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SINGULARITIES IN MASS-LOADED MHD FLOW: THE COMETARY BOW SHOCK 

I. Kh. Khabibrakhmanov, • A. J. Coates? and V. L. Galinsky • 

Abstract. We present a one-dimensional model of the 
mass-loading of the solar wind by cometdry ions which 
predicts a singularity in the mass-loaded flow at M=2. 
Further, a subshock occurs when the flow speed reaches 
M• 1.15. The shape of the cometdry bow shock in two 
dimensions is predicted, by requiring that the flow Much 
number of the shock is 2 taking the velocity component 
normal to the shock surface. The Much number results 

compare favourably with observations at comet Halley. 

Introduction 

Many of the essential features of supersonic mass loaded 
plasma flow can be established using the simple one- 
dimensional hydrodynamic model of Biermann et al. 
[1967 ] (see also Galeev at al. [1985]). This model predicts 
that continuous stationary flow of the solar wind loaded 
by newborn cometdry ions is possible only up to a "self- 
reversal" point where the local Much number M = 1, and 
where the mass flux of the loaded flow normalised to the 

mass flux of the solar wind at infinity reaches 4/3. How- 
ever, this result does not predict the actual position of the 
cometdry bow shock. It shows that as the solar wind flow 
slows due to mass loading, a shock transition must occur 
before this critical point in the flow. Strictly, the possi- 
bility of a continuous transition across the sonic point of 
the mass loaded plasma flow is excluded. Numerical sim- 
ulations [e.g., Schmidt and Wegmann, 1982, BardnOV et 
al., 1986] of the solar wind interaction with comets have 
shown that the Much number of the cometdry bow shock 
is close to 2 in the subsolar region. 

Hybrid simulations have been used to examine the 
structure of the cometdry bow shock [e.g., Galeev and 
Lipatoy, 1984, Omidi and Winske, 1987]. The results 
showed systems of steepening waves in the mass loaded 
flow rather than a sharp shock. The MHD approach used 
here gives the position of the shock within the cometdry 
coma rather than the structure of the shock transition. 

Huddleston et aI [1990] have recently calculated the in- 
ner limit of the shock location as the locus of the self- 

reversal point in the flow, using a one-dimensional model 
extended to give a two-dimensional shape in the plane of 
the Giotto spacecraft trajectory and the Sun. They did 
not calculate the position of the shock itself. 

The connection between the Much number of the 

cometdry bow shock and its spatial position relative to 
the cometdry nucleus has not yet been established and- 
lyrically. The cometdry bow shock is characterized by the 
absence of a "piston" or "rigid obstacle" which is present 
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in the case of the solar wind interaction with planets hav- 
ing a strong intrinsic magnetic field. At comets, informa- 
tion concerning the shock transition is created in the solar 
wind plasma flow itself during the mass loading process 
rather than by the boundary conditions. This statement 
will be our working hypothesis here. 

The stationary solution was discussed by Galeev and 
Khabibrakhmanov [1990a] and Khabibrakhmanov and Ver- 
heest [1990], who showed from linear analysis of the lo- 
cal dispersion equation that the local increment (i.e., the 
growth rate of small disturbances at a given point in 
the flow) of magnetosonic waves changes its sign at the 
point in the flow where the Much number equals 2. More 
recently it was shown [Galeev and Khabibrakhmanov, 
1990b,c,d] that this local positive increment is the result 
of wave steepening or a "gradient catastrophe" of the sta- 
tionary solution. 

Overview of one-dimensional mass loading theory 

Mass loading of the solar wind by comefury ions can 
be described by a one-dimensional MHD system [Bier- 
mann et al., 1967, Galeev et al., 1985] which may be 
rewritten in characteristic form as follows [Galeev and 
Khabibrakhmanov, 1990b]: 

1)+P q- pcl)+u = vmu 2 ((7 - 1)u :F 2c), (1) 
boJ'-bop : 2 ((*- ' (2) 

where p is the mass density, u is the bulk velocity, P = 
(Pta + B2/2tto) is the sum of the thermal pressure of the 
ions and the magnetic pressure, B is the magnetic field, 
m is the mass of the newborn comefury ions and y is their 
production rate (ions m-as -•), 7 is the specific heat ratio 
of the plasma and the magnetosonic speed c is defined 
by c 2 = (7Pta + B2/tto)/p. Equation (1) dscribes the 
evolution of acoustic disturbances propagating along the 
acoustic characteristics C+ with the corresponding differ- 
ential operator Dñ = O/Ot + (u q- c)0/0z. Equation (2) 
describes the propagation of entropy disturbances moving 
with the flow along the Co characteristic defined by the 
operator/•0 = O/Or + uO/Oz. This system coincides with 
that of GaIeev et al. [1985] except that time dependence 
is included here. 

To analyse Equations (1) and (2) for discontinuities it 
is convenient to recast them in terms of the Riemann 
invariants of the flow: 

I 1 

R+ = ux q- cx q- •pCp•,, L = c• -- •pCp•, (3) 
where the subscript z denotes the partial derivative with 
respect to z. We assume here that the plasma flow is 
perpendicular to the magnetic field, so that isotropiza- 
tion effects due to Alfv•nic turbulence are excluded and 

7 = 2. Applying the differential operator D• = 0/0z to 
each of the equations (1) and (2), one the following 
transport equations for the quantities in (3): 
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where 

u2 - c2 (2L - R+ + R_)] C2 

To illustrate the existence of the gradient catastrophe in 
these equations, we consider first the case of no mass 
loading (v = 0) and isentropic flow (c/p 1/2 •- con$7• and 
L = 0). The first equation of system (4) is a Ricatti non- 
linear equation having solutions which tend to infinity in 
a finite time. It can be transformed to a linear differential 

equation by the substitution R+ = I/z, giving: 

R+ = R+,o Co• p ø } I + R+,0• fo k co-•Po }dt 
Ilere the integration is along the characteristic C+ and 
all initial values at the time t = 0 are denoted by the 
subscript "0". One can see from Equation (6) that if the 
initial value R+,0 (R+,0 = R+(x,t = 0))is positive the• 
R+ > 0 for all t > 0 and the plasma flow will remain 
continuous. flowever, if R+,0 < 0 at some point x0 along 
the characteristic C+, then R+ < 0 everywhere except 
when the denominator in (5) is zero. At this point the 
gradient catastrophe occurs. The position of the gradient 
catastrophe is determined by the equation: 

For the time interval t k tk continuous plasma flow is 
not possible and dispersive effects can stop the gradient 
catastrophe in the flow. Similar calculations were used 
for the piston problem in a perfect gas (see for example 
the textbook by Landau and Lifshitz [1987]). 

Returning to the case of mass loaded supersonic plasma 
f•ow (,# 0), using th• uppe• sig• i• Equ•tio• (1), fo• 
stationary flow the value of R+ may be written' 

vmu 

(u + c)R+ = 2--•-(u - 2c). (7) 

The value of R+,0 becomes zero (R+,0 changes sign) at the 
point in the flow with Mach number M = 2. According 
to the solution (5), any infinitesimal disturbance of the 
stationary flow will lead to the gradient catastrophe sin- 
gularity here and the stationary solution of Galeev et al. 
[1985] is not possible for M < 2. 

This conclusion does not depend on the mass loading 
profile. The source term • may depend on the spatial 
position in the expanding neutral gas and on the flow 
parameters. Even if a stationary solution does not exist, 
a singularity of the plasma flow at M - 2 is still present 
until the breakdown of the MIlD description. 

The characteristic spatial dimension of the collisionless 
shock is determined by the dispersion of the plasma. For 
slow motion of magnetized plasma exactly perpendicular 

to the magnetic fidd the dispersion of the magnetosonic 
waves was calculated in Khabibrakhmanov and Verheest 

[1990] by expansion of the solutions of the Vlasov equa- 
tion using small parameters (ratios of characteristic spa- 
tial and time variations to the gyroradius and gyroperiod 
of the plasma particles). This method of expansion ig- 
nores the products of derivatives of the plasma flow pa- 
rameters but takes into account the nonlinear variation 

of the flow parameters on scales larger than the gyrora- 
dius and gyroperiod. In the case of ions dominating the 
plasma thermal pressure, the dispersion parameter is: 

a• = 4p•2 l q- • [rap 2-3 , (8) 

here f• is the gyrofrequency of the ions, dominated by the 
pickup ions, and II is the second moment of the ion dis- 
tribution function over the magnetic moment t• = v2,/2 B 
of the particles (i.e., II = f ft•2d3v). For a Maxwellian 
distribution, the parameter A (= 2IIp/raP 2) is 4, while for 
a ring distribution A = 2. For the mass loaded solar wind 
near the M = 2 point one can find using an explicit ex- 
pression for the distribution function of the ions [Galeev 
et al., 1985] that A = 2.12. This means that the disper- 
sion length a• which is positive upstream of the cometary 
bow shock with Mach number M = 2 can diminish to 

zero inside the shock. This happens at the point where 
the local Mach number decreases to Mcr = • = 1.15 
(from equation (8)). At this point ion dispersion can no 
longer prevent the overturning of the plasma flow and an 
electron-proton subshock appears with dimensions much 
less than the ion dispersion length. 

Observations 

The Giotto plasma data set is, at least on the inbound 
pass, the most complete of any of the 1985-86 cometaw 
probes, in that all the appropriate parameters (electrons, 
solar wind protons, magnetic field and cometaw wa- 
ter group ions) were measured directly. Outbound only 
the electron parameters require assumptions. Recently 
Coates et al. [1990a] presented a refined set of these pa- 
rameters and used them to perform a Rankine-ilugoniot 
jump analysis to determine the shock normals. This anal- 
ysis was performed for two intervals, firstly well-upstream 
and downstream from the shock (between the points U2- 
D2 in Figure 1 of Coates et al., [1990a]) and secondly 
immediately upstream and downstream (U1-D1) of the 
S1-S2 structure, which was interpreted as representing 
the shock itself. The different normals found using these 
intervals led to different shock Mach numbers as calcu- 

lated by propagation into the upstream flow. These num- 
bers were 1.03-1.14 for U1-D1 and 1.7-1.8 for U2-D2. For 

comparison to the theory in this paper, we interpret the 
U2-D2 transition as giving the Mach number of the entire 
shock structure and U1-D1 as giving the Mach number of 
the "subshock". Note that S2 was previously interpreted 
as a possible subshock [Coates et al., 1990a]. 

Using the measured parameters, Coates et al. [1990b] 
have calculated the magnetosonic Mach number of the 
flow in the shock region. Figure 1 shows the Mach num- 
ber as a function of time and distance along the spacecraft 
track (this track was at 107 ø to the comet-Sun line). The 
relevant features of this plot are that the U2 interval oc- 
curs at a flow Mach number M•2.5 and the "subshock" 

(S2) appears at M•l.5. The Mach number of the normal 
component (not shown here) is lower than that shown 
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Fig. 1. Giotto measurements of the magnetosonic Much number of the solar wind near the bow shock structure S1-S2. 
The upstream-downstream (U-D) averaging intervals used for the Rankine-Hugoniot analysis in Coates et al [1990a] 
immediately near (1) and well away from (2) the S1-S2 structure are shown (U1-D1 and U2-D2). 

in Figure 1, and therefore closer to the predicted values, 
throughout this period. The precise value depends on 
which normal is taken [see Coates et al., 1990b], and con- 
sequently we show the magnitude here rather than any 
particular normal component. The Much numbers for 
the ICE encounter with comet Giacobini-Zinner have also 
been published recently [Staines et al., 1991] and inspec- 
tion of their results also shows that the Much number at 
the shock is close to 2. 

Discussion 

The observed Much number of the quasiperpendicular 
bow shock was close to the predicted value of 2 and the 
subshock Much number was close to the predicted 1.15. 
Therefore we may assume that the Much number of the 
cometdry bow shock calculated for the velocity compo- 
nent normal to the bow shock surface is equal to 2 around 
the shock surface: M = 2/sin a, where a is the angle be- 
tween the solar wind velocity and the shock surface. 

As can be seen from three dimensional simulations 
[O#ino et al., 1988] in the supersonic region the flow pat- 
tern is almost unidirectional. So one can calculate the 
local value of the mass flux from the continuity equation: 

dpu Qrn ( v/z2+y 2) d• = 4xVgr (•2 + y2) exp - Var , (9) 
where the source term is defined by N (= Q/4•rV•r) and 
V•, the density and velocity of the neutral gas, and by the 
photoionization time r. 

Finally we obtain the equation defining the bow shock 
shape in cylindrical coordinates (r, 0): 

pu 872 [sin2 a + 2(7- 1)] 
poouoo (O'- 1)(sin2 a 4-40') 2 (10) 

( ) 1 + dO exp - 
rsinO V•rsin0 ' 

here y = r sin 0 = const along the flow line. 
The solutions of this equation are shown in Figure 

2 for two limiting cases' the adiabatic approximation 
(q, = 2) in the upper half and strong isotropization of new 
cometdry ions (q, = 5/3) in the lower half. The outermost 
shapes are the limiting solutions for small values of the 
parameter/• = Rl;/V•r, which determines the strength of 

the exponential decrease of the neutral gas density with 
distance RL = (Qrn/4•rV•rpoouoo). Other cu,es 
spond to larger values of/• as indicated. In Table 1 we 
give the calculated distances Rs, where the shock appears 
along the stagnation line, for given values of/• using the 
parameters relevant to the Giotto encounter: Q = 10 30 
s -1, V•r = 1.116-10 ø kin, noouoo = 2.266. l0 is km-2s -1, 
uoo = 366 kms -1 [Huddleston et at., 1990]. Note that 

Y 
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x 

Fig. 2. Solutions of equation (12) for 7=2 (top panel) and 
q'=5/3 (bottom panel), for different values of the param- 
eter /•, and normalised to R8 = 1 (see text). The lines 
with arrows show the angles of the Giotto trajectory and 
the dotted line shows the distance ratio of the observed 
bow shock crossings. 
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TABLE 1. Dependence of the subsolar standoff distance 
R8 on the parameter/• (see text) 

/• R8 (kin)[7=2] R• (kin)[7=5/3] 
0.1 2.21x106 1.27x10 a 
0.5 9.99x10 s 5.72x10 s 
1.0 4.54x10' 2.60x10' 

these values of the parameters would give/3 -.• 0.5, which 
with 3' = 2 gives a subsolar standoff distance of almost 
10 ø km and a flaring factor of approximately 2, both of 
which are larger than those inferred from observations of 
the shock crossings (see below). 

Another way of comparing with observations is to use 
a feature of the shape which is independent of the spatial 
scaling factor, assuming that the solar wind conditions 
are constant during the flyby. We have tried the ratio of 
the cometocentric distances of the observed shock cross- 

ings on the inbound and outbound legs of the spacecraft 
trajectory. For Giotto this ratio was close to 1.5. The 
trajectory is overlaid on the dimensionless coordinates in 
the two panels of Figure 2: the ratio of 1.5 corresponds 
to a straight line of gradient -1/(Stahl7 ø) = -0.65 on this 
plot. Lines with this gradient are shown dotted from the 
intersection of the/•=1 solution with the outbound tra- 
jectory on each panel. This shows that a value of/• just 
greater than 1 would give a flaring factor which would fit 
theory and observations. /• _< 1 clearly gives too large a 
flaring factor. From Table 1 we note that the 3,=2 case 
gives R,=4.54x105km for /•=1. This value is agreeably 
close to the values of R, found in two other papers: (1) 
the self-reversal point in the mass-loading model of Hud- 
dleston et al. [1990] (5.5x105 km) and (2) a paraboloid fit 
to the observations ([Coates et al., 1990a] - 5.98x10 s kin). 

However, the/• value determined using the parameters 
inferred by Huddleston et al [1990], /• ..• 0.5, is incon- 
sistent with the value (/• > 1) that we infer here from 
comparing the M = 2 curve with observations. A reason 
could be that different values of 3' are appropriate to the 
inbound (quasiperpendicular, 3'=2) and outbound (quasi- 
parallel, 3'=5/3) cases, which have different scalings for a 
particular fl. Another reason may be our assumption of 
exactly perpendicular flow and magnetic field. 
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