
A UML profile to support requirements
engineering with KAOS

William Heaven and Anthony Finkelstein

Department of Computer Science, University College London, London WC1E 6BT
{w.heaven, a.finkelstein}@cs.ucl.ac.uk

Abstract

One of the most important approaches to requirements engineering of the last ten
years is the KAOS model as presented in [5] and [8]. We introduce a profile that
allows the KAOS model to be represented in the UML. The paper includes an informal
presentation of the profile together with a full account of the new stereotypes and tags.
We also outline an integration of requirements models with lower level design models
in the UML, leading to a uniform and comprehensive specification document.

1 Introduction

1.1 Requirements engineering and the UML

Requirements engineering is helped enormously by methods that guide a practitioner in
the task of identifying the requirements of the system-to-be. One of the most important
approaches to requirements engineering of the last ten years is the KAOS model as
presented in [5] and [8]. We introduce a profile that allows the KAOS model to be
represented in the UML. The ability to model the KAOS approach in the UML offers
the potential for extra tool support. A tool has been developed that supports KAOS [2],
but it uses the non-standard graphical notation specifically developed for the approach.
The notation and tool are not familiar to many. On the other hand, UML editors are
ubiquitous in the software industry, and many can be updated to recognize new profiles.
Furthermore, by modelling KAOS in the UML – an industry standard – we remove
the need for a software engineer to master a new graphical notation in order to employ
KAOS methods.

Additionally, UML documentation of the requirements engineering process will sit more
comfortably with all other UML documentation for a software project. For purposes
of traceability between models, integrated documentation of this sort is highly desir-
able. The UML currently provides no explicit support for the requirements phase of a
project. Indeed, an exclusively object-oriented framework creates difficulties in map-
ping requirements to lower level entities in a design model, since requirements typically
capture concerns that transgress class boundaries at the design level. We do not address
this problem, but we note how our profile might be complemented by subject-oriented
design techniques in the UML. A subject-oriented design approach that provides mech-
anisms for arranging UML classes by concern, together with a profile for representing

requirements in the UML, would facilitate the mapping from one domain to the other.
A requirements model and a design model would both be instances of a single UML
meta-model.

The claim for our contribution is modest: a UML profile can increase the usefulness of
KAOS. A method can be truly successful only if a large number of professionals are
sufficiently convinced of its potential to use it in industrial cases. Use of the UML to
support requirements engineering with KAOS may help achieve this end.

1.2 KAOS

The elucidation and manipulation of goals is a natural part of doing requirements en-
gineering: requirements by their very nature present targets to be reached. Previous
requirements engineering techniques have focused foremost on either entities or activ-
ities. Goal-oriented methodologies give primary place to the intentional – goals – in
the development of software systems, with entities and activities now determined via
the identification of goals. Consideration of goals leads to the exploration of alterna-
tive system designs – “One can state a goal without having to specify how it is to be
achieved” [12] – thus helping the designer build a better system.

Perhaps the most successful goal-oriented method is KAOS ([5] and [8]). KAOS is goal-
driven: having identified a few preliminary goals for a system-to-be, the KAOS frame-
work facilitates the identification of further goals – and the requisites, objects, agents,
and actions of the system. KAOS supplies a rich ontology for capturing and modelling
requirements. Its meta-level is essentially a taxonomy of concepts that guide the iden-
tification of requirements and their relationships. Goals are taken to describe expected
properties of the system, an example being “Achieve Ambulance Intervention”. The
KAOS framework asks an analyst to define this network of concepts for a given domain.
Goals are analyzed and better understood by identifying higher-level goals – goals that
will explain why this goal is desired – and they are more clearly defined by reducing
them to subgoals. By identifying the relationships a goal has with other goals, a goal
graph is developed. Goal graphs are semantic networks of AND/OR/XOR relation-
ships between goals where a goal is either reduced by a conjunction of subgoals or an
(exclusive) disjunction. Conflict relationships between goals may also be traced.

The leaves of goal graphs are requisites – goals that cannot be further reduced and
can be assigned as the responsibility of individual agents. A requisite is either as-
signed to a software agent and taken as a requirement, or to an agent in the domain
and taken as an assumption. Distinguishing requirements from assumptions identi-
fies the boundary between software and environment for the system-to-be. Intuitively,
requirements are prescriptive statements and assumptions descriptive. Requisites are
operationalized by actions performed by the agents responsible for each requisite
in such a way that the composite system satisfies the goals. Agents may also monitor
and control certain objects that are identified when defining goals. These objects can
be the inputs and outputs of actions. Goals concern objects, and objects ensure
a requisite if they take part in an action that operationalizes that requisite. Finally,
identifying possible obstacles to a goal allows one to reformulate the goal graph and
strengthen the requirements specification by choosing alternative reduction paths or
agent assignations, or by introducing new goals to mitigate the obstacle. The whole
method roughly consists of

2

1. identifying and reducing goals until requisites are identified;
2. identifying objects from goal descriptions; and
3. assigning the requisites, objects, and actions to agents.

Many new goals may be identified by employing established patterns of goal-type.
For example, a goal may be of the “Achieve such-and-such” or “Maintain such-and-
such” form. The form of a goal can determine how it may be reduced according to
patterns (see [5] and [8]). These patterns hide from the requirements engineer formal
groundwork describing relationships between goals. A formal language with real-time
temporal operators is provided for when formalization is necessary, but the method-
ology discourages it’s overuse. There is a time and place for formalization: on many
occasions we cannot be certain of the correctness of a model without it, but it can
become a hindrance where its use is redundant. Instances of the KAOS concepts goal,
requisite, and action – that is, goals, requisites, and actions identified for a particular
domain – can be given a formal definition. Tactics for selecting between alternative
goal reductions and assignments are also provided.

1.3 KAOS and the UML

The KAOS model lends itself well to representation in the UML. Its three-tiered struc-
ture involves a meta-level, a domain level, and an instance level that respectively mirror
the meta-model layer, model layer, and user model layer of the UML. Entities in a lower
level are instances of entities in the level above. Moreover, a KAOS model is a seman-
tic network in which the nodes are concepts and the connections between nodes are
associations between the concepts. Again this parallels the UML. There are two parts
to a KAOS model: a graphical representation of the semantic network together with a
supplementary textual definition, and the optional formal representation expressed in
a temporal logic. The profile introduces some new stereotypes and tags. The extension
allows us to model the KAOS semantic network graphically in the UML using stereo-
typed classes and associations, and to represent the informal and formal descriptions
using tags of these stereotyped classes and associations. Formal expressions need to
be rewritten using only ASCII characters since most UML editors do not support the
symbols of the KAOS temporal logic. In some cases, it may be useful to capture a
formal expression in the OCL — where the expression directly constrains a diagram of
a model, for instance — and the OCL might be extended with temporal keywords to
this end. However, in most cases, formalization is for the purpose of reasoning about
goal conflicts or obstacles, and for this the OCL is probably not the best medium for
formalization.

The UML is extended by introducing new stereotypes to the language. These stereo-
types are applied to existing UML entities, such as classes and associations, and aug-
ment the semantics of these standard elements with newly defined meanings, allowing
one to model previously unsupported concepts. A particular extension of the UML is
packaged as a profile. For heuristic purposes, we can think of a profile as an extension
of the UML meta-model layer – the layer at which the UML’s concepts of class, object,
association, etc are defined: “The stereotype concept provides a way of branding model
elements so that they behave in some respects as if they were instances of new virtual
meta-model constructs” ([9]). At the UML’s model level, we can think of a class stereo-
typed with <<goal>> as both an instance of Class by classification and an instance of

3

Goal Requisite

Requirement Assumption

KEvent

KObject KAction

KAgent KEntity

0..* reduces 1..*

0..* reduces 0..*0..* conflicts 0..*

1..*

operationalizes

0..*

0..* input 0..*

0..* output 0..*1..*

monitors

0..*

1..*

concerns

0..*

0..* ensures 1..*

0..* performs 1..*

0..* capability 1..*

1..*

responsibility

0..*

0..* controls 1..*

Fig. 1. Profile metamodel

Goal (a virtual extension of the Class construct) by stereotyping. In this way we provide
extra categorization for elements in our model. A stereotype may have attributes that
can be modelled as the tags of a stereotyped class. New tags may also be introduced
as independent elements. Figure 1 shows the meta-model of the proposed profile with
minimal syntax, omitting the attributes of the classes for readability. The stereotype
<<reduces>> is a specialization of the existing UML abstraction stereotype <<refines>>
(an abstraction is a specialization of a dependency).

The rest of the paper is set out as follows. Section 3 is an informal presentation of
our profile using examples from a case study of Letier’s ([8]) which is based on the
well-known software fiasco of the London Ambulance Service, and Section 4 outlines
the potential for integrating a goal-driven requirements model with lower level design
models. A fuller case study is presented in Section 5; some related work is covered in
Section 6; and Section 7 concludes the paper. An appendix provides a full account of
the stereotypes and tags of the profile.

4

2 Legend

The presentation that follows discusses concepts from the domain of KAOS on one
hand, and the UML on the other. Entities from KAOS are modelled by the stereotyped
classes of a UML model. When talking about KAOS concepts we use normal font,
for example, “a goal can be reduced by another goal”. When talking about UML
stereotypes, we use a sans serif font, and stereotype names will be enclosed in angle
brackets, for example, “a <<goal>> class can be linked with another <<goal>> class by
a <<reduces>> association”.

3 The stereotypes of the KAOS profile

Our UML KAOS profile will be presented by means of examples taken from a case
study found in [8]. The case study concerns a part of the London Ambulance Service’s
failed ambulance dispatching system that covers the handling of urgent calls.

3.1 Goals

An initial goal that an ambulance is to arrive at the scene of an incident within 14
minutes of the incident being reported can be identified at an early stage:

Goal
Achieve[AmbulanceIntervention]

InformalDef
For every urgent call reporting an incident, there should be an ambulance at the
scene of the incident within 14 mins

FormalDef
∀ c : UrgentCall, inc : Incident (@ Reporting(c, inc) ⇒

�≤14 mins ∃ amb : Ambulance (Intervention(amb, inc)))

In the UML we can represent this as

<<goal>>
AmbulanceIntervention

{ form = Achieve,
 informalDef = for every urgent call reporting an incident, there should be an ambulance at the
 scene of the incident within 14 mins,
 formalDef = forall c: UrgentCall, inc: Incident (just Reporting(c, inc) -->
 eventually [<= 14 mins] exists amb: Ambulance (Intervention(amb, inc))) }

– that is, as a class stereotyped by <<goal>> together with some tagged values – one
specifying an informal definition, another a formal definition, and one indicating what
type of goal this is. In this case we have an “Achieve” goal. We use three tags of the
<<goal>> stereotype: form, informalDef, and formalDef.

5

The tag form can take one of the values from the set {Achieve, Maintain, Avoid, Cease,
Minimize, Maximize}, while informalDef and formalDef take a string. The formalDef
string is an expression in KAOS temporal logic, with the temporal operators written
using ASCII text. The <<goal>> stereotype also has a priority attribute to help with con-
flict resolution, an instanceOf attribute, and a boolean soft attribute indicating whether
or not the goal can be formalized (false) or not (true). Values of priority are floats be-
tween 0 and 1. A soft goal is usually an “Optimize” goal – either a “Maximize” or a
“Minimize” goal. Values of instanceOf are taken from the set {satisfactiongoal, safe-
tygoal, securitygoal, informationgoal, accuracygoal}. A goal with an instanceOf value
of safetygoal must have a priority of 1. Finally, while we model goals as classes in the
UML, it makes little sense for there to be many instances of a goal class. We should
therefore think of each class of <<goal>> stereotype as a singleton, that is, as only being
instantiated once per model.

Asking WHY questions about goals can often lead to the identification of higher level
goals. By asking a WHY question about Achieve[AmbulanceIntervention], we might be
led to the higher level goal Achieve[IncidentResolved]:

<<goal>>
IncidentResolved

{ form = Achieve,
 informalDef = every incident requiring emergency service is eventually resolved,
 formalDef = forall inc: Incident (inc.Happened --> eventually inc.Resolved) }

The identification of this goal in turn drives the identification of the assumptions
Achieve[IncidentReported] and Achieve[IncidentResolvedByIntervention]:

<<assumption>>
IncidentReported

{ form = Achieve,
 informalDef = every incident requiring emergency service is eventually reported to the LAS,
 formalDef = forall inc: Incident (inc.Happened -->
 eventually exists c: UrgentCall (Reporting(c, inc)) }

<<assumption>>
IncidentResolvedBy

Intervention

{ form = Achieve,
 informalDef = an incident is resolved by the intervention of a single ambulance,
 formalDef = forall amb: Ambulance, inc: Incident (Intervention(amb, inc) -->
 eventually inc.Resolved) }

We might show the relationships between these goals and assumptions in the UML as
in figure 2. Using abstraction associations (an abstraction is a specialization of a depen-
dency) stereotyped by <<reduces>> we show that IncidentResolved is reduced by the

6

<<assumption>>
IncidentReported

<<goal>>
AmbulanceIntervention

<<assumptionl>>
IncidentResolvedBy

Intervention

<<goal>>
IncidentResolved

{and}
<<reduces>>

<<reduces>>

<<reduces>>

<<reduces>>

Fig. 2. One way to represent goal reduction

conjunction of IncidentReported, AmbulanceIntervention, and IncidentResolvedByIn-
tervention. An and tag appropriately constrains the branching of the abstraction links,
indicating that the reduction of IncidentResolved is achieved collectively. Alternative
tags of or and xor can be used to constrain such branching to indicate disjunction
and exclusive disjunction respectively. The xor tag is already defined in the UML. We
introduce the companion tags and and or.

However, where many classes are involved in a reduction relationship, this notation
can soon make a diagram too cluttered to be of much use. An alternative is to use the
UML’s collaboration notation. A collaboration template, or pattern, is defined for each
of AND-reduction, OR-reduction, and XOR-reduction as figures 3–5 illustrate.

Graphically, our collaboration templates are defined within a dotted ellipse, and the
roles involved in the collaboration have been declared in a dotted box intersecting the
ellipse. Supplementary text is provided. In the model, it is then simply a matter of
specifying the classes that are to fulfill the defined roles in each instance (the classes
must of course be of the correct type for the role). Figure 6 demonstrates how the
reduction of the goal IncidentResolved can be shown using a collaboration template.
Note that the links between classes and collaboration are labelled with the roles defined
for that collaboration and not with a stereotype. AND/OR/XOR relationships for
assignment of responsibility to agents and for operationalization can be modelled in a
similar way.

Goals may also conflict with other goals. We represent this in the UML using a
<<conflicts>> association between the conflicting goals.

3.2 Requisites

A goal that can be reduced no further and is assignable to an individual agent either
in the domain or in the software-to-be is a requisite. A requisite assigned to an agent

7

goal

subgoal

goal

subgoal

1

<<reduces>>

1..*

{and}

AND-Reduction Pattern Constraints:

– goal and subgoal roles are played by instances of <<goal>>, <<requirement>>, or
<<assumption>>, or by another AND/OR/XOR-Reduction collaboration

– a goal g is reduced by a set S of subgoals if the satisfaction of S is sufficient for
satisfying g

– a goal g is minimally reduced by a set S of subgoals if g is reduced by S but not
by S / {sg} for any subgoal sg in S

Fig. 3. AND-Reduction collaboration template

in the software-to-be is a requirement, while a requisite effectively assigned to an agent
in the domain is an assumption. The assumption IncidentReported can be more fully
modelled in the UML again using tagged values:

<<assumption>>
IncidentReported

{ form = Achieve,
 informalDef = an incident is resolved by the intervention of a single ambulance,
 formalDef = forall amb: Ambulance, inc: Incident (Intervention(amb, inc) -->
 eventually inc.Resolved,
 category = SatisfactionGoal }

In many ways requisites are like goals, but we are unable to model them at the meta-
level as specializations of the <<goal>> stereotype, since we do not want to inherit the
<<reduces>> association. The <<requirement>> and <<assumption>> stereotypes have the
attributes form, informalDef, formalDef, priority, and category. In a model, the value of
category will be the value of the instanceOf tag of the goal that this requisite reduces.
The <<requirement>> stereotype adds the tag specialization, which takes a value from
the set {hard, soft}. A hard requirement may never be violated, while a soft one may
be violated temporarily. A requirement with a category of safetygoal cannot be soft.
Again, like classes of <<goal>> stereotype, <<requisite>> classes are singletons.

8

goal

subgoal

goal

subgoal

1

<<reduces>>

1..*

{or}

OR-Reduction Pattern Constraints:

– goal and subgoal roles are played by instances of <<goal>>, <<requirement>>, or
<<assumption>>, or by another AND/OR/XOR-Reduction collaboration

– a goal g is reduced by a set S of subgoals if the satisfaction of g1, .., gn (for 1 ≤ n
≤ |S| and where {g1, .., gn} is a subset of S) is sufficient for satisfying g

Fig. 4. OR-Reduction collaboration template

3.3 Agents, Entities, and Events

We can model the responsibility assignments of requisites to agents in the UML as
follows:

<<kagent>>
AmbulanceStaff

<<assumption>>
IncidentResolvedBy

Intervention

<<responsibility>>

{ realm = domain }

As well as the tags of <<kobject>>, <<kagent>> has a realm tag that can be used to
indicate whether the agent is a domain agent or an agent in the software-to-be.

An agent cannot be represented by an actor in the UML. An actor generally represents
someone or something that is outside the system-to-be; an actor interacts with the
system, but is not part of it. So far this rules out agents in the software. But we must
also note that actors are users of a system’s functionality, while agents perform the
actions that produce this functionality. The one cannot be mapped to the other.

The identification of objects is driven by the definition of goals. Here, we are of course
talking of ‘objects’ in KAOS terminology, as in things of interest to the system. From
the goals we have identified and defined above, we can draw a partial object model
diagram in the UML as in figure 7. If we had wanted to express the formal definition

9

goal

subgoal

goal

subgoal

1

<<reduces>>

1..*

{xor}

XOR-Reduction Pattern Constraints:

– goal and subgoal roles are played by instances of <<goal>>, <<requirement>>, or
<<assumption>>, or by another AND/OR/XOR-Reduction collaboration

– a goal g is reduced by a single subgoal sg from the set S of alternative subgoals if
the satisfaction of sg is sufficient for satisfying g (the <<reduces>> association here
indicates potential alternative reductions of the goal, where only one alternative
may be selected in the model)

Fig. 5. XOR-Reduction collaboration template

of any of the goals we’ve met so far in the OCL, we would have had to explicitly model
these objects before now. An OCL expression refers to elements in a diagram; so, in
order to refer to the objects Ambulance or Incident, we would have to depict them in a
diagram. The OCL expression would then concern a model of the goal we are defining
formally and it’s relationships to the objects Ambulance and Incident etc.

Like the <<kagent>> stereotype, <<kentity>> and <<kevent>> are both specializations of
<<kobject>>. Tags common to these stereotypes are informalDef, invariant, and strength-
enedInv. The <<kevent>> stereotype has an additional frequency property. The invariant
of an object is a domain property concerning the object and is assumed to hold for
the purposes of designing a system. The strengthening of this invariant is used to en-
sure the satisfaction of whatever goal concerns the object. The value of a frequency
tag in the model specifies a time interval between consecutive occurrences of an event.
The classes in figure 7 have no tags shown. The relationships of the KAOS model —
here, Intervention, Mobilization, and Reporting — can of course straightforwardly be
modelled by associations in the UML.

Objects can be the concern of goals. This relationship is modelled with a <<concerns>>
association. All this really declares is that the object is referenced in the definition
of the goal. If an object’s strengthened invariant contributes to the satisfaction of a
requirement it is said to ensure that requirement. This relationship is modelled with
an <<ensures>> association.

10

<<assumption>>
IncidentReported

<<goal>>
AmbulanceIntervention

<<assumptionl>>
IncidentResolvedBy

Intervention

<<goal>>
IncidentResolved

 goal

 subgoal

 subgoal subgoal

AND Reduction

Fig. 6. Another way to represent goal reduction

3.4 Actions

If an agent is responsible for a requirement it must meet certain conditions. The agent
must perform the action that operationalizes the requirement. To do this it must mon-
itor any object that is input to the action and control any object that is output from
the action. An action is shown in the graphical notation of KAOS like this:

ComputerAided
Dispatch

IncidentForm

AmbulanceInfo.Location
AmbulanceInfo.Available

AmbulanceInfo.Allocated
AmbulanceInfo.AllocationDest

ComputerAidedDispatch is an agent. An arrow hitting an agent indicates that the
agent monitors the object (or attributes) labelling the arrow. An arrow leaving an
agent indicates that the agent controls the object (or attributes) labelling the arrow.
The diagram is supplemented by explanatory text:

Action
AllocateAmbulance

PeformedBy
ComputerAidedDispatch

Input
IncidentForm {arg if}
AmbulanceInfo {arg ai}/ Location, Available

Output
AmbulanceInfo {res ai}/ Allocated, AllocationDest

DomPre

11

<<kentity>>
Incident

 Location
 Happened
 Resolved

<<kentity>>
Ambulance

 Location
 Destination
 Available
 Intervention
 Mobilized

Intervention

<<kevent>>
UrgentCall

Reporting

Mobilization

Fig. 7. Partial object model

¬(ai.Allocated ∧ ai.AllocationDest = if .Location)
DomPost

ai.Allocated ∧ ai.AllocationDest = if .Location)
ReqTrigFor

AllocationBasedOnIncidentFormAndAmbulanceInfoWhenNearAmbulanceAvailable,
�≤ allocationdelay if .Encoded

ReqPreFor
AllocationBasedOnIncidentFormAndAmbulanceInfoWhenNearAmbulanceAvailable,
(ai.Available ∧ ¬ai.Allocated ∧ TimeDist(ai.Location, if .Location) = 11mins) ∨
¬ ∃ x : AmbulanceInfo

((x.Available ∧ ¬x.Allocated ∧ TimeDist(x.Location, if .Location) = 11mins))

The diagram and text together represent the action. An equivalent in the UML is
shown in figures 8 and 9. Figure 9 simply covers the aspects of the action’s specifi-
cation in relation to the goal it operationalizes – here, these are the required trigger
condition and the required post condition. Diagrammatically, these should be related
to the association between the action and the goal.

A principal difference of the UML representation is that the action itself is shown
graphically as a class of <<kaction>> stereotype, whereas the action in KAOS notation
is taken to be the sum of the interactions of the agent. A UML diagram clearly sepa-
rates the monitors and controls relationships on one hand, and the input and output
relationships on the other. Specific attributes of objects are declared in the monitored
and controlled tags of the <<monitors>> and <<controls>> stereotypes respectively. Simi-
larly, the arguments and results tags are used to declare the specific attributes of objects
that are involved in <<input>> and <<output>> associations respectively. The domain
pre- and post-conditions and the required pre-, post-, and trigger conditions are defined
in tagged values of a <<kaction>> class. The attributes reqPrecondition, reqPostcondi-
tion, and reqTriggercondition specify constraints on the <<operationalizes>> association
between action and goal (figure 9). These diagrams provide greater detail than may be
necessary for a model. In many cases, minimal tags are sufficient.

12

<<kentity>>
IncidentForm

 Location: String

<<kagent>>
ComputerAidedDispatch

<<kaction>>
AllocateAmbulance

<<kentity>>
AmbulanceInfo

 Allocated: Boolean
 Available: Boolean
 AllocatedDest: String
 Location: String

<<monitors>>

<<performs>>

<<controls>> { monitored = Location, Available
 controlled = Allocated, AllocationDest }

if_input <<input>>

<<input>>
{ arguments = Location, Available }

<<output>>
{ results = Allocated, AllocationDest }

{ domPrecondition = not (self.ai_input.Allocated or
 self.ai_input.AllocationDest = self.if_input.Location),
 domPostcondition = self.ai_output.Allocated and
 self.ai_output.AllocationDest = self.if_input.Location }

ai_input

ai_output

Fig. 8. AllocateAmbulance action model

13

<<requirement>>
AllocationBasedOn

IncidentForm

<<operationalizes>>

{ reqTriggercondition = previously [<= allocation_delay] self.action.if_input.encoded,
 reqPrecondition = (self.action.ai_input.available and not self.action.ai_input.allocated
 and self.action.ai_input.time_dist(self.action.if_input.location) <= 11)
 or not (self.ai_input -> exists (available and not allocated
 and time_dist(self.action.if_input.location) <= 11)) }

<<kaction>>
AllocateAmbulance

<<kentity>>
IncidentForm<<input>> if_input

ai_input <<kentity>>
AmbulanceInfo

 time_dist(String): Int

<<input>>

action

Fig. 9. AllocateAmbulance action model

To perform an action, an agent must be capable of performing that action. It is un-
necessary to show a <<capability>> association in figure 8 since an agent performing an
action implies its capability to do so. However, it may be useful to model capabilities
before determining responsibility relationships to see what can do what. Similarly, if an
agent controls an object, it also monitors that object. Essentially, controlling an object
is the ability to write that object’s attributes, while monitoring an object is the ability
to read that object’s attributes. Again, it is unnecessary to show a <<monitors>> as-
sociation between ComputerAidedDespatch and AmbulanceInfo, since controls implies
monitors.

In figure 9, the value of the reqPrecondition tag of the <<operationalizes>> association,
given here as an OCL expression, accesses the time dist() operation of AmbulanceInfo.
To express in the OCL the TimeDist() function from the KAOS specification of the
action, we have introduced an extra operation into one of the classes modelled. The
TimeDist() function in the KAOS specification gives the time it takes to travel between
two locations. In our UML model we have invented an operation in the AmbulanceInfo
class that takes a location value and returns the distance between AmbulanceInfo’s lo-
cation and the location of the argument. We have also introduced a keyword previously,
which can take a temporal qualifier, as an example of how the real time constraints of
KAOS may be captured. There is not room to cover an extension of the OCL and we
will not elaborate further. However, this would allow us to express fully, using elements
of the UML, what we find in a KAOS specification. But again, in many cases, use of
ASCII text for formalization is more suitable.

14

4 Model Integration

The worth of a UML profile for KAOS should be measured by how it benefits the
software engineering process. Given that KAOS is a powerful approach to an essential
part of this process, the provision of the means to model it in the UML – a ubiquitous
modelling notation – is surely beneficial. Potentially, KAOS could reach a wider user-
base. However, there is a further bonus. Modelled in the UML, a KAOS model may be
incorporated into the rest of a system’s UML design documentation, seamlessly linking
the documentation for the requirements elicitation part of a project to the whole.

4.1 Requirements Traceability

An obvious result of the interleaving of requirements elicitation and design documenta-
tion is the facilitation of requirements traceability. A KAOS model supports backwards
requirements traceability through its reduces relationships. By navigating back from
a goal along <<reduces>> associations, that goal’s purpose can be ascertained by iden-
tifying the goal or goals it reduces. Forward requirements traceability is supported
through <<operationalizes>>, <<responsibility>>, and <<ensures>> associations between
<<requisite>> classes and <<kaction>>, <<kagent>>, and <<kobject>> classes respectively.
However, we might also want to trace forward from a requirement or goal to lower
levels of design. We would like to be able to integrate our KAOS model for the system-
to-be with other models of the system: use case models, sequence models, or (UML)
object models, for example. Application of the UML’s existing <<trace>> association
would allow us to relate elements between requirements model and design model. The
<<trace>> association is used for “tracking requirements and changes across models”
([9]). Signaling interrelations in this way produces a more manageable requirements
document. Drawing the connections using UML associations is both simple and clear.

Use of the <<trace>> association is left to the discretion of the modeler. It is syntactically
applicable to any model elements, though, of course, its use in some cases is far more
meaningful or appropriate than in others. A relationship between a use case and goal,
for example, is readily intelligible. Syntactically, it is legal to draw the association
between goal to the whole use case model – actor, use cases, and links together – since
this is itself a UML element, but we would need to be careful that our goal indeed
concerned an actor, or the taking of an emergency call.

4.2 Interleaving Models

The more interesting possibility resulting from the profile is the interleaving of KAOS
models with standard UML models. In this way, the KAOS approach can be fully in-
tegrated with the rest of the design documentation for a software system. The KAOS
method encourages the consideration of different design alternatives: key relationships
such as those of reduction and responsibility assignment can be modelled as (possibly
exclusive) disjunctive associations. Alternatives can be modelled and investigated be-
fore choosing the most attractive. An analysis of these alternatives using UML models
can now more neatly be carried out using the very classes identified and modelled
through KAOS. A KAOS object represented in the UML can become a model element
in a UML sequence diagram, for instance. Because we can represent it in the UML, a

15

<<kagent>>
Communications

Infrastructure

: StationPrinter
<<kagent>>

StationPrinter

Communications
Infrastructure Model

KAOS model design model

Fig. 10.

KAOS model may now form part of a comprehensive whole rather than remaining an
essentially separate document.

A good example of correlation is the relationship between a use case and the UML
model of a KAOS action. We could consider the use case to be an abstracted view
of the action and the action model a more detailed description of the use case. An-
other example is illustrated in the top half of figure 10. StationPrinter is an agent
and modelled as a <<kagent>> class in the KAOS model. We might then model an
instance of this class at the design level and there would then be dependency between
the two models. However, the correspondence between elements of a KAOS model and
those of design models is not always straightforward. To begin with, the level of ab-
straction at which an element is represented in a KAOS model will often not coincide
with the representation of the corresponding element in a design model. It is unlikely
that a CommunicationsInfrastructure agent, for instance, though again, modelled as
a <<kagent>> class in the KAOS model, would be represented as a single class at the
design level. In this case, the communications architecture would be better modelled
by a package of classes.

Differing levels of abstraction are not the only concern. Models of requirements also
tend to be structured in a way that is not obviously compatible with the conventional
object-oriented structure of design models. Requirements specifications are generally
concerned with the features and capabilities of a system. These features and capabilities
may eventually affect many classes, or conversely, a single class may end up covering
several features on its own. Our UML profile for KAOS does not avoid this. A KAOS
model, though represented in the UML by means of classes, will still not decompose
directly into the class structure of a design model. In modelling requirements as classes,
we are still simply modelling these concerns and capabilities. A class representing a
general system concern cannot straightforwardly be mapped to a class or classes at
design level that represent actual components of a system. The UML offers no explicit
support for decomposition of models from requirements.

16

<<subject>><<requirement>>
<<refines>>

Fig. 11.

However, work presented in [3] and [4], which extends object-oriented design in the
UML by adding “additional decomposition capabilities that support the direct align-
ment of design models with requirements” ([4]), may help here. The suggestion is
that classes in design models might be arranged by subject in a way that mitigates
the UML’s object-oriented bias. This subject-oriented approach allows the design of
different requirements to be modelled in (possibly overlapping) UML design models.
Relationships between models governing their composition or merger are specified by
stereotyped associations. Augmenting the UML with our profile together with a profile
such as the one introduced in [3] would support smooth development of a system in
the UML from requirements to implementation. The mapping between requirements
model and design model would be facilitated. Using single design models to model
each requirement gives us a one-to-one mapping between design model and KAOS
model. The agents, actions, and objects of our KAOS model would correspond closely
with subsets of the elements in the design model that modelled the requirement in
question. An implementation need not follow subject-oriented programming princi-
ples, though these may be appropriate in some cases. Subject-oriented design models
can be composed so that object-oriented code may be developed from them. This sees
the gap between requirements and software bridged. Figure 11 shows a package we
should imagine containing a design model of a requirement. The package carries the
<<subject>> stereotype ([3]).

5 Case Study

This case study is concerned with the development of a portion of the Advanced Auto-
matic Train Control (AATC) system used in San Francisco’s Bay Area Rapid Transit
(BART) rail service. The purpose behind this system is to serve more passengers by
running trains more closely spaced. The case study is based on that presented in [8]
which is in turn taken from an informal description of the AATC specifications in [11].
The aim is to show, by following a path from initial goals to agent assignment, that all
necessary documentation of the KAOS process can be captured in the UML using our
profile.

The case study is specifically concerned with those aspects of the system needed to
control the acceleration and speed of the trains. The problem addressed is the develop-
ment of an acceleration and speed control system responsible for getting trains running
as swiftly and as smoothly as possible within these safety constraints:

1. a train should not enter a closed gate (in the BART system, a gate is not a physical
object, but a signal, received by the acceleration and speed control system, that
establishes whether a train is allowed to enter a segment of the track)

17

<<goal>>
ServeMorePassengers

{soft}

<<goal>>
NewTracksAdded

{soft}

<<goal>>
TrainsMoreCloselySpaced

{soft}

OR Reduction

<<goal>>
Costs

{soft, form = Minimize}

<<goal>>
DevelopmentCosts

{soft, form = Minimize}

<<goal>>
OperationCosts

{soft, form = Minimize}

AND Reduction

goal goal

subgoal subgoal subgoal subgoal

<<reduces>>

<<conflicts>>

Fig. 12. Preliminary goal graph for the BART system

2. a train should never get so close to a train in front so that if the train in front
stopped suddenly — perhaps due to derailment — the following train would hit it

3. a train should stay below the maximum speed the segment of track it is on can
handle

5.1 Identification and formalization of primary goals

By searching the problem statement for keywords such as ‘purpose’, ‘objective’, ‘in
order to’, ‘intent’ etc, some initial goals can be identified at an early stage. Figure 12
shows the UML goal graph obtained after a first reading of this document.

The two main goals identified are ServeMorePassengers and Minimize[Costs]. Serve-
MorePassengers is quickly found to reduce to either NewTracksAdded or TrainsMore-
CloselySpaced, while Minimize[Costs] reduces to the conjunction of Minimize[Devel-
opmentCosts] and Minimize[OperationalCosts]. It is also clear that achieving Trains-
MoreCloselySpaced would minimize development costs, and so TrainsMoreClosely-
Spaced is shown to reduce Minimize[DevelopmentCosts] as well. Moreover, building
new tracks would be very expensive: NewTracksAdded conflicts with Minimize[Devel-
opmentCosts]. Minimize[OperationalCosts] is reduced as in figure 13 resulting in the
goal SmoothMovement that reduces the goals that reduce Minimize[OperationalCosts]
— Minimize[StressOnEquipment] and Minimize[PowerUsage]. SmoothMovement also
reduces a further identified goal, PassengerComfort.

All of the goals in figures 12 and 13 are soft goals, that is, they are goals that are as
yet too vague to be formalized. Since they are not sufficiently defined, it is also not
yet fully clear what it would take to satisfy one of these goals. Ordinarily, a reduces
relationship holds between a goal and a subgoal if satisfaction of the subgoal is sufficient
for satisfaction of the goal it reduces. However, where a reduces relationship exists
between goals in which any of the reduced goals are soft, we talk in terms of satisficing

18

<<goal>>
OperationCosts

{soft, form = Minimize}
AND Reduction

goal

<<goal>>
StressOnEquipment

{soft, form = Minimize}

<<goal>>
PowerUsage

{soft, form = Minimize}}

<<goal>>
SmoothMovement

{soft}

<<goal>>
PassengerComfort

{soft}

<<reduces>>

<<reduces>>

<<reduces>>

subgoal

subgoal

Fig. 13. Reduction of Minimize[OperationCosts]

rather than satisfying. The concept of satisficing is weaker than satisfying: a lower-
level goal is supposed to achieve its parent goal within acceptable limits rather than
absolutely [Let01]. The goals identified so far must be further reduced. An important
aspect of the AATC system is safety, so formalization in this case is important.

From the given safety conditions, we can identify three safety goals, Maintain-
[WCSDistanceBetweenTrains], Avoid[TrainEnteringClosedGate], and Maintain[Track-
SegmentSpeedLimit]. These goals can be formally defined:

<<goal>>
WCSDistanceBetween

Trains

{ form = Maintain,
 informalDef = a train should never get so close to a train in front so that if the train in front
 stopped suddenly the following train would hit it: it must maintain Worst Case Stopping distance,
 formalDef = forall tr1, tr2: Train (Following(tr1, tr2) --> tr2.Loc - tr1.Loc >= tr1.WCSDist) }

<<goal>>
TrainEnteringClosedGate

{ form = Avoid,
 informalDef = a train should not enter a closed gate,
 formalDef = forall g: Gate, s: TrackSegment, tr: Train (g.Status = 'closed' and HasGate(s, g)
 --> ~ just (~ On(tr, s) }

<<goal>>
TrackSegmentSpeedLimit

{ form = Maintain,
 informalDef = a train should stay below the maximum speed the track segment can handle,
 formalDef = forall tr: Train, s: TrackSegment (On(tr, s) --> tr.Speed <= s.SpeedLimit) }

19

<<kentity>>
Train

 Speed
 Loc
 WCSDist

<<kentity>>
TrackSegment

 SpeedLimit

<<kentity>>
Track

Following

On

<<kentity>>
Gate

 Loc
 Status

HasGate

OnTrack

Fig. 14.

5.2 Identification of Objects

The definition of goals drives the identification of objects. In the definitions of the above
three goals we have identified four entities — Train, Track, Gate, and TrackSegment —
and three relationships between them — Following, HasGate, and On. The predicate
Following is defined formally by

∀ tr1, tr2 : Train (Following(tr1, tr2) ≡
∃ trk : Track (OnTrack(tr1, trk) ∧ OnTrack(tr2, trk) ∧ tr1.Loc ≤ tr2.Loc
∧ ¬∃ tr3 : Train (OnTrack(tr3, trk) ∧ tr1.Loc ≤ tr3.Loc ∧ tr3.Loc ≤ tr2.Loc)))

This definition introduces the OnTrack relationship. A composition relationship be-
tween Track and TrackSegment is also introduced. Figure 14 shows a UML object
diagram that captures the portion of the KAOS object model identified.

The definitions of goals identified at an early stage often need revising. From these
revisions more objects may be uncovered. An example is the goal Avoid[TrainEntering-
ClosedGate]. A train cannot stop instantaneously; if a gate closes when a train is too
close to it to stop then the train must be allowed to enter the gate even though it is
closed. We must weaken Avoid[TrainEnteringClosedGate]. This is also an example of
the use of the KAOS tactic weaken goal with unsatisfiable condition. A weakened
Avoid[TrainEnteringClosedGate] is depicted here:

20

<<goal>>
TrainEnteringClosedGate

{ form = Maintain,
 informalDef = a train should not enter a closed gate provided that the gate has been closed
 when the distance between the train and the gate was more than the worst case stopping
 distance of the train; if the gate is open when the distance between the train and the gate is less
 than the worst case stopping distance of the train, the train may ignore the gate, even if it
 becomes closed later,
 formalDef = forall g: Gate, s: TrackSegment, tr: Train
 (g.Status = 'closed' backto (g.Loc - tr.Loc) >= tr.WCSDist) and HasGate(s, g) -->
 ~ just (~ On(tr, s)) }

This weakening allows trains to enter a closed gate if the gate becomes closed when it
is impossible for the train to stop in time. Allowing a train to enter a closed gate need
not be unsafe, but this really becomes clear only once the rationale for the original
Avoid[TrainEnteringClosedGate] is understood. We need to identify the higher-level
goal that this goal reduces by asking WHY Avoid[TrainEnteringClosedGate]. The re-
sulting extension to the goal model is shown in figure 15.

The definition of Maintain[GateClosedInTimeWhenSwitchInWrongPosition] is elicited
formally by matching a chain-driven refinement pattern to the formalization of the
parent goal Avoid[TrainOnSwitchInWrongPosition] and of the initial goal Avoid[Train-
EnteringClosedGate].

Two domain properties can also be identified:

– every track segment leading to a switch ends with a gate
∀ sw : Switch, s : TrackSegment, trk : Track
(NextSegmentOnTrack(trk, s, sw) ⇒ ∃ g : Gate (HasGate(s, g)))

– a train enters a switch iff it leaves a track segment preceding the switch
∀ sw : Switch, tr : Train
(@ On(tr, sw) ≡ ∃ trk : Track, s : TrackSegment (NextSegmentOnTrack(trk, s, sw)
∧ @ ¬On(tr, s)))

These new goals and domain properties in turn augment the object model as shown in
figure 16. The definition of the domain properties should also be attached to the ob-
ject model since the properties constrain the objects’ behaviour. Binary relationships
between objects are modelled using UML associations. NextSegmentOnTrack and Ap-
proachingSwitchOnTrack are ternary relationships and modelled using collaborations
with three roles — the Segment role of the NextSegmentOnTrack collaboration has a
multiplicity of 2.

We can ask WHY questions about Maintain[WCSDistBetweenTrains] yielding:

<<goal>>
WCSDistBetweenTrains

{form = Maintain}

<<goal>>
TrainCollisions
{form = Avoid}

<<reduces>>

WHY?

As before, we gain greater perspective on a goal by finding out what higher-level aim
it is intended to achieve.

21

<<goal>>
TrainDerailed
{form = Avoid}

<<goal>>
TrainOnSwitchInWrong

Position

<<goal>>
TrainOnCorrectLine

{form = Maintain}

<<goal>>
TrainEnteringClosedGate

{form = Avoid}

<<goal>>
GateClosedInTimeWhen
SwitchInWrongPosition

{form = Maintain}

{ form = Avoid,
 informalDef = a train should not enter a
 switch if it is not appropriately positioned }

<<reduces>> <<reduces>>

AND Reduction

goal

subgoalsubgoal

Fig. 15. Goals identified by asking WHY questions for Avoid[TrainEnteringCloseGate].

<<kentity>>
Track

<<kentity>>
TrackSegment

 SpeedLimit

ComposedOf

<<kentity>>
Gate

 Loc
 Status

<<kentity>>
Switch

 Position

<<kentity>>
Train

 Speed
 Loc
 WCSDist

HasGateOn

ApproachingSwitch
OnTrack

Following

OnTrack

Track

Switch

Train

NextSegmentOn
Track

Track

Segment

Fig. 16. Extended object model.

22

5.3 Identification of requirements and agent assignments

Obviously, all achievable goals must be reduced until they are irreducible and assignable
to an agent, and all unachievable goals must be weakened and then reduced in their
new form. When a goal can be assigned to an agent it is called a requisite. A requi-
site that is assigned to an agent in the software-to-be is a requirement. However, to
better illustrate this process we will here concern ourselves only with the reduction
of Maintain[WCSDistBetweenTrains] in order to identify some initial requirements for
the system. Complete reduction of this goal — let alone that for all goals of the system
— would result in a goal graph too large for our purposes. We will restrict the example
to the identification of a few requirements, allocating them each to an agent.

Reducing Maintain[WCSDistBetweenTrains], three more goals are identified: Avoid-
[TrainEnteringTrackInFrontOfCloseTrain], Avoid [TrainEnteringTrackBehindClose-
Train], and Maintain[WCSDistBetweenTrainsOnSameTrack]:

<<goal>>
WCSDistBetweenTrainsOn

SameTrack

{ form = Maintain,
 informalDef = if a train is following another so that the distance between the two trains is safe,
then the distance between the two trains must remain safe in the next state,
 formalDef = forall tr1, tr2: Train, trk: Track
 ((previous (Following(tr1, tr2) and tr2.Loc - tr1.Loc >= tr1.WCSDist) and
 Following(tr1, tr2) --> tr2.Loc - tr1.Loc >= tr1.WCSDist) }

<<goal>>
TrainEnteringTrackBehind

CloseTrain

{ form = Avoid,
 informalDef = a train should not enter a track behind another train if it violates the worst
 case stopping distance between trains,
 formalDef = forall tr1: Train, trk: Track (just OnTrack(tr1, trk) -->
 ~ exists tr2: Train (tr2 <> tr1 and OnTrack(tr2, trk) and tr2.Loc >= tr1.Loc and
 tr2.Loc - tr1.Loc >= tr1.WCSDist)) }

<<goal>>
TrainEnteringTrackInFront

OfCloseTrain

{ form = Avoid,
 informalDef = a train should not enter a track in front of another train if it violates the worst
 case stopping distance between trains,
 formalDef = forall tr1: Train, trk: Track (just OnTrack(tr1, trk) -->
 ~ exists tr2: Train (tr2 <> tr1 and OnTrack(tr2, trk) and tr1.Loc >= tr2.Loc and
 tr1.Loc - tr2.Loc >= tr2.WCSDist)) }

Have we yet found a goal that can be assigned to an agent? Not yet. Maintain[WCS-
DistBetweenTrainsOnSameTrack] cannot be operationalized by the centralized train
control system agent — an obvious candidate already in the system — because this

23

agent does not control the speed and location of the following train, nor does it monitor
the location of both trains. We need to further reduce the goal.

Figures 17 and 18 together show a derivation graph with Maintain[WCSDistBetween-
TrainsOnSameTrack] at the head. The graphs are pruned and do not show the entire
model for simplicity. The part of the model shown in figure 17 includes a requirement
that is one of two goals reducing the goal Maintain[SafeAccCmdOfFollowingTrain].
This requirement — AccurateSpeed/LocationEstimates — has been assigned to the
agent TrainTrackingSystem. Figure 18 identifies four requirements — ReceivedCmd-
MessageExercised, CmdMessageSentInTime, SafeAcc/SpeedCmdInCmdMessage, and
SentCmdMessageDeliveredInTime — and the agents responsible for them. The figures
also show comments attached to the reduction collaborations indicating the KAOS
methods used in identifying the new goals.

5.4 Goal operationalization

Agent interfaces and operational requirements can now be derived from the require-
ments identified and the agents assigned to them. For instance, the requirement Safe-
Acc/SpeedCmdInCmdMessage is assigned as the responsibility of the TrainControl-
System agent. A portion of the agent interface model derived from that responsibility
assignment is given in figure 19 (in the diagram the constraints on the action are given
in OCL). We should also model the constraints on the <<operationalizes>> associations
of the action as shown in figure 20. In our UML representation we can include the
action definition in the agent interface model. Further actions and agent interfaces are
derived from the other responsibility assignments as shown minimally in figure 21.

6 Related Work

KAOS is by no means the only goal-oriented methodology around (see [12] and [10]
for brief surveys of the field). For example, [1] – though its focus is not so much on
the acquisition of requirements – uses goals as the main guiding concept in developing
requirements specifications. KAOS is, however, the most influential and widely cited
approach. It is also unique in its conceptual ontology: lower level descriptions of a
system-to-be are progressively derived from system-level and organizational objectives
using a framework that is essentially a taxonomy of concepts that are instantiated for
particular domains. The structure KAOS gives its models also makes their representa-
tion in the UML straightforward.

KAOS has its own graphical notation and, indeed, in GRAIL, tool support that uses
it ([2]). However, the notation is only informally defined – mainly through examples
in the literature – and is non-standard. Furthermore, its expressive power is limited.
As things stand, a KAOS diagram merely supplements the textual definition of a
concept. On the other hand, a UML representation of a KAOS model can combine
the ease and immediacy of visual comprehension with the full semantics of the KAOS
textual definition by making use of a richer notational semantics together with tagged
values. The GRAIL tool needs both a textual editor and a graphical editor, which are
displayed in separate windows in the tool’s GUI. Representing KAOS in the UML could
also lead to more widespread adoption of the approach. But perhaps most importantly,

24

<<goal>>
SafeAccCmdOfFollowing

Train
{form = Maintain}

<<requirement>>
AccurateSpeed/Location

Estimates
{InstanceOf =

InformationGoall}

<<goal>>
SafeAccCmdOfFolowing
TrainBasedOnSpeed/Loc

Estimates
{form = Maintain}

AND Reduction

goal

subgoalsubgoal

<<goal>>
WCSDistBetweenTrainsOn

SameTrack
{form = Maintain}

<<goal>>
WCResponseOfFollowing

TrainToAccCmd
{form = Maintain}

<<goal>>
BackwardTrain
{form = Avoid}

AND Reduction

goal

subgoalsubgoal

<<goal>>
WCSDistBetweenTrains

{form = Maintain}

<<goal>>
TrainEnteringTrackInFront

OfCloseTrain
{form = Avoid}

<<goal>>
TrainEnteringTrackBehind

CloseTrain
{form = Avoid}

AND Reduction

goal

subgoalsubgoal

split lack of control by cases

split lack of control for train speed/location

introduce accuracy goal to resolve lack of
monitor for train/speed location

<<kagent>>
TrainTrackingSystem

{realm = software}

<<responsibility>>

Fig. 17. Goal derivation graph for Maintain[WCSDistBetweenTrains].

25

<<goal>>
SafeAccCmdOfFollowing
TrainBasedOnSPeed/Loc

Estimates
{form = Maintain}

AND Reduction

<<goal>>
CmdMessageTransmitted

InTime
{form = Maintain}

<<goal>>
ReceivedCmdMessage

Exercised

<<kagent>>
OnBoarcTrainController

{realm = software}

AND Reduction

<<requirement>>
CmdMessageSentInTime

<<requirement>>
SafeAcc/SpeedCmdIn

CmdMessage

<<requirement>>
SentCmdMessage
DeliveredInTime

<<kagent>>
TrainControlSystem
{realm = software}

<<kagent>>
Communication
Infrastructure

{realm = software}

<<responsibility>>

<<responsibility>>

<<responsibility>>

<<responsibility>>

subgoal

subgoal

subgoal

subgoal subgoal

goal

goal

split lack of control with milestone

introduce actuation goal to resolve lack of
control for acceleration command

Fig. 18. Agent assignments for subgoals.

26

<<kaction>>
SendCommandMessage

{ domPrecondition = not self.cmd.Sent,
 domPostcondition = self.cmd.Sent and self.cmd.TrainID = self.info.TrainID }

<<kagent>>
TrainControlSystem

<<kentity>>
CommandMessage

 Sent: Boolean
 TrainID: String

<<performs>>

<<controls>><<monitors>>

<<output>><<input>>

cmdinfo

<<kentity>>
TrainInfo

 TrainID: String

Fig. 19.

requirements engineering can now be modelled alongside, and integrated with, other
UML design models for a system.

A UML profile for modelling goal-oriented requirements has previously been developed
as part of the UWA project ([7]) and presented in [6]. The concern of the UWA project
is the development of a design framework for facilitating the implementation of ubiq-
uitous web applications. The requirements engineering model advocated is therefore
lightweight and – though influenced by KAOS – tailored to the typically rapid devel-
opment cycles of web services. The UML profile in this paper builds on the original
idea from the UWA project but tackles the problem anew by taking the full KAOS
model as its target rather than a considerably pared down variant. The UML profile
of this paper is intended to be used to model large, critical software systems.

We have shown how our profile can be used to integrate a requirements acquisition
model with other UML design models. [3] and [4] give another example of how to inte-
grate a requirements model with lower-level design models. Decomposition of object-
oriented systems by class is usually deemed necessary for good software engineering,
but it is not sufficient. Requirements models are often not readily compatible with an
object-oriented structure: concerns can be spread across many classes and a class may
embody several concerns at once. A late change in requirements can thus cause havoc in
the lower levels of design. A subject-oriented approach to design is offered as a remedy.
UML models are organized by subject where a group of classes deals exclusively with a
single requirement. In cases where several requirements are embodied in a single class
we model this class several times, once per subject (requirement). This redundancy

27

<<kaction>>
SendCommandMessage

<<goal>>
SafeAcc/SpeedCmd

InMessage

<<operationalizes>>

{ reqPostcondition = laststate (FollowingInfo(info1,info2)) -->
 cmd.AccCmd <= accLimit(info1, info2) and
 cmd.SpeedCmd <= speedLimit(info1,info2) and
 cmd.SpeedCmd > info1.Speed + info1.SpeedDev }

<<goal>>
CmdMessageSentInTime

<<operationalizes>>

{ reqTriggercondition = alwayspast [<= 0.5 sec]
 ~exists cmd: CommandMessage (cmd.Sent and cmd.TrainID = info.TrainID) }

Fig. 20.

<<kagent>>
TrainTrackingSystem

<<kagent>>
TrainCOntrolSystem

<<kagent>>
OnBoardTrainController

<<kaction>>
ProduceTrainInfo

<<kaction>>
SendCommandMessage

<<kaction>>
SendAccCommand

<<performs>> <<performs>> <<performs>>

<<kentity>>
CommandMessage

<<input>><<output>>

<<kentity>>
TrainInfo

<<input>>

<<kentity>>
Train

<<input>><<output>>

<<input>>

<<output>>

Fig. 21. A portion of the agent and action interface model

28

is accounted for by the semantics introduced with a UML profile governing how the
subject-units of a design can be composed. While our profile allows for straightforward
integration of requirements and design models, this integration is still flawed by the
differences in structure between these types of models. Augmenting a subject-oriented
approach with our profile, perhaps by combining our profile with that presented in
[3], for example, so that a requirements acquisition model can be represented in UML,
and then integrated with a subject-oriented UML design model, would provide a very
powerful UML-based software modelling environment.

7 Conclusion

We have introduced a UML profile with which a KAOS model can be represented.
Providing for the representation of KAOS in the UML opens up this powerful approach
to requirements engineering to the support of the many UML tools available. It also
makes KAOS more attractive to newcomers by rendering it in a familiar context.
But perhaps more importantly, documentation for KAOS requirements engineering
activities can be unified with other UML design documentation, making the UML
specification comprehensive and more manageable.

A case study is presented in Section 6. The aim of the case study was to illustrate how all
parts of the KAOS process could be modelled using our UML profile. The presentation
of the profile in section 4 of this paper draws on the first of the case studies in [8] for
its examples, while the case study of Section 6 uses the second case study from [8] –
the BART train control system specification – reproducing the KAOS model in UML
more comprehensively. As far as KAOS has been presented in the literature, the UML
profile adequately supports KAOS.

Future work would include the straightforward task of incorporating support for the
profile into a UML editor. A UML KAOS model could also easily be represented in
XML, enabling automated consistency checking.

References

1. Annie I Anton: “Goal-Based Requirements Analysis” in Proceedings of the Second
International Conference on Requirements Engineering, ICRE ’96 (1996)

2. P Bertrand, R Darimont, E Delor, P Massonet, and A van Lamsweerde:
“GRAIL/KAOS: An Environment for Goal-Driven Requirements Engineering” in
Proceedings of ICSE ’98 — 20th International Conference on Software Engineering
(1998)

3. S Clarke, W Harrison, H Ossher, and P Tarr: “Subject-Oriented Design: Towards
Improved Alignment of Requirements, Design and Code” in Proceedings of Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) (1999)

4. Siobhan Clarke: “Extending the UML Metamodel for Design Composition” in Sci-
ence of Computer Programming, 44 (2002)

5. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas: “Goal-Dircted Re-
quirements Acquisition” in Science of Computer Programming, 20 (1993)

6. A Finkelstein and Andrea Savigni: “A Framework for Requirements Engineering
for Context-Aware Services” in Proceedings of STRAW 01 the First International
Workshop From Software Requirements to Architectures (2001)

29

7. A Finkelstein, A Savigni, G Kappel, W Retschitzegger, E Kimmerstorfer, W
Schwinger, Th Hofer, B Pröll, and Ch Feichtner: “Ubiquitous Web Application
Development — A Framework for Understanding” in The 6th World Multiconfer-
ence on Systematics, Cybernetics, and Informatics (2002)

8. Emmanuel Letier: Reasoning About Agents in Goal-Oriented Requirements Engi-
neering, PhD Thesis, ftp://ftp.info.ucl.ac.be/pub/thesis/letier.pdf (2001)

9. Object Management Group: OMG Unified Modelling Language Specification ver-
sion 1.4, http://cgi.omg.org/docs/formal/01-09-67.pdf (2001)

10. Gil Regev: “Goal-Driven Requirements Engineering Overview” http://lamswww.
eplf.ch/Reference/Goal/Default.htm (2001)

11. V Winter, R Berg, and J. Ringland: “Bay Area Rapid Transit District, Advance
Automated Train Control System: Case Study Description”, Technical Report,
Sandia National Labs, www.sandia.gov/ast/papers/ BART case study.pdf (1999)

12. Eric Yu and John Mylopoulous: “Why Goal-Oriented Requirements Engineering?”
http://www.cs.toronto.edu/pub/eric/REFSQ98.html (1998)

30

Appendix: the stereotypes and tags of the profile

Two tables are included. The first gives an overview of the stereotypes, the second
details the tags. The constraints given generally cover the constraints of the KAOS
meta-model.

31

S
te

re
ot

yp
e

<
<

ko
bj

ec
t>

>
 <

<
ke

nt
ity

>
>

<
<

ke
ve

nt
>

>

<
<

ka
ct

io
n>

>

<
<

in
pu

t>
>

<
<

ou
tp

ut
>

>

<
<

ka
ge

nt
>

>

B
as

e
C

la
ss

C
la

ss

C
la

ss

C
la

ss

C
la

ss

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

C
la

ss

P
ar

en
t

 -

<
<

ko
bj

ec
t>

>

<
<

ko
bj

ec
t>

>

<
<

ko
bj

ec
t>

>

 - - <
<

ko
bj

ec
t>

>

C
on

st
ra

in
ts

 -

 - - A
n

ac
tio

n
ca

n
on

ly
 b

e
ap

pl
ie

d
if

its

do
m

P
re

co
nd

iti
on

 h
ol

ds

V
al

ue
s

of
 th

e
as

so
ci

at
io

n'
s

ar
gu

m
en

t t
ag

m

us
t b

e
at

tr
ib

ut
es

 o
f t

he
 <

<
ko

bj
ec

t>
>

cl

as
s

T
he

 v
al

ue
 o

f t
he

 a
ss

oc
ia

tio
n'

s
re

su
lt

ta
g

m
us

t b
e

at
tr

ib
ut

es
 o

f t
he

 <
<

ko
bj

ec
t>

>

cl
as

s

* pe
rf

or
m

s(
ag

,a
c)

 -
-
>

ca
pa

bi
lit

y(
ag

,a
c)

co
nt

ro
ls

(a
g,

o)
 -
-
>

 m
on

ito
rs

(a
g,

o)
ca

pa
bi

lit
y(

ag
,a

c)
 a

nd
 in

pu
t(

o,
ac

)

-
-
>

 m
on

ito
rs

(a
g,

o)
**

ca
pa

bi
lit

y(
ag

,a
c)

 a
nd

 o
ut

pu
t(

o,
ac

)

-
-
>

 c
on

tr
ol

s(
ag

,o
)*

*
re

sp
on

si
bi

lit
y(

ag
,r

)
an

d
op

er
at

io
na

liz
es

(a
c,

r)

-
-
>

 p
er

fo
rm

s(
ag

,a
c)

D
es

cr
ip

tio
n

C
la

ss
 d

ef
in

es
 a

 th
in

g
of

 in
te

re
st

 th
at

 c
an

be

 r
ef

er
en

ce
d

in
 g

oa
l d

ef
in

tio
ns

C
la

ss
 d

ef
in

es
 a

n
au

to
no

m
ou

s
th

in
g

of

in
te

re
st

: i
ns

ta
nc

es
 o

f <
<

ke
nt

ity
>

>

cl
as

se
s

m
ay

 e
xi

st
 in

de
pe

nd
en

tly
 o

f
in

st
an

ce
s

of
 o

th
er

 <
<

ko
bj

ec
t>

>
 c

la
ss

es

C
la

ss
 d

ef
in

es
 a

n
in

st
an

ta
ne

ou
s

th
in

g
of

in

te
re

st
: i

ns
ta

nc
es

 o
f <

<
ke

ve
nt

>
>

cl

as
se

s
on

ly
 e

ve
r

ha
ve

 th
e

on
e

st
at

e

C
la

ss
 d

ef
in

es
 a

n
in

pu
t-

ou
tp

ut
 r

el
at

io
n

ov
er

 <
<

ko
bj

ec
t>

>
 c

la
ss

es
; d

ef
in

es
 s

ta
te

tr

an
si

tio
ns

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ko
bj

ec
t>

>
 c

la
ss

 a
nd

 a

<
<

ka
ct

io
n>

>
 c

la
ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ko
bj

ec
t>

>
 c

la
ss

 a
nd

 a

<
<

ka
ct

io
n>

>
 c

la
ss

C
la

ss
 d

ef
in

es
 a

 p
ro

ce
ss

or
 fo

r
so

m
e

ac
tio

ns
; c

on
tr

ol
s

st
at

e
tr

an
si

tio
ns

*
ag

en
t :

 a
g,

 a
ct

io
n

: a
c,

 o
bj

ec
t :

 o
, r

eq
ui

si
te

 :
r

**
 th

e
ag

en
t n

ee
d

ac
tu

al
ly

 o
nl

y
m

on
ito

r
/ c

on
tr

ol
 th

os
e

at
tr

ib
ut

es
 o

f t
he

 o
bj

ec
t t

ha
t s

pe
ci

fic
al

ly
 p

ro
vi

de
 th

e
in

pu
t /

 o
ut

pu
t

TA
B

LE
 1

: s
te

re
ot

yp
es

32

S
te

re
ot

yp
e

<
<

ca
pa

bi
lit

y>

<
<

pe
rf

or
m

s>
>

<
<

m
on

ito
rs

>
>

<
<

co
nt

ro
ls

>
>

<
<

go
al

>
>

<
<

co
nc

er
ns

>
>

<
<

re
du

ce
s>

>

<
<

co
nf

lic
ts

>
>

<
<

re
qu

is
ite

>
>

B
as

e
C

la
ss

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

C
la

ss

A
ss

oc
ia

tio
n

A
bs

tr
ac

tio
n

A
ss

oc
ia

tio
n

C
la

ss

P
ar

en
t

 -

 - - - - - <
<

re
fin

es
>

>

 - -

C
on

st
ra

in
ts

S
ee

 <
<

ka
ge

nt
>

>
 c

on
st

ra
in

ts

S
ee

 <
<

ka
ge

nt
>

>
 c

on
st

ra
in

ts

S
ee

 <
<

ka
ge

nt
>

>
 c

on
st

ra
in

ts
;

va
lu

es
 o

f t
he

 m
on

ito
re

d
ta

g
m

us
t b

e
at

tr
ib

ut
es

 o
f t

he
 <

<
ko

bj
ec

t>
>

 c
la

ss

S
ee

 <
<

ka
ge

nt
>

>
 c

on
st

ra
in

ts
; v

al
ue

s
of

 th
e

co
nt

ro
lle

d
ta

g
m

us
t b

e
at

tr
ib

ut
es

 o
f t

he

<
<

ko
bj

ec
t>

>
 c

la
ss

 a
nd

 m
ay

 n
ot

 b
e

va
lu

es

of
 th

e
co

nt
ro

lle
d

ta
g

of
 a

ny
 o

th
er

<

<
ka

ge
nt

>
>

 c
la

ss

A
 <

<
go

al
>

>
 c

la
ss

 is
 a

 s
in

gl
et

on
.

 - - - A
 <

<
re

qu
is

ite
>

>
 c

la
ss

 is
 a

 s
in

gl
et

on
.

D
es

cr
ip

tio
n

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ka
ge

nt
>

>
 c

la
ss

 a
nd

 a

<
<

ka
ct

io
n>

>
 c

la
ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ka
ge

nt
>

>
 c

la
ss

 a
nd

 a

<
<

ka
ct

io
n>

>
 c

la
ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ka
ge

nt
>

>
 c

la
ss

 a
nd

 a

<
<

ko
bj

ec
t>

>
 c

la
ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ka
ge

nt
>

>
 c

la
ss

 a
nd

 a

<
<

ko
bj

ec
t>

>
 c

la
ss

C
la

ss
 d

ef
in

es
 a

n
ob

je
ct

iv
e

to
 b

e
ac

hi
ev

ed
 b

y
th

e
sy

st
em

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

go
al

>
>

 c
la

ss
 a

nd
 a

<

<
ko

bj
ec

t>
>

 c
la

ss

A
bs

tr
ac

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
tw

o
<

<
go

al
>

>
 c

la
ss

es
, o

r
be

tw
ee

n
a

<
<

go
al

>
>

 c
la

ss
 a

nd
 a

<

<
re

qu
is

ite
>

>
 c

la
ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
tw

o
<

<
go

al
>

>
 c

la
ss

es

C
la

ss
 d

ef
in

es
 a

 g
oa

l t
ha

t h
as

 b
ee

n
su

ffi
ci

en
tly

 r
ef

in
ed

 to
 b

e
as

si
gn

ab
le

 to
 a

si

ng
le

 a
ge

nt

33

S
te

re
ot

yp
e

<
<

as
su

m
pt

io
n>

>

<
<

re
qu

ire
m

en
t>

>

<
<

op
er

at
io

na
liz

es
>

<
<

en
su

re
s>

>

<
<

re
sp

on
si

bi
lit

y>
>

B
as

e
C

la
ss

A
ss

oc
ia

tio
n

C
la

ss

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

A
ss

oc
ia

tio
n

P
ar

en
t

<
<

re
qu

is
ite

>
>

<
<

re
qu

is
ite

>
>

 - - -

C
on

st
ra

in
ts

 - A
 r

eq
ui

re
m

en
t m

us
t b

e
de

fin
ed

 o
nl

y
in

te

rm
s

of
 th

in
gs

 m
on

ito
re

d
an

d
co

nt
ro

lle
d

by
 th

e
so

ftw
ar

e

 - - O
nl

y
on

e
ag

en
t i

s
as

si
gn

ed
 th

e
re

sp
on

si
bi

lit
y

fo
r

ea
ch

 r
eq

ui
si

te
; i

f a
n

ag
en

t
is

 r
es

po
ns

ib
le

 fo
r

an
 a

ss
um

pt
io

n
it

m
us

t b
e

a
do

m
ai

n
ag

en
t;

an
d

if
an

 a
ge

nt
 is

re

sp
on

si
bl

e
fo

r
a

re
qu

ire
m

en
t i

t m
us

t b
e

a
so

ftw
ar

e
ag

en
t

D
es

cr
ip

tio
n

C
la

ss
 d

ef
in

es
 a

 r
eq

ui
si

te
 r

es
po

ns
ib

ili
ty

fo

r
w

hi
ch

 c
an

 e
ffe

ct
iv

el
y

be
 a

ss
ig

ne
d

to

an
 a

ge
nt

 in
 th

e
do

m
ai

n

C
la

ss
 d

ef
in

es
 a

 r
eq

ui
si

te
 r

es
po

ns
ib

ili
ty

fo

r
w

hi
ch

 c
an

 b
e

as
si

gn
ed

 to
 a

n
ag

en
t i

n
th

e
do

m
ai

n

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

re
qu

is
ite

>
>

 c
la

ss
 a

nd
 a

<

<
ka

ct
io

n>
>

 c
la

ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

ko
bj

ec
t>

>
 c

la
ss

 a
nd

 a

<
<

re
qu

is
ite

>
>

 c
la

ss

A
ss

oc
ia

tio
n

de
no

te
s

a
re

la
tio

ns
hi

p
be

tw
ee

n
a

<
<

re
qu

is
ite

>
>

 c
la

ss
 a

nd
 a

<

<
ka

ct
io

n>
>

 c
la

ss

34

Ta
g

in
fo

rm
al

D
ef

fo
rm

al
D

ef

fo
rm

so
ft

in
st

an
ce

O
f

pr
io

rit
y

ca
te

go
ry

in
va

ria
nt

S
te

re
ot

yp
e

al
l K

A
O

S

st
er

eo
ty

pe
s

<
<

go
al

>
>

<
<

re
qu

is
ite

>
>

<
<

ka
ct

io
n>

>

<
<

go
al

>
>

<
<

re
qu

is
ite

>
>

<
<

go
al

>
>

<
<

go
al

>
>

<
<

go
al

>
>

<
<

re
qu

is
ite

>
>

<
<

ko
bj

ec
t>

>

Ty
pe

st
rin

g

st
rin

g

{A
ch

ie
ve

,
M

ai
nt

ai
n,

 A
vo

id
,

C
ea

se
, M

in
im

iz
e,

M

ax
im

is
e}

bo
ol

ea
n

{S
at

is
fa

ct
io

n,

S
af

et
y,

 S
ec

ur
ity

,
In

fo
rm

at
io

n,

A
cc

ur
ac

y}

flo
at

 (
0.

.1
)

{S
at

is
fa

ct
io

n,

S
af

et
y,

 S
ec

ur
ity

,
In

fo
rm

at
io

n,

A
cc

ur
ac

y}

st
rin

g

C
on

st
ra

in
ts

 - - - A
 s

of
t <

<
go

al
>

>
 c

la
ss

 c
an

no
t h

av
e

a
fo

rm
al

D
ef

 ta
g

A
 <

<
go

al
>

>
 c

la
ss

 w
ith

 a
n

in
st

an
ce

O
f v

al
ue

of

 S
af

et
y

m
us

t h
av

e
a

pr
io

rit
y

va
lu

e
of

 1

S
ee

 in
st

an
ce

O
f c

on
st

ra
in

t

 - -

D
es

cr
ip

tio
n

A
n

in
fo

rm
al

 d
ef

in
iti

on
 o

f a
 c

la
ss

 o
r

as
so

ci
at

io
n

A
 fo

rm
al

 d
ef

in
iti

on
 o

f a
 c

la
ss

 e
xp

re
ss

ed

in
 K

A
O

S
 te

m
po

ra
l l

og
ic

 (
us

in
g

A
S

C
II

ch
ar

ac
te

rs
)

S
pe

ci
fie

s
th

e
ty

pe
 o

f g
oa

l o
r

re
qu

is
ite

;
A

ch
ie

ve
 a

nd
 C

ea
se

 g
oa

ls
 g

en
er

at
e

be
ha

vi
ou

rs
, M

ai
nt

ai
n

an
d

A
vo

id
 g

oa
ls

re

st
ric

t b
eh

av
io

ur
s,

 M
in

im
iz

e
an

d
M

ax
im

is
e

go
al

s
ar

e
us

ed
 in

 d
es

ig
n

co
m

pa
ris

on
s

In
di

ca
te

s
w

he
th

er
 a

 g
oa

l i
s

so
ft:

 s
of

t
go

al
s

ar
e

go
al

s
th

at
 a

re
 n

ot
 c

le
ar

ly

de
fin

ed
 (

an
d

ca
nn

ot
 b

e
fo

rm
al

iz
ed

)

S
pe

ci
fie

s
th

e
ap

pl
ic

at
io

n-
sp

ec
ifi

c
ty

pe
 o

f
a

go
al

P
rio

rit
y

us
ed

 to
 r

es
ol

ve
 c

on
fli

ct
s:

 1

in
di

ca
te

s
hi

gh
es

t p
rio

rit
y

S
pe

ci
fe

s
th

e
ap

pl
ic

at
io

n-
sp

ec
ifi

c
ty

pe
 o

f
th

e
go

al
 r

ed
uc

ed
 b

y
th

e
re

qu
is

ite

D
ef

in
es

 a
 d

om
ai

n
pr

op
er

ty
 w

ith
 r

es
pe

ct

to
 o

bj
ec

t:
ex

pr
es

se
d

in
 K

A
O

S
 te

m
po

ra
l

lo
gi

c
(u

si
ng

 A
S

C
II

ch
ar

ac
te

rs
)

TA
B

LE
 2

: t
ag

s

35

Ta
g

st
re

ng
th

en
In

v

fr
eq

ue
nc

y

do
m

P
re

co
nd

iti
on

do
m

P
os

tc
on

di
tio

n

re
qP

re
co

nd
iti

on

re
qP

os
tc

on
di

tio
n

re
qT

rig
ge

rc
on

di
tio

n

re
al

m

S
te

re
ot

yp
e

<
<

ko
bj

ec
t>

>

<
<

ke
ve

nt
>

>

<
<

ka
ct

io
n>

>

<
<

ka
ct

io
n>

>

<
<

op
er

at
io

na
liz

e>
>

<
<

op
er

at
io

na
liz

e>
>

<
<

op
er

at
io

na
liz

e>
>

<
<

ka
ge

nt
>

>

Ty
pe

st
rin

g

st
rin

g

st
rin

g

st
rin

g

st
rin

g

st
rin

g

st
rin

g

{d
om

ai
n,

 s
of

tw
ar

e}

C
on

st
ra

in
ts

 - - - - - - re
qT

rig
ge

rc
on

di
tio

n
m

us
t i

m
pl

y
re

qP
re

co
nd

iti
on

 -

D
es

cr
ip

tio
n

D
ef

in
es

 a
 s

tr
en

gt
he

ni
ng

 o
f t

he
 in

va
ria

nt

in
 o

rd
er

 to
 s

at
is

fy
 a

 r
eq

ui
re

m
en

t:
ex

pr
es

se
d

in
 K

A
O

S
 te

m
po

ra
l l

og
ic

 (
us

in
g

A
S

C
II

ch
ar

ac
te

rs
)

A
n

in
fo

rm
al

 in
di

ca
tio

n
of

 th
e

in
te

rv
al

be

tw
ee

n
co

ns
ec

ut
iv

e
oc

cu
rr

en
ce

s
of

 th
e

ev
en

t

A
 g

en
er

al
 d

om
ai

n
pr

ec
on

di
tio

n
fo

r
th

e
ac

tio
n

A
 g

en
er

al
 d

om
ai

n
po

st
co

nd
iti

on
 fo

r
th

e
ac

tio
n

A
 r

eq
ui

re
d

pr
ec

on
di

tio
n

fo
r

th
e

op
er

at
io

na
liz

at
io

n
of

 a
 r

eq
ui

re
m

en
t b

y
an

ac

tio
n:

 e
xp

re
ss

ed
 in

 K
A

O
S

 te
m

po
ra

l
lo

gi
c

(u
si

ng
 A

S
C

II
ch

ar
ac

te
rs

)

A
 r

eq
ui

re
d

po
st

co
nd

iti
on

 fo
r

th
e

op
er

at
io

na
liz

at
io

n
of

 a
 r

eq
ui

re
m

en
t b

y
an

ac

tio
n:

 e
xp

re
ss

ed
 in

 K
A

O
S

 te
m

po
ra

l
lo

gi
c

(u
si

ng
 A

S
C

II
ch

ar
ac

te
rs

)

A
 r

eq
ui

re
d

po
st

co
nd

iti
on

 fo
r

th
e

op
er

at
io

na
liz

at
io

n
of

 a
 r

eq
ui

re
m

en
t b

y
an

ac

tio
n;

 a
n

ac
tio

n
m

us
t b

e
ap

pl
ie

d
if

tr
ig

ge
r

co
nd

iti
on

 b
ec

om
es

 tr
ue

 (
an

d
th

e
pr

ec
on

di
tio

n
of

 th
e

ac
tio

n
ho

ld
s)

:
ex

pr
es

se
d

in
 K

A
O

S
 te

m
po

ra
l l

og
ic

 (
us

in
g

A
S

C
II

ch
ar

ac
te

rs
)

In
di

ca
te

s
w

he
th

er
 a

ge
nt

 is
 d

om
ai

n
ag

en
t

or
 s

of
tw

ar
e

ag
en

t

36

