
Consistency Management with Repair Actions

Christian Nentwich, Wolfgang Emmerich and Anthony Finkelstein
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{c.nentwich,w.emmerich,a.finkelstein }@cs.ucl.ac.uk

Abstract

Comprehensive consistency management requires a strong
mechanism for repair once inconsistencies have been de-
tected. In this paper we present a repair framework for
inconsistent distributed documents. The core piece of the
framework is a new method for generating interactive re-
pairs from full first order logic formulae that constrain these
documents. We present a full implementation of the com-
ponents in our repair framework, as well as their applica-
tion to the UML and related heterogeneous documents such
as EJB deployment descriptors. We describe how our ap-
proach can be used as an infrastructure for building higher-
level, domain specific frameworks and provide an overview
of related work in the database and software development
environment community.

1 Introduction

Software engineers today make use of many informal and
semi-formal notations during development, the UML be-
ing the most notable example. Large systems are increas-
ingly developed in a distributed fashion, making it neces-
sary to provide support for the distribution of development
artifacts.

The goal of this work is to support software engineers
in managing the consistency of their artifacts. Consis-
tency management typically encompasses the specification
of consistency constraints, consistency checking, and acting
on inconsistency, or repair. In previous work on xlinkit [16],
we have shown how a tool-independent service built on
open, extensible and light-weight web technology can pro-
vide a strong consistency checking mechanism. The aim of
this paper is to complete the circle and complement xlinkit
with a strong, yet light-weight and tool-independent repair
mechanism.

The main contribution of this paper is a tool-independent
framework for repairing distributed documents. The core

piece of this is a novel evaluation semantics that automat-
ically derives a complete and correct set of repair actions
from xlinkit’s first order logic constraints.

The semantics has been fully implemented in the form
of a repair action administration and execution tool. We
discuss the design, features, and implementation of these
programs. We give examples of how the approach can be
used to repair inconsistent UML documents and related het-
erogeneous documents such as EJB deployment descrip-
tors. Finally, we explain how the infrastructure provided by
our solution supports the construction of higher-level repair
frameworks such as precedence or workflow-driven repair.

The paper progresses from here as follows: we provide
some background on the consistency checking mechanisms
of xlinkit, which forms an essential part of the remaining
discussion. We then present the architecture of our repair
framework and discuss the repair action generation seman-
tics, followed by an overview our implementation and op-
tions for higher-level repairs. The paper concludes with an
account of related work and an outline of future work.

2 Background

xlinkit is a framework for checking the consistency of dis-
tributed, heterogeneous documents. It comprises a lan-
guage, based on first order logic, for expressing constraints
between such documents, a document management mecha-
nism and an engine that checks the documents against the
constraints. A full description of xlinkit, including a formal
specification of its semantics, its scalability and an evalu-
ation can be found in [16]. The application of xlinkit to
checking distributed and heterogeneous software engineer-
ing artifacts is described in [17, 18].

xlinkit builds on open technologies, most notably the eX-
tensible Markup Language (XML) [1] and XPath [3] to pro-
vide a lightweight and tool-independent consistency check-
ing service for distributed documents. By combining first
order logic with XPath expressions, xlinkit supports the
specification of constraints over XML documents. Figure 1

is an example of an xlinkitconsistency rulethat implements
a constraint from the UML [19] Core package,“The Asso-
ciationEnds must have a unique name within the Associa-
tion” . This rule can be applied to UML models encoded in
XMI [20], the standard UML interchange format.

<forall var="a" in="//UML:Association">
<forall var="x" in="$a/*/UML:AssociationEnd">

<forall var="y" in="$a/*/UML:AssociationEnd">
<implies>

<equal op1="$x/@name" op2="$y/@name"/>
<same op1="$x" op2="$y"/>

</implies>
</forall>

</forall>
</forall>

Figure 1. Sample consistency rule

One of the main contributions of xlinkit is that it provides
a strong diagnostic for inconsistency: Instead of returning
boolean values as the result of formula evaluation, it creates
n-ary hyperlinks that connect inconsistent elements. Fig-
ure 2 shows the link generated by checking the constraint in
Figure 1 against an inconsistent XMI document. It relates
the association with the two association ends that have the
same name, providing all the diagnostic information neces-
sary to identify the elements causing the inconsistency.

<xlinkit:ConsistencyLink rule="as.xml#id(’r1’)">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator

xlink:href="inc.xml#//UML:Association[2]"/>
<xlinkit:Locator

xlink:href="inc.xml#//UML:Association[2]/*
/UML:AssociationEnd[1]"/>

<xlinkit:Locator
xlink:href="inc.xml#//UML:Association[2]/*

/UML:AssociationEnd[2]"/>
</xlinkit:ConsistencyLink>

Figure 2. Sample consistency link

Raw XML hyperlinks form a solid basis for further pro-
cessing or tool integration, but they are not particularly use-
ful to the end-user in their raw form. xlinkit provides a re-
port generation tool,Pulitzer, that enables rule writers to at-
tach diagnostic messages to inconsistent links. It processes
these messages and generates HTML or XML report pages.
Figure 3 shows a “report fragment” for our sample UML
rule. It uses thelocator variable to refer to the endpoints
of the link in Figure 2, and retrieves information, in this
case the name of the association and the name of its roles,
for display. We will show later in this paper the result of
processing this fragment.

<report:linkdescription state="inconsistent">
The association

<i>%@=gettext($locator[1]/@name)%</i>
has two ends with the same role name,

<i>%@=gettext($locator[2]/@name)%</i>.

</report:linkdescription>

Figure 3. Report Fragment

3 Architectural Overview

A consistency management system that performs a check
and explains to the user which elements are contributing
to an inconsistency is only partly complete. This section
serves to introduce the architecture of the repair framework
we have constructed to complement the xlinkit checker.

The aim of our work is to present to the user a simple
set of options, orrepair actions, to choose between when
an inconsistency occurs. Figure 4 gives an overview of our
architecture as a UML collaboration diagram.

The repair administratorcreates repair actions by static
analysis of a set of constraints. It is important that the ac-
tions are of high quality and not faulty, meaning in practice
that they should be complete and correct:

• There are no actions that can be taken to remove an
inconsistency other than those generated by the gener-
ator.

• Any of the actions generated by the generator can re-
move an inconsistency.

While our semantics can guarantee completeness and
correctness, the repair administrator may still want to make
use of their domain knowledge to disable actions that should
not be offered to the user. For example, if an association has
two equal role names, we can delete the association, delete
either association end or rename either role. The repair ad-
ministrator will know that it does not make sense to remove
association ends – unary associations do not exists in the
UML – and so can disable these two actions. The final out-
put of the repair administrator is a parameterized set of ac-
tions that needs to be instantiated with actual inconsistent
data.

When a linkbase is produced by the check engine, the
user can process it with therepair manager. This tool will
instantiate the correct set of repair actions for each incon-
sistency and present the available choices to the user, minus
any actions disabled by the administrator. After selecting
the actions for each violation, or choosing not to take ac-
tion, the user can instruct the tool to execute the repair.

We deliberately restrict the scope of the architecture to
the output of concrete actions. Document modification is

2

: Ch ec ker

: Ru leS et

<<ac tor>>

RepairAdministrator

: Do cu mentS et

<<ac tor>>

R e p a i r M a n a g e r

: Link Ba se

: ActionSet

: A c t i o n L i s t

Figure 4. Repair Architecture

an implementation-specific mechanism and we did not wish
to restrict our work to any particular technology. Simple
implementations that can be provided include: a document
update tool that makes copies of the original documents and
returns modified instances – the only option when pure http
is used and there is no way to modify the documents,– a
tool that modifies remote documents over the web using in-
frastructure such as WebDAV [10], or full integration into
proprietary tools, which would require a language to map
from actions to component invocations.

With this brief overview in mind, we now discuss the
core piece of the architecture, which is the repair action gen-
erator built into the repair administrator.

4 Repair Action Generation

The core contribution of this paper is the semantics that
maps xlinkit’s first order logic language to repair actions
that can be used to interactively correct rule violations. In
this section we provide a formal definition of this semantics,
a step-by-step explanation and several examples.

formula ::= ∀var ∈ XPath(formula) |
∃var ∈ XPath(formula) |
formula and formula |
formula or formula |
formula implies formula |
notformula |
RelativePath = RelativePath |

Figure 5. Rule language abstract syntax

The input to our repair action generator will be xlinkit
formulae. Figure 5 shows the abstract syntax of our rule
language. The meaning of the quantifiers is the same as that
in standard first order logic. For a full definition see [16].

In our repair system, there are three types of modifica-
tions that can be made to a document:Add, Deleteand

Change. While change could be represented by deletion
followed by addition, we retain it as an atomic action as
it simplifies comprehension by the user – changing a value
is an intuitive concept and the user only has to select one
action.

Action ::= Add Accessor |
Delete Accessor |
Change Accessor RelativePath

Accessor ::= Direct LocatorNumber |
Lookup XPath

XPath ::= AbsolutePath | RelativePath

Figure 6. Repair actions

Each of the three actions are parametrized by the target
of their modification. We refer to this as the action’sAc-
cessor. Accessors come in two forms,Direct Accessorsand
Lookup Accessors. Direct Accessors point to information
relative to a hyperlink locator generated by xlinkit, while
Lookup Accessors require the user of the repair manager to
select an item interactively. The reason for this distinction
will become clear from the definition of the semantics.

Figure 6 defines the abstract syntax of repair actions. We
define an XPath to be either an absolute path, which starts
from the root of a document, or a relative path, which starts
with a variable reference. Due to space constraints, it is not
possible to present a more detailed grammar of the XPath
language in this paper. Change actions have an additional
path parameter, which must be a path relative to the acces-
sor: the meaning is that we wish to change a property, iden-
tified by the relative path, of some element, identified by the
accessor.

We will in the following make use of the function
getvar(RelativePath), which retrieves the variable name
from a relative path. Because the function can be imple-
mented using simple string manipulation and formalisation
would require a complete grammar for XPath, we will not
go beyond this informal definition.

3

Our semantics maps formulae to a set of sets of repair
actions. It maps to multiple sets because formulae that in-
clude the logical connectivesand, or or implies can fail
in multiple ways. Each set of actions will be an alterna-
tive, and the correct one must be chosen after a consis-
tency check, when the hyperlink locator information be-
comes available. Our semantics will make use of the carte-
sian operator℘(℘(Action)) × ℘(℘(Action)) in order to
prepend a set of sets of actions to each set in a set of ac-
tions. For example, abstractly,{{a, b}} × {{c}, {d}} be-
comes{{a, b, c}, {a, b, d}}. We will also make use of the
functionlocator(variable), which returns the hyperlink lo-
cator number xlinkit has assigned to a particular variable.
The function is implemented in xlinkit and is not formally
defined here.

We can now discuss the denotational action generation
semantics. The discussion will provide an overview of the
semantics, and will be followed by several examples.

Figure 7 defines the functionDi, the main function for
mapping a formula to repair actions. It takes as a subscript
parameter a set of variable bindings,σ : var × XPath,
which is assumed to be empty when the function is first in-
voked, and a set of variables that can be referenced by loca-
tors,τ , which is also assumed to be empty in the beginning.
The function subscript is short for “inconsistent”, that is the
function is defined to work under the assumption that the
formula has been violated. Its task is to pick out and act on
the violating elements.

For example, suppose a formula of the form∀var ∈
XPath (φ) has been violated. Then for some assignment
of the variable,φ evaluates tofalse. There are two ways this
inconsistency can be removed: delete the element currently
assigned to the variable, or remove the inconsistency recur-
sively by fixingφ. It is easy to show that there are no other
ways this inconsistency can be removed: adding a new el-
ement cannot make the existing element more consistent,
and neither can changing a property of the element, since
the quantifier does not check for properties – although the
subformula may, in which case the recursive definition will
generate the appropriate repair action.

The logical connectives are defined depending on the
evaluation of the subformulae necessary to make them in-
consistent. If both subformulae need to evaluate to a certain
result to make the result inconsistent, the sets of actions are
joined using a cartesian product. Choosing any of the ac-
tions in the combined set will then be sufficient for remov-
ing the inconsistency. For example, ifa ∧ b = false then
making eithera or b true will make the overall result true.

Some connectives can fail in multiple ways. The differ-
ent modes of failure are combined using the union operator
and become alternatives. It is only after a check has been
executed that information on how a formula has failed be-
comes available and the correct set of actions can be se-

lected. For example, the definition ofand takes three pos-
sibilities into account: the first subformula fails, the second
subformula fails, or both subformulae fail and their results
are joined using the cartesian product. By contrast, ifor
fails we know that both subformulae must be false and sim-
ply join their actions.

Some logical connectives invert the meaning of the re-
pair semantics. For example,not requires us to look for as-
signments that make its subformulaconsistentfor an overall
inconsistent result. Similarly, in order to find a failure for
implies, we must treat its first subformula as consistent and
the second as inconsistent. The functionDc, also defined in
Figure 7, provides this inverted mapping. The goal in this
function is to assume that the outcome of a formula will be
trueand to construct repair actions that prevent this.

In many cases, it is not possible to point to a definite ele-
ment for modification. The simplest such case is a formula
involving existential quantification, for example∃ var ∈
XPath(φ). If this formula is violated, then no element ex-
ists for which the subformulaφ evaluates to true. There are
two ways of acting: add a new element that matches the
XPath and for whichφ is true, or select one of the elements
on the path and makeφ true for it. It will, however, not be
possible to point to definite elements in the repair actions
for φ anymore we cannot choose automatically for which
variable assignmentφ should be corrected. An example of
this will be given in the next subsection.

As soon as an existential quantifier is encountered while
in inconsistent mode, or a universal quantifier in consistent
mode – in this case the subformula was consistent for all
assignments and the choice which element to change can
again not be made automatically –, the semantics switches
to the “no information” functions in Figure 8. In these func-
tions, no direct accessors are generated and all actions re-
quire selection.

Predicates are treated differently from logical connec-
tives and quantifiers. We have included only equality as
an example in this paper. An equality comparison in xlinkit
compares elements relative to variables. In order to fix a
violated equality comparison, we generate change actions.
Take for example the formula$x/@name = $y/@name,
which compares the name attributes of nodesx andy, which
must have been bound by some outer formula. It is not
possible to decide in general which side of the equality has
caused the inconsistency, so we always generate two change
actions. Thechange function in Figure 7 shows how this is
done: if the variable that an argument is relative to is present
in τ , and can thus be accessed through a locator, we gener-
ate a direct change action. Otherwise, we generate a lookup
action and the user has to select an item to change.

4

change(RelativePath, σ, τ) = Change (Direct locator(getvar(RelativePath))) RelativePath,

if getvar(RelativePath) ∈ τ
= Change (Lookup σ(getvar(RelativePath))), otherwise

Di : formula→ ℘(℘(Action))

Di[[∀var ∈ XPath (formula)]]σ,τ = {{Delete Direct locator(var)}} ×

Di[[formula]]({(var,XPath)}∪σ),({var}∪τ)

Di[[∃var ∈ XPath (formula)]]σ,τ = {{Add Lookup XPath}} × Ni[[formula]]{(var,XPath)}∪σ,τ

Di[[formula1 and formula2]]σ,τ = Di[[formula1]]σ,τ ∪ Di[[formula2]]σ,τ ∪ (Di[[formula1]]σ,τ ×Di[[formula2]]σ,τ)

Di[[formula1 or formula2]]σ,τ = Di[[formula1]]σ,τ ×Di[[formula2]]σ,τ

Di[[formula1 implies formula2]]σ,τ = Dc[[formula1]]σ,τ ×Di[[formula2]]σ,τ

Di[[not formula]]σ,τ = Dc[[formula]]σ,τ

Di[[RelativePath1 = RelativePath2]]σ,τ = change(RelativePath1, σ, τ)× change(RelativePath2, σ, τ)

Dc : formula→ ℘(℘(Action))

Dc[[∀var ∈ XPath (formula)]]σ,τ = {{Add Lookup XPath}} × Ni[[formula]]{(var,XPath)}∪σ,τ

Dc[[∃var ∈ XPath (formula)]]σ,τ = {{Delete Direct locator(var)}} ×

Dc[[formula]]({(var,XPath)}∪σ),(var∪τ)

Dc[[formula1 and formula2]]σ,τ = Dc[[formula1]]σ,τ ×Dc[[formula2]]σ,τ

Dc[[formula1 or formula2]]σ,τ = Dc[[formula1]]σ,τ ∪ Dc[[formula2]]σ,τ ∪ (Dc[[formula1]]σ,τ ×Dc[[formula2]]σ,τ)

Dc[[formula1 implies formula2]]σ,τ = Di[[formula1]]σ,τ ∪ Dc[[formula2]]σ,τ

Dc[[not formula]]σ,τ = Di[[formula]]σ,τ

Dc[[RelativePath1 = RelativePath2]]σ,τ = change(RelativePath1, σ, τ)× change(RelativePath2, σ, τ)

Figure 7. Repair actions - Direct accessor cases

4.1 Examples

In order to clarify the semantics and show how it can work
in practice, we now present some simple examples that
cover the different action generation functions.

The formula∀ x ∈ “/a”(∃ y ∈ “/b”($x/@name =
$y/@name)) would be processed as follows: func-
tion Di generates a delete action for the inconsistentx,
{{Delete 1}}, where1 is the locator number returned by
xlinkit. It then callsDi recursively to process the existential
quantifier. We know that for somex, we cannot find anyy
for which the equality comparison is true, so we add the ac-
tion{{Add Lookup “/b”}} and callNi on the equals predi-
cate. Evaluation of thechange function returns two actions,
{{Change Direct 1 “@name” , Change Lookup “/b”
“@name”}}, which can be read as “change the name of
locator 1, or change the name of someb”. We can modify
the name ofa directly, because it is present as a locator, but
have to let the user choose whichb is to be modified. The
actions are all combined using the times operator to form a
set of four alternative actions for the user to choose.

If we modify the formula slightly to read∀ x ∈
“/a”(not(∃ y ∈ “/b”($x/@name = $y/@name)))

the evaluation proceeds differently. The same action is
generated for the universal quantifier, butDc is called
on the existential quantifier instead ofDi. In this case
there is no uncertainty: if a violation occurs, it is be-
cause an element that should not be there, is present any-
way. ThusDc creates the action{{Delete 2}} where
2 is the locator number returned by xlinkit. The change
function also returns the slightly different set of ac-
tions,{{Change Direct 1 “@name” , Change Direct 2
“@name”}}. Since we know the element that should not
be there is referenced by a locator we do not have to offer a
choice to the user.

4.2 Additional Considerations

The most important question to ask of our semantics is
whether its results are correct and complete. The size re-
strictions for this paper do not permit us to answer this ques-
tion, but we note that both properties can be shown to hold
by structural induction over the formulae. A simple exam-
ple was given earlier in this section in the explanation of
action generation for the universal quantifier.

Clearly, additional actions could be generated for equal-

5

Ni : formula→ ℘(℘(Action))

Ni[[∀var ∈ XPath (formula)]]σ,τ = {{Delete Lookup XPath}} × Ni[[formula]]{(var,XPath)}∪σ,τ

Ni[[∃var ∈ XPath (formula)]]σ,τ = {{Add Lookup XPath}} × Ni[[formula]]{(var,XPath)}∪σ,τ

Ni[[formula1 and formula2]]σ,τ = Ni[[formula1]]σ,τ ×Ni[[formula2]]σ,τ

Ni[[formula1 or formula2]]σ,τ = Ni[[formula1]]σ,τ ×Ni[[formula2]]σ,τ

Ni[[formula1 implies formula2]]σ,τ = Nc[[formula1]]σ,τ ×Ni[[formula2]]σ,τ

Ni[[not formula]]σ,τ = Nc[[formula]]σ,τ

Ni[[RelativePath1 = RelativePath2]]σ,τ = change(RelativePath1, σ, τ)× change(RelativePath2, σ, τ)

Nc : formula→ ℘(℘(Action))

Nc[[∀var ∈ XPath (formula)]]σ,τ = {{Add Lookup XPath}} × Nc[[formula]]{(var,XPath)}∪σ,τ

Nc[[∃var ∈ XPath (formula)]]σ,τ = {{Delete Lookup XPath}} × Nc[[formula]]{(var,XPath)}∪σ,τ

Nc[[formula1 and formula2]]σ,τ = Nc[[formula1]]σ,τ ×Nc[[formula2]]σ,τ

Nc[[formula1 or formula2]]σ,τ = Nc[[formula1]]σ,τ ×Nc[[formula2]]σ,τ

Nc[[formula1 implies formula2]]σ,τ = Ni[[formula1]]σ,τ ×Nc[[formula2]]σ,τ

Nc[[not formula]]σ,τ = Ni[[formula]]σ,τ

Nc[[RelativePath1 = RelativePath2]]σ,τ = change(RelativePath1, σ, τ)× change(RelativePath2, σ, τ)

Figure 8. Repair actions - no information cases

ity comparisons: we could delete the properties referenced
by the predicate, e.g. delete thename attributes referenced
in the example. We have deliberately chosen not to in-
clude these actions in the semantics because we found that
in practice these properties are in almost all cases manda-
tory. Deleting them would thus simply lead to a violation of
document structure.

It is possible to provide some support for default values
for node changes in the case of equality: ifa = b is vio-
lated, then the only way to remove the inconsistency is to
seta equal tob and vice-versa. We can thus offer a default
value ofb for changes toa and the other way round. This
approach will not work once the equality predicate occurs
in a negative formula: ifnot(a = b) is violated then we
cannot determine a default value – the only criterion is that
after the change the two values must not be equal.

5 Implementation

We have implemented a framework for repair action gen-
eration and execution and tested it in several application
domains. This section presents the implementation of the
repair administrator and repair manager tool and its appli-
cation to UML models.

The first step in the architecture we outlined in Section 3
was the generation of repair actions from constraints. Fig-
ure 9 shows a snapshot of our repair administrator tool. The
administrator has selected the example rule from Figure 1,
and the tool has generated the repair actions. For each ac-

tion, the administrator can enter a natural language descrip-
tion that is comprehensible to the user, or leave the default
description generated by the action generator.

The administrator has decided that deleting the ends of
the association should not be an option available to the user,
but they should instead rename either of the role names or
delete the whole association. The delete actions for the as-
sociation ends have thus been disabled and have turned red.
In thediagnostic messagesection, the administrator can en-
ter a diagnostic message that describes the inconsistency as
a whole. When everything has been entered, the set of ac-
tions and messages is saved in a report fragment in XML
format for use by the repair execution tool.

Figure 10 shows how default value generation is handled
in the case of add-actions. The rule displayed at the top
says that for every class stereotyped “EJBImplementation”
in the UML model, there must be a Session Bean or Entity
Bean declaration in the Enterprise JavaBeans [12] deploy-
ment descriptor. If such an entry does not exists, one option
is to add one. In this case, we have selected the “From File”
option and selected an existing entry in the XML browser
(not shown). All text elements of the tree fragment have
been parametrized by the tool and will be offered as text
fields for the user to fill in when they execute the repair
manager. If no sample file is available, the administrator
can automatically construct the default value to add from
an XML Schema [6] instead.

Figure 11 shows a snapshot of the repair manager tool.
We have fed into the tool a linkbase generated by checking

6

Figure 9. Repair Administrator Tool

an inconsistent UML model. On the left-hand side, the user
can see which rules have been violated. Rules are flagged
red if no repair actions have yet been chosen for them and
turn green as soon as one or more actions are chosen. No-
tice that only the two types of actions permitted by the ad-
ministrator are present, and that the role and class names
have been substituted from the UML model. Changing ei-
ther name will fix the inconsistency, so we have entered
a new value for the role connected to the “SalesAssistant”
class. We can now click the “Execute Actions” button and a
suitable back-end can modify the files, as explained in Sec-
tion 3.

The repair execution tool can also easily check for con-
tradictory repair actions. The way this is done depends on
the action: Two change actions cannot modify the same
property of the same element to hold two different values;
and no action of any type must access a path that is logi-
cally beneath the path of a delete action. If either of these
scenarios occurs, the user must deselect one of the actions.

6 Advanced Repair

Using our repair action generator as an infrastructure tool
we can build higher level repair frameworks.

An advanced repair framework in our sense is one that
restricts the set of repair actions automatically in some way,
so as to minimize or even eliminate user interaction. The
simplest type is astatic precedence relationshipwhere cer-
tain types of artifacts take precedence over others. For ex-
ample, if a UML model is inconsistent with a Java class we
may dictate that the model should override the class. This
can be implemented by removing those repair actions that
refer to elements in the UML model and only allowing those

that modify Java classes.
A more sophisticated approach would be to constructdy-

namic precedence relationships. In this approach, the over-
ride relationship would change over time. For example, dur-
ing design it may be appropriate for the UML model to over-
ride Java classes but during an implementation phase, when
source code evolves more quickly and models become out-
dated, we may wish to invert this relationship. We could
use an off-the-shelf workflow system or a simple event no-
tification mechanism such as Emu [8] to implement such a
system.

7 Evaluation

Since the repair action semantics can be proven to generate
correct and complete repair actions, this evaluation section
concentrates mainly on practical issues we encountered dur-
ing testing.

We have applied our repair generator the the full set of
rules in the UML Foundation/Core package. On the whole,
the action generator performed very well and it is possi-
ble for somebody with knowledge of the documents to in-
tuitively grasp the meaning and consequence of actions.
We have however identified several problems that must be
addressed before this framework can become a practical
proposition.

The biggest problem is the interaction of repair actions
with the grammar of documents and with actions gener-
ated by other constraints. These cases are currently not ad-
dressed at all and are investigated further in the section on
future work.

It is also not clear at the moment whether the localized
view of one single inconsistency at a time may cause prob-

7

Figure 10. Default Tree Fragment Generation

lems with multiple interconnected inconsistencies. For ex-
ample, a single class may violate several constraints, but
deleting it could automatically fix all of them. One possi-
ble way of approaching this problem would be to provide
a more “global” overview of problems where a single el-
ement causes multiple inconsistencies. This could help to
reduce user disorientation. Another possibility is the au-
tomatic selection of actions for elements that contribute to
multiple inconsistencies as soon as the user chooses to fix
the element once.

Finally, another common problem we have identified is
the apparent complexity of the paths the action generator
prints out for the administrator, for example the paths in
the second and third action in Figure 9. This complexity is
mainly due to the complexity of the XMI notation. In the
case of our evaluation, the repair administrator also wrote
the constraints, so it was easy to identify these paths as
pointing to association ends. If the administrator was a pure
UML domain expert, we would have to provide additional
support such as intelligent abbreviation or translation.

8 Related Work

The problem of repairing integrity violations has received
attention in the areas of software development environments
and databases. In this section we give a brief account of
work most closely related to ours.

The software engineering community has produced a
substantial body of work on Software Development En-
vironments. The goal of systems like ESF [21], Good-
Step [5] or IPSEN [15], to name but a few, is to integrate
different tools and to ensure consistency across heteroge-
neous artifacts. These environments include change propa-

gation mechanisms that can restore consistency in a depen-
dency graph when changes are made. GoodStep includes a
scripting language for adding domain-specific repair mech-
anisms, for example to add a variable declaration at the right
level of scope when a variable reference is invalid. To the
best of our knowledge, none of them include mechanisms
for automatically transforming a declarative constraint lan-
guage into repair actions without user intervention or hand-
coding. In addition, these environments typically require a
central repository and cannot support the loose style of fully
distributed development.

Active integrity maintenance through triggering in a soft-
ware development environment is discussed in [22]. The
paper gives examples of an algorithm that can transform a
constraint into condition-action repair actions that are exe-
cuted when a constraint is violated. The approach is power-
ful in that it works automatically from a declarative specifi-
cation. It also relies on a fast triggering mechanism rather
than a complete consistency check, which is expensive, but
it can only handle simple boolean constraints and no sup-
port for distribution is indicated.

The process of making changes to transactions or
databases to recreate a state of integrity is referred to in the
literature asintegrity constraint maintenance. A survey of
the area can be found in [13]. The common goal of work
in this area is to prevent expensive transaction roll-back by
making amendments that prevent constraint violation before
committing. Approaches typically differ by the expressive-
ness of the constraints they permit – though none of them
support unrestricted first order logic formulae, – the under-
lying data model they are trying to support, the level of user
interaction, and the guarantees that can be made about re-
pairs. In the following, we present some of the most relevant
work in the area.

8

Figure 11. Repair Manager Tool

The rule generator described in [2] takes restricted con-
straints over relational databases of the form∀∃ and gen-
erates set of repair actions. The actions and constraints
are ordered so as to generate a minimal set of actions that
are self-contradictory and cannot be executed automatically.
Because the approach builds on restricted formulae, con-
straint checking can be performed quickly through “viola-
tion queries”. User interaction is treated using a low-level
text mechanism but no tool support is discussed.

A similar class of constraints is analyzed in [9]. The pa-
per includes an additional section on repair strategies, which
discusses mechanisms for reducing the set of repair actions
made available to the user. These include optimisations on
the number of changes necessary to the database or to the
transaction that triggered the repairs. These strategies dif-
fer from the higher-level repairs proposed here as they are
analytical and do not build on domain knowledge.

Repair actions have also been a topic of interest in deduc-
tive databases. In [14], a system is described that generates
actions from closed, range-restricted first order logic formu-
lae. The repair algorithm can automatically find repairs for
violated existential formulae without user intervention. For
this, the algorithm relies on the rules of the database and the
closed-world assumption. These mechanisms are not avail-
able in the case of distributed, semi-structured documents,
hence the need for a lookup mechanism in our generator.

Compensating transactions [11] are similar in approach
but make use of transaction operations as well as database
data to undo dirty reads caused by lack of isolation between
multiple transactions. This is not possible in our scenario as
we treat the data “as-is”, and have no information on modi-
fication by the user.

9 Future Work

There are many theoretical and practical questions that we
cannot address in this paper.

The first concerns the interaction of repair actions with
the syntax of documents. Repair actions that make a docu-
ment consistent with respect to some xlinkit constraint, but
at the same time violate the document’s grammar should not
be permitted – the grammar of a document is a lower-level
mechanism and takes precedence. It is not possible to stat-
ically compare our constraints against a DTD or Schema to
predict whether this behaviour must necessarily occur [7],
but it should be possible to incrementally revalidate a docu-
ment after executing each action and to retract the action if
it violates the grammar.

A more complex problem arises when the repair action
for one constraint forces the user to violate another. Since
the equivalence problem for first order logic formulae is un-
decidable, it is not possible to predict in advance whether
two formulae are contradictory. An iterative process that
is capable of detecting repair cycles, similar to that in [9],
could be used to address this problem.

We are also interested in comprehensive architectures
for consistency management in various application do-
mains. Tighter integration of consistency management
mechanisms invariably raises domain specific problems.
We have already applied xlinkit to checking the integrity of
financial derivative trade data [4] and will extend our work
in this area to include repair.

10 Conclusion

We have presented in this paper a novel framework for re-
pairing inconsistent distributed documents. The framework

9

is supported by a strong semantics that can translate first or-
der logic constraints into repair actions that are correct and
complete.

By combining the powerful diagnostic capabilities of
xlinkit with this framework we have laid the foundations
for a comprehensive architecture for managing the consis-
tency of distributed and heterogeneous software engineer-
ing specifications.

We have shown the application of the framework to
UML models encoded in XMI, and will continue to investi-
gate its usefulness in other application domains.

The xlinkit check engine is available with full source
code for academic research, and has already been taken up
by several research groups. We welcome further request to
use the check engine, and will make our repair action tools
available as soon as the implementation stabilises. For more
information please visithttp://www.xlinkit.com .

Acknowledgements

We gratefully acknowledge financial support from Zuhlke
Engineering for Christian Nentwich.

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. Maler. Extensible Markup Language. Recommen-
dation http://www.w3.org/TR/2000/REC-xml-20001006,
World Wide Web Consortium, Oct. 2000.

[2] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Auto-
matic Generation of Production Rules for Integrity Mainte-
nance.ACM Transactions on Database Systems, 19(3):367–
422, September 1994.

[3] J. Clark and S. DeRose. XML Path Lan-
guage (XPath) Version 1.0. Recommendation
http://www.w3.org/TR/1999/REC-xpath-19991116, World
Wide Web Consortium, Nov. 1999.

[4] D. Dui, W. Emmerich, C. Nentwich, and B. Thal. Consis-
tency Checking of Financial Derivatives Transactions. In
Proceedings of Net.ObjectDays 2002, October 2002. To Ap-
pear.

[5] W. Emmerich. GTSL — An Object-Oriented Language for
Specification of Syntax Directed Tools. InProc. of the 8th
Int. Workshop on Software Specification and Design, pages
26–35. IEEE Computer Society Press, 1996.

[6] D. C. Fallside. XML Schema Part 0: Primer. Recom-
mendation http://www.w3.org/TR/2001/REC-xmlschema-0-
20010502/, World Wide Web Consortium, MAY 2001.

[7] W. Fan and L. Libkin. On XML Integrity Constraints in
the Presence of DTDs.Journal of the ACM, 49(3):368–406,
2002.

[8] S. Fickas, T. Beauchamp, and A. R. Mamy. Monitoring Re-
quirements: A Case Study. InProceedings of the 17th IEEE
International Conference Automated Software Engineering,
2002. To appear.

[9] M. Gertz. An Extensible Framework for Repairing Constraint
Violations. InWorkshop on Foundations of Models and Lan-
guages for Data and Objects, pages 41–56, 1996.

[10] Y. Y. Goland, J. Whitehead, A. Faizi, S. Carter, and
R. Jensen. Extensions for Distributed Authoring on
the World Wide Web – WebDAV. Internet Draft
(Work in Progress) http://www.ietf.org/internet-drafts/draft-
ietf-webdav-protocol-10.txt, IETF, Nov. 1998.

[11] H. F. Korth, E. Levy, and A. Silberschatz. A Formal
Approach to Recovery by Compensating Transactions. In
D. McLeod, R. Sacks-Davis, and H. J. Schek, editors,Pro-
ceedings of the 16th International Conference on Very Large
Data Bases, Brisbane, Queensland, Australia, pages 95–106.
Morgan Kaufmann, August 1990.

[12] V. Matena and M. Hapner. Enterprise JavaBeans Specifica-
tion v1.1. Technical report, Sun Microsystems, DEC 1999.

[13] E. Mayol and E. Teniente. A Survey of Current Methods
for Integrity Constraint Maintenance and View Updating. In
Advances in Conceptual Modeling: ER ’99 Workshops on
Evolution and Change in Data Management, Reverse Engi-
neering in Information Systems, and the World Wide Web and
Conceptual Modeling, Paris, France, November 15-18, 1999,
volume 1727 ofLecture Notes in Computer Science, pages
62–73. Springer, 1999.

[14] G. Moerkotte and P. C. Lockemann. Reactive Consistency
Control in Deductive Databases.ACM Transactions on
Database Systems, 16(4):670–702, December 1991.

[15] M. Nagl, editor.Building Tightly Integrated Software Devel-
opment Environments: The IPSEN Approach, volume 1170
of Lecture Notes in Computer Science. Springer Verlag,
1996.

[16] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: a Consistency Checking and Smart Link Genera-
tion Service. ACM Transactions on Internet Technology,
2(2):151–185, May 2002.

[17] C. Nentwich, W. Emmerich, and A. Finkelstein. Static Con-
sistency Checking for Distributed Specifications. InProceed-
ings of the 16th International Conference on Automated Soft-
ware Engineering (ASE), pages 115–124, Coronado Island,
CA, Nov. 2001. IEEE Computer Science Press.

[18] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible Consistency Checking. Research note, University
College London, Dept. of Computer Science, 2001. Submit-
ted for Publication.

[19] Object Management Group.Unified Modeling Language
Specification, March 2000.

[20] Object Management Group, 492 Old Connecticut Path,
Framingham, MA 01701, USA.XML Metadata Interchange
(XMI) Specification 1.1, Nov. 2000.

[21] W. Scḧafer and H. Weber. European Software Factory Plan –
The ESF-Profile. In P. A. Ng and R. T. Yeh, editors,Modern
Software Engineering – Foundations and current perspec-
tives, chapter 22, pages 613–637. Van Nostrand Reinhold,
NY, USA, 1989.

[22] S. D. Urban, A. P. Karadimce, and R. B. Nannapaneni.
The Implementation and Evaluation of Integrity Maintenance
Rules in an Object-Oriented Database. InProceedings of the
Eighth International Conference on Data Engineering, pages
565–572, Los Alamitos, 1992. IEEE Computer Society Press.

10

