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Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

Abstract
We show that for a given planar convex set K of positive area there exist three

pairwise internally disjoint convex sets whose union is K such that they have equal
area and equal perimeter.

1 Introduction and main result

The following interesting and annoyingly resistant question has been recently asked by
R. Nandakumar and N. Ramana Rao [NR06] and [NR08]. A convex k-partition of the
plane R2 is, quite naturally, a family of k internally disjoint convex sets P1, . . . , Pk with
R2 = ∪k

1Pi. The question is whether, given a convex set K of positive area and an integer
k ≥ 2, there exists a convex k-partition of R2 such that all parts K ∩ Pi have equal area
and equal perimeter. For k = 2 the answer is, quite trivially, yes. The main result of this
paper implies that the answer is also yes when k = 3. This is contained in Theorem 1.1
below.

The solution of the problem relies on the methods from equivariant topology and can
be considered as a continuation of [BM1] and [BM2] whose notation and terminology are
used here without much change. A point x in the plane and three halflines, `1, `2, `3,
starting from x form a 3-fan. The halflines are in anticlockwise order around x. They
determine three angular sectors σ1, σ2, σ3 with σi between `i and `i+1. The 3-fan is convex
if each of the sectors σi is convex.

Theorem 1.1. Assume µ is an absolutely continuous (with respect to the Lebesgue mea-
sure) Borel probability measure on R2, and f is a continuous function defined on the
sectors in R2. Then there is a convex 3-fan (x; `1, `2, `3) with

µ(σ1) = µ(σ2) = µ(σ3) = 1
3

and f(σ1) = f(σ2) = f(σ3).
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The case k = 3 of the Nandakumar–Rao conjecture follows from the theorem by taking
f(σ) to be the perimeter of K ∩ σ. Also, the Lebesgue measure restricted to K has to
be approximated by absolutely continuous measures which is no problem. The same way
Theorem 1.1 implies the existence of a convex 3-partition of K where the pieces have
equal diameter, or equal width, etc. We mention that every convex 3-partition of R2

come from a convex 3-fan, including the convex partition by two parallel lines when the
center of the 3-fan is at infinity. One of the difficulties in the case of k > 3 is the lack of
nice or natural description of convex k-partitions.

About ten years ago Kaneko and Kano [KK] raised a question which is similar to that of
Nandakumar and Ramana Rao, and which was solved, independently, by Bespanyatnikh
et al. [BKS] and by Sakai [Sak]. They showed that, given an integer k ≥ 2 and two
absolutely continuous probability measures µ1 and µ2 in the plane, there is a convex k-
partition, P1, . . . , Pk of the plane with with µi(Pj) = 1

k
for all i = 1, 2 and j = 1, . . . , k.

Neither this result, nor its proof seem to help with the problem raised by Nandakumar
and Ramana Rao because the perimeter is not a measure.

It is more convenient to lift the measure and the 3-fans from R2 to the 2-sphere S2

mainly because S2 is compact. So let S2 be the unit sphere of R3 and let R2 be embedded
in R3 as the horizontal plane tangent to S2 (at the North Pole). Denote by ρ the central
projection from the upper hemisphere to the embedded R2. Clearly, ρ−1 lifts any Borel
measure on R2 to a Borel measure on the upper hemisphere of S2. A 3-fan in R2 is
lifted to a 3-fan in S2 in a natural way: a spherical 3-fan (x, `1, `2, `3) is a point x ∈ S2

and three great half circles `1, `2, `3 starting at x (and ending at −x) that are ordered
anticlockwise when viewed from x. The angular sector between `i and `i+1 is σi. It is clear
that a spherical 3-fan is projected by ρ to a 3-fan in R2, and conversely, a 3-fan in R2 is
mapped by ρ−1 to a spherical 3-fan on S2. A spherical 3-fan is convex if the angle of each
sector is at most π. It is also evident that a spherical 3-fan is convex if and only if the
corresponding planar 3-fan is convex. We will prove Theorem 1.1 in a slightly stronger
form:

Theorem 1.2. Assume µ is an absolutely continuous (with respect to the Lebesgue mea-
sure) Borel probability measures on S2 and f is a continuous function on the sectors in
S2. Then there is a convex 3-fan (x, `1, `2, `3) such that

µ(σ1) = µ(σ2) = µ(σ3) = 1
3

and f(σ1) = f(σ2) = f(σ3).

In fact, this theorem holds under the weaker assumption that µ is not positive on any
great circle. This follows from a routine compactness argument.

A measure on the sphere S2 will be called nice if it is a probability measure that has a
continuous density function which is positive on S2. We will prove Theorem 1.2 assuming
that µ nice. This will suffice for the general case by the same compactness argument. By
the same token it is enough to prove the theorem for a dense set of nice measures, and
we will assume, in case of need, that our measure satisfies certain extra properties.

We are going to give two proofs of Theorem 1.2. Both use equivariant topology, whose
basic phase space/test map method, applied in our case, will be described in the next
section, without considering convexity. The phase space V is given in Section 2, and
its restriction to the so called convex part V conv in Section 4. The topology of V conv is
needed in both proofs of Theorem 1.2. The first uses basic algebraic topology: degree,
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linking number, homology (Section 4), while the second applies the Serre spectral sequence
(Section 6).

Besides Theorems 1.1 and 1.2, the main novelty of this paper is the description of
the convex part and understanding its topology. In geometric applications of equivariant
topology the phase space is usually given, but in our case it depends on the measure
on S2. The description of the convex part and of its topology is accomplished here by
combining methods from convexity, measure theory, and topology.

2 The proof without convexity

Write V = {(x, y) ∈ S2×S2 : x ⊥ y}; V is the Stiefel manifold of all orthogonal 2-frames
in R3, which is homeomorphic to SO(3) and to the 3-dimensional projective space RP 3.

To every (x, y) ∈ V we assign the 3-fan (x; `1, `2, `3) as follows: y is the midpoint of the
half great circle `1 whose endpoints are x and −x, and `2, `3 are defined by the condition
µ(σi) = 1

3
for all i. As µ is nice, the half great circles `i and the sectors σi are determined

uniquely. Thus the mapping (x, y) → (x; `1, `2, `3) is well-defined (see Figure 1). We will
simply write `i or σi for `i(x, y) and σi(x, y). This should not cause any confusion.

We are going to use equivariant topology. Write yi for the midpoint of the great half
circle `i. So y = y1. Define the homeomorphism ω : V → V via

ω(x, y) = ω(x, y1) = (x, y2).

This homeomorphism is in fact determined by the measure µ. Further, ω2(x, y) = (x, y3)
and ω3 = idV . Thus the cyclic groups Z3 acts on V and ω is the action of its generator.
Further, ω has no fixed point and is a V → V homeomorphism that keeps the orientation
of V since ω3 = id.
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Figure 1: The sectors

We wish to show the existence of a (convex) 3-fan equipartitioning µ such that f(σ1) =
f(σ2) = f(σ3). Define a continuous map f : V → R3 by

f = (f(σ1), f(σ2), f(σ3)) ∈ R3.

The group Z3 acts on R3 by shifting the coordinates cyclicly. That is, writing ω for the
action of its generator,

ω(t1, t2, t3) = (t2, t3, t1).
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It is clear that the just defined f is a Z3-equivariant map, that is,

f ◦ ω = ω ◦ f.

Here the first ω acts on V while the second ω acts on R3.
We put aside the convexity condition for this section and prove the existence of an

(x, y) ∈ V with f equal on the three sectors. The proof is from [BM1] but the statement
is slightly more general since here f does not come from a measure.

Proposition 2.1. Under the above conditions there is (x, y) ∈ V such that f(σ1) =
f(σ2) = f(σ3).

Proof. We assume the contrary which means that f avoids the diagonal 4 = {(t, t, t) ∈
R3}. This gives rise to a chain of maps

V → R3 →4⊥ → S1

where the first arrow is f , the second is the orthogonal projection onto4⊥ (the orthogonal
complement of 4), and the last arrow maps v ∈ 4⊥, (v 6= 0) to v/|v| ∈ S1 (the unit circle
in 4⊥). Let g denote composition map V → S1. On this S1 ⊂ R3, ω acts as a rotation
by 2π/3. It follows that g is a Z3-equivariant map, again:

g ◦ ω = ω ◦ g.

The set C = {(e3, y) ∈ V : y ⊥ e3} is invariant under ω, that is, C = ωC. Further, C
is homeomorphic to the circle S1, so g|C : C → S1 is an S1 → S1 Z3-map. By a theorem
of Krasnoselskii and Zabreiko [KZ] (cf. [BSS] and [Dold] as well), the degree of g|C is
1 mod 3. (For this the orientations of C and S1 have to be chosen properly.)

Next, let 2C denote the cycle in V obtained as the composition of the (orientation
preserving) standard double cover S1 → S1 and the homeomorphism S1 → C. It follows
that the degree of g|2C is 2 mod 3. The fundamental group of V is Z2, and so 2C is
homotopic to 0 implying that the degree of g|2C is 0. A contradiction. ¤

Remark. This proof does not go through when the 3-fan is required to be convex because
the fundamental group of the “convex part” of V does not have to be (and is not) Z2.
We mention further that the set C, which is a (geometric) circle and a (topological) cycle
in V , is going to play an important role in what follows.

3 Preparations

In this section we introduce the necessary definitions to handle the condition of convexity
in Theorem 1.2. We start by a variant of the Hopf fibration. The map p : V → S2 is
defined for (x, y) ∈ V as

p(x, y) = x× y,

so z = p(x, y) is the cross product of x and y. Since z ∈ S2, p is indeed a map V → S2,
see Figure 2. The following fact is well-known.
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Fact 3.1. The map p : V → S2 is a fibration, and every fibre p−1(z) is an S1.

We will often encounter the situation when S ⊂ S2 is a circle, i.e., a homeomorphic
image of S1. Then S2 \ S consists of two connected components, Ω and Ω′, each homeo-
morphic to the 2-dimensional open (topological) disk. Set U = p−1(Ω), and restrict the
fibration p to U . The base of this fibration p : U → Ω is a disk which is, of course,
contractible. By Feldbau’s theorem (cf [FFG]), the fibration is trivial in the sense that U
is homeomorphic to the product of the fibre, S1, and the base Ω. Thus U is an open solid
torus, and so is U ′ = p−1(Ω′).

It is clear that the angle of at most one of the sectors σ1, σ2, σ3 can be larger than π.
There is a simple and useful reformulation of the fact that for some (x, y) ∈ V the sector
σ3(x, y) is non-convex. We need a few definitions. For z ∈ S2 let

H(z) = {v ∈ S2 : vz ≤ 0}

where vz stands for the scalar product of vectors v, z. Thus H(z) is a half-sphere, see
Figure 2. Define h(z) as the µ-content of H(z), that is, h : S2 → R is the function

h(z) = µ(H(z)).

x

z=p(x,y)

y

H(z)

Figure 2: The hemisphere H(z), its measure h(z) and the fibration p

Lemma 3.2. Assume (x, y) ∈ V and z = p(x, y). Then σ3(x, y) is not convex if and only
if h(z) < 1/3.

Proof. This is very simple: `1 is a great half circle on the boundary of H(z) and `1

bounds the sector σ3. Now h(z) < 1/3 if and only if σ3 properly contains H(z), which is
the same as σ3 is not convex. ¤

In the proofs to come we need to establish the existence of a cycle C ⊂ V that is
invariant under ω, that is, ωC = C and has the extra property that for each (x, y) ∈ C
the corresponding 3-fan is convex. The existence of such a cycle follows from the following
result, proved independently by Dolnikov [Doln] and Živaljević, Vrecića [ŽV].

Theorem 3.3. Given k ≤ d probability measures in Rd, there is a k − 1-dimensional
affine subspace such that the measure of every halfspace containing this affine subspace is
at least 1/(d + 2− k) in every one of the k measures.
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We apply this theorem with d = 3 and k = 2: the first measure is µ and the second
is concentrated at the origin. The affine subspace is a line, passing through the origin.
We now fix the coordinate system in R3 so that this line passes through the points ±e3.
Then h(z) ≥ 1/3 for every z ∈ S2 whose e3 component is zero. By adding a little extra
measure at e3 we can achieve that h(z) > 1/3 for every such z. So we have the following

Corollary 3.4. With the coordinata system fixed as above, the cycle C = {(e3, y) ∈ V :
y ⊥ e3} is invariant under ω and each point (e3, y) ∈ C defines a convex 3-fan. ¤

We need the following lemma saying that every nice measure µ can be approximated
by another nice measure ν for which the set {z ∈ S2 : ν(H(z)) = 1/3} is a nice 1-manifold.
The technical proof of the lemma is given in the last section.

Lemma 3.5. For every ε > 0 and every nice measure µ on S2 there is a nice measure ν
such that

(i) |µ(σ)− ν(σ)| < ε for every sector σ ⊂ S2, and

(ii) {z ∈ S2 : ν(H(z)) = 1/3} is a piecewise smooth 1-manifold (without boundary) in
S2.

4 The convex part of V

In this section we describe a particular partition of V into two pieces, the convex part
V conv, and the non-convex part V n-conv, and establish some of their properties. This
partition will be only given at the end of this section.

Lemma 3.5 implies, via a routine compactness argument, that it suffices to prove
Theorem 1.2 for nice measures µ for which h−1(1/3) is a piecewise smooth 1-manifold in
S2. From now on we assume that µ is such a nice measure. We suppose further that there
is a z ∈ S2 with h(z) < 1/3 as otherwise Theorem 1.2 follows from Proposition 2.1. Then
h−1(1/3) is nonempty and is the union of disjoint cycles Si, i ∈ [m1] for some positive
integer m1, where for a positive integer k we denote the set {1, 2, . . . , k} by [k].

Observe now that p(C) is exactly the equator of S2, and h(z) > 1/3 for every z ∈
p(C). Then each Si is disjoint from p(C), so it is contained either in the upper or in
the lower hemisphere. Each Si splits S2 into two connected components, and both are
homeomorphic to a disk, and one of them contains the equator. Let Ωi denote the other
one.

As we have seen the set Ui = p−1(Ωi) is an open solid torus and Ti = p−1(Si) is an
ordinary torus. Since ω : V → V is a homeomorphism, ωαUi is an open solid torus, and
ωαTi is an ordinary torus for each i = [m1] and every α = 0, 1, 2. A few properties of
these tori are established next. The first one is very simple.

Claim 4.1. The cycle C is disjoint from all ωαUi. ¤

Claim 4.2. For all i, j ∈ [m1] and α, β = 0, 1, 2 the sets ωαTi and ωβTj are disjoint unless
i = j and α = β.
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Figure 3: h−1(1/3)

Proof. Assume the contrary, then ωαTi ∩ ωβTj 6= ∅. We can assume, by symmetry, that
α ≤ β. If α = β, then Ti = p−1(Si) and Tj = p−1(Sj) intersect, yet Si and Sj are disjoint.
Simplifying by ω once or twice if necessary we can assume that α = 0 and β = 1 or
2. Suppose β = 1. Then there is (x, y) ∈ Ti ∩ ω1Tj, implying (x, y) = (x, y1) ∈ Ti and
ω−1(x, y) = ω2(x, y) = (x, y3) ∈ Tj. Thus σ3(x, y) is a hemisphere, and so is σ2(x, y),
which is impossible. The assumption β = 2 implies, the same way, that σ3(x, y) and
σ1(x, y) are both hemispheres. ¤

Claim 4.3. For all i ∈ [m1] the sets Ui, ωUi and ω2Ui are disjoint.

Proof. The key fact here is that each ωαTi is a torus and so it splits V into two disjoint
components.

Assume the statement is false. The condition ωαUi∩ωβUi 6= ∅ implies (via simplifying
by ω or ω2) that Ui ∩ωUi 6= ∅. It follows easily from Ti ∩ωTi = ∅ and from H2(V ;Z) = 0
that V \ (Ti ∪ ωTi) consists of 3 connected components. Clearly, Ui ∩ ωUi is one of them.
Its boundary is either Ti or ωTi or Ti ∪ ωTi. In the first case Ui ⊂ ωUi which implies
Ui ⊂ ωUi ⊂ ω2Ui ⊂ ω3Ui = Ui showing that Ui = ωUi and then Ti = ωTi, contradicting
Claim 4.2. The second case implies ωUi ⊂ Ui which leads to the same contradiction.

We show finally that the third case cannot come up. If it did, then Ti ⊂ ωUi and
ωTi ⊂ Ui, and so Ui ∪ ωUi = V . But this is impossible since C is disjoint from both U
and ωUi. ¤

Recall that the cycles Si are pairwise disjoint. Then, for distinct i, j ∈ [m1], Ωi and
Ωj are either disjoint or one is contained in the other. To have simpler notation, let
[m2] be the set of those i ∈ [m1] for which Ui not contained in any other Uj. Of course,
1 ≤ m2 ≤ m1, and the disks Ωi, i ∈ [m2] are pairwise disjoint.

The orbit of Ui is simply O(Ui) = Ui ∪ ωUi ∪ ω2Ui.

Claim 4.4. For distinct i, j ∈ [m2], the orbits O(Ui) and O(Uj) are either disjoint or one
is contained in the other.

Proof. This proof is almost identical with the previous one. Assume that O(Ui) and
O(Uj) are not disjoint: ωαUi ∩ ωβUj 6= ∅. We can suppose again that α ≤ β and α = 0.
In case β = 0, Ui and Uj would have a common point which is excluded since i, j ∈ [m2].
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Thus β = 1 or 2. Consider the case β = 1; the other one is analogous. The tori Ti

and ωTj are disjoint so their union splits V into three connected components. Clearly,
Ui ∩ ωUj is one of them. Its boundary is either Ti or ωTj or Ti ∪ ωTj. In the first case
ωUj ⊂ Ui which implies ω2Uj ⊂ ωUi and Uj = ω3Uj ⊂ ω2Ui showing that O(Uj) ⊂ O(Ui),
indeed. In the second case ωUi ⊂ Uj which implies, the same way, that O(Ui) ⊂ O(Uj).

Again, the third case cannot come up. If it did, then Ti ⊂ ωUj and ωTj ⊂ Ui, and so
Ui ∪ ωUj = V . But this is impossible since C is disjoint from both Ui and ωUj. ¤

Now we define the convex part V conv. To keep notation simple let [m] be the set of
those subscripts i ∈ [m2] for which the orbit O(Ui) is not contained in any other O(Uj).
Set

V n-conv =
⋃

i∈[m]

⋃
α=0,1,2

ωαUi and V conv = V \ V n-conv.

The above definitions and results are summarized as follows.

Theorem 4.5. The sets ωαUi (α = 0, 1, 2 and i ∈ [m]) are pairwise disjoint open solid
tori. Moreover, for every point (x, y) of the set V conv the corresponding 3-fan is convex.
Further, C ⊂ V conv, and both V conv and V n-conv are invariant under ω. ¤

Remark. It is not hard to construct a nice probability measure on S2 so that some disk
Ui contains another disk Uj. This shows that that there may be a point (x, y) ∈ V n−conv

such that all σi(x, y) are convex. So the name “convex part” is slightly misleading. This
should not cause any confusion, though.

The proof of Theorem 1.2 starts the same way as in Proposition 2.1, just replace V
by the ω-invariant subset V conv. We get the same chain of maps V conv → R3 → D⊥ → S1

and the composition Z3-equivariant map V conv → S1. Thus Theorem 1.2 is a consequence
of the following Borsuk–Ulam type result.

Theorem 4.6. There is no Z3-equivariant map F : V conv → S1.

In the next two sections we are going to give two different proof of Theorem 4.6.

5 The first proof of Theorem 4.6

Assume that such a map F exists, and consider, again, the cycle C ⊂ V conv. The restric-
tion of F to C is clearly well-defined and is, again, an S1 → S1 Z3-map. As we have seen
in the proof of Proposition 2.1, the degree of F |C is 1 mod 3. We show, however, that its
degree is divisible by 3. This contradiction will prove the theorem.

Theorem 5.1. The restriction F |C : C → S1 has degree zero mod 3.

Proof. Note that the Z3-action on V = RP 3 can be lifted to that on S3 using the standard
double covering map π : S3 → RP 3. Let us denote by Sconv the preimage π−1(V conv). It
is easy to check that the preimage π−1(Ui) is an open solid torus, to be denoted by Wi.
Then Sconv is the complement of the union of open solid tori embedded in S3 :

Sconv = S3 \ (∪m
i=1Wi ∪m

i=1 W ′
i ∪m

i=1 W ′′
i )
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where W ′
i and W ′′

i are the images of the solid torus Wi under the Z3-action on S3, if ω ∈ Z3

is a selected generator, then W ′
i = ωWi and W ′′

i = ω2Wi. Of course, W ′
i = π−1(ωUi) but

we do not really need this.
Let γi be an embedded closed curve on the torus surface ∂Wi null-homologous in Wi

but not in ∂Wi. Then there is a 2-dimensional disc Di in Wi such that ∂Di = γi. Let us
denote by γ′i and γ′′i the images of γi under ω and ω2 respectively.

Remark. Note that the 3m curves γi, γ
′
i, γ

′′
i for i = 1, 2, . . . , m, form a minimal set of

generators in the group Z3m ≈ H1(S
conv;Z).

The last isomorphism follows from the Alexander duality. In the Lemma after the
present proof we give an elementary proof for the statement of the Remark.

Let L = π−1(C) be the preimage of C. Clearly, L is a cycle in S3 which is invariant
under ω. Its homology class in H1(S

conv;Z) can be expressed in a unique way as a linear
combination of the classes of γi, γ

′
i, γ

′′
i , i = 1, 2, . . . , m. :

L ∼=
∑

αiγi +
∑

α′iγ
′
i +

∑
α′′i γ

′′
i .

Then
ωL ∼=

∑
αiγ

′
i +

∑
α′iγ

′′
i + α′′i γi

The coefficients in these decompositions are unique. But L = ωL, so we have αi =
α′i = α′′i . Let G denote the map Sconv → S1, obtained as the composition F ◦ π : Sconv →
V conv → S1.

For any closed curve c we denote by [c] its homology class. The classes G∗[γi], G∗[γ′i],
G∗[γ′′i ] in H1(S

1;Z) coincide, because ω ∈ Z3 acts on H1(S
1;Z) trivially.

Hence
G∗[L] =

∑
αi(G∗[γi] + G∗[γ′i] + G∗[γ′′i ]) = 3

∑
αiG∗[γi].

So the class G∗[L] ∈ H1(S
1;Z) = Z is divisible by 3. Since π gives a double cover L → C

we have G∗[L] = 2F∗[C], and so F∗[C] is divisible by 3, and this means that the degree of
the map f |C : C → S1 is divisible by 3. ¤

The proof of the Theorem is now complete except for the promised Lemma.

Lemma 5.2. Let K be an oriented link in S3, i.e. a set of disjoint embedded oriented
closed curves K1, . . . Kn, and let γi be closed curves such that lk(γi, Kj) = δij, where lk
denotes the linking number, and δij the Kronecker δ. Then the curves γi form a minimal set
of generators in H1(S

3 \K;Z). Moreover if we denote by ϕ the map H1(S
3 \K;Z) → Zn

associating to the homology class of a curve c in S3 \ K the vector of linking numbers
ϕi([c]) = lk(c, γi), ϕ([c]) = (ϕ1([c]), . . . , ϕn([c])) then ϕ is an isomorphism.

Proof. By definition ϕ([γi]) = (0, . . . , 0, 1, 0 . . . , 0) (digit 1 is at the i-th place) and so ϕ is
surjective. If D is a compact surface in S3 such that its boundary is c, and D is transverse
to each Ki, then there is another surface D′ with the same boundary and disjoint from
K. Therefore [c] is zero in H1(S

3 \ K;Z) and so ϕ is injective. The construction of the
surface D′ goes by the following procedure. Take two (transverse or even orthogonal)
intersection points of D with a Ki of opposite signs and neighbouring in the sense that
(at least) one of the arcs of Ki between these two intersection points does not contain
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any more intersection points. Call this arc “empty”. Now omit small disks of radius ε
centered at these two intersection points from D and add a tube of radius ε along the
“empty” arc of Ki. Thus we have a new surface having fewer intersection points with K.
Repeating this procedure until we have no intersection point we get the surface D′. ¤

6 The second proof

This proof is obtained by studying the homomorphism of the Serre spectral sequence
associated with the Borel construction of S1 (equipped with the standard Z3 action)
to that of V conv. We denote the cohomology of the group Z3 with F3 coefficients by
H∗(Z3;F3). It is well known that

H∗(Z3;F3) = F3[t]⊗
(
F3[e]/e

2
)

where deg t = 2 and deg e = 1, see [Hat, page 251].

Lemma 6.1. (a) H0(V conv;F3) = F3

(b) H1(V conv;F3) =
m⊕

i=1

F3[Z3]

Proof. Recall that V n−conv is a set of solid tori that are permuted by the Z3-action, each
orbit consists of three tori, their total number is denoted by 3m. Part (a) is clear since
V conv is connected. Part (b) follows by the sequence of isomorphisms:

H1(V conv;F3) ∼= H2(V, V n-conv;F3) ∼= H1(V
n-conv;F3) ∼=

m⊕
i=1

F3[Z3].

Here the first isomorphism holds by the Poincaré-Lefschetz duality [Mun, Theorem 70.2,
page 415] , the second comes from the homology exact sequence of the pair (V, V n-conv)
since H1(V,F3) = 0 and H2(V,F3) = 0. The third isomorphism is clear since V n-conv

is homotopy equivalent to the disjoint union of 3m circles (the notation indicates the
Z3-action as well).

Let us consider the Serre spectral sequence of the fibration V conv×Z3 EZ3 → BZ3. The
E2-term of this sequence is the following: Ep,q

2 = Hp(Z3, H
q(V conv,F3)). We shall need

only the first two rows of this spectral sequence, i.e. the groups Ep,0
2 and Ep,1

2 . Clearly
Ep,0

2 = F3 by part (a) of the Lemma above.
From part (b) of the Lemma we obtain that

Ep,1
2 = Hp(Z3;

m⊕
i=1

F3[Z3]) =





m⊕
i=1

F3, p = 0

0, p 6= 0
.

Here for p > 0 we used the fact that

Hp(Z3;F[Z3]) = Hp(EZ3;F3) = 0,

see [Hat, Proposition 3.55, page 321].
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Since the differentials in the spectral sequence are H∗(Z3;F3)-module maps [Bre, page
247], we have d0,1

2 = 0. (Indeed, if d0,1
2 6= 0, then there exist x ∈ E0,1

2 and α ∈ F3\{0}
such that d0,1

2 (x) = αt. Denoting by a dot the H∗(Z;F3)-module action one has that
0 6= t · (αt) = t · d0,1

2 (x) = d2,1
2 (t · x) = d2,1

2 (0) = 0.) In particular the element t ∈
H2(Z3;F3) = E2,0

2 survives to the E∞-term (left hand side in Figures 4 and 5).

4 0 0 0 0 0

3

2

1 F
3

ãm
0 0 0 0

0 F3 1
F3 e

F3 t
F3 et

F3 t2

0 1 2 3 4

4 0 0 0 0 0

3 0 0 0 0 0

2

1 F3 1 l
F3 F3 F3 F3

0 F3 1
F3 e

F3 t
F3 et

F3 t2

0 1 2 3 4

0 0 0 0 0

e  lå t  lå et  lå t   l
2
åå

Figure 4: E2-terms of V conv ×Z3 EZ3 and S1 ×Z3 EZ3 spectral sequence

Next we consider the Serre spectral sequence of the fibration S1×Z3 EZ3 → BZ3. The
E2-term of this sequence is

Ep,q
2 = Hp(Z3; H

q(S1;F3)) = Hp(Z3;F3)⊗Hq(S1;F3) =

{
Hp(Z3;F3), q = 0, 1
0, otherwise

.

Here apriori the coefficients should be twisted, but a Z3-action on H∗(S1;F3) is clearly
trivial, hence the coefficients are untwisted. The action of Z3 on S1 is free and therefore
S1 ×Z3 EZ3 ' S1/Z3 Hence this spectral sequence converges to H∗(S1 ×Z3 EZ3;F3) =
H∗(S1;F3) and so all the groups the Ep,q

∞ for p+q > 1 must vanish. The only possibly non-
zero differential is d0,1

2 , therefore d0,1
2 (1⊗ l) = t ∈ H∗(Z3;F3) = E2,0

2 . Here l ∈ H1(S1;F3)
denotes a generator. Thus the element t ∈ H∗(Z3;F3) = E2,0

2 vanishes in the E3-term
(right hand side in Figures 4 and 5).

4 0 0 0 0 0

3

2

1 F
3

ãm
0 0 0 0

0 F3 1
F3 e

F3 t
F3 et

F3 t
2

0 1 2 3 4

4 0 0 0 0 0

3 0 0 0 0 0

2

1

0 F3 1
F3

e

0 1 2 3 4

0 0 0 0 0

0 0 0 0 0

0 0 0

Figure 5: E3-terms of V conv ×Z3 EZ3 and S1 ×Z3 EZ3 spectral sequence

Proof of Theorem 4.6. Let us assume that there is a Z3-map f : V conv → S1. Then
f induces a map between

11



(1) Borel constructions V conv ×Z3 EZ3 → S1 ×Z3 EZ3,
(2) equivariant cohomologies f ∗ : HZ3 (S1;F3) → HZ3 (V conv;F3), and
(3) associated Serre spectral sequences Ep,q

r (f) : Ep,q
r (S1;F3) → Ep,q

r (V conv;F3) such that
in the 0-row

Ep,0
2 (f) :

(
Ep,0

2 (S1;F3) = Hp(Z3;F3)
) → (

Ep,0
2 (V conv;F3) = Hp(Z3;F3)

)

it is the identity map.
The contradiction is obtained by tracking the behavior of the E2,0

r (f) images of t ∈
H2(Z3;F3) as r grows from 2 to 3 (see Figures 4 and 5). Explicitly,

E2,0
2 (S1;F3) 3 t

E2,0
2 (f)7−→ t ∈ E2,0

2 (V conv;F3) ,

and

E2,0
3 (S1;F3) 3 0

E2,0
3 (f)7−→ t ∈ E2,0

3 (V conv;F3) .

Since the image of zero can not be different from zero we have reached a contradiction.
Theorem 4.6 is proved. ¤

7 Proof of Lemma 3.5

We assume that µ is a nice probability measure on S2 and ε is a small positive number.
Let λ0 denote the uniform probability measure on S2.

We are going to construct the measure ν. We use a result of Vapnik and Chervonenkis
[VC] (cf [Mat] as well) saying, in our case, that there is a finite set X ⊂ S2 such that

∣∣∣∣µ(σ)− |σ ∩X|
|X|

∣∣∣∣ <
ε

2
(1)

for every sector σ ⊂ S2. The proof shows that X is a random set points (of large enough
size) chosen from S2 according to µ. So we can assume that |X| = 3n + 1, where n is as
large as we want, and further, that no three points of X are contained in a 2-dimensional
plane through the origin. Now for each x ∈ X, let Sx denote the 2-dimensional sphere
centered at x and of radius η. Here we choose η > 0 so small that no 2-plane through the
origin intersects more than two small spheres Sx. Let λx denote the uniform probability
measure on the small sphere Sx. We write H−(z) for the halfspace {v ∈ S2 : zv ≤ 0},
this is the halfspace with H−(z) ∩ S2 = H(z).

With this definition the computations will be easy since λx(H
−(z)∩Sx) is proportional

to the width of H−(z) ∩ Sx. Precisely, Sx ⊂ H−(z) iff xz ≤ −η in which case, of course,
λx(H

−(z)∩Sx) = 1, and Sx is disjoint from H−(z) iff xz > η and then λx(H
−(z)∩Sx) = 0,

and further,

λx(H
−(z) ∩ Sx) =

η − xz

2η
, if − η ≤ xz ≤ η, (2)

Next we define a probability measure ν∗ on R3 as

ν∗ = δλ0 +
1− δ

3n + 1

∑
x∈X

λx.
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here δ is a small positive number, for instance δ = n−2 will certainly do, as the reader
can readily check. Finally, ν is the radial projection of ν∗ onto S2. We have to prove
that ν has the required properties. Clearly, ν is a nice probability measure on S2 since
its density function is continuous and positive (that’s why λ0 is needed).

To establish properties (i) and (ii) we introduce some notation. Let L(z) be the
bounding hyperplane of H−(z). Set X(z) = {x ∈ X : Sx ⊂ H−(z)} and m(z) = |X(z)|.
Define 4(z) = {x ∈ X : Sx ∩ L(z) 6= ∅}. By the properties of X, |4(z)| ≤ 2 for every
z ∈ S2. Moreover, h∗(z) = ν(H(z)) = ν∗(H−(z)) can be computed easily:

h∗(z) =
1

2
δ +

1− δ

3n + 1


m(z) +

∑

x∈4(z)

η − zx

2η


 . (3)

We check condition (i) first. Every sector σ is the intersection or the union of two
hemispheres H(z1) and H(z2). We check the case σ = H(z1)∩H(z2), and then (i) follows
for unions as well by considering the complement of σ. It is evident that X(z1)∩X(z2) ⊂
X ∩ σ. Also, these sets differ by at most four elements because L(zi) intersects at most
two small spheres. Consequently

∣∣∣∣ν(σ)− |X ∩ σ|
3n + 1

∣∣∣∣ ≤
1

2
δ +

4δ

3n + 1
<

ε

2
,

if n is large enough and δ is small enough. This, together with inequality (1) implies
condition (i).

Finally we go for condition (ii). We will show that h∗−1(1/3) consists of circular arcs.
With each arc we associate a pair (Y,4) where both Y and 4 are subsets of X. For
different arcs, the associated pairs (Y,4) will be different. This will prove that there
are finitely many circular arcs in h∗−1(1/3). We will show further that these arcs are
internally disjoint and that each endpoint of an arc coincides with a uniquely determined
endpoint of another, also uniquely determined, circular arc. This is what is needed for
condition (ii).

Suppose h∗(z) = 1/3. We claim that 4(z) contains at least one element, a say, with
−η < az < η. Indeed, otherwise equation (3) implies that

1

2
δ +

1− δ

3n + 1
m(z) =

1

3

which has no solution with m(z) an integer. Since |4(z)| ≤ 2 for every z ∈ S2, 4(z) has
one or two elements.

Assume first that h∗(z0) = 1/3 and 4(z0) consists of a single element a ∈ X. Of
course, −η < az0 < η. Then, in a small neighbourhood of z0, X(z) = X(z0) and
4(z) = 4(z0). Thus equation (3) holds in this neighbourhood if and only if az = az0.
This is the intersection of S2 with the plane az = az0, which is clearly a circular arc. This
circular arc belongs to h∗−1(1/3) as long as X(z) and 4(z) and az remain the same. Let
A(Y,4) denote this (open) arc where Y = X(z0) and 4 = 4(z0), here (Y,4) is the pair
associated with the arc under consideration. Of course, Y = X(z) and 4 = 4(z) for
every z ∈ A(Y,4). It is clear that for distinct arcs of the type |4(z)| = 1, the associated
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pairs are also distinct. So there are finitely many such arcs. It is also clear that two such
arcs have no point in common.

At an endpoint z of the arc A(Y,4) a small sphere, say Sb, becomes tangent to L(z),
and 4(z) will have two elements. Note that Sa 6= Sb since az = az0 for all z ∈ A(Y,4)
while bz = ±η when Sb is tangent to L(z).

Assume, next, that h∗(z0) = 1/3 and 4(z0) consists of two elements, a and b say, and
−η < az0, bz0 < η. Again, for z ∈ S2 in a small neighbourhood of z0, X(z) = X(z0),
4(z) = 4(z0). Consequently equation (3) holds in this neighbourhood if and only if
(a + b)z = (a + b)z0. This is again a circular arc which belongs to h∗−1(1/3) as long
as X(z) and 4(z) and az remain the same. Let A(Y,4) denote this (open) arc where
Y = X(z0) and 4 = 4(z0), and let (Y,4) be the pair associated with this arc. Again,
Y = X(z) and 4 = 4(z) for every z ∈ A(Y,4). It is clear that for distinct arcs of the
type |4(z)| = 2, the associated pairs are also distinct. So there are finitely many such
arcs. It is also clear that two arcs of this type have no point in common, and, further,
that an arc of this type, and another one of type |4| = 1 are disjoint.

At an endpoint z of the arc A(Y,4) some small sphere becomes tangent to L(z). This
sphere must be either Sa or Sb since otherwise 4(z) would contain three elements of X.
It is not hard to see that at one endpoint Sa, and at the other endpoint Sb, becomes
tangent to the corresponding plane L(z).

The remaining case is when h∗(z0) = 1/3 and 4(z0) = {a, b} and for one element, say
b ∈ 4(z0), Sb is tangent to L(z0). The reader will have no difficulty checking that such a
z0 is the endpoint of exactly two circular arcs: one of them is A(Y1, {a}) and the other one
is A(Y2, {a, b}) where Y1 = Y2 = X(z0) if b /∈ X(z0) and Y1 = X(z0) and Y2 = X(z0) \ {b}
if b ∈ X(z0). ¤
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