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Abstract. We prove that in every finite dimensional normed space, for
"most" pairs (x, y) of points in the unit ball, ||x —yll is more than yj2(\ - s).
As a consequence, we obtain a result proved by Bourgain, using QS-decomposi-
tion, that guarantees an exponentially large number of points in the unit ball
any two of which are separated by more than ^2(1 - £).

Introduction and previous results. Let X= (R", ||. . . ]|) be an n-dimensional
normed space, K={xeW: ||x||<l} its closed unit ball and let m be the
Lebesgue measure restricted to K, normalized so that m(K) = 1. It is easy to
see that when n is large, most of the points in K lie near its surface: so their
norm is about 1. In this article, our aim is to investigate the typical behaviour
of the distance between two points in the ball.

The investigation is motivated by a number of recent results showing that
in a wide variety of special spaces, it is possible to find many points, any two
of which are roughly distance 1 apart. Given X of dimension n, let N= N(e)
be the highest cardinality of a subset T of X such that

1 - £ < | | J C - J > K 1 + £, for all x, ye T, x#y. (1)

A volume argument easily shows that AT(e)^exp {(p(e)n} for some function
q>, independent of X. In [BBK] an exponential estimate from below is obtained,
for finite dimensional spaces with a 1-subsymmetric basis: in particular, for
example, for lp spaces. Some extensions of this result appear in [BB], where
sharp estimates are given for the case of the space lp(l™) (1 ^p, q< oo). Related
results can be found in [BPS1], [BPS2] and [BMW].

The results in each of these articles depend upon the construction of some
probability measure on the unit ball with respect to which, two independent
random vectors are almost exactly a fixed distance apart with very high prob-
ability. In this article we consider the simplest such measure, Lebesgue measure,
and examine the distribution of the random variable ||x —y|| (x,yeK),

F(t)=m<S)m{(x,y)eKxK: \\x-y\\^t}.

If F(t) jumps from 5 to 1 - 5 as t goes from a(\ - e) to a{\ + e), then we can
find N points x,, . . . , xNeK, such that a~xx\,. . . , axxN satisfy (1), as long as
2N2S < 1. Our interest is in exponentially large sets of points so we shall look
for a number a for which we have something like

F(a(\ + e))-F(a(\ - e)) > 1 -exp {-2ce2n}

for some constant c.
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In Section 1, we show that there are normed spaces for which there is no
threshold behaviour for the distribution function. However, our main result
guarantees that in all normed spaces, the distance between "most" pairs of
points in the unit ball is greater than ^2(1 - e). We show, in fact, that for any
space,

Hence, in particular, if the distance does concentrate around a number, then
this number must be no smaller than ^/2. This result is sharp in that, for
Euclidean space, there is a threshold at ,/2. (In this case

F(V2(1 - e)) > - L (1 - £
2(2- e)2r\

2V
so our argument actually recovers the "correct" exponent.)

Section 2 is concerned with spaces which do exhibit some kind of threshold
behaviour. It is shown in [GM] (see [A] for an easier proof along the same
lines) that the balls of uniformly convex spaces enjoy a concentration of
measure phenomenon: if AT is such a set, then for any e > 0 and any Borel set
AcK with m(A)^l/2, the measure of the expanded set AE =
{xeK: dist (x, A) ̂  e) satisfies

for some positive function cp. We have included a very short proof of this fact.
We then observe that such a concentration of measure guarantees threshold
behaviour for our distribution F.

We should mention that there are some results known for isometric
embeddings, see [P], and that infinite-dimensional analogues of some of these
problems appear in [D] and [EO].

§1. Large distances. As above, let X=(U", ||. . . ||) be an «-dimensional
normed space, let K= {xeU": \\x\\ ^ 1} be its closed unit ball and let m be the
Lebesgue measure on A"normalized so that m(K) = 1. The distribution function
of the distance between two independent points, each distributed uniformly on
K, is given by,

= m®m{{x,y)eK*K: \\x-y\\^t}.

It is easy to check that

F(t)= m(K n (x + K))dm(x).

We begin the section with some simple examples showing, among other things,
that there are spaces for which F does not have a sharp threshold.
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Examples. (1) X = l2. It is clear from standard results that the Eucli-
dean distance between independent random points in the Euclidean ball, con-
centrates around >/2 since both points are very close to the surface and each
one is almost certain to be near the equator "perpendicular to" the other.
However, it will be useful later, if we examine the distribution more carefully.

For any xe2K,
i

m(Kn(x + K)) = —vn-t (l-s2)u"~l)ds,
vn J

r/2

where r= \\x\\ and vn is the volume of the unit ball in l\. Integrating over tK
we get

F(t)=
2nl^i

vn
0

From this we get that the density of the random variable \\x — y\\ is roughly

/

K\ 4

(A similar expression will reappear later on.)
( 2 ) X = l"x.

F{t)=

pr"

is «-th power of the two-dimensional measure of the set

and so,

Since t(A—i) attains its maximum at t = 2, this shows that the distance in the
ball of l"t concentrates around a = 2.

(3) The next example shows that there are normed spaces where concentra-
tion of the distance does not occur. The real point is that concentration can
occur at different points for different spaces. Let X=(l"2® U)o0 = (U"+l,
| | . . . | |), where

!!(A- ,> ' ) I I=SU P { | |X | | 2 , |> ' |} , xeln2,yeU.

Thus AT is a "circular" cylinder in U"+].
It is easy to check that for a Cartesian product set, the distribution function

F is just the product of the distributions for the two factors. So for our space,
F(t)=F] (t)F2(t), F\ being the distribution function for l"2 and F2 being the one
for U. F, has a sharp threshold at -Jl and so is almost equal to 1 on the
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interval [^2(1 + e), 2]. Thus, F is almost the same as F2 from ~Jl onwards.
From example (2) we see that F2 is given by

and hence F has no sharp threshold.

Despite examples like the preceding one, our main result, Theorem 1 below,
shows that in any normed space "most" of the pairs of points in the unit ball
are separated by more than J2( 1 - e): in particular, that we may find exponen-
tially many, that are so separated. This fact was proved by Bourgain using
QS-decomposition (see [FL] for a proof). It was proved in [EO] that in any
infinite-dimensional normed space, there is an infinite subset of the unit ball
whose elements are (1 + e)-separated, for some £>0 depending on the normed
space. Theorem 1 seems stronger than this, in spirit, but in [BRR] it was
shown that the greatest separation of any infinite subset in the unit ball of lp

(1 </?< oo) is 2]/p: so Theorem 1 cannot be used to improve the infinite dimen-
sional statement.

THEOREM 1. Let X be an n-dimensional normed space, K its closed unit
ball and m, the Lebesgue measure on K normalized so that m(K)= 1. Then, for
anyQ<t<j2

m®m{(x,y)eKxK: \\x-y\\^t

If t = s]2( 1 — £) the latter is no more than

exp { — s2n/2}.

Note. The sharpness of the result can be gauged by referring to the
example X=l" discussed earlier.

Proof. For any te[O, 2], let

= m<g)m{(x, y)eK* K: \\x-y\\^t}.

It is clear that F(t) is a value of the threefold convolution of the characteristic
functions of K (twice) and tK,

To estimate this we use the sharp form of Young's inequality for convolutions
on W (see note below): for any p, q, r^\ with

1 1 1
-+-+-=2
P a r

there is a constant C(p, q, r; n)>0 such that for any functions feLp(W),
geLq(W) and heL\W), we have

\f*g*h(O)\^C(p,q,r;n
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The sharp constant C(p,q,r;n) equals (CpCqCr)
n, where C2=pl/pp' x/p

(// being the conjugate exponent to p). If r = q we obtain

C(p,q,q;n) =
{2q) 2

«- l/2-i

for any p,

2 \q

with (\/p) + (2/q) = 2. Hence, for any q> 1,

L 2

For t<sf2, the last expression is minimum for q- ^(4-t2) and for this q the
expression simplifies to give

Then, if 0 < e < 1, we have

Y(V2(l-£))2(4-(V2(l
V ~ 4

{-e2«/2}.

= (l-£2(2-£)2r/2

Note. The sharp constant in Young's inequality was determined by Beck-
ner, [Be], in connection with his study of the Fourier transform. An important
extension of Young's inequality, again with sharp constant, was proved by
Brascamp and Lieb, [BL]. Recently, a very elegant new proof of their inequal-
ity was found by F. Barthe [Ba].

§2. A concentration of measure phenomenon. Uniformly convex spaces. We
begin this section with a short proof of the concentration phenomenon in
uniformly convex spaces, proved by Gromov and Milman, [GM]. The origin
of our argument is in a paper of Talagrand [T] concerning Gauss space. A
simplification of his argument was found by Maurey [M], and was used by
Schmuckenslager [S] to study uniformly convex spaces. The proof below is in
the same spirit. Unfortunately, the proof is now so short that one cannot see
the ideas behind it.

For a uniformly convex normed space X, we define the modulus of convex-
ity, 8, of X by

H l
2

\\x-y\\>e,\\x\\^l,\\y\\^l

This definition is slightly different from that in the standard texts but the
difference is of no real consequence. As before, for a subset A of X and a
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number £>0 we write Ac for the set of points whose distance (in norm) from
A is at most s.

THEOREM 2. Let X be an n-dimensional uniformly convex normed space,
K its closed unit ball, m the normalized Lebesgue measure on K and let 8 be the
modulus of convexity of X. Then for any Borel set AaK with m(A) ̂  2 and any
£>0,

m(Al)>\-2e~2nS(':).

Proof. Recall the multiplicative Brunn-Minkowski inequality:

2

Suppose A c K and put

B={yeK: d(y,

If xeA and yeB then | jx- j | | ^ e and hence

x + y

Therefore

A + B

and so

The remainder of this section is devoted to showing that a concentration
of measure such as the above, suffices to guarantee that the distance between
two independent points in the unit ball, concentrates around some number.

THEOREM 3. Let X be an n-dimensional normed space, K its closed unit
ball and m the normalized Lebesgue measure on K. Assume that there exists an
increasing function <p such that for any e > 0 and any Borel set AczK satisfying

Then there exists a number ae[\, 2] such that for any e>0,

m®m{(x, y)eK* K: a(l - e) <\\x - y\\ ^a(l + e)} ̂ z I - 4 e x p {-

and hence, for any £>0 there exist Npoints x\, . . . , xN&X so that

\ - £^\\Xi~Xj\\^\ + £

as long as N<(l/2) exp {(p(e/6)n/2}.
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Proof. For each xeK, consider the function fx : AT-> R defined by fx{y) =
||x— v||. Let a(x) be the median offx so that the ball of radius a(x) includes
half of K. (The median is clearly unique.) Whatever the dimension, \K has
volume at most one half that of K so a(x) is at least \ for each x.

Let a be a median of the function a. We have a^-\.
Now let A = {xeK: a(x)^a}. Since AaE c{xeK: a(x)^a(l + e)}, the con-

centration hypothesis ensures that,

m({xeK: a(x)^a(\ + £)})^l-exp {-(p(ae)n} $s 1 -exp {-(p(s/2)n}.

Similarly

m({xeK: a(x)^a(\ - e)} ) ^ 1 -exp {

and hence

The same argument can be applied for each fixed xeK to get

m({yeK: a(x)(\- E)^\\x-y\\^a(x)(l + s)})^\-2exp {-cp(£/2)n}.

These two inequalities give

m®m({{x, y)eKxK:a(\- s)2^ \\x-y\\ <a(l + e)2} ) ^ 1 - 4 exp {~^(e/2)«},

and thus, for any s < 1

m®m({(x,y)eKxK:a(\-3e)^\\x-y\\^a(\+3£)})

> 1-4exp {-(p{e/2)n).

So

m®m({(x,y)eKx K:a(\ - e ) ^ \\x-y\\ <a(l + £)})

> 1-4exp {-?)(e/6)«},

for every e>0, as required.
The conclusion concerning the choice of N points is now obvious.
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