
pressure occurred around 1200 UT on 2
February 2007. During the first part of
the February 2007 event, as shown by
the gray bars, the solar wind was at a
lower dynamic pressure state of 0.0108
+0.0006 nPa, field strength 0.113
+0.007 nT, and tangential IMF compo-
nent of —0.04+0.03nT. Toward the
end of the interval the dynamic pressure
increased to 0.0395+0.0003 nPa, but
the field strength decreased to 0.0647
+0.0002 nT and the tangential compo-
nent dropped to zero. The tangential
direction in KSM coordinates is (0,
—0.92, —0.38); hence, the field was very
weakly duskward at the beginning of
the event and rotated to an orientation
almost entirely in the X-Z plane of KSM
toward the end of the interval. At the
beginning of the event the subsolar
magnetopause distance, calculated from
the dynamic pressure using the model
of Kanani et al. [2010], was 25+4R;,
dropping to 19+ 3Rs at the end of the
interval when the magnetopause was
crossed. We note that the SKR power,
particularly the low-frequency power,
increases at the arrival of the forward
shock on 31 January and also during
the event.

6.2. Overview and Interpretation

The February 2007 event follows a
similar but somewhat more straight-
forward morphology to the January

2007 event. Figure 9 presents the observations in the same format as Figure 4. Cassini starts the
interval in a region with plasma ion and electron and energetic electron fluxes near or at the noise
level; auroral hiss is observed in the electric field data. From 1533 to 1819 UT on 1 February,
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magnetosheath-like electron distributions are observed but with energetic electrons at the noise level. The
energetic ion composition in this region has a large W* and H,* component but no He™ within error.
The plasma composition shows no evidence of W* but a small fraction (~2%) of m/q=2amu/q ions
(m/q=2 to H" is 2.1£0.3%). A narrow layer is observed from 1819 to 1851 UT with an increased ener-
getic W* fraction and increased plasma m/q=2amu/q fraction. Energized electrons are observed in
ELS, and an increase in flux of energetic electrons is recorded by LEMMS. The magnetometer data show
no evidence of field-aligned currents.

From 1851 to 2341 UT hot electrons and substantial fluxes of energetic electrons are found. The mag-
netometer data show some evidence for FAC in a brief interval immediately after 1851 UT where rota-
tions in By, that show evidence for an upward current layer are found, and a more distributed
apparent downward layer toward the end of this region, but in light of the cusp motion identified in
Figure 4 this downward layer is more likely to originate from the spacecraft moving back through the
upward current layer in the opposite direction. The plasma composition is dominated by H* with
m/q=2 to H" ratio of 5.7 +0.9%, although the energetic ion composition is consistent with magneto-
spheric plasma with W*/H* of 29 + 1%, H,"/H" of 14.4+0.8%, and He**/H* of 2.4+ 0.3%.

From 2341 UT on 01 February to 0005 UT on 2 February we see a narrow layer with energized sheath-like
electron distributions, a drastically reduced W* fraction, and an increase in He™™. The magnetometer data
show little evidence for FACs.

The region between 0005 and 0246 UT contains substantial fluxes of magnetosheath-like electron distributions
and a large fraction of He™ consistent with solar wind plasma, although substantial fluxes of magnetospheric
ions (W* and H,") are also found in this region. The plasma ions show evidence for an energy dispersion with
the most energetic ions and no low-energy ions found on entry into this region. A diamagnetic depression is
found in this region.

From 0246 to 1126 UT the ion composition is magnetospheric, with 0.4 +0.1% W*/H* and 15.4 £ 0.7% m/q =2
to H* from IMS and W*/H* of 23.7 +0.5%, H,*/H* of 17.7 +0.4%, and He**/H" of 1.6 +0.1% from CHEMS. Hot
electrons and large fluxes of energetic electrons are observed, and some evidence for upward FAC, equator-
ward of the cusp, are found in the magnetometer data.

Finally, from 1126 UT to the end of the interval the magnetic field strength is low and its orientation
is highly variable. Large fluxes of magnetosheath-like electron distributions are observed, and the
plasma composition is largely solar wind but with some added energetic ions. From IMS the
composition was found to be W*/H* 0.020£0.01% and m/q=2 to H" of 3.4+0.2% and from
CHEMS W*/H* 10+2%, Hy*/H* 11 +2%, and He*"/H" 7+ 1%.

Similar to the January 2007 interval we interpret the region before 1533 UT as the polar cap, after which
Cassini crosses into a region with magnetosheath-like electron distributions and a mixture of magneto-
spheric and solar wind plasma which we interpret as the cusp. The magnetospheric plasma that we find
in the cusp may originate from energetic particles still on newly opened field lines and which are
draining out of the magnetosphere, or may be the result of finite gyroradius effects, or ions with a
quasi-perpendicular pitch angle and which are trapped in the cusp [e.g., Zhou et al., 2006]. The narrow
region from 1819 to 1851 UT with energized magnetosheath electrons and an increased population of
magnetospheric ions is interpreted as another boundary layer, following the entry of Cassini onto closed
field lines with a magnetospheric ion composition and hot electrons from 1851 to 2341 UT. We interpret
the narrow layer from 2341 to 0005 UT as another boundary layer before entering the cusp again from
0005 to 0246 UT where we find significant fluxes of He** and magnetosheath-like electron distributions.
In contrast to the 16 January 2007 event the energetic electron fluxes remain almost constant across this
entry into the cusp suggesting a slightly different configuration to the February 2007 event. No bound-
ary layer is found after exiting the cusp onto closed field lines. To support the identification of a closed
field-line region, we note the magnetospheric ion composition, hot electrons, and very small fraction of
He™*™. The region after 1126 UT is the magnetosheath with a significant rotation in the magnetic field at
1126 UT. The magnetic field in the magnetosheath is highly variable in direction and strength; the
magnetosheath-like electron distributions and He'" are once again observed with a solar wind-like
(~4%) fraction. This interval provides an opportunity to directly compare the magnetosheath with the
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Table 2. Field-Aligned Distance to the Reconnection Site During the  cysp signature, for example, the similar-
February 2007 Event as Estimated From Observed lon Energy-Pitch

! . . ) ity in electron distributions near 0100
Angle Dispersions and a Fit to Equation (2)

UT and 1200 UT on 2 February 2007.

Date D (Rs) T(h)

In summary, Cassini starts in the polar
1 February 2007 18:02:18 60 + 60 76 ca asses through the cusb on open
1 February 2007 18:16:10 50£30 5+ P P ug usp on op
1 February 2007 18:23:06 30£20 321 field lines and then onto closed mag-
Average 50+ 20 5+2 netospheric field lines with a boundary
2 February 2007 00:04:26 30+£20 1.3+06 layer separating the cusp from the
2 February 2007 01:08:26 33+9 2205 closed field lines. After approximately
2 February 2007 03:00:26 40+ 40 2+1 5h Cassini th back th h
Average 3749 17403 assini then passes back throug

a boundary layer and into the cusp
then back onto closed field lines with
no boundary layer visible in the data at this transition. Approximately 10.5h later Cassini crosses the
magnetopause and enters the magnetosheath as a result of the solar wind compression which arrives
at Saturn around 1200 UT on 2 February.

6.3. Estimating the Distance to the Reconnection Site

Similar to the 16 January 2007 event, the distance to the reconnection site was estimated using the observed
energy-pitch angle dispersions. Figure 10 and Table 2 show the results of this analysis. Apart from the
dispersions analyzed in the boundary layer in the 16 January 2007 interval, the reconnection site distances
are comparable. For the two periods in the cusp in the February 2007 event the calculated distance to the
reconnection site is the same, within the uncertainties, between the two cusp passages.

6.4. Periodic Encounters With the Cusp/Boundary Layer

Similar to the January 2007 event the various layers presented in section 6.2 are observed twice. However, in
this case the oscillations move Cassini properly into the cusp rather than merely entering a boundary layer.
From Figure 8 we can see the remapped ionospheric footprint of Cassini with respect to a statistical auroral
oval. The more expanded state of the magnetosphere during the February 2007 interval changes the
mapping, resulting in oscillations whose latitudinal amplitude is smaller than the 16 January 2007 event
and allowing for more oscillations during the interval.

Figures 11 and 7 show the cusp crossing data compared with the remapped invariant latitude in the
same format as Figure 9. No images of the aurora are available for this interval, and so we have adjusted
the position of the statistical oval to match the first cusp entry by simply shifting the statistical poleward
by 4°. The second cusp passage is not accurately reproduced by this remapping; however, the upstream
conditions are more variable during this interval with a forward shock reaching Saturn on 31 January and
the increase in solar wind dynamic pressure on 2 February. Hence, the auroral oval and position of the
open/closed boundary may be shifted due to the influence of the solar wind, possibly via ongoing mag-
netopause reconnection causing equatorward expansion of the auroral oval. We also note the gradual
increase in solar wind dynamic pressure around the time of the second cusp encounter. However, in
general, the oscillatory nature of the cusp/boundary layer encounters on both the January and
February 2007 events is adequately explained by oscillations of the cusp position produced by global
magnetospheric oscillations.

7. Discussion

7.1. Conclusions

In this paper we have discussed observations made by the Cassini orbiter during two passes through
Saturn’s polar magnetosphere. We have shown that (i) Cassini directly encounters Saturn’s southern
polar cusp with evidence for the injection of magnetosheath plasma into the cusp via magnetopause
reconnection, (ii) the injection of magnetosheath-like plasma is variable suggesting that magnetopause
reconnection is bursty, (iii) the precipitating plasma can originate from a variety of locations on the mag-
netopause, (iv) magnetopause reconnection and injection of plasma into the cusp can occur under a
range of solar wind dynamic pressures, (v) boundary layers separate the cusp from field lines with auroral
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Figure 11. Cusp crossing data with Cassini's mapped invariant colatitude remapped into the rest frame of the auroral oval
in the same format as Figure 7.

electrons which map to Saturn’s main auroral emission, and (vi) the position of the cusp oscillates in
phase with Saturn’s global magnetospheric periodicities.

In both case studies presented in this paper Cassini moves from the polar cap passing through the cusp
and onto field lines with hot electrons (~1-10keV) that map to Saturn’s main auroral emission, although
these electrons do not have the required energy flux to produce the main emission without further
acceleration [Bunce et al., 2008]. With only one exception, a boundary layer separates the cusp from
the region mapping to the main auroral emission. This is consistent with Jinks et al. [2014] who found
that the polar cap boundary (where one might expect to find particle injections in the cusp) is displaced
from the upward FACs. In the cusp, significant fluxes of magnetosheath-like electron distributions
(~20eV) and ions (~100-1000 eV/q) with a solar wind-like fraction of He*" were observed showing that
the cusp can be filled with plasma of solar wind origin.

lon energy-pitch angle dispersions were used as evidence for magnetopause reconnection allowing entry of
solar wind plasma into the magnetosphere rather than the plasma simply gaining access to the magnetosphere
through diffusive processes or directly entering via a weak field region in the cusp. Some evidence for energy-
latitude dispersions in the ion data also supports this reconnection picture, but these were not analyzed in order
to attempt to estimate the distance to the reconnection site. This was not attempted due to large uncertainties in
estimating the speed of the spacecraft relative to the open/closed boundary, the speed of poleward convection
of open field lines, and the speed of azimuthal magnetospheric convection due to subcorotation of the polar cap
ionosphere. However, the observations are qualitatively consistent with expectations for the low-energy ion cut-
off energy falling with distance from the closed field region. The solar wind conditions were different between
the two events showing that the cusp at Saturn is active under a range of upstream conditions and not purely
during periods of strong magnetospheric compression and hence strong solar wind driving.

The composition in the boundary layers consisted of a mixture of magnetospheric and solar wind plasma
showing the presence of mixing of the two populations. In one case a two-component ion population was
found. The limited pitch angle coverage does not allow us to identify whether these boundary layers are
on open or closed field lines, but in one case where the two-component population was found one popula-
tion exhibited an energy-pitch angle dispersion and so it was argued that at least this region of the boundary
layer could be on open field lines.

In the 16 January 2007 event evidence for reconnection at two different locations on the magnetopause was
presented, showing that the position of the magnetopause reconnection site can vary on relatively short
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timescales of several hours. Variability in
‘ the precipitating electron fluxes was used
007 00:00 UT /| to infer the presence of bursty/unsteady
reconnection at a given reconnection
site. However, both examples of the
southern cusp presented here are more
quiescent than the stepped ion disper-
sions discussed by Jasinski et al. [2014].

1800 SLT

17 Janugry 200750 During each pass the southern cusp and
1200 ST .

associated boundary layers were encoun-
Figure 12. Projection of Cassini's trajectory onto the ionosphere tered twice, similar to double/triple cusp
(mapped using a simple field model [Bunce et al., 2007; Cao et al., morphology observed in the terrestrial
2011] which has been transformed into the rest frame of the auroral oval - magnetosphere. Oscillations in the posi-
using the results of Nichols et al. [2008] and a magnetic field. This is done tion of Saturn’s auroral oval were used

for both the 16 January 2007 (red) and February 2007 (blue) events

considered in this paper. The statistical auroral oval from Carbary [2012] to provide evidence that this double cusp
is included for reference. morphology is the result of global mag-

netospheric periodicities, under the

assumption that the cusp was located at
the poleward edge of the auroral oval. Figure 12 presents a summary of this argument showing the oscillation
of the ionospheric footprint with respect to a statistical auroral oval [Carbary, 2012]. In both cases the foot-
print generally moves equatorward but undergoes reversals where the footprint moves briefly poleward,
thus providing an opportunity to re-encounter the cusp/boundary layer.

7.2. Implications and Further Work

Gurnett et al. [2010] reported the presence of a “plasmapause-like” boundary at high latitudes in Saturn'’s
magnetosphere similar to the density gradient found between the auroral field lines and the polar cap in
this study. Such a density gradient might be found on closed field lines where the centrifugal confinement
of heavy ions to the equatorial regions reduces the plasma density to very low values at high latitudes.
Also, field lines at large L are very long, and as a result the transit times of particles along the field
becomes very long, comparable to the azimuthal convection time around the planet for the equatorial
plasma. The region identified as the polar cap in this study was argued to be on open field lines based
on its location poleward of the cusp and the very low fluxes of plasma and energetic particles. Hence,
we argue that Cassini has sampled magnetically open field lines and not merely field lines that are still
closed but where the plasma is centrifugally confined to the equator. Naturally, such a boundary might
exist on closed field lines at other local times, or during periods where the cusp region is not magnetically
open, that such a boundary might not exist on closed field lines.

The cusp was found to be active during the two passes through Saturn’s polar magnetosphere under a range
of upstream conditions. A number of studies have argued that magnetopause reconnection should be a low
efficiency process at Saturn [e.g., Scurry and Russell, 1991; Masters et al., 2012; Masters, 2015]. The results in this
study show that Saturn’s cusp is active under a range of upstream conditions. Since the cusp maps to a very
large area on the magnetopause these results show that reconnection can readily occur somewhere on the
magnetopause under a range of upstream conditions, supporting the findings of Desroche et al. [2013] and
Fuselier et al. [2014].

Bunce et al. [2008] used the January 2007 observations reported here to argue that Saturn’s main auroral
emission maps to the open/closed field line boundary at the location of a velocity shear between open
and closed magnetic field lines. In this study we have identified the presence of a boundary layer lying
between the open polar cusp and the auroral field lines. It is conceivable that this boundary layer is located
on closed field lines and hence is an internal boundary layer. Hence, the location of the velocity shear respon-
sible for the FAC that drives Saturn’s main auroral emission might lie at the boundary between the magneto-
sphere at the boundary layer, thus placing the auroral field lines on closed flux. This is not incompatible with
the findings of Bunce et al. [2008] since we might expect a velocity shear to exist between the boundary layer
and the magnetosphere proper. Further study of the location of these FACs in relation to boundary layers is
required to clarify this aspect of the generation of Saturn’s main auroral emission.
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The identification of periodicities in the location of the southern cusp shows that studies inferring the
presence and direction of FAC at high latitudes and studies inferring the presence of lobe/near-subsolar
reconnection from the sense of ion energy-latitude dispersions must account for the oscillations of the polar
magnetosphere. We have established oscillations of the southern polar magnetosphere, but further study is
required to establish this for the northern polar magnetosphere [e.g., Bunce et al., 2014; Jinks et al., 2014].

General statements on the physics of the cusp in rapidly rotating giant planet magnetospheres were made in
section 2. The findings in this report have implications for the study of the Jovian high-latitude magneto-
sphere with Juno. Further study and modeling of the cusp in the Jovian magnetosphere will be required in
order to analyze Juno observations.

A detailed survey of this data set including cusp encounters in the Northern and Southern Hemispheres will
be reported in a future paper (J. M. Jasinski et al., manuscript in preparation, 2016).
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