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Signature of a Chemical Bond in the Conductance between Two Metal Surfaces
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Conductance in monatomic metal contacts is quantized; it increases in discrete steps of one
conductance quantum 2e2=h. By contrast, in a vacuum barrier between two metal surfaces we find
that conductance increases linearly and continuously with the interaction energy between individual
atoms. This behavior shows unambiguously that current flow between single atoms is a measure
for their chemical interaction. In the controlled environment of a scanning tunneling microscope it
should allow us to study the formation of covalent bonds up to the point where these atoms finally jump
into contact.
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equally conducting probe, will be completely decoupled the energy of a filled state �� is given by
Because of their importance for technical applications
the conductance properties of metals have been widely
researched. In metal break junctions at close to zero
temperature the conductance of single atomic contacts
has been measured with great accuracy, and it was gen-
erally found that conductance increases in discrete steps
of one conductance quantum 2e2=h [1–5]. The rupture of
a bond probes into material properties from the starting
point of material stability. Quite the opposite is true for
the operation of scanning probe microscopes. There, the
interaction between two separate surfaces is generally
kept at such a low level that the small changes in the
forces between the surfaces or in the number of electrons
tunneling through the vacuum barrier can be used as an
indication of the surface topographic and electronic prop-
erties. The intermediate range between these two methods
continues to be problematic. In particular, the role of
chemical interactions in scanning probes, even though
widely researched [6–13], is still not well understood.
Part of the problem is the theoretical representation of
the situation in different frameworks: perturbation meth-
ods are generally limited to high distances, they can
incorporate chemical interactions only from the outset
[13–15]. Scattering methods, while electronically accu-
rate, cannot treat atomic interactions and their shift of
position at low distances [16]. Nonequilibrium methods
are in principle reliable, but they cannot simulate actual
probe scans due to their innate restrictions of the sym-
metry of the combined system [17,18].

Here, we propose a new method, which incorporates
chemical interactions in a natural way. The method is
based on extensive ab initio calculations of coupled sys-
tems. These calculations, including chemical interactions
from the outset, establish that the suggested perturbation
method is in general sufficient to reach the highest level of
experimental accuracy.

A system, composed of a conducting surface and an
0031-9007=03=91(3)=036803(4)$20.00 
if the distance between the surface atoms and the fore-
most atom of the probe (apex atom) is substantially
greater than 1 nm. Then the electron states of surface
and probe are orthogonal: every product

���
�; V 	� :�

Z
d3r��

��r�V�r� 	�r� (1)

will be zero. If the two systems are brought into closer
contact, with a distance of about 0.5–0.6 nm, the presence
of the other lead will have an effect on the electronic
structure and electron dynamics on both sides. The two
systems in this case are weakly coupled, the change of the
physical situation compared to the high distance range
can be described by a perturbation potential V. The two
main effects occurring in this range are as follows.

(i) A transition of electrons from one side to the other,
the transition rate given by Fermi’s golden rule [19],

�	� �
2�
�h
j���

�; V 	�j
2�E� � E	�: (2)

This relation is equivalent to Bardeen’s formulation of the
tunneling problem [14,15]. The reason for using the
Bardeen formulation rather than Fermi’s golden rule in
the calculation of tunneling currents [20] is a technical
one: the perturbation potential due to the approach of a
surface and a probe is commonly unknown.

For a finite system with a discrete set of eigenvalues, or
for nonzero temperatures, the delta function has to be
replaced by a smeared-out function, for example, a
Gaussian of half-width �; thus the tunneling current
I	� � e� for a single transition is described by

I	� �
2�e
�h�

����
�

p j���
�; V 	�j

2e��E��E	�2=�2
: (3)

(ii) The second effect is a change of the system energy.
In a second order perturbation expansion, the change in
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where the sum goes in principle over all empty states ��
and  �. The first term is the change of the eigenvalue due
to the coupling potential V, the second term describes the
changes due to transitions between states on one side of
the barrier only, while the final term describes transitions
across the tunneling barrier between tip and sample
states. Only the third type will contribute to the interac-
tion energy between the two surfaces, because the wave
functions and the potential are exponentially decreasing
and the perturbing potential for states of the tip is the
potential of the sample surface. Focussing on the energy
contribution due to a single pair of states �	; ��, we obtain
within perturbation theory

��E	� �
j���

�; V 	�j
2

E� � E	
: (5)

Comparing Eqs. (5) and (3) we find for the relation be-
tween the current �I	� and interaction energies �E	� the
following expression:

�I	� �
2�e
�h�

����
�

p �E� � E	�e
��E��E	�2=�2

�E	�: (6)

Note that interaction energies contribute a negative term
to the total energy of interacting systems. But to compare
with the (positive) tunneling current we use their absolute
values in the rest of the Letter. In this formulation the
tunneling current from a single transition (�I	�) appears
to be proportional to its contribution to the interaction
energy (�E	�). Because of level broadening, the energy
difference E� � E	 is of the same scale as �.
Consequently, we set E� � E	 	 �. Then the above rela-
tion gives

�I	� 	
2e

����
�

p

2:718 �h
�E	� 	 4

2e
h
�E	�: (7)

Interestingly, the relation then is very similar to the
Landauer-Büttiker formulation of the tunneling problem
[16]. Although the right-hand side of Eq. (6) does not
appear to contain the transition matrix T, it implicitly
appears because T, like the interaction energy �E	�, is
proportional to j���

�; V 	�j
2. Consequently, as shown by

Feuchtwang and others [17], the perturbation treatment is
the lowest-order term in a full scattering treatment of the
transport. Within this approximation the equation
amounts numerically to

�I	� 
nA� 	 3:1� 105�E	� 
eV�: (8)

However, our numerical results, and experimental evi-
dence (see below) suggest that the proportionality be-
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tween net current and total interaction energy holds
even beyond the domain of validity of this approximation.

This may be understood by writing the interaction
energy as

Eint � Tr
�V� � �
1

�

Z 	

�1
Gr�E�VdE; (9)

where � is the one-electron density matrix and Gr the
retarded one-electron Green’s function. The part of Eint

coming from the mixing of tip and sample states involves
the off-diagonal elements of � (and hence of Gr) linking
tip and sample. These are determined by Dyson’s equa-
tion, and hence to lowest order in V,

Gr � Gr
0 �Gr

0VG
r
0: (10)

Thus the interaction energy to lowest order is

Eint � �
1

�

Z 	

�1
Tr
Gr

0VG
r
0V�; (11)

which (like the total current) is quadratic in V.
The theoretical result suggests that the current is linear

with the interaction energy between the two surfaces. The
observation is supported by experimental evidence.
Interaction energies are not directly accessible in experi-
ments, but the attractive force between the two surfaces
and the tunneling current can be simultaneously deter-
mined. In combined experiments it is found that current
and forces follow the same characteristic curve during
an approach [6,12]. In the recent experiments by
Schirmeisen et al. [12] the square of the force during an
approach shows a parabolic behavior in the low conduc-
tance regime, while it is close to linear in the high regime
(their Fig. 5). If long range forces were determined by
chemical interactions, this feature would be observable
even for distances above 6 Å. In this range, however,
forces are mainly due to dispersion interactions, which
do not decay exponentially [21].

In our simulations we have employed a pseudopotential
density functional method [22,23], using a 3� 3 surface
unit cell and a pyramid for the STM tip. Not including
relaxation effects, which have a very limited range, the
tunneling current is described by a perturbation approach
using the atomic arrangement of the noninteracting
subsystems [20]. Interaction energies are determined by
relaxing the atomic positions of the coupled system of
surface and tip to their energetic minimum at selected
points during an approach. We have simulated two sepa-
rate experiments: the approach of a tungsten tip onto a
Au(111) surface, and the approach of Cu-contaminated tip
onto a Cu(100) surface. The technical details of the cal-
culation have been described in our previous work [13].

We have calculated the current for a very low bias
voltage of �1 mV, interaction energy and tunneling con-
ductance are shown in Fig. 1. From the onset of chemical
forces, at a distance of about 0.55 nm, to the point where
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FIG. 1 (color online). Interaction energy (solid squares), tun-
neling conductance (black curve) in units of G0 � 2e2=h, the
conductance quantum, and predicted interaction energy
(dashed curve) in an Au(111)-W(111) system. The predicted
interaction energy over the whole distance range has been
determined from a single point of the calculation for the
coupled system (empty circle). Interaction energies between
Au and W atoms in a dimer (solid circles) are given for
comparison.
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FIG. 2 (color online). Interaction energy, tunneling conduc-
tance, and predicted interaction energy in a Cu(100)-Cu(100)
system. The interaction energies between Cu atoms in a dimer
are given for comparison.
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the tip breaks at 0.41 nm, the interaction energy is nearly
proportional to the conductance. We attribute the devia-
tions from the linear characteristic to relaxations of sur-
face and tip atoms, which distort the result (see below).
The linearity between conductance and interaction en-
ergy has been verified by an additional calculation of a
Cu(100) system. This simulation establishes that the fea-
ture is independent of the chemical composition or the
orientation of a surface. The STM tip was mimicked by a
square pyramid of two layers on a five-layer Cu(100) film.
The result of the simulation is shown in Fig. 2. Also in
this case the relation between interaction energy and
conductance is generally linear. We note slight deviations
of the linearity in two distance ranges. In the range above
0.5 nm the interaction energies between Cu atoms of
sample and tip are very small, the absolute error in a total
energy calculation becomes therefore disproportionately
large. In the range below 0.35 nm the shift of atomic
positions due to interactions remains unconsidered in the
current calculation.

The predicted interaction energy for the Au(111) sys-
tem is shown in Fig. 1. The constant of proportionality
has been estimated from the point where surface and tip
were 0.45 nm apart.With the exception of the range where
atoms are substantially displaced, indicating the loss of
elastic properties of surface atoms, the prediction agrees
well with the result from first principles calculations of
the coupled system. An identical calculation has been
performed for the Cu(100) system. The predicted inter-
action energy is shown in Fig. 2. Also in this case the
agreement between the perturbation method and the first
principles calculation of the coupled system seems ac-
ceptable. The proportionality factor between conductance
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and interaction energy depends on the system under con-
sideration. For the Au(111) and theW tip (5d elements) we
obtain 0:25 
eV=M��1�, the corresponding factor for the
Cu(100) surface (3d elements) is 0:12 
eV=M��1�. For
higher bias voltages the conductance will be reduced
because the condition of elastic tunneling at room tem-
perature entails in every case a thermal broadening of the
energy range to about 0.1 eV. Thus the current does not
increase substantially for changes of the bias voltage from
�1 to �50 mV, whereas conductance decreases quite
dramatically. The loss of elastic properties of surface
and tip systems due to a critical limit of conductance in
very low bias scans occurs at values of 2.5 [Au(111)] and
5.0 [Cu(100)] M��1. The result is in good agreement
with the experimental observation of ‘‘roll-on’’ effects
of atomic corrugations observed on Cu(100) [9]. The
difference observed for two different tips seems to cor-
respond to the different decay of 5d and 3d electrons into
the vacuum. The current in the electronic circuit of the
instrument under these conditions is typically less than
10 nA. The distance between tip and surface in this case is
about 4 Å, with an interaction energy of about 1 eV. The
numerical estimate Eq. (8) shows that the actual current
in the vacuum barrier, which is responsible for chemical
interactions, must be much higher and close to 105 nA.
The difference derives from the fact that the main part of
this current is not unidirectional, but bidirectional.

Finally, we have calculated the attractive forces from
the derivative of interaction energies. In this calculation
the predictions for the interaction energy based on a
single point of the energy curve during an approach
were numerically differentiated. These results are shown
in Figs. 3(a) and 3(b). Comparing with the forces of the
coupled systems, good agreement is obtained up to the
jump into contact [at about 0.41 nm for Au(111) [13]
and about 0.34 nm for Cu(100)]. The figures show that
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FIG. 3 (color online). Attractive forces between the surfaces.
(a) Predictions for the Au(111) surface (dashed line) are com-
pared with previous calculations (solid triangles) [13]. Up to the
jump into contact, indicated by the sudden onset of large
displacements (see arrows), the predicted force is equal to
the force calculated from the coupled system. (b) An identical
behavior is observed for the Cu(100) surface. The jump into
contact (see arrows) occurs at a lower distance due to the
different decay of 5d and 3d states.
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perturbation theory can even be used to estimate the limit
of stability: in both cases the jump into contact occurs
when the forces reach a level of 1–1.5 nN. The method
should prove valuable in determining the chemical forces
in atomic force microscopy (AFM). Thus far, a perturba-
tion method to treat these forces, which are at the bottom
of atomic resolution [24,25], has proved elusive. As
shown here, these forces can be calculated from the over-
lap of the wave functions of the decoupled systems and a
single point of the energy curve of the coupled system.
The remaining tasks, for the simulation of AFM images,
are the determination of long range forces and elastic
deformations.
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