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Theory and computations for breakup of unsteady 
subsonic or supersonic separating flows 

By I. P. VICKERS A N D  F. T. SMITH 
Mathematics Department, University College London, Gower Street, London WClE 6BT, UK 

(Received 6 July 1993 and in revised form 13 November 1993) 

This study of flow just beyond a breakaway-separation point presents a description of 
planar nonlinear unsteady effects over a fairly wide parameter range, for a subsonic or 
supersonic boundary layer at large Reynolds numbers. The inviscid model thus 
produced essentially contains a vortex sheet near the smooth solid surface, with local 
inner-outer interaction. The governing equations couple the eddy velocity and pressure 
with the thicknesses of the detached boundary layer and the eddy. The computational 
method presented here uses a new adaptive gridding technique intended to capture 
accurately the spiky solution behaviour that develops and to compare with theory. 
Analysis and computations point to a breakup in the solution, suggesting an 
explanation for the start of transition and possible turbulent reattachment as found 
experimentally. The influence of the detached boundary-layer thickness proves crucial. 
The type of finite-time breakup encountered is studied analytically and the criterion for 
its occurrence is highlighted. This is guided by a characteristic analysis for a special 
case. The finite-time breakup is similar in spirit to, although different in detail from, 
a nonlinear breakup proposed earlier by one of the authors for general unsteady 
interactive boundary layers and it suggests a wide application of that nonlinear 
breakup theory and its criterion. Comparisons between computations and theory are 
found to be supportive. 

1. Introduction 
There are three chief points to this paper. The first is to present an account of 

nonlinear unsteady effects on separating flow in a certain fairly wide parameter range, 
for an incompressible or compressible boundary layer. The model thus produced, 
containing a vortex sheet near the solid surface, leads to breakdown in the solution and 
suggests an explanation for the start of transition and possible turbulent reattachment 
as observed experimentally. In particular the influence of the local shear-layer 
thickness proves crucial. Secondly, a numerical method is to be described which uses 
an adaptive gridding technique aiming to capture accurately the spiky solution 
behaviour that develops and to compare with theory. The third point is to study 
analytically the type of finite-time breakup encountered in the solution, and the 
criterion for its occurrence. This is similar in spirit to, although different in detail from, 
a nonlinear breakup proposed (Smith 1988) for other contexts and it suggests a wide 
application of that nonlinear breakup theory and its criterion. 

Separation and subsequent transition to turbulence are commonly observed in flow 
past, say, a smooth bluff body or an airfoil placed within an otherwise parallel or nearly 
parallel main stream, at high global Reynolds numbers Re. The settings are especially 
in aerodynamics and meteorology, affecting vehicle and turbine design, weather 
prediction, and airflow past buildings. An abrupt collapse or stall of the initially 
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laminar separation upstream, followed by turbulent reattachment downstream, is often 
found in practice and in various computations, as in Burmall& Loftin (1951), Gault 
(1955), Tani (1964), Gaster (1966), Mehta (1977), Mueller & Batill (1980), Van Dyke 
(1982), Young (1982), Vatsa & Carter (1983), Mueller (1984), Dovgal, Kozlov & 
Simonov (1987), Kozlov (1987), Mezaris et al. (1987). Concerning computations, the 
flow solution depends crucially on the position of laminar-turbulent transition and 
hence on the transition criterion used, which is often based on empiricism. Much of the 
literature is reviewed by Smith & Elliott (1985), who also provide a theoretical account 
based on unsteady marginal separation which reproduces some of the observed 
features. Alternative paths to stall or transition involving some unsteady separation are 
studied by Peridier, Smith & Walker (1991 a, b), Hoyle, Smith & Walker (1991), Smith 
& Bowles (1992), Smith (1993). Our concern likewise is with unsteady separation and 
transition, taking two-dimensional flow as a starting point but with less restrictive 
assumptions than in Smith & Elliott (1985) on the underlying separation motion. 
Indeed, the starting separating motion assumed here is believed to be in its most 
general form (Stewartson & Williams 1969, 1973 for the supersonic range; Sychev 
1972, Smith 1977 for the incompressible or subsonic range). It is then found below that 
both small-scale and large-scale separations are very prone to linear and nonlinear 
instability and subsequent transition, as in practice, and especially so for the large-scale 
forms, and the nonlinear breakup criterion mentioned in the previous paragraph 
applies here. 

The underlying, starting, flow is governed by the triple-deck solution of the last two 
named references, in the incompressible case which we address mostly in this section. 
The solution compares favourably with experiments, as shown in Fiddes (1980), Smith 
(19863) for instance, for large-scale breakaway separations: see also the reviews by 
Messiter (1983), Stewartson (198l), Smith (1982), Sychev (1982). In the triple-deck 
local interaction a sizeable adverse pressure gradient, with only a small pressure rise, 
leads to regular separation of the boundary layer, avoiding the Goldstein singularity. 
Two kinds of separation may be identified: small-scale separation, near a small 
deformation such as a slight change in the surface conditions compatible with the 
interactive scalings (see reviews above) ; and large-scale separation, provoked by a 
sizable disturbance, say an obstacle of finite dimensions, or on a bluff body. Our 
concern is mostly with the second kind. There the majority of the oncoming boundary 
layer is shifted away from the body surface and eventually appears within the outer 
flow downstream as a thin free shear layer of concentrated vorticity, separating regions 
of predominantly inviscid flow, if the steady state persists. The shear-layer thickness 
then is typically O(Re-iZ*), where I* is the global lengthscale. 

Linear instability features for such separating flows really hinge on two aspects: 
viscous-inviscid Tollmien-Schlichting (TS) and inviscid modes (see more later on). 
Concerning the former modes, which are possible in virtually all realistic boundary 
layers, lower-branch TS modes are described by the same triple-deck structure (Smith 
1979) as for the underlying separating flow. Therefore the instability problem is 
inherently a non-parallel one in general, as the basic separating flow and the linear 
instabilities have exactly the same lengthscales. This is discussed by Smith (1987) 
among others. For disturbances of relatively high frequency and/or for increased 
distances beyond separation, on the other hand, non-parallel-flow effects become 
secondary, and this is the regime tackled in the present study, including nonlinear 
effects. That regime is also found below to confirm the susceptibility of the separating 
flow to instabilities of the Rayleigh and Kelvin-Helmholtz types. These concern the 
inviscid limit in which the shear layer appears as a vortex sheet near the surface, 
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including inflexional velocity profiles, while the local curvature of the separating flow 
can provoke Gortler instabilities also. Linear instability properties are clearly of 
limited relevance to the practical configurations described earlier, however, because in 
practice the mean flow is substantially altered from the laminar form during stall and 
transition, and so our emphasis here moves on to nonlinear properties; likewise three- 
dimensional effects and other parameter regimes, e.g. as in Brown, Cheng & Smith 
(1988), require further study. 

Nonlinear unsteady effects are clearly necessary to account for the transition and 
stall in the separating flows of current interest. Little seems known as yet on the 
influence of such effects, but the unsteady nonlinear triple-deck system provides a most 
appropriate starting point. We then focus on relatively fast scales equivalent to the so- 
called high-frequency regime (Smith & Burggraf 1985; Zhuk & Ryzhov 1982; Smith, 
Doorly & Rothmayer 1990) and corresponding to increased distances downstream. 
The major flow properties there are inviscid, subject to assumptions about thin viscous 
layers which are discussed later. The same evolution equations result, in fact, if the 
Euler equations are taken as the starting point. Moreover, significant effects due to the 
thickness of the separated shear layer can be incorporated in the near-surface motion, 
cf. Moore (1979), Saffman & Schatzman (1982a, b). This aspect is presented in 92 for 
large-scale two-dimensional separations, based partly on the suggestions in Smith 
(1987). The high-frequency parameter used is Q($ l), which is related to the scaled 
distance downstream of separation being large in triple-deck terms, cf. (1.2) below, and 
to the range of dimensional frequencies Q*, contained within the nonlinear 
disturbances, defined by 

where U *  is the global velocity scale. The corresponding streamwise distance x* 
beyond separation is in the range 

Re; < Q*l*/U* 4 Ref, (1.1) 

Re-; < x*/l* < Re-&. (1.2) 

Given (l.l), (1.2), the nonlinear evolution equations of $2 then hold for the unsteady 
separated eddy velocity, the surface pressure, the eddy thickness and the change in 
boundary-layer thickness, in scaled terms. The range (1. l), (1.2) controls ' mid-scale 
separation', and it includes thickness effects that contrast with Brown et al.'s (1988) 
model which applies instead for global-scale separations effectively. The shear-layer 
thickness present in mid-scale separation smooths out the terminal solution behaviour 
found by Brown et al., as Vickers (1993) shows, and instead another type of terminal 
behaviour emerges (93). This is akin to the finite-time breakup of Smith (1988) and is 
considered in detail in g3, including the criterion for breakup. 

Computational solutions are described in 94. These were obtained by use of a new 
adaptive-gridding approach, which was designed to allow for the possible spiky 
solution response implied by the analysis in 992 and 3. The approach is perhaps more 
analytically based than most others and it seems to have potentially wide further 
applications. Previous procedures are many, and include those of Eiseman (1987), 
Catherall (1991), Hawken, Hansen & Gottlieb (1991). The first two here achieve an 
adaptive redistribution of grid points by requiring an approximate equidistribution of 
the truncation error. This works quite well, although with interpolation also being 
involved the truncation error can be rather large. In some ways Hawken et al. (1991)'s 
procedure is not dissimilar to ours, developed independently, but they seek to minimize 
an error measure as opposed to the current choice of a transformation. The current 
adaptive approach performed satisfactorily in test comparisons with exact solutions 
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for the Burgers equations, as described in Vickers (1993), and it is used in $4 to check 
the analytical suggestions of 9 3 and test the breakup criterion. 

Further comments are provided in $5. The Cartesian coordinates x, y, the 
corresponding velocity components u, ZI and the pressure p used are non-dimensional, 
with respect to the typical global lengthscale I* (e.g. the airfoil chord), to the velocity 
scale U* (e.g. the local main-stream speed) and to p*U*’, where p* is the fluid density. 
The time t is non-dimensionalized with respect to l*/U*, while Re = U*Z*/v* is large, 
v* being the kinematic viscosity of the fluid. Supersonic motion is also considered 
below, in B22-4. The solid surface is taken to be flat locally, given by y = 0, with the 
original laminar separation taking place at x = 0, followed by nonlinear unsteady 
interaction occurring downstream focused around an x-station lying within the range 
of (1.2). 

2. Nonlinear disturbances in separating flow 
The breeding ground for all the separating flow instabilities can be regarded as the 

triple-deck structure, in two or three-dimensional form, as we shall see; this structure 
describes not only initial TS waves but also the first appearance of inflexional modes 
(Smith 1987 and below) and it connects up with Gortler instabilities via its three- 
dimensional characteristics. It is important, in addition, that the triple-deck structure 
also governs the basic, separating, flow (Sychev 1972; Smith 1977) locally, which is an 
unfortunate point in a way, as the linearized instability problem for such a basic flow 
is then found to be almost irretrievably non-parallel in nature. In scaled terms, with h 
denoting the local skin-friction factor and (figure 1) 

( x , ~ ,  z,  t )  = (2-k3x, A-@Y, h-tE32, A-QT), (2.1 a) 

(U,Y, w,p)  = ( h i d ,  &3v, &W, hb’P), (2.1 b) 

where E E Re-&, both the separating flow and its major instabilities are therefore 
controlled by the nonlinear viscous-inviscid interactive problem 

with 

au av -+- = 0, ax a y  

au au au ap a 2  u -+ u-+ v- = --(I, T)+- 
8~ ax ay ax ay2’ 

U = V = O  at Y=O, 

U -  Y+A(X,T)  as Y+m,  

(2.24 

(2.2 b) 

(2.24 

(2.2d) 

(2.2e) 

where denotes the principal value of the Cauchy-Hilbert integral and we restrict 
ourselves to two-dimensional features. Here (2.2~-d) hold in the lower deck. The basic 
steady separation is present for 2/aT identically zero, with the unknown displacement 
increment - A  = - drising as X i  far downstream for an open or breakaway separation 
there (Sychev 1972; Smith 1977), which is our main concern, whereas closed local 
separation can also occur, for flow over a surface-mounted obstacle for instance (Smith 
19866; Messiter 1983), with Aand the unknown pressure P = P then tending to zero 
instead in the far field. Overbars denote a basic steady flow. Unsteady separation, 
corresponding to non-zero T-dependence, then introduces linear or nonlinear 
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FIGURE 1. (a) The triple-deck structure for breakaway separation. 

(b) Velocity profile beyond the separation. 

instabilities. For, if a small unsteady disturbance (decomposed as exp (iaX-iQT)) of 
scaled frequency Q is made in the incoming motion upstream, i.e. where the basic 
motion is the parallel one U = Y,  V = W = P = A = 0, then the disturbance becomes 
unstable (Smith 1979, 1 9 8 6 ~ ;  Zhuk & Ryzhov 1980) for 

where 0, M 2.30. This linear instability of the parallel attached flow is none other than 
the TS instability, governed by the linearized unsteady version of (2.2). The nonlinear 
unsteady version then yields nonlinear TS waves (Smith & Stewart 1987a; Smith 1984, 
1986 a ;  Duck 1985), travelling unsteady separations (Conlisk, Burggraf & Smith 1987) 

0 > a,, (2.3) 
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and the possibility of breakup (Smith 1988; Peridier et al. 1991 a, b ;  Hoyle et al. 1991) 
and transition downstream. Separating basic motion, by contrast, in general poses a 
more difficult nun-parallel-flow problem as regards the instability since the lengthscales 
of the separating motion and the instability coincide, which is an unfortunate point 
rendering the above decomposition invalid. That is, the governing equations for a 
small disturbance generally cannot be reduced from partial- to ordinary-differential 
ones, in the conventional Orr-Sommerfeld fashion, because the coefficients U, are 
non-trivially dependent on X, Y in separating flow. Unfortunately, this somewhat 
obvious point is overlooked in some studies of separating-flow stability. 

The main options available therefore are: a computational treatment of the linear or 
nonlinear partial-differential equations (2.2) or their three-dimensional counterparts, 
for an initial-value problem say (which is likely to lzad to the finite-time breakup of 
Smith 1988, see Peridier et al. 1991a, b ;  Hoyle et al. 1991); or an analysis based on 
relatively short-scale properties (where linearly the streamwise variation of U, V during 
separation is a secondary effect). We pursue the latter course for incoming TS-like 
waves upstream, to find how they might develop and change as the flow separates. See 
also Smith & Bodonyi (1985), Tutty & Cowley (1987) as regards inflexional instability, 
again within shorter lengthscales. Linear short-scale TS waves corresponding to large 
values of B are found to remain neutral at leading order, with the amplitude growth 
or decay being fixed at higher order by a combination of viscous and non-parallel-flow 
effects (Smith 1986a, 1987; Smith & Stewart 1987b), the spatial growth rate G coming 

(2.4) 
out to be 

Hence an increasing/decreasing basic displacement ( - x) has a destabilizing/ 
stabilizing effect on the incoming waves, as would be expected physically. For 
breakaway separating motion in particular the growth rate increases indefinitely 
downstream, on the present scale, since -KO= X i  then (Smith 1977) (see figure 1). 

Hence a new phase is entered relatively far beyond the separation point. On linear 
or nonlinear grounds the critical distance Xcrit = L involved is O(Bi), where the main 
short waves have length O(L-g) locally and the scaled departure distance is Lbf ,  say, 
where d is O(1). These scalings follow from (2.4) or from an order-of-magnitude 
argument as in Vickers (1993), Smith (1987). At the O(L) distance beyond separation 
the unsteady-flow behaviour revolves initially around the stability of a simple quasi- 
parallel basic flow (figure l), namely the uniform shear 0 - Y - A  above the now- 
detached shear layer, for Y > A,  and the negligible flow 101 < 1 underneath, for 
0 < Y < A ,  in scaled terms. This base state is the far-downstream form of the steady 
breakaway-separating motion in Smith (1977). The associated linear and nonlinear 
stability properties are predominantly inviscid, or rather, in the nonlinear regime, will 
be taken to be so at the first approximation. 

G = 1/(22/2)+$(-dA/dX). 

The nonlinear equations of concern stem from (2.2), with 
(U,  v, P ,  A )  = O(Li, Li, L3, L:) (2.5) 

and X-+L+L-aX, Y+ Lg Y henceforth. The detached shear layer now takes an 
unknown shape LZS, where we note again the abrupt O(L-f) X-scale. The governing 
equations above and below the thin shear layer or interface are therefore the inviscid 
virsions of (2.2), 

au av -+- = 0, 2x 2Y 
( 2 . 6 ~ )  

au au au ap 
aT ax ay ax, -+u-+ v- = -- (2.6b) 
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subject to V = 0 at Y = 0, U - Y +  A(X,  T )  as Y- t  co as before but now the kinematic 
constraint at the interface requires 

as as 
V = -+ U -  at Y = S(X,  T ) + ,  

aT ax (2.6~)  

Here T+LP3T. Also, a simple assumption of tangential flow is made at the solid 
surface, although that is likely to prove invalid at later times (see also Smith & Burggraf 
1985; Smith 1987, 1988; Peridier et al. 1991a, b). If zero vorticity is present initially 
below the shear layer then the solution of (2.6~-c) there produces 

(2.7) 
au u= U(X,T) ,  v=-Y- ax’ 

so that 

as a(su) -+- = 0. 
aT ax 

(2.8,) 

(2.8 b) 

Above the shear layer, by contrast, there is non-zero uniform vorticity such that 

from (2.6a, b) and so (2.6~) yields 

a a ap 
- ( S + A ) + ( S + A ) - ( S + A )  = -- 
aT ax ax‘ (2.104 

The nonlinear system controlling U , P , S , A  in this case is closed by the pressure- 
displacement law 

(2.10 b) 

in view of (2.2e). Linearized features provide some useful guidelines and checks. As a 
check the linearized version of (2.8a, b) and (2.10a, b), for a small disturbance about 
the exact uniform state U = 0, P E 0, S = A ,  A E - A ,  reproduces the dispersion 
relation 

a3d - 01252 + Q2 = 0 

for wavenumber a, frequency 52, as in Smith (1987). This relation has certain notable 
properties. First, it provides a continuation from the incoming attached-flow TS mode 
upstream, since there d --f 0 and the second and third terms in (2.11) then dominate, 
giving a+52$ as in Smith & Burggraf (1985), Smith (1986a, b). Secondly, inviscid 
inflexional Rayleigh-type waves are possible also, these occurring when interaction is 
suppressed (the A-disturbance --f 0) and the first two terms in (2.11) become dominant, 
yielding a -+ Q/d. These waves are neutral and correspond to shortened lengthscales, 
a 9 1, again for d small when 52 is fixed, or, more generally, for small values of the 
parameter A 2 / 0  governing (2.1 1). Thirdly, and in contrast, for large d (or d2/O), i.e. 
further downstream, the first and third terms in (2.11) can dominate and yield 
instability of a Kelvin-Helmholtz variety (cf. Brown et al. 1988; Drazin & Reid 1981; 
Moore 1979), since then a x (Q2/d)iexp ( f in/3). Fourth, and perhaps the most 

(2.11) 
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FIGURE 2. Illustrating the effect of the eddy velocity U, on instability via the left-hand side of 
(2.15). The case (2.11) corresponds to U, = 0. 

significant feature, is the criterion for instability, i.e. complex roots for a from (2.1 1). 
For real wavenumbers a the relation (2.9) always yields temporal instability provided 
d > 0, but for the practical alternative of a fixed-frequency disturbance, with O 
specified as real, (2.9) is found to yield spatial instability if d exceeds the value 
where (see figure 2) 

&it = 3(9 2 1 0 :  1 . (2.12~) 

But since d = ($b)Xg to leading order, with b zz 0.44 (Smith 1977, and see Korolev 
1980), this yields the prediction 

Xcrit = (O/3b2)i (2.12 b) 

for the distance between the separation point and the position of abrupt enhanced 
instability. In dimensional terms, (2.12 b) becomes 

x:Tit = l*(a*l*/3b2U*)Jh-~Re-~ (2.13) 

from use of (2. l), where 52" is the dimensional frequency imposed. The range of validity 
of (2.13) is restricted, however, to 

Re: V / l *  4 O* 4 Re; U*/I*, (2.14) 

the left restriction ensuring that the scaled frequency SZ is large and the right restriction 
requiring the detachment distance to remain small compared with the detached 
boundary-layer thickness. Comparisons of Mezaris et al.'s (1987) experimental results 
and the prediction (2.13) show an encouraging amount of qualitative agreement, and 
possibly also quantitative depending on the precise value of the skin-fraction factor A, 
as shown in figure 3. 

The relation (2.1 1) suggests something more, however, namely the existence of a 
threshold amplitude for the nonlinear growth of disturbances, because of (2.12~).  That 
is, nonlinear disturbances may grow (if d locally exceeds dcrit) in the interval upstream 
of the linear growth point of (2.12b) or (2.13), thus causing substantial instability to 
arise sooner. We note in passing that an upstream movement of Xcrit, corresponding 
to reduction of dcrit, also results if there is significant reversed flow present in the eddy, 
since linearization about U = U, and S = - A  = d changes (2.11) to 

a3AL'+(SZ-aUo)2(52-~2) = 0. (2.15) 

Thus if U, < 0 complex roots for 01 arise at smaller values of d than for (2.1 l), i.e. 
reversed flow advances the critical position of enhanced disturbance growth, as might 
be expected (see figure 2). 
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FIGURE 3. Comparisons with the experiments of Mezaris et al. (1987), showing disturbance amplitude 
contours at (a) 0.2 Hz, (6) 0.5 Hz. The present prediction (2.11) of length is shown arrowed in each 
case. 

Henceforth we consider the governing equations (2.8a. b), (2.10a, b) and their 

P = -a~/ax. (2.16) 

Equations (2.2a-d) with (2.16) (and hence (2.8a, b), (2.10a), (2.16)) are obtained via 
a transformation analogous to (2. l ) ,  but the orders of magnitude corresponding to 
(2.5) are different as -A  cc X far downstream for supersonic breakaway-separating 
motion (Stewartson & Williams 1969, 1973). We note also that the supersonic-flow 
analogue of much of the above analysis goes through with (2.16) replacing (2.2e), 
(2.10 b) and hence (2.1 1 )  being replaced by 

u3A - a252 + i 02  = 0, (2.17) 

which yields linear spatial instability for all d > 0. Thus it is interesting that separation 
immediately destabilizes supersonic motion, even though attached supersonic motion 
is stable to the original viscous-inviscid waves. 

Finally here, we note the effect of the relative thickness of the separated boundary 
layer, which is implicit in the governing equations (2.8a, b), (2.10a, b), (2.16), cf. 
Kachanov, Ryzhov & Smith (1993) in attached flow. The right-hand restriction (2.14), 
in requiring the detachment distance to remain small compared with the detached 
boundary-layer thickness, maintains the triple-deck balance and hence our starting 
point is the system (2.2a-e), for a subsonic main-stream flow. However, the current 
configuration is sufficiently far downstream of the separation point for the flow field 
to be decomposed into two regions of predominantly inviscid motion separated by a 
thin shear layer or interface, and a viscous wall layer. The flow in the wall layer is 
governed by the viscous unsteady boundary-layer equations driven by the pressure 
gradient determined from the inviscid flow above. Hence this layer remains passive 
with respect to the main inviscid flow regions above or is assumed to be so (see below, 
however). The displacement across the boundary layer, in contrast, requires matching 
with the outer inviscid motion (in the major part of the boundary layer) and results in 
the flow forms after (2.8b), which in turn yields the equation (2.10a) controlling the 
expression S +  A .  This expression, i.e. the difference between the scaled shear-layer 
shape S and the scaled boundary-layer displacement - A ,  is therefore representative of 
the effect of the flow within the detached boundary layer. That is to say, although the 
shear layer is taken to be relatively thin, the overall boundary-layer thickness. 
nevertheless exerts an influence on the main flow field. 

supersonic-flow counterpart, with (2.2 e), and hence (2. lob),  replaced by 
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3. The finite-time break-up 
The possibility of a finite-time breakup of the mid-scale system (2.8a, b) and 

(2.104b) or (2.16) is considered here. This is partly in the light of the results of the 
numerical study in $4 below and partly due to Vickers' (1993) findings concerning the 
Brown et al. (1988) singularity as mentioned in $ 1. 

3.1. A reduced system 
In preliminary numerical trials for (2.8a, b) (2.10u), (2.16) starting with smooth initial 
conditions at time T = 0, the scaled streamwise velocity U and eddy width S appeared 
to develop quite severe behaviour near a particular X ,  T > 0, with sharp changes in the 
slopes there: see Vickers (1993). Moreover, the variation of the scaled boundary-layer 
displacement -A rapidly decayed to zero across much of the domain. This 
phenomenon was little affected by grid-structure effects. The decay of A-variations to 
zero compared with the behaviour of U, S prompts us to consider in this subsection the 
limiting case of the variation of A being negligible throughout. In this case we discount 
terms involving A and its derivatives from the left-hand side of (2.10a) at leading order. 
The only contribution from A is to couple the behaviour of U, S via the pressure 
gradient (and (2.10b) or (2.16)) on the right-hand sides of ( 2 . 8 ~ ~ )  (2.10~).  

We then arrive at the following, smaller, homogeneous system controlling U, S :  

(3.1 a) 

(3.1 b) 

which can be solved exactly. The solution can be expressed in terms of the Riemann 
invariants, 

dX 
d T  

r --Su+XS2-1 , ,[S(4U--3S)]; on - = U+$S'+~[S(4U-3S)]~, (3.2u, b) 
1 -  

these being constant along their respective characteristic curves (3.2 b), (3.3 b) in the 
( X ,  T)-plane, for some range 0 < T < say. 

The analytical solution (3.2), (3.3) is prone to break down, however, which can be 
seen from (3.2b) if the expression S(4U- 3 s )  (= D, say) takes negative values. As long 
as D remains positive the solution (3.2a), (3.3a) remains unique and well-behaved. 
However, if D approaches zero there is the possibility of the characteristics from (3.2b), 
(3.3b) intersecting in the (X, T)-plane but with rl =+ r2 in general. Hence the solution 
becomes multivalued there. So the system (3.1) tends to break down in the 
neighbourhood of a point (X8, q), say, with D --f 0 + as T+ T, - 0. 

Locally, near the first intersection of characteristics the relevant coordinate is 6, 
defined by 

Here C,, is a constant dependent on the initial conditions, and the power n > 1 is 
to be determined. A first guess at a local analytical breakup solution follows 
from Brotherton-Ratcliffe & Smith (1987), Smith (1988) where, to obtain an 

(X- X,) = Co( T- T,) + (T, - T)n[. 13.4) 
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unsteady-nonlinear balance of terms in the neighbourhood (3.4), the expansion 
U - U,(O + (T, - T)"-'U1(g) + . . . is examined as a candidate, and similarly for S. This 
leads to a contradiction, however, as Vickers (1993) shows. The corrected expansions, 
from an order-of-magnitude analysis of the characteristic curves, are (U, S )  - 
(u,, So) (8 + (T, - T)"(U,, S,) (g) where m > 0. Then the left-hand side of (3.2b) 
or (3.3b) is of the form O(l)+O(T,-T)"-l, while the right-hand side is O(1)+ 
O(T, - T)" + O(T, - T)"'', as the term in the square root is zero at leading order. 
Matching terms implies that 

in contrast with the first guess above. 
Having established this corrected scaling we could proceed with the analytical 

solution of the reduced system (3.1 a, b) but instead we return to the full mid-scale 
system (2.8a, b) and (2.10a, b) or (2.16), for which (3.1)-(3.5) is very suggestive. 

m = 2(n- I), (3.5) 

3.2. The mid-scale breakup governing equations 
An exact solution as in 63.1 seems unavailable for (2.8~1, b) and (2.10a, b)  or (2.16). But 
the breakdown behaviour for the latter is postulated to be similar, dominated by the 
nonlinear interaction of U with S, and the breakdown in 93.1 for smooth initial 
conditions suggests the following typical collapse for the full mid-scale system 
(2.8a, b)  and (2.10a, b)  or (2.16). It is focused around a station X = X,, at time T = T,, 
with 

[U,  SI - w,, Sol (9 + (T, - ,>- [Ul, Sll(8 + (T, - w z ,  S,l (8 
+(T, - T)4n-4 [U,, S,] (8 + . . ., (3.6a, b)  

A N A,+(T,-  T ) 3 n - 2 A 1 ( ~ + ( T , -  T)4n-3A2(Q+((T,- T)5"-4A3(Q+ ... . ( 3 . 6 ~ )  

Here f;, defined as in (3.4), is O(l), while A,, C, are constants. The constant n > 1 is to 
be determined. The expansion ( 3 . 6 ~ )  is such that the only leading-order contribution 
from A ,  apart from the constant coefficient A,, is via the right-hand sides of (2.8a), 
( 2 . 1 0 ~ ) .  The description (3.6a-c) might seem incomplete at first sight, as one might 
expect an O(T,- T)n term to be presented in ( 3 . 6 ~ )  to balance with the leading-order 
terms below. However, as is verified below, the inclusion of such a term would violate 
the hierarchy assumed above. 

On substitution into (2.8~1, b), ( 2 . 1 0 ~ )  (2.16) we find at leading order, O(T,- T)-", 
that U,, S, take constant values. Secondly, at O(T,- T)-', we obtain n[U; = n&S'h = 0,  
which again are satisfied identically by the constant solutions U,, So. The next set of 
successive equations, at O(T, - T)n-2, is 

(U,-C,) u; = A;, (u,-c,)S;+S, u; = 0, ( S , + A , - C , ) S ;  = A;. (3.7a-c) 

We may eliminate A,  from (3.7a, c) to see that ( 3 . 7 ~ -  c) control U,, S, ,  with A ,  then 
determined from these. However, for a non-trivial solution of (3 .7~-c)  the constants 
L7,, So, A ,  must satisfy the identity 

(Uo-C, )2+SO(SO+Ao-Co)  = 0, (3.8) 

with the result that U,, S,  remain undetermined at this order. Equation (3.8) is none 
other than the characteristic equation, as above, thus confirming the relevance of the 
reduced system studied in $3.1. 

The unique solution for C, yields 

4(U0-A,)-3S, = 0,  2 (u0-c0 )+S0  = 0. (3.9a, b) 

6 FLM 268 
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So, since S, defines the local eddy width, S,  > 0 and U,, - C,, < 0 to satisfy (3.9b). These 
two conditions and the criteria (3.9a, b) help to simplify the final governing equations 
below. 

We must appeal to higher-order terms, therefore, with the O(T, - T)'%-' equations 
being found to be 

( 3 . 1 0 ~ )  

(3.10b) 

(S,+A,-Co)S;+n~S;-(2n-2)Sl = A;, ( 3 . 1 0 ~ )  

I .  P. Vickers and F. T. Smith 

(U,-C,) u;+n@;-(2n-2)  u, = A;, 

(U,- C,) s;+n&s; -(2n-2) S ,  +so u; = 0, 

and finally at O( T,  - T)3n-4 we have 

(U,-C,) U;+n<U;-(3n-3) U2+U,  U ;  = A:, (3.11a) 

(U, -CC,)S~fn~S ' , - (3n-3)S ,+S,  u;+(S, u,>, = 0, (3.11b) 

(S,  + A ,  - C,,) S;  + n[S; - (3n - 3) S,  -I- S, S ;  = A;.  ( 3 . 1 1 ~ )  

Here the supersonic case (2.80, b), (2.10a), (2.16) has been chosen, but the subsonic 
case (2.8~1, b), (2.10a, 6) involves little change. As we shall see below, the above 
equations provide the final governing equations for the leading terms U,, S,, with A ,  
then following from (3.7a-c). 

Naturally, we tackle (3.10) first and use (3.8), (3.9) to eliminate U,, giving 
nLJ2U;-S;)-(2n-2)(2U1-S1) = 0. Then the integral of (3.7b) in the form 
S, - 2U, = d, where d is a constant of integration, requires that (2n - 2) d = 0. Hence 
d =  0, since n > 1, and 

s, = 2u1,  (3.12) 

although we have yet to discover the governing differential equation. 
We obtain this equation finally from the reduction of (3.11 a-c). As before we make 

use of (3.8), (3.9) to eliminate U,, S,, giving on differentiation 

nt(2U;- Sg) - (2n - 3) (2U; - S; )  + (U! + S,  U, - Sf)" = 0. (3.13) 

Then the combination of (3.12), (3.9a, b) with (3.10b) and its derivative eliminates U,, 
S, from (3.13), to yield 

{ -nz [2+(U, -C , )  U,) U ~ - { T Z ( ~ ~ - ~ ) [ + ( U , - C , )  U;> U/,-(2n-2)(2n-3)  U, = 0. 
(3.14) 

as the equation controlling U,, with S ,  then given by (3.12). 
The permitted values for n are still not precisely determined although the supposition, 

implicit in (3.1 1 c), that the A-dependence on the left-hand side of (2.10a) remains 
negligible adds the upper limit n < 2, so that n must lie in the range 

1 < n < 2 .  

This result is due to (3.11a-c) being found at O(T,-T)3"-4, while the leading 
contribution from A is O(T,- T)'%-,. If, on the other hand, an O(T, - T)% term were 
included in ( 3 . 6 ~ )  the above reasoning would require n < $. The most likely value for 
n (see below), however, would violate this restriction and so, as stated above, this 
O(T, - T)" term is omitted from ( 3 . 6 ~ ) .  In addition such a term in ( 3 . 6 ~ )  would yield 
a contribution much greater than those in (3.lOa,c), thus destroying the solution 
structure. 

Ultimately, then, the present breakdown analysis reduces to the solution of (3.14). 
This is a nonlinear second-order ordinary differential equation for U, as a function of 
the independent variable $ which varies from - co to + co. Ideally, we would hope for 
the existence of a simple analytical solution, as in the breakups presented by 
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Brotherton-Ratcliffe & Smith (1987), Smith (1988). However, attempts to find such an 
analytical solution were unsuccessful and instead we turn to an alternative approach 
in the following subsection. 

3.3. Solution for  the mid-scale breakup 
Addressing (3.14), we scale out the negatiye constant (U,  - C,,) with the transformation: 
[ =  -(U,-C,)[, U,(LJ = -(u,,-c,,)~(~), to arrive at 

(nzp +j)y + {n(5 -3n) (+y>y + (2n -2) (2n- 319 = 0. (3.15) 

A prime now indicates differentiation with respect to [. In the following, (3.15) is 
transformed to an equivalent autonomous first-order system, using the property that 
(3.15) is scale-invariant. The transformation has 

j@) = P Z ; < ~ ,  ( = eq (for [ > 0, ( < 01, ~ ( z i )  = li,, (3.16 a-c) 

whence (3.15) becomes 

(3.17 a, b) 

Applying a phase-plane analysis, we begin with the critical points (zi, 6) = (0, 0),  
(- 1,O). The origin is a stable node, with 

[h, 61 - dl [n, - 21 exp (- 2q/n) + d,[n, 31 exp (- 3q/n) 

locally, where d,, d2 are constants. Likewise it is found that the point (- 1,O) is a saddle, 
while from (3.17~) the trajectories must cross the li-axis with an infinite slope and from 
(3.17 b) they must cross the curve 

6 = - 1  2(7 + 5n) T [ (Sl i  + 7n -y)2 - 24(n -8 (n -3; (3.18) 

with zero slope. The solution propagates with q in the direction of increasing 
(decreasing) h in the upper (lower) half-plane. Again, near the line h = -n2  we have 

A 1 A  

uq = v, vq = 
- (5n + 7h+ 6) 6 - 6h(l+ 6 )  

n 2 + h  

(3.19) 

where U= = h + n2 is small. This solution is dependent on the value of n and, for reasons 
which are given below, we take n = here. The local solution (3.19) implies that 
trajectories approach the point (2,;) = (- n2, n(n + 1)) in the non-singular fashion 
IG-n(n+ 1)1 K I$, in this case, whereas the point ( h , @  = ( - n 2 ,  6n(n- 1)) is a type of 
saddle point. The above analysis results in the sketch of the phase plane in figure 4(a). 

The phase-plane solution, as mentioned above, holds separately for the regions 
(< 0, [ > 0 and must be analysed for 14 4 1 to link these regions together, That 
determines both the particular trajectory in the phase plane describing the desired 
solution and the permissible values of n, ensuring the smooth continuation of the 
solution between the two regions. Local analysis as in Vickers (1993) implies that all 
terms in (3.15) must balance at leading order, so that 3 = O(&, and in fact 

j = - p +  ... as 14+0. (3.20) 

This behaviour requires immediately that h + -  1 as l d + O ,  from (3.16), and in the 
phase plane the only trajectory admitting such behaviour is the one emanating from 
the unstable axis (in the upper half-plane) of the saddle point (l i ,6) = (- 1,O). Nearby 
the above implies [h + 1,0] - c1 [n - 1,1] exp ( t / (n  - 1)) with c1 > 0, the alternative 
c, [n, - 61 exp (- 6t/(n + 1)) being inadmissible, i.e. c2 = 0. Therefore, we find 

(3.21 a, b) 9 - &- 1 +(n- 1) cf @/(n-l) + ...I as i-+ o f .  
6-2 
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The constants c:, c; are both positive, corresponding to the regions > 0, j < 0. 
However, for a smooth continuation c: = I- l)l’(n-l)c;, from (3.21 a, b), ruling out the 
presence of an extra distinct zone around 6 = 0. In fact, c: = c; since both are positive 
and so, for a regular solution, n must satisfy l / (n--  1) = 2,4,6,8, , .., i.e. - 

r 

(3.22) 

gives the acceptable values of n for which the present collapse structure remains self- 
consistent. The restriction 1 < n < 2 is clearly met in (3.22). The different acceptable 
values at this local breakdown, n = %, f ,  i, i, .,., 1, are expected to correspond to 
different initial conditions, which are increasingly less smooth as n decreases to unity 
(as in the following two references). Incidentally, the values in (3.22) are identical with 
those found by Brotherton-Ratcliffe & Smith (1987), Smith (1988) in their analyses, 
despite the differences noted earlier. 

--f cc we observe from figure 4(a) that 
the trajectory emerging from the saddle point (or, strictly, tending towards the saddle 
point as q -+ - co) is constrained to converge towards the stable node at the origin, as 
q+ co. Thus ultimately zi - dLne-(2/”)4 as q-f 00, from the dominant local solution, 
which implies the result j - 1 f J ( 2 n p 2 ) i n  as 14 + m. 

To test the analysis, a numerical treatment was adopted as follows. For the phase- 
plane trajectory that emerges from the saddle point we eliminate q and address the first- 
order equation 

(3.23) 
d6 - -(5n+7zi+B)B-6~2(1 +a) 
dB (n2 + 6) 6 

We employed a simple fourth-order Runge-Kutta method to calculate the numerical 
solution and marched from ci = - 1 to ti = 0 with uniform increments in ti. A little extra 
consideration of the right-hand side of (3.23) was necessary first, as the denominator 
is zero at zi = - 1 .  As ti + - 1 + 0, the right-hand side converges to a limit which is found 
to be l/(n-1). So this value is prescribed at (zi,6) = (-1,O). Also, we take n = $ 
throughout here, as this is expected to be the most likely value and it represents the 
most common breakdown through (3.21). The ensuing numerical solution is shown in 
figure 4(b). The numerical method is extremely stable with respect to the grid structure, 
and the trajectory ends at the origin, thus supporting the phase-plane analysis. 
Furthermore, to support the earlier prediction for the ultimate form of zi as q+ co, the 
expression ti/$ was calculated as 6+0- and is plotted in figure 4(c) against its 
predicted limit value, --in. The comparison seems affirmative. Generally, the numerical 
results support the analysis and hence, through the transformations (3.16), the 
existence of the desired solutions of (3.15). A direct computation of (3.15) has also been 
performed (Vickers 1993), yielding the results in figure 4(d ) .  

In summary, given (3.22), the local solution described above yields I U J ,  
ISJ cc 1pa-z)’n , IA,I  151(3n--2)/n at large 151 or, from (3.6a-c) 

IU- U J ,  IS-S,l oc IX-Xs)(2n-z) ’n  = IX- x s p ,  (3.24a, b) 
IA -A,J K JX-XsJ@n-2)’n = IX- x s l l + z ’ i  (3.24~) 

for small IX-XJ just outside the collapse region, with ,f defined in (3.22). Hence, in 

To determine the far-field behaviour of j as 

- _  

FIGURE 4. (a) The phase plane for (3.17u, b). (b) The numerical solution of (3.23) from u  ̂ = - 1 to 
u  ̂ = 0. The dotted line represents (3.18), and the trajectory crosses this line with a zero gradient. (c) 
The expression C/O as u^+O-. The dotted line shows the predicted limit - n / 2 .  ( d )  The numerical 
solution of (3.15) (from Vickers 1993). 
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general, each of the streamwise velocity and the detached free shear-layer shape (and 
the local pressure due to (2.8dor e))  is predicted to stay finite but develop a singularity 
in its slope at X - X ,  = O +  at the time T,-T= O + .  

We turn next therefore to a numerical treatment of the full system (2.8a, b), (2.10a), 
(2.16). 

4. Computational study using adaptive gridding 
The analysis in the preceding section suggests that finite-time breakup of the mid- 

scale system (2.8a,b) and (2.104 b) or (2.16) exists. Turning then to a numerical 
treatment of (2.8a, b), (2.10a), (2.16) we describe in some detail a method of adaptive 
gridding which was developed to allow for this breakup solution in the numerical 
calculations. 

The coordinate system ( X ,  T )  is transformed to a new coordinate system (X, T )  via 
the relation 

(4.1) 
for some smooth function g ( X , T )  which we may choose to meet our particular 
requirements. The function g(X,  T )  is to be smooth, strictly monotonic increasing and, 
for the purposes of adaptive gridding, sensitive to the local solution activity. For the 
last requirement the function g should have small slope in regions of high solution 
activity, while to economize on computation the slope may be allowed to become 
relatively large in regions of slow solution variation. We take the option of g as a 
function of solution gradients (cf. the notion of equidistribution) and regard A@, T )  
as the typical dependent variable. Clearly there are any number of possibilities for the 
description of the grid-transformation equation. Vickers (1993) studies three examples, 
and considers the consequences of each on the solution of the transformed numerical 
system of equations, with regions of high solution activity characterized by 
laA/aX/ -+ co and those of slow solution variation by laA/aAl + 0. 

Of the three main examples for (4.1) studied in Vickers (1993), the most favourable 
has i?g/aX being set proportional to 1 - (i3A/aX)z, essentially, for simpler systems such 
as a Burgers equation A , + A A ,  K A,, for A(X,  T ) .  This choice of the grid- 
transformation equation may appear somewhat ad hoc but the effect (Vickers 1993) on 
the efficiency and stability of the numerical computation is substantial. In addition the 
implementation of this technique, in the algebraic equations resulting from numerical 
simulation of the governing equations, is such that the grid-transformation equation 
may be altered by making only minimal adjustments to the program code, as in Vickers 
(1993). Comparisons between adaptive results and exact analytical solution for the 
Burgers equation are presented in the last reference, showing very close agreement even 
with the near presence of a shock and suggesting that an efficient approach is obtained. 

Given the encouraging results above, the numerical scheme that we used here 
incorporates the grid-transformation method just described. Hence the system of 
equations under consideration now is the transformed version of (2.8 a-c, e) ,  namely 

(4.2a) 

(4.2b) 

(4 .2~)  
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where B = S + A  is introduced to condense the notation, and we complete the system 
with the transformation equation 

(4.2d) 

The function r ( T )  is to be found, while the constants d, u, dz,s,d,,,, are fixed. The 
initial conditions considered here are 

[U, S, A]  = [0.1,0.1,0] +[1,0.8,0.4] exp { - 5(X+$)2} (T  = 0) (4.2e) 

to keep the eddy height S > 0 and ensure 4(U-A)-3S > 0 initially, in view of (3.94 
or (3.2a)-(3.3b). 

Together with the transformation (4.1), we substitute (4.2e) into (4.2d) which is 
then to be satisfied at T = 0, fixing ~ ( 0 ) .  

In addition the form of (4.2a-c) suggests that we can impose two boundary 
conditions on A but only one on both U and S.  On restricting the X-axis to the finite 
interval (- 1, l), it seems natural to choose X = - 1 as the boundary for prescribed 
values of U, S. This is in keeping with the idea that the incoming profile from X = - co 
is known. Thus from (4.2e) the boundary conditions are 

Finally we close the initial-value problem with the fixed end-point conditions 
[ U , S , A ] ( - I ,  T )  = [ U , S , A ] ( - l , O ) ,  A(1, T )  = A(1,O). (4.2f) 

(4 .W which are implicit in (4.2f). g (k  1, T )  = k 1, 

A discretization of (4.2~-d) analogous with that in Vickers (1993) yields the implicit 
algebraic system 
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The parameters CT, p in the discrete approximations for the first derivatives allow for 
an upwind-difference scheme, controlled by 

for (4.3a,b) and 

(4.4a) 

(4.4h) 

for ( 4 . 3 ~ ) .  
In the system of algebraic equations the index i runs from 1 to N -  1 in ( 4 . 3 e d )  with 

the boundary conditions at 3 = - 1 (i.e. i = 0) given by (4.2.A g)  and substituted into 
(4.3a-d) at i = 1. However, as U, S are predetermined at x = 1, and as we regard T ~ + ~  
as a constant coefficient (see below), we require three more equations to close the 
system. Also, the artificial nature of the imposition of a finite downstream boundary 
implies that we are at liberty to choose a method by which to satisfy (4.2Jg) at x = 1 
(i.e. i = N ) .  The most expedient method found involves the evaluation of (4.3b, d )  at 
i = N with backward differences enforced in ( 4 . 3 4  by setting CT = 1 at this point; 
and then the final equation is supplied by the elimination of the right-hand sides of 
(4.3a, c) to obtain 

where again backward differences in the z-derivatives are used, and the condition of 
fixed is applied. The last condition is used so that the difficult question of the 
discretization of the second derivatives at this end point is avoided. 

Hence (4.3 a-d), with the above modifications at i = N ,  are solved for the unknown 
nodal values Ui,i+l etc. at the ( j +  1)th time row using a global Newton linearization 
method, temporarily regarding qj+l as a constant coefficient. This method is enclosed 
within a secant loop to locate the value of qj+l which satisfies the second of conditions 

Investigations into grid-structure effects tended to suggest that the numerical 
method was more reliable, at least in the range of mesh sizes considered, when centred- 
difference approximations for the spatial derivatives in (4.3 a-c) were used. Results 
using this option are presented in figures 5-7. Other results are in Vickers (1993). From 
(4.2e), we see that the monitor function 4(U-A)  - 3s (= E, say) takes the value 0.1 
identically at T = 0. According to $3, E then tends to zero at a finite-time breakup 
subsequently. A plot of the evolution of E is given in figure 6(h), from which it 
seems very evident that the monitor function E tends to zero at a finite value of 
T, X (or X), in line with the analysis in §3. A plot of the locus of the minimum value 
of E at each time step, in figure 6(c), suggests that E first becomes zero at 
(X, T )  = (Xs ,  TJ M (0,0.34). The numerical integration was usually terminated near 
this point in order to present the results in figures 5 and 6. However, if allowed to 

(4 2 d. 

FIGURE 5. (a) A plot of the scaled streamwise velocity profile U from the numerical solution of 
the mid-scale separating-flow system (4.2~-e). Here Ax= 0.04, AT = 0.001, d, = 0.2, d2,.7 = 0.1, 
d2,L, = d2 ,A  = 0. (b) As (a) but for the scaled shear-layer shape S. (c) As (a) but for the scaled 
boundary-layer displacement - A ,  



166 

(4 
- 

0.3 - 

- 

0.2 - 

T 

0.1 - 

- 

0 
-1.0 

I. P. Vickers and F. T .  Smith 

-1 
I .  

0.5 1.0 

1 .o 
FIGURE 6(a,b).  For caption see facing page. 

continue further in time, the method breaks down soon, typically after another 5--6 
time steps, thus adding more evidence for this being the onset of the proposed 
analytical breakup. Next, we consider the ultimate form (3.6) or (3.24) of this analytical 
breakup, which predicts linear behaviour (when II = $) of the expressions 
G ,  = (i3U/i3X)-3, G, = (i3S/i3X)-3 locally as the breakup time is approached. The 
evolution of G,, G, along the locus in figure 6 (c) is plotted in Vickers (1 993) for times 
just prior to the numerical breakdown. The smallness of the values there, especially 



Breakup of unsteady subsonic or supersonic separating J ~ O W S  167 
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T 
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FIcium 6. (a) The evolution of grid nodes in figure 5. (b) A plot of E (= 4 ( U - A ) - 3 S )  calculated 
from the results displayed in figure 5. (c) The locus of the minimum value of E at each time step. ( d )  
Plotting the slope of the solution in figure 5(a), calculated from the centred-difference ratio AU/Ag 
at each internal grid point. 

compared with the initial values, indicates not unreasonable consistency with the 
analysis of $ 3 ,  Likewise, the enhanced clustering of the grid points in figure 6(a) 
near (0,0.34) is consistent with the ideas of $3, given that dgg/aX+O as W / a X  or 
aS/aX+ 00 from (4.2d), while figure 6 ( d )  indicates the plummet of the gradient aU/aX 
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FIGURE 7 (a-c). For caption see facing page. 



Breakup of unsteady subsonic or supersonic separating flows 169 

(4 
J 

0.7 - 

0.6 - 

0.5 1 

0.4 1 

0.3 1 

0.2 - 

0.1 - 

T I  

0 -. 
-0.1 -0.5 0 

X 

FIGURE 7. Results obtained using initial conditions in which U ,  S,  A in (4.2e) are all halved. (a) A plot 
of the scaled streamwise velocity profile U from the numerical solution of the mid-scale separating- 
flow system. Here AX= 0.04, AT = 0.001, dl = 0.2, d2,s = 0.1, d2,b = d2,A = 0. (b) As (a) but for the 
scaled shear-layer shape S .  (c) As (a) but for the scaled boundary-layer displacement -A. (d )  The 
evolution of grid nodes in (ac). (e) A plot of E (= 4 ( 1 / - A ) - 3 S )  calculated from the results 
displayed in (a-c). 

prior to breakup. Figure 7 shows, for comparison, results obtained with initial 
conditions different from those in figures 5 and 6 but leading to the same trend and in 
particular demonstrating apparently well that the monitor function E again provides 
a clear test for the occurrence of breakup. Altogether, from these comparisons, the 
numerical solution is felt to admit, or to point to, the finite-time singularity shown in 
63  to be present in the mid-scale system (2.8a,b), (2.10a), (2.16). 
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5 .  Further comments 
To recap first, this study has been concentrated on the solution of the partial- 

differential equations (§ 2) governing mid-scale unsteady separating flow, which occurs 
closer to the separation point than does the full-scale flow of Brown et al. (1988). See 
the range (1.  l), (1.2). The governing equations involved are effectively inviscid, with 
viscous effects assumed to be confined mainly to the thin detached shear layer and to 
a thin wall layer. The predominantly inviscid nature might be expected to be correct 
physically as some evidence suggests that full transition usually takes place on a 
convective rather than a diffusive timescale. In particular that agrees with the findings 
of Smith (1988), Stewart & Smith (1992), Smith & Bowles (1992). The numerical 
solutions in $4 and others presented in Vickers (1993) then agree broadly with the 
analysis in $3 proposing a finite-time breakup of the mid-scale flow solution, with the 
normalized streamwise velocity U and eddy width S developing infinite slopes in a 
manner analogous with that in Smith (1988). The breakup contrasts with the response 
in the full-scale separating flow of Brown et al. (1988) which results usually in a local 
eruption into the main stream. 

The investigation in @3 and 4 addresses supersonic external flow, where the 
pressure-displacement law is easier to handle than is the subsonic case, but we would 
expect the conclusions in $53 and 4 on finite-time breakup to apply also to subsonic 
flow, since the orders of magnitude, and the expansions, involved are the same locally 
and indeed the influence of the pressure-displacement law diminishes at breakup, as a 
comparison of $3.1, $3.2 indicates. Further study might also consider the response in 
the viscous sublayers, at or prior to the breakup, non-uniform distributions of vorticity 
(cf. §2), increased thickness of the detached shear layer (cf. the range (1. l), (1.2)), and 
three-dimensional effects, to examine the generality of the mid-scale breakup found 
here. Other parameter ranges, for example with upper-branch scalings, are also of 
interest . 

Physically, perhaps the most notable point of the solutions in 993 and 4 is that the 
increment in the boundary-layer displacement K A - A ,  becomes small at breakup, as 
shown in (3.6~)  and in the figures. Thus the overall boundary layer acts locally as if 
there were almost no net displacement effect, but with the eddy width retaining its 
original order of magnitude, since S remains of order unity. The eddy’s streamwise 
velocities K U, can then be positive or negative according to (3.9a, h), which affects the 
viscous wall layer of course. If U, is locally positive, with So small, say, so that C, z U,, 
that would tend to indicate a reattachment taking place, possibly linking with the 
experimental observations described in 5 1. The above reduction in the displacement 
effect provides a related link with the experiments. Also on the physical or applications 
side, the conditions (3.9a, b) themselves act as a form of breakup criterion for 
separating Bow, cf. the monitor function E in $4. In fact, they can be shown to be 
equivalent to the interactive breakup criterion of Smith ( I  988), namely that if 

I [V( Y )  - C,]-’dY = 0 

for some constant C,, then finite-time breakup can occur and hence a form of 
transition in the sense of local change of scales. To confirm that (5.1) applies here, we 
substitute for U( Y )  the two straight-line profiles used in (2.7), (2.9) and then integrate 
with respect to Y(from zero to So, and from So to co, respectively), which yields (3.8). 
Then (3.9a, b) follow from the requirement of a unique value for C,. So (5.1) holds 
directly for the separating-flow system (2.8a, b) and ( 2 . 1 0 ~ ~  b) or (2.16), over the 
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parameter range (l.]), (1.2), as well as for the original system (2.2a-e). The ensuing 
behaviour more locally following the scale changes then depends on where the 
parameters lie, within the range (1. l), (1.2), cf. the discussions in Smith (1993), Hoyle 
et al. (1991) concerning the advent of normal pressure gradients and local vortex 
formations. 

Theoretically, in addition to the points in the previous paragraph, the study appears 
to confirm that the finite-time breakup singularity in Smith (1988) occurs quite widely, 
albeit in a modified form in the present separated-flow context. Other recent examples 
are in Peridier et al. (1991~1, b), Smith & Bowles (1992), Hoyle & Smith (1994), and 
work in preparation by R. 1. Bowles and F. T. Smith, showing agreement with 
computations and with experiments and extensions to three-dimensional motions. 
Similar extensions to vortex-sheet motions may also apply. 

Computationally, the adaptive-grid method introduced in $4 seems to be a simple 
yet quite effective method of implicit solution-dependent deployment of the grid. The 
treatment, described in $4 but in more detail in Vickers (1993), tends to support such 
a view and it is felt that the effective deployment of grid nodes maintains acceptable 
accuracy of the numerical solution even near the breakup. Discretization errors consist 
of expressions involving local derivatives of the solution which remain slowly varying 
even in regions of high solution activity because of the grid transformation (4*1). The 
neat capturing of the singular breakup solution shown in $4 (e.g. figures 5-7) is 
encouraging, and the application of this method to other numerical problems, such as 
for full interacting boundary layers, seems possible and promising. 
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