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ON EFFECTS OF INCREASING AMPLITUDE IN A
BOUNDARY-LAYER SPOT

B. T. DODIA, R. G. A. BOWLES AND F. T. SMITH

Abstract. The boundary-layer spots involved here come from large-time
theory and related computations on the Euler equations to cover the majority
of the global properties of the spot disturbances, which are nonlinear, three-
dimensional, and transitional rather than turbulent. The amplitude levels inves-
tigated are higher than those examined in detail previously and produce a new
near-wall momentum contribution in the mean flow, initially close to the wing-
tips of the spot. This enables the amplitude levels in the analysis to be raised
successively, a process which gradually causes the wing-tip region to spread
inwards. The process is accompanied by subtle increases in the induced phase
variations. Among other things the work finds the details of how nonlinear
effects grow from the wing-tips to eventually alter the entire trailing edge, and
then the centre of the spot, in a strongly nonlinear fashion. Comparisons with
earlier suggestions and with experiments are described at the end.

§1. Introduction. A recent special issue of JEM (Clark, Jones and LaGraff
[1], Henningson, Johansson and Alfredsson [2], Seifert, Zilberman and Wyg-
nanski [3], Shaikh and Gaster [4], Smith, Dodia and Bowles [5]) focussed on
experimental, theoretical and computational aspects of spots in boundary layers
and allied flows. This was mostly for turbulent spots but also for laminar or
transitional ones, which are more our concern here. Spots, which are three-
dimensional unsteady patches of disturbed fluid progressing in otherwise undis-
turbed motion, are important in technological as well as engineering and scien-
tific terms [6] and their properties are reviewed broadly by [1-5] in particular.
The three basic types are laminar, transitional and turbulent spots, depending
on the amplitude and spectra of the initial disturbance, and all three are of
much interest in terms of fundamental fluid dynamics and applications. A
knowledge of spots is used in industrial research at Rolls Royce for example
to model transition to turbulence, giving an estimate for the intermittency
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factor. Numerous aspects of turbulent spots have been studied experimentally,
with fascinating and somewhat varied results, for example on the main arrow-
head-shaped part of the spots, its tail, its notional speed, and its spreading
rate. Contributions stretch from Emmons [7], Schubauer and Klebanoff [8],
Lighthill [9], Schlichting [10], Falco [11] to Head and Bandyopadhyay [12],
Perry et al. [13], Chambers and Thomas [14], Smith et al. [15], Gad-el-Hak et
al, [16], Katz et al. [17], Johansson et al. [18], Henningson and Alfredson [19]
and Robinson [20]. Outstanding features found experimentally include the
following. Much of the dynamics in a spot closely resembles that in a fully
turbulent boundary layer; a turbulent spot develops fast, typically from local-
ized disturbances with large initial amplitude; the subsequent growth and
spreading of a fully turbulent spot probably take place in a domino-like manner,
possibly associated with the successive production of hairpin vortices in the
flow near the solid surface; the span wise growth of the spot greatly exceeds
the growth normal to the surface; and the leading edge and the spanwise side
edges are notably sharp, with interaction between the spot and trailing wave
packets especially near the sides. Again, a spot may be generated very rapidly
(Elder [21]), even at subcritical Reynolds numbers, by a sufficiently strong
initial disturbance bypassing the well-known natural routes through transition.
Several other experimental features are also described in the above papers.
Along with this, interesting direct numerical simulations have been performed
on transitional/turbulent spots, mostly for channel flows and more recently
for boundary layers. Most are confined to spatially periodic boundary condi-
tions but, for a large period, they seem to reproduce fairly well some of the
major experimental findings. Examples are in Leonard [22], Bullister and
Orszag [23], Henningson et al. [24], Henningson and Kim [25], Lundbladh
and Johansson [26], Fasel [27], Konzelmann and Fasel [28]. Much extra phys-
ical insight and understanding have still to be provided, nevertheless.
Systematic tracking of the effects of increasing amplitude, for instance, largely
remains to be done, both experimentally and computationally. Few, if any,
systematic theoretical studies had been made either, until recently, especially
on the scales and flow structures necessary for a clear physical understanding
of the spot's behaviour. A strongly nonlinear theory is desirable, and the
research below appears to be the only effort in that direction, specifically for
spot evolution, i.e., the initial-value problem. Our approach here, combined
with the related works [5], [29], [30], is to apply recent nonlinear theory and
scaling arguments to address the experimental findings above. Much of these
findings can be described by the theory, even though many complex phenomena
arise during spot evolution.

The present work aims at increased theoretical understanding of nonlinear
spots in boundary layers based on the series [5, 6, 29-31] (see also [31] for jet
flows and channel flows). Our concern is therefore more with transitional spots
than with turbulent ones, the latter involving severe limitations in modelling
even though most experiments are on the turbulent case. A survey of the
theoretical spot structure is given in [5, 6], following the many earlier experi-
mental studies of spots, e.g., in [15]. The latter as indicated above tend to
establish the following main spot features: the characteristic arrowhead shape
with overhanging leading edge, the calm region trailing behind, with accom-
panying edge disturbances, the spreading rates and speeds of the typical spot,
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its maximum normal dimension being along its centre-line but the maximum
turbulent intensity being at the edges.

The challenge and goal for the theory is to predict, post-diet, explain and
understand all those main features. Some have been covered already in [5], [6]
for instance. A significant part of the theory in [5], however, assumed or
guessed certain nonlinear behaviour near the spot trailing edge without testing
the important amplitude-dependent trends involved; an issue not settled in [5]
or [6] is whether and how increased nonlinear dynamics from larger typical spot
disturbance amplitudes, at increasing distances downstream, forces stronger
disturbances towards the spot centre, in particular completing the description
and prediction of the trailing edge of the spot. Here we test those important
nonlinear trends, as described in more detail in the next paragraph. The corre-
sponding theoretical spot structure is of necessity nonlinear and largely in viscid
(of Euler type, see below) although there are undoubtedly significant connec-
tions with smaller-scale viscous properties including sublayer bursting as
reviewed in [32], while [6] suggests that shortened-scale inviscid effects as well
as nonlinearity help to fix the planform spreading angle of the spot at approxi-
mately 11°, in line with experiments.

The first impact of nonlinearity as the representative disturbance amplitude
increases downstream within the spot is felt mostly near the spot edges or wing-
tips, according to analysis [5, 30] and to the experiments above. Here as in
the last two references we address the three-dimensional flow response at the
spot trailing edge initially but at amplitudes increased from those studied in
detail previously. Keeping track of the influences of increasing amplitudes is
clearly important both theoretically and physically, as above, and it needs a
concerted effort as pointed out in [5]. As anticipated in the preceding para-
graph for example there is the critical issue of whether and precisely how
nonlinear effects feed inwards, from their first impact at the wing-tips, to pro-
duce second impacts and so on which eventually affect the entire centre of the
trailing-edge zone and thence the main body of the spot (the mid-spot), as
suggested in [5]. See Fig. 1. These influences of enhanced amplitude are associ-
ated with the two main zones of the globally inviscid spot emerging at large
scaled times t [5, 6, 29-32], the trailing zone containing the calmed region [6]
and the mid-spot zone, respectively at scaled distances of order ti/2 and t
downstream of the spot initiation position. Within those zones and in-between
nonlinear responses arise first in the form of interactions between the (relatively
slow) mean flow part and the (relatively fast) fluctuations or waves present,
dominated by interplay between a first harmonic and corresponding mean-flow
corrections, with second harmonics and so on remaining negligible. These
initially involve pressure-displacement balances [5, 6, 30-32] between the boun-
dary layers and the free stream outside, unlike the interactions in [33], although
in fact those balances are found in the current study to become secondary as
the typical amplitudes continue to increase. For new mean-flow momentum
contributions then come into play, additional to those in [30], and these lead
to substantial changes in the nature of the wave/mean-flow non-linear inter-
actions. In particular strong effects turn out to be provoked by enhanced
variations in phase at such higher amplitudes.

The first part of this work, in Sections 2-5, is devoted to the so-called level
II of amplitudes [5], corresponding to the second impacts described in the
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Figure 1. Sketch of the flow structure, for level II (see Sections 2-5) and for higher amplitudes
(Sections 6, 7) up to level III, showing nonlinearity gradually feeding in from the wing-tips to the
centre of the trailing edge (TE) region.

previous paragraph as opposed to the level I of smaller amplitudes in [30].
The trailing-edge zone is set up in Section 2, followed by analysis of increasing
amplitudes concentrated in wing-tip regions just downstream in Sections 3, 4
including the role of a thin wall layer. The resulting interaction equations are
studied in Section 5. The main new physical feature here is the enhanced role
of the mean-flow inertial effects in fixing the flow response.

Then the second part, in Section 6, addresses amplitudes increased still
further, just above those of level II. The details of the working in the first part
in fact enable this second part to be dealt with by adjustments of that working,
incorporating especially the new phase variations which become more and
more powerful physically. A sequence of such amplitude increases downstream
eventually forces the nonlinear wing-tip layer(s) to expand and spread inwards
to cover the whole trailing-edge zone as amplitude level III is encountered
[5, 30], in a strongly nonlinear manner. This sequence involving the near-wall
momentum and Reynolds stresses acting in concert bridges the gap in detail
left by [5], confirming the trend of the theoretical trailing-edge response as well
as the spot centre supposed in that paper and drawn in Fig. 1 above. The
repercussions at higher amplitudes are considered briefly in Sections 6, 7, along
with final comments in Section 7. The build-up process nonlinearly inward
from the wing-tips, in "echelon" style as described in Section 6, cf. the domino
process earlier, provides an explanation of the trailing-edge behaviour as well
as the calm, linear, zone behind it, an explanation which apparently no other
theory has been able to provide.

The major context of concern here is that governed by the three-dimensional
unsteady Euler equations, holding locally throughout the incompressible



AN INCREASING BOUNDARY-LAYER SPOT 5

boundary layer,

V . u = 0, ( l . la)

(d, + u.\)u = -\p, (1.1b)

where u = (M, V, W) and the associated Cartesian coordinates x, y, z (streamwise,
normal, spanwise, in turn) are scaled with respect to the local free-stream
speed and typical boundary-layer thickness 0(Re~1/2) respectively. The global
Reynolds number Re is large. The time t and pressure p are likewise based on
0(Re~l/2), 0(1) scales in turn, while V denotes (dx,dy,dz). The boundary
conditions include

}[1,0,0,0] asy^co,
[»,P] - M r , , „ „ m 2 , 2 (1-lc, d)

[[uB(y),0, 0, 0] asxz + z2->co,

v = 0 at y = 0, (Lie)

[u, p] prescribed at t = 0, (1.1 f)
c/the generalization in [5]. The original velocity profile uB(y) is monotonic
(e.g., Blasius) with uB(oo) = 1 and the scaled skin friction u'B(Q) is normalized
to be unity. All the subsequent work in the paper stems from ( l . la f). This
is for the global, inviscid, structure of the typical spot, whereas more localized
viscous effects, eruptions, and their interactions with the global structure, are
discussed in [32]. The Euler stage of ( l . la-f) corresponds to nonlinear disturb-
ance wavenumbers a, P, frequencies co, propagation speeds c and amplitudes
(for example, pressure/?', velocity u') all of O(\), based on the boundary-layer
thickness and local freestream speed, thus representing a wider range than
conventional linear-type TS disturbances, which have a, /?, w, c, \p'\, | u'\ all
smaller by an order of magnitude. In consequence, it seems not unreasonable
to tackle the free spot-evolution problem theoretically first by means of the
Euler-stage approach, but as a nonlinear three-dimensional initial-value prob-
lem for a localized input disturbance. This is the concern of the following
sections.

§2. The spot trailing-edge. Our interest here is in gaining extra insight into
the flow features at the so-called trailing edge of the spot. To that end we
examine the downstream O(t1/2) zone, for large times /, as spatially it lags
behind the mid-spot O(t) zone further downstream, but we then move on to
tackle the region between the two by considering increased distances down-
stream, corresponding to increasing typical amplitudes.

So we start by addressing the zone where (X, Z) = t~]/2(x, z) are of order
unity. There the solution of the Euler equations (1.1) takes on a three-tiered
structure [30] in the y direction, the inner tier having y = t~l/2Y with Y~\,
well inside the boundary layer, and producing the thin-layer system

Ux+VY+Wz=0, (2.1a)

\ \ - P X , (2.1b)

-Pz. (2.1c)



6 B. T. DODIA, R. G. A. BOWLES AND F. T. SMITH

Here (w, w)~t~i/2(U, W), v~t~y2V, p-t^P, where P(X, Z) is independent
of Y, and the boundary conditions are

V=0 at F=0, (2. Id)

U~Y+A(X,Z), W-+0, as 7->oo, (2.1e)

for tangential flow at the solid surface and for matching with the middle tier
wherein y ~ 1. The unknown pressure P and negative displacement A are linked
via the quasi-potential flow properties in the outer tier, outside the boundary
layer, where y ~ t'/2y say, p~t~xp, and p(X, y,Z) must satisfy

(82
x + d2 + d2

z)p = 0 (2.2a)

subject to

p bounded in the farfield, (2.2b)

p -» P, py-> Axx, as y -> 0 + . (2.2c)

The constraint (2.2c) matches the outer- and middle-tier solutions. In general
the response in the O(tl/2) zone is controlled by (2.1a)-(2.2c).

Relatively large distances are to be taken next, so that X, Z are large and
positive. This forms the basis of the study in the succeeding sections. Earlier
[29] considered linear disturbances, followed by [5, 30] who investigated among
other features a first nonlinear stage (level I) arising in an edge layer near the
wing-tip Z=[iX, where the constant fi = 8~1/2. The present study is aimed at
amplitudes slightly increased above those in the last two references, and the
orders of magnitude involved in the scalings and expansions below may be
inferred from the solution properties in those references. What is new about
the present stage (level II) is, mainly, a significant contribution from the inertial
effects of the mean flow correction.

§3. The response inside the boundary layer. Guided by the remarks in
Section 2 on lower amplitudes, the new solution of concern here, for the inner
equations, expands in the form

...+X~s/4(Eu2i + c.c.)

3 / 2 2
2 2 + cc.) + X " 7 / 4 ( £ M 3 I + c.c.) + . . . , (3.1a)

V=Xv\EvOi + c.c.) +X5/\Evn + c.c.)

+ Xy\Ev2i + c.c.)+Xx/2v20 + . . ., (3.1b)

W=X'l/\Ewo, + c.c.)+X~l/2Woo+X-y\Ewu+c.c.) + ..., (3.1c)

for large X, together with the pressure and displacement expansions

P = X3/4(Eg0i+c.c.)+X]/\Egu+c.c.)
w\g2] + c.c.) +X-l/2g20+. . ., (3.1d)
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=X']/\EAO]+cc)+X~'/2A=X']/\EAO]+c.c.)+X~'/2Aoo

=X] Y, fj = Z- fiX are both of 0(1), c.c. denotes the complex conjugate
and the wave contribution is

E^e\p[i(b]X
2 + XXij+XW2f(fi))], (3.2)

with the constants bt, X and the phase function/to be determined. The pos-
sibility of three values for / is mentioned later in Section 5. Again,
Uo\,uu,u2\,u22,etc., denote wave parts involved with powers of E while
«oo, U20, Woo are mean-flow parts. In the following we have to proceed to several
orders in the £-terms to derive the major results.

Substitution of (3.1a-e) into the governing equations (2.1) yields, at first
order, the system

( i f , ^ , ^ ) ( u o l ) = 0 (3.3a)

controlling the main ^-components. Here the operators (of continuity and
momentum) are denned by

(3.3b)

= (s- i)iBu + v- ^fiXiu + iBg, (3.3c)

\ \ (3.3d)

respectively, while u now stands for (u, v, w, g) and the constant B=(2b\ —
Hence the dominant solution form, satisfying the boundary conditions at the
wall and at large Y, is given by

uO] = AO] + X2gO]B~]S'\ vm = -iBA0]s, wO\ = -Xg0i8~\ (3.4a-c)

with

qoi=BAOi, BbxAm = p2gm, S = Bs-bx, P = (B2 + A2)1/2, (3.4d-g)

and we set the skew velocity q = Bu + Xw for convenience. We should comment
that here and below there is a passive nonlinear critical layer at 8 = 0 and a
wall layer at .v = 0+ which is addressed later. The amplitude function gOi(fj)
remains unknown at this level.

At second order, the continuity and momentum balances become

(3.5a)

(3.5b)

(3.5c)

the extra terms being due to the phase contribution/in (3.2). Here the prime
denotes differentiation with respect to fj. The solution therefore gives

(3.6a)

(3.6b)

(3.6c)
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with

b,{BAu -2f'Xg0]B~i} =p2gu-f'(nB-X)gm, (3.6d)

in view of the boundary conditions at small and large Y.
Similar working applies at higher orders. Thus the third order equations

for the is-terms are

if(u2i) — nif'u\\+ Xfjiuoi -iiuo^ + if'wu + wmn = 0, (3.7a)

f — l)Xfjiuoi —s(iuO\fj

ai+Ug'oi, (3.7b)

f — l)Xfjiwo\ ~ sfiWoiTj

= -if'g\i-g'o\, (3.7c)

showing the first appearance of fj derivatives, among other effects, while the
fourth order E balances give

,.#(1131) — sfiif 'u2l +(s— \)XfjiU]i — snunij+ 3 (s— 2)ifum — 2f\if'um +A00Biu0\ (3.8a)

= fi if'g2, -Xfjigu+ng'u- lifgoi,

- 3 fjif'wo + AmBiwOi = ~if'g2\ ~g'u, (3.8c)

showing further linear influences but also the first nonlinear effects, propor-
tional to AQO in (3.8b, c). Here the solution for the mean-flow correction, given
in (3.1 l a c ) below, has been inserted in (3.8b, c). Solving (3.7a-c), then, with
the displacement condition at large s and the tangential-flow constraint as s -* 0,
we obtain

(3.9a)

for the skewed velocity component, with

. (3.9b)

Likewise, the skewed component q3i can be evaluated from (3.8b-c), leading
to the relation

- B2A00}A0

(3.10)

involving A3X, g3l, higher derivatives of the unknown phase function / , and
the main nonlinear effect so far, due to AQO . The results (3.4e), (3.6d), (3.9b),
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(3.10) serve as internal relations between An\, gn\ (n = 0, 1, 2, 3) which are to
be combined with the external relations found in Section 4 below.

The mean flow effects need to be described next, and these arise mainly at
two levels, as far as the inside of the boundary layer is concerned. The first is
in the controlling equations for (wOo, U2o, woo) derived from the dominant E°
contributions. The amplitude-squared forcings due to the wave-inertial terms
at this level are

(voidum/ds-Aiwoitioi+c.c), (-BiuoiW*i + v01dw*i/ds + c.c.)

in the X, Z momentum equations respectively [* denotes ex.], at the order
X]/2E°, but these forcings work out to be identically zero in view of the solu-
tions (3.4a-c). Hence we find, using equations similar to (3.12a-c) below, that

results which were anticipated in (3.8b, c). The reason for AQO(T]) being nonzero
will become apparent in Section 4. Similar cancellation in the momentum
equations occurs at 0(1). The next level then leads to the controlling equations
for (w2o, v40, W20), the mean-flow contributions of orders X~3/2,X~I/2,X~3/2

respectively in (3.1a-c), namely

(3.12a)

(3.12b)

(3.12c)

where, on use of (3.11a-c), the forcing terms present are

n + V2\U*\S + Vi, M* s + Uoi U*u + Woi(-AlM*l - if'Uu + "01 tj)

if'ut\) - W21IAM?,] + c.c, (3.12d)

- «2, iBw*i

* ij] + cc, (3.12e)

and include both wave-amplitude-squared effects and mean-displacement
effects.

A relation between the mean pressure g2o, the mean displacement — Am
and the wave amplitude g0l then follows from examining the behaviour of
(3.12a--e) as s-+0 + , combined with the flow response in a relatively thin wall
layer that lies between the present s ~ 1 zone and the surface. This is a some-
what delicate matter, as (3.12b, c) appear at first sight to lead to different
results. The resolution is provided by the wall-layer solution, which is similar
to the ones examined by Smith [30], Dodia [31] and suggests that, as ,s->0 + ,
y4o tends to zero but «2o, w2o become unbounded like s~\ Hence we obtain
the relation

l )~ 1 (Uoo+^oo) (3.13)
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linking g20, Aw, gM. The three other equations required to determine these
three unknown functions and the phase term /, all of which are coupled
together, are obtained in the next section.

The final balance required from the properties in the present zone comes
from the fifth order terms in E. Their governing equations follow the pattern
of (3.3a), (3.5), (3.7), (3.8), i.e., forcings of (<£, M, yO(u41), and likewise
for their solutions, which are quite complicated. Again omitting the detailed
working, we find that the internal relation at this level is

b\BA4X —

+ {k(B+ 2b,)f- (An - -2B)fjf -

- ]
2B)f)A'm

-(H2+ l)goi, (3.14)

connecting A4X, g4], further contributions from the phase /, and the primary
and secondary mean-flow-correction effects Aw, A\0-

§4. Outside the boundary layer. The external relations between the g 's and
A's all stem from (2.2a-c), holding outside the boundary layer, coupled with
an expansion for p analogous with that in (3.Id). Thus at leading order Ôi
satisfies (d2/'8f -P2)go\ =0, subject to

gtn
/dy->B2A0i as y->0 + , gO[-+0 as y->co,

~]ywhere y = X~]y. So

goi=go\ exp(-By), and Pgox = B2AOi (4.1)

provides the first external relation.
Pursuing the same pattern to higher order we then obtain after some work-

ing the second-to-fifth external relations for the E terms,

, (4.2)

Pg2i =B2A2l -2fiBfAu + (2BXi)+n2f'2)A(n + 2niBA'(n + a2, (4.3)

Bg31 = B2A31 - 2nBf'A2l + (2BXi) + n2f'2)Au + 2ftiBA\,

+ (Bf-2Xnr}f ~H2if")Am -2fi2if'A'0] + a3, (4.4)

pg4X = B2AM - 2nBf'A3l + (2BXf\ + fi2

+ (Bf- 2Xii fjf -n2if")A,, - 2f

+ (X2f)2-nff + iXn - 5 iB) A0l + 2XfiifjA'01-fi
2A^ + <j4, (4.5)
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in turn. Here the an, n = 2, 3, 4, are defined in Appendix A. The mean-flow
contribution in contrast has y remaining of order unity and leads to the relation

(4-6)

between g2o, ^oo, from (2.2a-c), with the bar in the integral sign denoting the
Cauchy principal value.

In the next section the external relations (4.1)-(4.6) are coupled with the
corresponding internal relations, (3.4e), (3.6b), (3.9d), (3.10), (3.14), (3.13),
respectively, to yield the nonlinear controlling equations for the wave amplitude
goi, the phase / and the mean-flow part Aoo •

§5. The interaction equations and solution properties. When the internal
and external pressure-displacement relations of the previous two sections are
combined, the first three levels of working for the E terms act to confirm the
self-consistency of the values of the constants,

t-3- B-3- l4'T a-8-" B-l (5 1)
' 16 ' 4 ' W 4'

as in previous papers. The fourth level however, i.e., taking (3.10) with (4.4),
is found to yield the balance

2I / 2 / ' 3 + 2 i j / ' - / = (4/31/2)M>o, (5.2)

between the phase and the mean part. Then the fifth-level contributions (3.14),
(4.5) in E lead to a lengthy complex equation for goi(fj), of which the real part
eventually gives the equation

4 Jl Jl£oi| y] jyj JUgoil,)— , \ • )

balancing phase and wave-amplitude effects. The system of interaction equa-
tions is then closed by coupling (3.13), (4.6) to obtain the balance

00

I -̂ *oo(
V2 J {ff

(5.4)

between the wave-amplitude and the mean-flow parts.
The nonlinear interaction is therefore governed by the three equations (5.2)-

(5.4) for the unknown functions / , Aoo, I goi I, over the range - 00 < 77 < 00.
These require a numerical treatment, which was undertaken as described below.
Concerning the earlier studies of [5], [30] for lower amplitudes, the trend
towards their results occurs at relatively low amplitudes |goi I, ^00, with the
scale I fj\ then shrinking, such that |goil, Aw, f become of order \fj\m,m =
4 , 2 , 5 respectively. This has the effect of relegating the two Aoo terms on the
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left-hand side of (5.4) to higher order, in line with the work in the last study:
again see below. At general amplitudes however those two terms remain, rep-
resenting mean-flow inertial contributions distinct from those of the previous
studies.

Computational solutions of (5.2)-(5.4) were sought in a normalized form
obtained by setting

[/, fj,A00,

Here the constants <7i_4 satisfy

c, &4pc].

&l/2
A _

0-3
T77272

b\

(5.5a)

(5.5b)

fixing <Ti 3, with &4=\goi \(fj = O) acting as a given amplitude parameter such
that pc (0) = 1. The governing equations thus become

hl + 2Tichc-fc = ac (where hc=f[.\ (5.6)

(5.7)

(5.8)

where the parameter F o s 2<T2/I
 1(/z2+l) 1/2 increases with increasing ampli-

tude | gO\ |(fj = 0), while a2 = 3/2. Cf. Section 4 of [5]. The iterative numerical
procedure used is basically as follows, for a prescribed value of Fo. Given a
latest guess for F {= (pi)'}, equation (5.8) is solved for a new ac(ric) distribu-
tion, then (5.6) for fc,hc, then (5.7) for pc(Vc) subject to^c(0)=l , and then
2pcp'c provides a revised guess for F, and so on, until convergence. Concerning
more details of the finite-differencing within the above procedure, the solution
of (5.6) was derived by Newtonian iteration with due attention to choosing
the correct one of the three branches for hc, fc [9], while for (5.7) two-point
marching was adopted. For the solution of (5.8) for ac, we took a Fourier
transform approach after some preliminary trials. This gives the transform

of ac as

(5.9)

when the transform variable w is real and positive/negative respectively. Care-
ful inversion of (5.9) combining analysis and numerical means therefore yields
the updated ac numerically. The value of B is chosen to avoid unacceptable
wavelike behaviour locally. Both the computations and an analysis for small
Fo imply that B is nonzero in general. Computational results are presented in
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Figs. 2, 3 for a representative value of Fo , other results obtained being very
similar to these.

It is of interest that imposing small values of Fo takes the solution back to
level I in essence [5], [30]. The main scales involved then have hc, fc, r\c, ac,pc

of the respective orders Fo, Fo
3, F0

2, Fo
3, 1. That leaves, in (5.8), the new terms

{ac+T]ca'c being negligible by a relative amount of order F0
5, matching with

the level-I balances as required. There is in addition however an outer region
where those new terms reassert themselves, with r]c large and 0(Fo1/2). In
contrast, at relatively high amplitudes where Fo becomes large, the integral
contribution in (5.8) becomes secondary, since all the variables hc,fc, r]c, ac,pc

then simply remain of 0(1). Numerical solutions in this limit of large Fo ,
which are shown in Fig. 4, were derived from applying a fourth-order Runge-
Kutta shooting scheme to (5.8) without the integral term.

The large-Fo limit above shows a diminishing of the mean-flow influence
produced by the flow near the external stream, such that the main balance left
is between near-wall effects alone, namely those of the mean-flow momentum
and of the Reynolds stresses due to the amplitude-squared inertia from the
dominant fluctuations. Our next step is to consider the new stage or stages
that must arise as the amplitude level continues to increase. Eventually we
would expect the whole of the trailing edge to be affected nonlinearly as in [5]
but prior to that important adjustments take place at amplitudes (and thickness
scales) slightly above those in the current level II. These adjustments are consid-
ered in the next section.

§6. Increased disturbance amplitudes. As the amplitude of the disturbance
is increased further, the effects of nonlinearity are felt across progressively wider
edge layers, astride the O(\) edge layer described in the first part of this work.
The flow in these layers may be studied in an analogous fashion. The inter-
action equations given in Section 5 are shown below to be a particular system
in a set of such systems of equations, each valid for a particular amplitude
level and corresponding edge layer.

We define the edge-layer variable r\ now by Z — fiX = r\Xn. Thus the previ-
ous 0(1) edge layer is the case where n = 0 [level II]. At the other extreme, if
n- 1 [level III], then the region of significant nonlinear effects extends across
the entire trailing edge and can no longer be treated as an edge layer. See Fig.
1. We therefore constrain n by the condition 0 < n < 1. Order-of-magnitude
arguments indicate that the first new edge layer occurs when n = 1 / 5 . An infinite
set of values for n is in fact generated, each corresponding to a new layer, as
we see below.

The expansions for the flow variables may be found in terms of n as

u2] + c.c.) +X(-6+Wn)/4(E2u22 + ex.)
{~i + 5n)/2u2m+.. ., (6.1a)
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K ° :

-a —

- 3 —

1 .O —

O S —

pc o . o -

-o.s —

-•» . o —

- 1 -S —

-3.O

fc

Figure 2. Solutions computed for h,.,pc, ac, / at a representative amplitude within level II, for
the ?;, range [-10, 10]. Here Fo= 1. Results obtained for values of To of 0-8, 1-3 were closely
similar.
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hc o—

-3 -2 -1

2 .O —

1 .S —

1 .O —

O.S —

Pc o.o-
-O.S —

-1 .O —

-1 .5 —

-2.O

-S -A -3

ac o.o-

-3 -2

-3 -a -1

Figure 3. Solutions computed for h,.,pr,ac,fc at a representative amplitude within level II, for
the t],. range [-5, 5], Here again To= I, results for ro = 0-8, 1-3 being closely similar. Compare
with Fig. 2.
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hc o-

-e -s
Vc

-3 -2 -1 O

Vc

-7 -O -3 -2 -1 O

-o -a -7

/ c

-10 -O

Figure 4(a). Numerical solutions for the increased amplitude response of (5.8) corresponding
to the upper extreme of level II. (a) shows the results for negative TJC, with only the range [-10, 0]
being shown for clarity, (b), (c) show shooting results for positive 77,. Note the presence of a
saddle point in (b), (c), cf. Dodia [31]; (b) shoots just above the saddle point and (c) just below
it.
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Figure 4(b).
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Figure 4(c).
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4(Evu+ c.c.)+X(3 + 9")/4(Ev2l + c.c.)

+ c.c.) +X(-1 + in)/2v2m + ..., (6.1b)

0 + cc.) + ... {similarto U), (6.1c)

0 + c.c.)+X0+'!")/4(EPu+c.c.)+Xi-1+9")/4(EP2l+c.c.)

A=Xl~i+5n)/4(EA0 + c.c.) + . . . {similarto U}.

Here £ = exp [i(bX2 + X]+"Xri+Xo + in)/2f](n)+X2"f2(r]) +. . .)]. For each
new value of n, as n increases, a new term becomes significant in the phase
function; thus as n -+ 1, an infinite expansion for the phase function is produced.

Substitution of (6.1a-e) into (2.1) reveals that, to the first and second
orders, the governing equations are unchanged from the case n = 0 of Sections
2-5. At third order, the equations differ from (3.7) only in that there are no
longer any ^-derivatives, as the layer-width has increased. In more detail, at
first and second order the pressure-displacement relations are identical to (4.1)
and (4.2) respectively. At third order the rj-derivative of A0] in (4.3) is again
lost, with no other alteration. When combined, the internal and external rela-
tions at first, second and third orders again confirm the self-consistency of the
constants given in (5.1).

It is at fourth order that the current amplitude parameter n first appears in
the controlling equations. The following equations holding then should be
compared with (3.8):

if(u3,) -jui/'i u2l + /AJJMIi + if\w2\ ~j

1 = O, (6.2a)

-nr,f\), (6.2b)

J'(u2i)-isfif\w21 +i(s-

3n)ft -nrjf\]w0-Urif] wo + iBAmwo

(6.2c)

Note the appearance of n via the expressions in square brackets. The terms
underlined are those which appeared at third order in the case where n = 0, and
they are only present at this order if n= 1/5. As n continues to take larger
values these terms move to even higher orders. They are important terms
nonetheless and will be referred to as "moving" terms. The external relation
holding at fourth order is analogous with (4.4):

^ -2/ i f \BA2 l + (2£A77 + y2f\2-2yBf'2)AU

[Bf{ 1 + 3») -2A/7^/', - 2Bnr)f\ + 2M
2f\f'2]A0 + <?3. (6.3)
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Here we observe the new Au term involvingf2{rf) and the appearance of n via
the expression in the square brackets. Again the underlined term is present
only if « = l / 5 . The double derivative of f\(i)) present in (4.4) is another
"moving" term and is situated at fifth order if n= 1/5. Combining the new
fourth-order internal and external relations above we obtain the first interaction
equation

V2/',3 + 2( 1 + n) ij/i - (1 + 3/i)/, = j3Am, (6.4)

analogous with (5.2).
The mean-flow equations must be considered next. Again there is no

dependence on the parameter n at first order. At second order, however, the
following equations are obtained,

k(-l + 3n)Am- nr\Amr] + v2ms- HU2mn + w2m^ = 0, (6.5a)

+ v2m + wouov-nuouon + c.c. = 0, (6.5b)

- sp w2mT] - n uow*,, + wow*n + c.c. = 0. (6.5c)

On comparing the above equations with (3.12a-c) we see that the pressure
gradient forcing term is not present at this order. As at level II, there is a wall
layer, in which u2m, w2m become unbounded like s~\ but v^ tends to zero. This
suggests the following procedure. We first multiply (6.5b) by n and subtract
(6.5c), then substitute using (6.5a). Then by considering the result at s = 0 we
find

-\(\+3ri)Am+ hin—

(6.6)

Substituting for u0, w0 and their complex conjugates, we therefore obtain the
second controlling equation

(n- 1)r]Amn- \(1 + 3n)Am = -2 ( A < B~X ) (\P0\
2)'. (6.7)

Hb

On comparing (6.7) with (5.4) (or with (5.8)) we observe the loss of the Cauchy-
integral term, as expected. For all n > 0 this last term is of reduced significance
and indeed does not appear in the main interaction equations.

In the case where « = 0, it is at fifth order that we find (as in Section 5) the
final controlling equation necessary to describe the solution. However, as n
increases and the phase contains progressively more functions /•(;/), the final
interaction equation is found at progressively higher order. For example, in
the case where n= 1/5, it is necessary to proceed to the sixth order to reach
the final equation; the fifth-order balances provide only an equation for the
new phase function f2{r]). The so-called "moving" terms discussed earlier pro-
duce the desired third interaction equation. These particular terms are present
at fifth order in the case n = 0, at sixth order for the case n = 1 /5 and so on. It
is possible therefore to obtain the final equation, for general n, by considering
solely these terms. The new phase functions that come into action do not play
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a part in the final equation, and so it is not necessary to solve the equations
at all preceding orders before considering the higher-order equation which
contains the crucial moving terms. In this way, and again omitting the detailed
working, we obtain the final equation, valid for all n such that 0 < n < 1, as:

-= ft2 + (I + n)ri \\Po\'+ - = / ' i / i ' + U l - 5 « ) |/>
0| = 0. (6.8)

v2 J Lv2 J
This is to be compared with (5.3) which is for the lower-amplitude case « = 0.

The nonlinear interaction in each successive edge layer is thus described by
the three equations (6.4), (6.7), (6.8) for the entire range 0 < « < l . It is of
interest next to examine the decay of Am and Po in the outer reaches of the
edge layer, in particular as 77 -> -00 and the middle of the spot's trailing edge
is approached. The decay is determined by the three equations above as

A I i ( l + 3 n ) / ( 2 ( n - l ) ) p i , (3 + 5«)/(4(«- 1)) t(.Q\

Am~\T]\ , FQ ~ 177[ , a s 77 —• — 00. (6 .9)

The decay here agrees with the inverse-square-root decay inferred from the
factor B in (5.9) in the earlier case n = 0. More significantly, for higher n values
it is clear that as the edge layers become wider, corresponding to increasing
edge-layer amplitudes, the decay into the mid-spot trailing edge region becomes
more abrupt.

We may then move on to consider finally here the behaviour of the displace-
ment and pressure in the mid-region of the spot trailing edge, between the two
edge layers (at Z% ±l*X) at any value of n. To this end we let the edge-layer
variable 1771 -> O(X' ~") so that Z-/iX -» O(X), formally. The resulting orders
of magnitude for the pressure and displacement are found to be independent
of n, yielding the significant result that at any disturbance amplitude level
between level II (« = 0) and level III (n= 1) the mean and fluctuating parts of
the displacement are both O(X~]) in the central part of the trailing edge. At
these amplitude levels the equations in the central region are linear and do not
fix the displacement variation explicitly, which is therefore determined by his-
tory effects and remains arbitrary. This is in agreement with our earlier work
(see Smith, Dodia and Bowles [5]) in which the mid-region of the trailing edge
is believed to remain linear until amplitude level III is reached, when in a
relatively abrupt fashion the nonlinear effects become over-riding across the
entire trailing edge (Fig. 1)

§7. Final comments. As far as the more immediate implications of the
study are concerned, perhaps the foremost finding of the present work in the
end, apart from the details, is its confirmation of the suggestions in [5] concern-
ing the so-called amplitude level III (« = 1), when downstream nonlinear effects
flood in from the wing-tips to cover the entire trailing-edge area. The flow
structure then implied by our Section 6, as the amplitude factor n -> 1, is exactly
as anticipated in [5] (and [30]), despite the differences and subleties associated
with the join with level II, as well as with earlier lower-amplitude trailing edge
properties in [29]. See in particular Section 5 of [5] for the level III structure,
which is strongly nonlinear since n = 1. Moreover that amplitude level then
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leads on even further downstream to the findings in Section 6 of [5] with respect
to the spot centre. The strong more global nonlinearity met there is especially
exciting, including a novel interaction, which arises on the largest scale (airfoil
scale) as covered by [5]'s equations (2.1), (6.1). The nonlinear build-up inward
from the spot wing-tips, in the "echelon" fashion described in Section 6, pro-
vides an explanation both of the trailing-edge response and of the calm linear
region behind which is in line with some features of experiments, an explanation
which no other theory seems to have provided so far.

More broadly concerning the increased physical understanding of nonlinear
spots and their prediction, the length and time scales provoked in the three-
dimensional spot evolution are numerous and cover a wide range as shown by
the theory here and in [5, 6, 29-31]. These tend to confirm the impression of
spots within spots, as in the experimental, computational and theoretical
aspects reviewed by [l]-[5], particularly when the effects of viscosity are added
in the form of sublayer burstings [5,32]. Extra scales found in the present
work are those of the wall layer, which helps to decide the correct mixture of
the mean-flow momentum balances in Section 3, and all the new scales of phase
observed in Section 6. The review in [5] also shows that the theory is tentatively
in keeping with many of the principal experimental findings reviewed in [1]
[5] and references therein and while there is a great deal still to explain there
are several points of fair agreement quantitatively; see also [6] on the approxi-
mate 11 ° spreading rate. In fact the theory here combined with [5, 6, 29, 32]
is now in qualitative or quantitative agreement with experiments on major
features of spots such as those listed in Section 1. See also our Fig. 1 and [6]'s
Fig. 2. The above is for the boundary-layer spot, while [31] studies wall-jet
and channel-flow spots.

Acknowledgements. Thanks are due to the Engineering and Physical Sciences
Research Council for support of B.T.D. and R.G.A.B. at University College
London and to the referees for their helpful comments.

APPENDIX A. The functions an. These functions used in Section 4 are
found to be given as follows for n = 2, 3, 4:

, (Al)

= K3-(A-nB)f'g2i- *{2BMj + {n2'+ \)f'2}gn

+ i(H2+\)f'gm, (A2)

K4-a-iiB)f'gM-\{2BXfi + (n2+\)f'2}g2i

+ i{X-nB)g'2X-\{Bf-2nXf)f'-i(n2+\)f"}gu

X2f\2}gQX

(A3)
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Here

P<Ti = -(*.-fiB)f'gou 2pK2=-^-ftB)f'al3 (A4)

2j8 2p h 4P

(Xii)u\, (A5)

(A6)

(A7)

+ 2i(k-iiB)K'2-3(k-liB)f'Y3/p. (A8)

These formulae arise from the successive solutions in Section 4.
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