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Topographically forced long waves on a
sheared coastal current. Part 1
The weakly nonlinear response

By S. R. C L A R K E AND E. R. J O H N S O N
Department of Mathematics, University College London,

Gower St, London WC1E 6BT, UK

(Received 23 April 1996)

The flow of a constant-vorticity current past coastal topography is investigated in the
long-wave weakly nonlinear limit. In contrast to other near-critical weakly nonlinear
systems this problem does not exhibit hydraulically controlled solutions. It is shown
that near criticality the evolution of the vorticity interface is governed by a forced BDA
(Benjamin–Davis–Acrivos) equation. The solutions of this equation are discussed and
two distinct near-critical flow regimes are identified. Owing to the non-local nature
of the forcing, the first of these regimes is characterized by quasi-steady solutions
controlled at the topography with some blocking of the upstream rotational fluid,
while in the second regime steady nonlinear wavetrains form downstream of the
obstacle with no upstream influence. In the hydraulic limit the velocity band for both
of these critical regimes approaches zero.

1. Introduction
The problem of hydraulic control of rotating channel flows has received much

attention over the last few decades owing to its obvious importance in understanding
exchange flows through the straits and sills of the world’s oceans. A review of the prob-
lem of hydraulic control by Kelvin waves is presented by Pratt & Lundberg (1991).
Recent work has extended this and investigated the importance of hydraulic control
in other geophysical flows. For example, hydraulic control by Rossby waves has been
studied by Pratt & Armi (1987), Woods (1993) and Haynes, Johnson, & Hurst (1993),
while Hughes (1985a, b, 1986a, b, 1987, 1989) has studied hydraulic control by coastally
trapped waves. These flows are controlled where the topographic perturbation is a
maximum with subcritical flow upstream and supercritical flow downstream. The
solution at a given point away from the control is then determined simply by the
strength of the topographic perturbation there.

Hydraulic theories in general require that the flow is steady and the along-flow
lengthscale is arbitrarily long. To avoid these limitations Stern (1991) used a modified
contour dynamics method to investigate the blocking of a simple sheared coastal
current by a cape. He was specifically interested in the possibility of flow reversal,
which he argued would invalidate the hydraulic approximation (although later work
by Haynes et al. 1993 shows this is not necessarily so). His solutions demonstrate
some hydraulic features, such as finite length narrowing downstream of the cape and
the possibility of upstream influence. They also show that eddies form downstream
and, in some cases (see his figures 8, 10 and 12), the suggestion of a large-amplitude
wave upstream. Neither of these features is predicted by hydraulic theories. Haynes
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et al. (1993) also used contour dynamical integrations to investigate the validity of
the hydraulic approximation, and in general found good agreement in their geometry.

Simulations like these (Stern 1991; Haynes et al. 1993) are limited to inviscid
flows with piecewise-constant vorticity. An alternative approach to investigate the
validity of the hydraulic approximation is to relax the long-wave approximation
and introduce leading-order dispersion and unsteadiness. Grimshaw (1987) used this
method to investigate the resonant generation of coastally trapped waves, a similar
problem to that studied by Hughes (1985a, b, 1986a, b, 1987, 1989) using hydraulic
theory. Grimshaw (1987) found a resonant band with evidence of hydraulic control.
This approach has the advantages that it is much more generally applicable than
contour dynamics, i.e. the vorticity no longer need be piecewise continuous and effects
such as bottom friction can be easily incorporated, and the numerical solution speed
is at least an order of magnitude faster that contour dynamical simulations. The
major disadvantages are that only long waves are treated and, in general, only weak
nonlinearity can be incorporated.

This paper applies the approach of Grimshaw (1987) to one of the problems studied
by Stern (1991). We consider a sheared coastal current propagating past outcropping
topography. In the external ocean region the fluid is irrotational and approaches a
constant velocity at large distances from the coast. In the other flow geometry of
Stern (1991) in general the outer fluid was allowed to be rotational, but the velocity
at the coast was forced to be zero. Although the integrations Stern presents are not
carried to long enough times for the flows to have become steady, his results appear
to show that downstream of a headland or outcrop a coastal current can return to
being of constant width, albeit of a different value from its upstream width. Stern
referred to this as blocking of the shear flow, and suggested that this blocking is
due to weak hydraulic effects, where long waves are able to propagate upstream. The
works described above, with variable bottom topography, allow hydraulic control,
and so §2 examines whether hydraulically controlled solutions are possible for the
present geometry. It is shown that conservation of vorticity requires that any steady
hydraulically controlled solutions, with the current having different widths upstream
and downstream of the topography, has reversed flow upstream. However, it is
further shown that although two conjugate flow states, one subcritical and the other
supercritical, exist a smooth transition from one to the other is impossible. The
question arises as to what then is the behaviour of the flow and the remainder of
the paper addresses this. Thus the flow upstream of the topography is taken to be
reversed subcritical flow with a conjugate unidirectional downstream supercritical
flow that is however not smoothly attainable. Numerical integrations and analytical
limiting solutions are presented to describe the actual flow evolution in the weakly
nonlinear near-critical limit.

The precise flow considered here is a coastal flow that is uniform outside a boundary
region where it has constant shear. The width of the boundary region gives the basic
length scale of the problem and the magnitude of the shear gives both a time scale
and, combined with the length scale, a reference speed for the flow. The geometry
is then described by two parameters ε and µ, with ε measuring the offshore extent
of the cape and µ−1 its along-coast length scale. A third, dynamical, parameter ∆
gives the unperturbed flow speed at the coast and also is the Doppler-shifted wave
speed for perturbations of the interface between the sheared and unsheared flow.
The dynamical behaviour is of most interest near ∆ = 0 where the long-wave speed
vanishes. Analytical progress is possible for small capes (ε � 1), and so the present
paper concentrates on the weakly nonlinear near-critical limit of |∆| � 1, ε � 1.
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Figure 1. A schematic of the flow geometry under consideration. In the coastal region the flow has
vorticity −Q, while in the outer ocean the flow is irrotational and approaches a uniform along-shore
velocity in the far field.

The effects of finite ε and ∆ are discussed in Part 2 (Clarke & Johnson 1997). In
§3 a general evolution equation for this problem is derived following the approach
of Grimshaw (1987). In the near-critical limit the equation reduces to a forced BDA
equation. In §4 approximate solutions of the forced BDA equation are considered,
while in §§5 and 6 steady and unsteady solutions are considered. The implications of
these solutions are discussed in §7.

2. Steady hydraulic flows
Consider an inviscid sheared constant-depth current flowing past coastal topog-

raphy as shown in figure 1. Take the flow to be bounded by a rigid upper surface
so that the governing equation is the two-dimensional conservation of the vertical
component of vorticity. Let the flow offshore of the current be irrotational, approach-
ing a uniform along-coast flow at large distances from the coast. Let the current
have undisturbed width H and vorticity −Q (with Q > 0). The behaviour for flows
with positive vorticity follow by making the transformation x → −x and ζ → −ζ,
where x and ζ are the along-shore coordinate and vertical component of vorticity
respectively. Scale the Cartesian coordinates x and y on H , the time t on Q−1 and
the streamfunction ψ on QH2. Let the coastline in the far field coincide with y = 0,
for the offshore coordinate y. The outcropping topography along the vertical coastal
wall, f(x), thus satisfies

lim
|x|→∞

f = 0. (1)

Denote the interface between the sheared coastal current and the irrotational outer
flow by h(x, t). Then ψ satisfies

∇2ψ =

{
0 if y > h(x, t)

−1 if f(x) < y < h(x, t),
(2a)

with the matching conditions in the far field

lim
y→∞

ψ = −Uy, (2b)

lim
|x|→∞

h = 1, (2c)

and no flow across the solid boundary

ψ(x, f(x), t) = 0. (2d)
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The vorticity interface is a material surface and thus at y = h,

ht =
d

dx
{ψ(x, h, t)} . (2e)

Let the topography be characterized by a dimensionless width ε and dimensionless
lengthscale µ−1. There are thus three parameters of this system: ε, µ and U, the
exterior velocity. Now consider the steady flow in the limit µ → 0, with U = 1 (i.e.
the undisturbed velocity is zero at the boundary).

Divide the domain into two regions, an inner and an outer region, which must be
matched across y = Y , where Y is a constant such that h < Y and Y = O(1). In the
inner region the along-shore motion has a lengthscale of order µ−1. Thus introduce a
long spatial coordinate

χ = µx, (3)

and the streamfunction is, to O(µ2),

ψ =

{
−y + D(χ) if y > h(χ)

− 1
2
(y − f)2 + C(χ)(y − f) if y 6 h(χ).

(4)

To leading order the streamfunction satisfies the far-field boundary condition, there-
fore the outer flow need not be considered here. The functions D and C are found by
enforcing continuity of ψ and ψy across y = h(χ), and so

C = h− f − 1, D = 1
2
(h− f)2 + f. (5a,b)

The mass flux in the shear layer is

F = −ψ(h) = − 1
2
(h− f)2 + h− f, (6)

and since this is constant

h− f = 1± (1− 2F)1/2. (7)

Hydraulically controlled flows can only exist if for particular F there are two non-
negative and unequal solutions of (7), thus F must satisfy

0 6 F < 1
2
. (8)

The velocity at any point on the coast can then take only one of the two values

u1,2 = ±(1− 2F)1/2, (9)

independently of f, the size of the topographic perturbation. This has two important
implications. First, since for hydraulic control the flow is subcritical upstream and
supercritical downstream and since the velocity at the interface is unity, a necessary
condition for hydraulic control is that there is reversed flow upstream. This agrees
with Stern’s hydraulic analysis for a finite-width channel. Second, since the speed at
the wall can take only one of the two distinct values (9), independently of f, there
can be no smooth transition from subcritical to supercritical flow. Conjugate flows
exist but cannot merge smoothly at a control. The only mechanism by which two
conjugate flows could merge would be through a stationary rearward-facing shock
over the topography. This however invalidates the hydraulic approximation.

Having established that smooth hydraulically controlled flow does not occur in
this geometry, our interest is to determine whether weak-hydraulic flows are possible,
where conjugate flows exist upstream and downstream and an abrupt or unsteady
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transition occurs over the topography. For these flows to exist it is clear that there
must be a flow reversal upstream of the topography and therefore it is convenient to
consider flows which already possess a flow reversal and U is not necessarily unity.

3. Weakly nonlinear evolution equations
Some analytical progress can be made by considering unsteady long-wave solutions

of the problem (2), taking µ � 1. This is a limit of the problem considered by
Grimshaw (1987), and in the weakly nonlinear limit, ε = O(µ), it would be expected
that the response of the interface will be O(ε1/2) and a resonant regime will result.
However, restricting the fluid to be of constant depth and permitting only coastline
variations (which as noted by Grimshaw is equivalent to assuming that the width of
the shear current is greater than the width of the continental shelf) makes the forcing
in Grimshaw’s equation identically zero, so forcing and nonlinearity do not balance
at leading order. Thus, for the special case of a constant-depth fluid an alternative
scaling for the wave response is needed. Note that this is not dependent in any way
on the form of the imposed current. A similar derivation to that below could be
performed for currents with a continuous variation in vorticity.

The inner and outer regions are now separated by the interface y = h(x, t). In
the inner coastal region the offshore motion has lengthscale of order unity, while
the along-shore motion again has lengthscale of order µ−1. This suggests that the
timescale for wave propagation on the interface is also order µ−1. Thus introduce χ,
defined by (3), and a new temporal coordinate

T = µt. (10)

Then in the inner region ψ satisfies

ψyy + µ2ψχχ = −1, (11)

which, to satisfy (2d), has the solution

ψ = − 1
2
(y − f)2 + C(y − f)

+µ2
(
− 1

6
(f + C)χχ(y − f)3 + 1

2
(y − f)2

(
f2
χ + 2Cχfχ + cfχχ

))
+ O(µ4), (12)

where C(χ, T ) is the, as yet undetermined, speed at the coast.
In the outer region both the offshore and along-shore lengthscales are of order µ−1.

Hence introduce

η = µy. (13)

The solution for ψ can then be written

ψ = −Uy +
1

2π

∫ ∞
−∞
M̂(k, T ) exp(ikχ− |k|η)dk, (14a)

for

M̂(k, T ) =

∫ ∞
−∞
M(χ, T ) exp(−ikχ)dχ, (14b)

where M(χ, T ) is the, as yet undetermined, perturbation to the streamfunction at
the outer edge of the shear flow. Expanding (14) in powers of µ gives that near the
interface in the outer region

ψ = −Uy +M − µyB{M} − 1
2
µ2y2Mχχ + O(µ3), (15a)
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where

B{M} =
1

2π

∫ ∞
−∞
M̂|k| exp ikχ dk =

1

π

∂

∂χ
−
∫ ∞
−∞

M(y)

χ− ydy, (15b)

and the Hilbert integral in the alternative form for B is a Cauchy Principal Value.
It remains to find M and C by invoking the continuity of ψ and ψy across

y = h(χ, T ). At this point the further assumption is made that the dimensionless width
of the topography, ε, scales as the characteristic wavenumber of the topography, µ.
The response of the interface is assumed to be weakly nonlinear and scale as the
width of the topography. Therefore introduce

f = αµf̃, h− f = 1 + αµA, (16a,b)

where α is an order-unity parameter measuring the width of the topographic outcrop
in units of µ. Dropping the tildes and invoking continuity of ψ and ψy across the
interface gives

− 1
2
(1 + 2αµA+ α2µ2A2) + C(1 + αµA)− 1

6
µ2Cχχ

= −U − αµU(f + A) +M − µB{M} − 1
2
µ2Mχχ + O(µ3), (17a)

−1− αµA+ C − 1
2
µ2Cχχ = −U − µB{M} − µ2Mχχ + O(µ3). (17b)

Examination of (17b) shows that to leading order C is constant, consequently the
terms of the form µ2Cχχ in each of the above equations can be neglected. At leading
order M = 1

2
and the O(µ2) terms involving M in each equation can also be neglected.

Thus introduce

M = 1
2

+ αµM̃. (18)

It can then be shown that, dropping the tilde,

C = 1−U + αµA− µ2B{M}+ O(µ3), M = Uf + A+ O(µ2). (19a,b)

Defining

∆ = U − 1, (20)

gives the streamfunction on the interface as

ψ(χ, h(χ, T ), T ) = 1
2
−U − α∆A+ 1

2
α2µ2A2 − αµ2B{(∆+ 1)f + A}+ O(µ3). (21)

Then (2e) gives

AT + ∆Aχ − αµAAχ + µB{(∆+ 1)fχ + Aχ} = O(µ2). (22)

It is possible to envisage many different forms for the initial current width A(χ, 0).
Perhaps the simplest conceptually is that of the topography impulsively forming in
a previously uniform shear layer. The outcropping of the obstacle is taken to occur
over a timescale much faster than the response time of the fluid, and so

h(χ, 0) = 1, (23a)

or

A(χ, 0) = −f(χ). (23b)

In the weakly nonlinear limit considered here, this condition is identical to that used
by Stern (1991).
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A balance between unsteady and dispersive terms in (22) would suggest that there
are two timescales for this problem: the advection time T and a slower time τ = µT .
Therefore introduce

τ = µT . (24)

Ignoring terms of O(µ2), (22) and (23b) give

AT + µAτ + ∆Aχ − αµAAχ + µB{(∆+ 1)fχ + Aχ} = 0, (25a)

with

A(χ, T = 0, τ = 0) = −f(χ). (25b)

When ∆ is order unity the leading-order solution of (25) is a free wave. To
demonstrate this a perturbation expansion for A is sought of the form

A = A(0) + µA(1) + . . . . (26)

At leading order

A(0) = −f(θ), (27)

where θ = χ− ∆T is a phase variable. The next order gives

A
(1)
T + A(0)

τ + ∆A(1)
χ − αA(0)A

(0)
θ +B

{
(∆+ 1)fχ + A

(0)
θ

}
= 0, (28a)

subject to

A(1)(χ, T = 0, τ = 0) = 0. (28b)

Balancing functions of θ gives the evolution equation

A(0)
τ − αA(0)A

(0)
θ +B

{
A

(0)
θ

}
= 0, (29a)

with

A(0)(θ, 0) = −f(θ), (29b)

and balancing functions of χ gives

A(1) =
(∆+ 1)

∆
B{f(χ− ∆T )− f(χ)}. (30)

Equation (29a) is the BDA equation (Benjamin 1967; Davis & Acrivos 1967).
For small ∆ the leading-order correction A(1) is

A(1) = −TB{fχ}+ O(∆T ). (31)

Hence for large time the leading-order correction increases without bounds and the
perturbation expansion breaks down. Thus the forced wave enters the problem at
leading order. This near-critical limit, occurs, in general, when ∆ is order µ. In this
limit we return to (25) and introduce

∆ = µ∆̃. (32)

Then the advection time T disappears from the leading-order problem and A satisfies,
dropping the tilde,

Aτ + ∆Aχ − αAAχ +B{fχ + Aχ} = 0, (33a)
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with initial condition

A(χ, 0) = −f(χ), (33b)

a forced BDA (fBDA) equation. Grimshaw (1987) derived a similar equation for
coastally trapped waves. In his case the forcing is of the form fχ, rather than a
Hilbert transform, and the equation has a trivial initial condition. As will be seen,
this difference in the forcing has important consequences.

For definiteness, the following three Sections concentrate exclusively on the solution
of (33), with topography

f =
1

χ2 + 1
, (34)

and α > 0. Consequently only outcrops are considered. The lengthscale and the
amplitude of the topography are both O(1) due to the choice of the perturbation
parameters. Profile (34) allows some analytical progress; however in general the exact
details of the topography are not important.

4. Approximate solutions
4.1. Linear solutions, α� 1

For α� 1 write

A+ f = A(0) + O(α). (35)

Then A(0) satisfies, to leading order in α,

A(0)
τ + ∆A(0)

χ +B{A(0)
χ } = ∆fχ, (36a)

with

A(0)(χ, 0) = 0. (36b)

Waves of wavenumber k satisfying (36) have frequency

ω = k(∆+ |k|). (37)

The phase and group velocity of such waves as a function of k are shown in figure
2. When ∆ < 0 the frequency and phase velocity vanish at |k| = −∆ and the group
velocity is positive there. Thus forcing generates lee waves to the right of the outcrop.
When ∆ > 0 the phase velocity has no zeros and no standing waves form.

The Green’s function of (36), G(χ, τ), will be the solution corresponding to a
Dirac-delta function outcrop, f(x) = δ(x). The full solution for A(0) is then

A(0)(χ, τ) =

∫ ∞
−∞
f(x)G(χ− x, τ)dx. (38)

Standard Fourier transform techniques give the Green’s function as

G =
∆

π

∫ ∞
0

1

∆+ k
(cos kχ− cos(kχ− k(∆+ k)τ))dk. (39)

This integral is typical of forced linear dispersive systems (Patoine & Warn 1982;
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cg c

|k|–D

D

Figure 2. The phase velocity, c, and group velocity, cg , as a function of the wavenumber k, for
solutions of the linear fBDA equation, (36), when ∆ < 0. When ∆ > 0 the phase velocity has no
real zeros.

Akylas 1984; Johnson 1985). To evaluate, consider G as the sum of the two integrals

Gs =
∆

π

∫ ∞
0

1

∆+ k
cos kχ dk, (40a)

Gu = −∆
π

∫ ∞
0

1

∆+ k
cos(kχ− k(∆+ k)τ)dk. (40b)

When ∆ < 0 each integrand has a pole at k = −∆, although the integrand in (39)
does not.

Consider first ∆ > 0, so

Gs = (∆/π)
{
− cos |∆χ|Ci |∆χ| − sin |∆χ|

(
Si |∆χ| − 1

2
π
)}

= (∆/π)g(|∆χ|),
(41)

where Ci and Si are the cosine and sine integrals, and g(z) is defined in Abramowitz
& Stegun (1972). Figure 3 gives a plot of g(z). Near z = 0, g behaves as O(log |z|). The
second integral Gu can be approximated at large times by the method of stationary
phase. At large times, to O(τ−1),

Gu =


− 2∆

π1/2(ξ + 2∆τ1/2)
cos

(
ξ2

4
− π

4

)
if ξ > 0

−(8πτ)−1/2 if ξ = 0

0 if ξ < 0.

(42)

Here ξ = τ−1/2(χ− ∆τ) is a phase variable and (42) corresponds to a wavetrain with
front travelling at speed ∆.

When ∆ < 0 the integration path must pass around the poles on the real axis, thus

Gs = ∆ sgn(χ) sin∆χ− (∆/π)g(|∆χ|), (43)

and

Gu = −∆ sgn(χ+ ∆τ) sin∆χ+ G∗u, (44)

where the function G∗u represents a dispersive wavetrain. This can be evaluated by
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g
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Figure 3. The function g(z), (41), which for ∆ > 0 is proportional to the steady part of the Green’s
function for the linear fBDA equation, (36).

deforming the path of integration onto the line k = r exp iπ/3, and so

G∗u = −∆
π

Re

{∫ ∞
0

exp 1
2
(−
√

3(r(χ− ∆τ) + r2τ) + i(r(χ− ∆τ)− r2τ))

r + ∆ exp(−iπ/3)
dr

}
. (45)

Then using the method of stationary phase at large times, to O(τ−1),

G∗u =



−
(

8∆2

π(ξ2 + 2ξ∆τ1/2 + 4∆2τ)

)1/2

exp−33/2ξ2

8

×cos

(
ξ2

4
− π

4
− arcsin

(
3∆2

ξ2 + 2ξ∆τ1/2 + 4∆2τ

)1/2
)

if ξ > 0

−(2 + 31/2)(4πτ)−1/2 if ξ = 0

0 if ξ < 0.

(46)

Combining these results gives

G = (∆/π)g(|∆χ|) + Gd if ∆ > 0, (47)

and

G = −(∆/π)g(|∆χ|) + G∗u + ∆(sgn(χ)− sgn(χ+ ∆τ)) sin∆χ if ∆ < 0. (48)

The last term represents a lee-wave train: standing waves with zero phase speed
downstream of the topography whose spatial extent grows with the group velocity.

For general topography the dispersive term of the solution behaves for large times
as O(τ−1/2) and hence can be ignored. The long-term solutions are therefore

A(0) =
∆

π

∫ ∞
−∞
f(x)g(|∆(χ− x)|)dx if ∆ > 0 (49)

and

A(0) = −∆
π

∫ ∞
−∞
f(x)g(|∆(χ− x)|)dx+ 2∆

∫ χ

χ+∆τ

f(x) sin∆(χ− x)dx if ∆ < 0.

(50)
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Figure 4. The localized solution to the linear fBDA equation, (36), in the vicinity of the topography
(34). The solution, (49), is symmetric about χ = 0 and is shown for ∆ = 0.5, 1, 2 and 4 and ∆→ ∞,
where A(0)(0) increases as ∆ increases. Note that ∆→∞ corresponds to A(0) ≡ f.

Consider the flow in the vicinity of the topography. For ∆ 6= 0 it can be shown that∫ ∞
−∞
A(0)dχ =

∫ ∞
−∞
f dχ. (51)

This localized solution is shown in figure 4 for the topography (34) and various values
of ∆. As |∆| becomes large A(0) → f, as required by (36a). As |∆| becomes smaller
the effect of dispersion increases giving a wave of smaller amplitude but increased
wavelength.

For symmetric topography the lee-wave contribution when ∆ < 0 reduces to

A(0) ≈ ∆[sgn(χ)− sgn(χ+ ∆τ)]f̂(∆) sin∆χ, (52)

where f̂(k) is the Fourier transform of f. For (34) the lee-wave amplitude is 2π∆ exp∆
which has a maximum of 2π/e at ∆ = −1. Comparing this expression with figure 4
shows that when ∆ < 0 and |∆| ∼ 1 the flow is dominated by lee waves, whereas for
|∆| � 1 the flow is dominated by the perturbation in the vicinity of the topography.

These features of the linear solutions are shown in figure 5 for two solutions
of (36) and the topography (34). In the supercritical flow the solution consists of
the perturbation in the vicinity of the obstacle and the downstream-propagating
wavetrain. For subcritical flow the solution becomes significantly more complicated
due to the interaction of the various parts; however each part is still apparent. The
flow upstream of the obstacle is dominated by the wavetrain with front propagating
at speed ∆ and downstream of the obstacle the lee-wave train extends at rate −∆. This
is terminated by a slow decay rather than the step-function of the Green’s function.
The modulation of the lee waves is due to interactions with the dispersive wavetrain.
In the vicinity of the outcrop the steady perturbation to the interface is superimposed
on the lee waves and dispersive wavetrain.

Finally, when ∆ = 0, (36) implies that A(0) ≡ 0. Even for ∆ arbitrarily small the
solutions remain bounded for all time. This behaviour contrasts with typical forced
resonant wave problems, where if nonlinear effects are neglected the solution becomes
unbounded at large time.
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Figure 5. Solutions of the linear fBDA equation, (36), for the topography (34) at time τ = 20.
(a) A subcritical solution where ∆ = −3 and, (b) a supercritical solution with ∆ = 2.

4.2. The hydraulic approximation, α� 1

For large α dispersive effects can be expected to be negligible at least over time
intervals short compared to the time τ, and on these timescales the fBDA equation
will be dominated by nonlinear effects. Thus write

A = A(0) + O(α−1), ∆ = αV , ατ = σ. (53a–c)

Then A(0) satisfies

A(0)
σ + VA(0)

χ − A(0)A(0)
χ = O(α−1), (54a)

with

A(0)(χ, 0) = −f(χ). (54b)

System (54) has the solution

A(0) = −f(χ0), (55a)

where

χ− χ0 − (V + f(χ0))σ = 0. (55b)

Because f and A are chosen to have the same length and width scales there is no
forcing to leading order: an O(ε) forcing produces an O(ε) response. One indication
of hydraulic control in forced resonant weakly nonlinear systems is that in the
hydraulic approximation at long times an expansion fan forms at the maximum of
the topography (Grimshaw & Smyth 1986; Haynes et al. 1993). Consequently a steady
solution forms with unequal limits upstream and downstream and the perturbation
amplitude is solely dependent on the amplitude of the topography. In the case
considered here there is no expansion fan in the hydraulic approximation and so the
flow cannot be hydraulically controlled.
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For the headland (34), solution (55) develops a critical gradient at σ = 31/2. In some
hydraulic systems solutions can be extended to larger times by introducing shocks;
however within the present model it is the neglected dispersive term, B{Aχ}, that
becomes important in the neighbourhood of the jump. Integrations presented later
show that a non-monotonic transition forms between two regions of constant but
differing amplitude. Subsequently, these wave-like transition regions are described as
undular bores. Over larger timescales where τ is order unity the previously neglected
forcing term becomes important.

5. Steady solutions
In describing the behaviour of the flow for various values of the two parameters

α and ∆, it is convenient to first determine those values of α and ∆ for which the
flow in the neighbourhood of the topographic outcropping becomes steady at large
time. The development of these flows consists solely of the dispersion of the initial
transient wave field to leave behind the steady isolated solution.

Suppose that at large time A becomes steady and the sheared flow has constant
width far from the outcrop, such that

lim
χ→−∞

A = Au, lim
χ→∞

A = Ad. (56)

Integrating the steady form of (33) once gives

∆A− 1
2
αA2 +B{f + A} = ∆Au − 1

2
αA2

u. (57)

Since this is invariant under the transformation

A→ A+ Au, ∆→ ∆+ Au, (58a,b)

it is sufficient to take Au = 0, so steady isolated solutions of (33) satisfy

∆A− 1
2
αA2 +B{f + A} = 0. (59)

This restricts the possible values of the downstream shear current width, Ad, to either
one of the two values

Ad = 0 or Ad = 2∆/α. (60)

Integrating (59) once gives ∫ ∞
−∞
A

(
2∆

α
− A

)
dχ = 0. (61)

The only continuous function non-negative over an interval whose integral vanishes
is the zero function. Hence, the integrand is either negative somewhere, and so
the solution is not monotone, or A is identically zero or 2∆/α. There are thus
no steady smooth monotone solutions joining differing upstream and downstream
values of A. This contrasts with equivalent conditions for the fKdV equation of
Grimshaw & Smyth (1986) or the fBDA equation of Grimshaw (1987). In both of
these cases when steady transition solutions exist the integral corresponding to (61)
is strictly positive, allowing A to vary monotonically. It thus appears that, even when
dispersion is included and independently of α, steady transition solutions cannot exist
for the problem considered here. This extends the result derived in §2 under the
hydraulic approximation.
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Figure 6. A solution of the steady fBDA equation, (59), and the topography (34) for α = ∆ = 1.
The solution is symmetric about χ = 0.

For f given by (34) steady rational solitary wave solutions of (59) can be con-
structed, where

A =
β

χ2 + 1
, (62)

provided α and β satisfy

α = 4∆(∆− 1), β = 4∆. (63a,b)

Of the two branches of this solution for α > 0, only those for which ∆ is negative
are of interest, as for the initial condition (33b) solutions on the other branch are
not physically realizable. This can be easily seen by noting that, in the limit α → 0,
the rational solitary waves on the negative branch are in agreement with the linear
unsteady solution, whereas those on the positive branch contradict the linear unsteady
solution.

If ∆ = 0 (61) implies that A ≡ 0. This however is not a solution of (59) with
non-trivial f. Thus steady isolated solutions are not possible for ∆ = 0.

When ∆ is strictly positive the Fourier transform method described in the Appendix
converges to isolated solutions for all values of ∆ provided the solution domain and
number of collocation points is sufficiently large. Figure 6 gives an example of these
solutions for the outcrop (34). As was found for the linear solutions, A + f is a
dispersed form of f; however A + f no longer has the same area as f. The steady
forms for other values of α and ∆ are very similar and so are not shown. The
characteristic features of the behaviour of A are that as α is increased the maximum
value of A remains approximately constant, while the minimum value of A, i.e. A(0),
increases. When ∆ is increased both the minimum and maximum values of A decrease
in absolute magnitude, while the characteristic length of A also decreases.

For ∆ negative the Fourier transform method converges only to periodic solutions,
with waves both upstream and downstream of the outcrop having wavenumber of
order |∆|. These are not physically realizable solutions of the initial value problem
(33), as the group velocity for infinitesimal waves does not allow upstream wakes. If
however a small amount of diffusion is included solutions with a decaying lee-wave
train downstream of the cape and no waves upstream can be obtained, which suggests
that steady nonlinear lee-wave solutions are possible for negative ∆. For the special
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Figure 7. A classification of the numerical solutions of the fBDA equation, (33), and the topography
(34). The supercritical (downstream-propagating) regime is denoted by D, the steady-critical regime
by S , the large- and small-amplitude subcritical (upstream-propagating) regimes by UL and US
respectively, and the large- and small-amplitude blocked subregimes by BL and BS respectively.

case where α = 4∆(1 − ∆) and no damping the amplitude of the waves away from
the topography is zero, and the numerical method converges to the rational solitary
wave solution, (62).

6. Unsteady solutions
The analytical and steady approximations of the preceding Sections provide an

insight into the behaviour of (33) in the various regimes of the α–∆ parameter
space. To discuss the behaviour in other regimes it is necessary to solve the unsteady
initial value problem numerically. An efficient method of solution of (33) follows by
adapting the pseudo-spectral method of Fornberg & Whitham (1978). This method
uses Fourier transforms in space to evaluate the derivatives and integral terms, and
a third-order Runge–Kutta method for the time stepping. The topography (34) is
used for these solutions. Other shapes have been considered, including asymmetric
topography; however these do not significantly alter the general features. The results
from the numerical integrations appear to fall into the various classes shown in figure
7. Solutions can be divided into four broad regimes: supercritical, subcritical, blocked
and steady critical. The subcritical and blocked regimes each divide further into small-
and large-amplitude subregimes.

The supercritical regime occurs for ∆ > 0, and is characterized by the long-time
solution in the vicinity of the forcing being dominated by an isolated wave. The main
characteristics are similar to the hydraulic solution with an undular bore forming
downstream of the topography and then being advected away together with its
associated rarefaction. In the vicinity of the forcing an isolated wave evolves, which
eventually becomes steady. These isolated waves agree closely with the ∆ > 0 steady
solutions of §5.

The steady-critical regime occupies the region

∆c 6 ∆ 6 0, (64a)
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Figure 8. A critical solution of the fBDA equation, (33), and the topography (34), where ∆ = −0.5
and α = 4. Note that only a section of the full solution domain is shown.

where

∆c = 1−
(
1 + 1

2
α
)1/2

(64b)

is the negative solution of (63a). Figure 8 shows a typical evolution in this regime.
An undular bore forms downstream of the outcrop; however in contrast to the
supercritical flow the bore and its rarefaction do not propagate. A region of almost-
constant-width shear current, subsequently described as a shelf, forms immediately
downstream of the outcrop. Here the shelf is negative showing that the sheared
region narrows for a distance of order ten obstacle widths before returning to its
original width through the undular bore. At later time the speed of individual waves
that terminate the shelf decreases: in figure 8 the leading wave has almost become
steady by time τ = 40. It appears that all waves that constitute the undular bore
become steady at sufficiently large time and a steady nonlinear periodic wavetrain
forms on the shelf. No integrations in the critical regime show the leading wave
reversing to propagate upstream. Near the outcrop a localized wave forms with only
one extremum. The function A + f at the topography thus has smaller amplitude
than f, but the same lengthscale. As in the supercritical regime, no waves propagate
upstream.

For large α the (empirically determined) limits of the blocked regime are

∆c − 1 6 ∆ 6 ∆c. (65)

Figure 9 shows typical behaviour for the large- and small-amplitude subregimes of
the blocked regime. An undular bore initially forms downstream of the topography,
but eventually the leading wave reverses direction and propagates back towards the
topography. The interaction of this wave with the topography generates solitary
waves that radiate upstream. At large times careful examination of the numerical
solutions shows that there is a weak mean positive upstream influence in the wake of
the solitary waves. A shelf, terminated by a downstream-propagating undular bore,
forms downstream. It appears that this shelf will extend arbitrarily far downstream
at large time. An example of a solution exhibiting these features is shown in figure
10. In the small-amplitude subregime of figure 9(a) the characteristic feature of the
solution is that it remains unsteady throughout the domain: small-amplitude waves
are periodically formed immediately downstream of the topography. These shed
waves are split into two: an upstream-propagating wave and a smaller-amplitude
wave that propagates downstream on the shelf. In the large-amplitude subregime
of figure 9(b) the flow becomes steady in an increasingly large region immediately
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Figure 9. Two blocked solutions of the fBDA equation, (33), and the topography (34): (a)
small-amplitude solution where ∆ = −0.5 and α = 1, and (b) large-amplitude solution where
∆ = −1.5 and α = 4. Note that only a section of the full solution domain is shown in (a).

downstream of the outcrop. Nonlinear effects are sufficiently large to damp wave
shedding from the downstream side of the outcrop. However, small-amplitude waves
are now periodically generated immediately upstream of the outcrop, and it appears
that a uniform-amplitude propagating wavetrain will eventually form upstream of the
topography. This flow appears to be evolving to an almost hydraulically controlled
flow with subcritical upstream conditions and supercritical downstream conditions.
The transition across the outcrop generates small-amplitude waves which propagate
upstream.

The mechanism for the unsteady generation of waves at the topography can be
seen as being due to the non-local nature of the forcing. For an outcrop with a single
maximum as given by (34), the effective forcing function B{f} has three extrema with
its maximum at the centre. The main forcing occurs at this maximum, with however
smaller-scale forcing at the two side extrema, generating small-amplitude waves at
large time.

Figure 11 shows typical flows in the subcritical regime. A wavetrain propagates
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Figure 10. The interface shape, A+ f, from figure 9(b) at τ = 40. Only a section of the solution
domain is shown.
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Figure 11. Two subcritical solutions of the fBDA equation, (33), and the topography (34): (a)
small-amplitude solution where ∆ = −4 and α = 2, and (b) large-amplitude solution where
∆ = −2.5 and α = 6.

away upstream, an isolated wave forms at the outcrop and a lee-wave train forms
downstream. As |∆| increases and the flow becomes more subcritical the amplitude
of the lee waves decreases and the flow becomes dominated by the isolated feature at
the outcrop. The flows are once again unsteady in the small-amplitude subregime, due
to precisely the wave generation mechanism identified in the blocked regime. This is
clearest at and upstream of the outcrop; however modulation of the lee-wave train
can also be seen, caused by small-amplitude waves propagating downstream. The
subcritical linear unsteady solution falls into this subregime and the same unsteady
behaviour throughout the domain is observed, due however explicitly to the initial
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dispersive wavetrain which decays as O(τ−1/2). The generation of waves immediately
downstream of the topography is only seen once this wavetrain has decayed. In the
large-amplitude subregime of figure 11(b) the flow at large time becomes steady at
and downstream of the outcrop and small-amplitude waves form at the upstream edge
as in the large-amplitude blocked subregime. Here, however, there is no permanent
upstream influence.

One of the main features of the subcritical regime is that the undular bore prop-
agates upstream and the forcing due to the obstacle has negligible influence on the
evolution of the undular bore. In this regime and the supercritical regime, the features
of the flow match to the large-∆ flow of §3, in which the evolution of the initial
condition can be separated to leading order from the forcing.

7. Conclusions
This paper has presented results for the flow of a sheared coastal current past an

outcropping of the coastal wall. It has been shown that hydraulically controlled flows
cannot occur in this geometry. In the weakly nonlinear near-critical limit a forced
BDA equation describes the evolution of the vorticity interface at the ocean edge of
the current.

One question that arises from the analysis is whether there is any analogue of the
hydraulic solutions that proved so accurate in other work on coastal currents (Haynes
et al. 1993). The results here show that there exist two near-critical regimes: a blocked
regime and a steady-critical regime. In the blocked regime solutions showing weak
control at the outcrop are possible. These solutions feature a downstream shelf, weak
upstream influence and a large-amplitude feature at the outcrop. Propagating waves
are generated both upstream and downstream of the outcrop. In the steady-critical
regime the flow becomes steady at large time with a large-amplitude feature at the
obstacle, a periodic nonlinear wavetrain downstream and no upstream influence. For
the topography (34), in terms of the three parameters of this system, µ, ε and U,
introduced in §2, (64a) gives the steady-critical regime velocity band as

µ−
(
µ2 + 1

2
µε
)1/2
6 U − 1 6 0, (66)

while (65) gives the blocked band as

0 < U − 1−
(
µ2 + 1

2
µε
)1/2
6 µ. (67)

The hydraulic limit corresponds to the limit µ→ 0 for fixed ε. In this limit the blocked
band is order µ, while the critical band is order µ1/2. Consequently, in the hydraulic
limit both regimes vanish and the flows are simply supercritical or subcritical.

In all the solutions of Stern (1991) both the length and width of the outcrop
are of the same order as the undisturbed shear-layer width, and so the results
presented here cannot be directly compared with Stern’s results. Nevertheless some
general comparisons can be made. The blocked regime identified in §6 has the
same characteristics as the blocking flows of Stern, with large-amplitude waves
propagating upstream and a narrowing of the coastal current width downstream;
however in the simulations presented here the large-amplitude waves always form
on the downstream side of the topography, whereas in Stern’s simulations the waves
form on the upstream side. As the blocked band disappears in the hydraulic limit,
the blocking is, as suggested by Stern, a weak hydraulic effect. For relatively small
obstacles, in our notation ε 6 1, Stern considers only U = 1 and finds no evidence of
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Figure 12. The evolution of the upstream area Iu, (68), for solutions of the fBDA equation, (33),
with the topography (34), ∆ = 0 and α = 1, 2 and 4, where Iu increases with α. Also shown as dotted
lines for reference are Iu ∼ τ1/2 and Iu ∼ τ1/3.

blocking. The present results, showing that for weakly nonlinear waves the blocked
band only occurs for U < 1, agree with this. For U = 1 and relatively small obstacles,
Stern shows that the area of the perturbation to the upstream interface increases as
order t1/2 (see his figure 5). The upstream area perturbation at any time t can be
written

Iu(t) =

∫ 0

−∞
{A(x, t)− A(x, 0)} dx. (68)

Figure 12 gives the evolution of Iu when ∆ = 0 for α = 1, 2 and 4. In each case
the rate of increase of Iu decreases with time and for large time is order τ1/3, rather
than order τ1/2. This is due to only long-wave effects being included in our analysis.
The companion paper (Clarke & Johnson 1997) compares these contour dynamical
simulations with a finite-amplitude generalization of the fBDA equation.

This work was carried out under grant number GR3/09174 from the Natural
Environment Research Council. S.R.C. would like to thank the London Goodenough
Trust for Overseas Graduates for helping make his stay in London possible.

Appendix. Solution of the steady fBDA equation
Solutions of (59) are sought using a Fourier transform relaxation method. In

general the following method can be used to study periodic solutions, or isolated
solutions where A approaches constant and equal limits in the far field. Here the
approach for isolated solutions is described, where it is assumed that

lim
|χ|→∞

A = 0. (A 1)

The continuous function A(χ) is replaced by its value at N evenly spaced collocation
points. Discrete Fourier transforms convert the operator B{ } to a linear matrix B.
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Then (59) becomes the nonlinear system

∆Aj −
α

2
A2
j +

N∑
k=1

Bjk(fk + Ak) = 0, j = 1, . . . , N. (A 2)

This is solved straightforwardly with quadratic convergence using Newton’s method
with the initial choice Aj ≡ 0.
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