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The paper presents new concepts and results for the eddy structure of turbulent
convection in a horizontal fluid layer of depth h which lies above a solid base with
thickness hb. The fluid parameters are the kinematic viscosity ν, the thermal diffusivity
κ , which is taken to be comparable with ν, the density ρ, the specific heat cp and the
expansion parameter β . The thermal diffusivity of the solid is κb. The results are an
extension of the more commonly studied cases, where a constant heat flux or constant
temperature is applied at the interface between the fluid and the base. The buoyancy
forces induce eddy motions with a typical velocity w∗ ∼ (gβFθh)1/3 where ρcpFθ is the
average heat flux and Fθ the covariance of the fluctuations of the temperature and
of the vertical velocity. At moderate Reynolds numbers (Re = w∗h/ν), say less than
about 103, an order-of-magnitude analysis shows that for the case of high diffusivity
of the base (i.e. κb � κ) elongated ‘plumes’ form at the surface and extend to the
top of the fluid layer. When the base diffusivity is low (i.e. κb � κ) the surface cools
below the developing ‘plume’ and either the plume breaks up into elongated puffs
or, if κb � κ , horizontal pressure gradients form so that only small-scale puffs can
form near the surface. At very high Reynolds numbers, approximately greater than
104, the surface boundary layer below each puff/plume is highly turbulent with a
local logarithmic velocity and temperature profile. An approximate analysis indicates
for this case that there is insufficient buoyancy flux from the base, irrespective of
its diffusivity, to maintain plumes, because of the high turbulent heat transfer. So
puffs dominate high-Reynolds-number thermal convection as numerical simulations
and field experiments demonstrate. However, when the surface heat flux is uniform,
for example as a result of radiant heat transfer or by forcing with a constant heat
flux below a very thin conducting base, plumes are the dominant form of eddy
motion, as is commonly observed. In the numerical solutions presented here, where
Re ∼ 3 × 102 and the slab thickness hb = h, it is shown that the spatial scales of eddy
structures in the fluid layer close to the surface become significantly smaller as κb/κ

is reduced from 100 to 0.1. At the same time in the core of the convective layer the
change in the autocorrelation and spatial correlation function indicates that there is a
transition from long-duration plumes into shorter-duration and smaller-length-scale
elongated puffs. The simulations show that the largest temperature fluctuations near
the surface occur when a constant heat flux is applied at the bottom of the fluid layer.
The smallest temperature fluctuations are associated with the constant-temperature
boundary condition. The finite base diffusivity cases lie in between these limits,
with the largest fluctuations occurring when the thermal diffusivity of the base is
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small. The hypothesis introduced above has been tested qualitatively in a laboratory
set-up when the effective diffusivity of the base was varied. The flow structure
was observed as it changed from being characterized by nearly steady plumes, into
unsteady plumes and finally into puffs when the thickness of the conducting base was
first increased and then the diffusivity was decreased.

1. Introduction
Our modern understanding of turbulent flows is based on a dual description and

analysis in terms of the statistics of the velocity, pressure and other variables and in
terms of the structure and time dependence of the details of the eddy motion (e.g.
Holmes, Lumley & Berkooz 1996). The latter aspects of these random multi-scale flows
is particularly useful for developing quasi-deterministic models for the dynamics and
thermodynamic properties of the flow (e.g. the magnitude of the velocity fluctuations
in terms of the macroscopic features of the flow) and for other processes that depend
on these properties (e.g. the movement of solid particles or chemical reactions).

The flow that we consider consists of a fluid layer with depth h above a solid layer
with depth hb (see figure 1). At the bottom of the base (x3 = −hb) a uniform and
constant heat flux H0 is applied which is transmitted by conduction through the solid
base and which drives the convection in the fluid layer. At x3 = h there is an insulating
solid surface where the heat flux is zero. Thus the mean temperature steadily rises.
The mean heat flux at the bottom of the fluid layer is given by H = ρ0cpFθ where ρ0

is the reference fluid density, cp the specific heat at constant pressure and Fθ ≡ w′θ ′

is the correlation between the vertical velocity and temperature fluctuations.
The study of convective turbulence is a conspicuous example of where the ‘eddy-

structure’ approach is valuable. In this flow regime the effects of buoyancy forces
are much greater than those produced by shear stresses τ (=ρ0u

2
∗, where u∗ is the

friction velocity) associated with any mean motion. As a result the shear-buoyancy
Monin–Obukhov length LMO = u3

∗/ (gβFθ ) is much smaller than the depth of the layer.
Here β is the coefficient of expansion with β � 1/T0 for a perfect gas (e.g. Holtslag &
Nieuwstadt 1986). The aim of this paper is to study in more detail the current
‘conventional wisdom’ about the eddy structure.

Recent reviews and theories (e.g. Hunt, Kaimal & Gaynor 1988; Castaing 1989
et al.; Lohse & Grossmann 2000) have described many features of turbulent thermal
convection on the assumption that the eddy structure can be approximated by thin
energetic vertical plumes (see figure 2) of hot fluid extending from the bottom plate
right to the top, with weak cooler flow between the plumes descending down into thin
energetic ‘feeder’ layers with depth � (see figure 1) at the lower plate where the fluid is
heated before entering the plumes. This concept was originally established by Priestley
(1959) on the basis of his multi-point measurements in the atmospheric boundary
layer over the hot Australian desert. He pointed out that Morton, Taylor & Turners’s
(1956) analysis of turbulent plumes indicated the essential scaling for the distributed
plumes in convection, and that the root-mean-square velocity σw ∼ w∗ ∼ (gβFθh)1/3,
a result later revisited by Deardorff, Willis & Lilly (1967) and confirmed in the
atmosphere by Kaimal et al. (1976). Note that h/LMO = (w∗/u∗)

3 � 1 for these flows.
However, as Scorer (1954, 1978) pointed out, in the atmospheric boundary layer

there are many occasions when the eddy structure is in the form of isolated ‘puffs’ (see
figure 2), i.e. local regions of correlated motion with diameter significantly less than
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Figure 1. Schematic representation of the mean temperature profile in a convective fluid layer
(h<z < 0) and in a solid base (0<z <hb) with a uniform heat flux H0 at the bottom of the
base.

h where the fluid is more buoyant than in the surroundings (and above and below it)
so that these puffs rise with respect to the surrounding fluid. These structures have
been noted by glider pilots and observers of soaring birds in conditions of weak
convection, e.g. the U.K. and even in desert conditions in the U.S.A (in the evening).

The heat transfer results, velocity statistics and visualization studies obtained in
laboratory experiments on convection (notably those of Deardorff et al. 1967) are
consistent with the quantitative predictions resulting from Priestley’s plume model.
However, other results on the eddy structure have been reported. For instance,
Townsend’s (1959) clear experimental observation of puffs has been regarded hitherto
as a ‘curiosity’. Progressively, since the 1960s direct and large-eddy numerical
simulations have been used to study turbulent convection. In all the simulations
reported up to now the bottom boundary condition has been that of a constant heat
flux. In these studies it has always been found that the eddy structure consists of
plumes.

Despite this consensus among professional fluid dynamicists over the past 40 years,
practioners in the kitchen (and elsewhere) have known (e.g. M. E. Hunt, private
communication) that the transition in the eddy structure between plumes and puffs is
no mystery and can indeed be controlled. The purpose is to make the eddy movement
rapid and well distributed enough that no point on the surface becomes too hot (to
overheat milk) or that solid particles (in jam making) come to rest on the bottom.
This is done by varying the thermal conductance of the solid base through which the
fluid layer is heated. Introduction of low-conductance simmering plates or asbestos
sheets (as in Townsend’s 1959 experiments) transforms the plume-like eddies into
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Figure 2. Schematic diagram of typical profiles of key variables and mechanisms in the zone
near the surface where plumes originate. (a) (i) Temperature T (x) just above the surface
layer and at the surface; (ii) vertical velocity (in high- and low-Reynolds-number flows);
(iii) instantaneous vertical profiles of the temperature T (x3), the horizontal velocity u1(x3) and
the vorticity distributions corresponding to the surface layer and the surface viscous layer. (b)
At very high Reynolds number (� 104) there is a surface layer of thickness L where the
energy dissipation ε is much greater than in the convective layer above and where the eddy
structure is shear dominated instead of convectively driven. (c) The three types of buoyant eddy
structure depending on the ratio of the base to layer diffusivity κb/κ and the Reynolds number:
(i) plume; (ii) shortened plume or elongated puff; (iii) puff. The double arrow indicates how
such eddies move horizontally in random directions as a result of the velocity fields of other
eddies; this gives rise to regions of warmer fluid near the lower surface on the trailing side of
these eddies (see § 4). The dashed horizontal lines in (ii) indicate levels where the buoyancy flux
is greater at x

(1)
3 than at x

(2)
3 (as a result of a lower base diffusivity) which causes the plume to

break up.

puff-like eddies. A similar unsteady puff convection phenomenon has been observed
in some numerical simulations of very high-Reynolds-number geophysical convection
patterns such as in the Earth’s liquid core which are driven by the heat flux from
the inner core (Höllerbach & Jones 1993). Another example is the ‘compositional’
convection in the polar oceans driven by the downward buoyancy flux of salty liquid
generated near the sea surface by the freezing of ice as shown by the computation
of Backhaus & Kämpf (1999) and the recent field observations by Uscinski et al.
(2003).
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A simple physical argument, which is quantified in § 2, explains the transition from
plumes to puffs. If the conductance of a thick solid base is too low, the heat flux into
the top layer of the solid is too small to balance the heat taken away by the growing
plume or puff in the fluid surface (or feeder) layer. The local cooling at the surface
causes horizontal pressure gradients that effectively ‘shut off’ the plume or puff which
has to re-form at another point on the surface. Even if plumes are well established,
this process may break them up because they are quite sensitive to any reduction in
the heat/buoyancy being fed into them from the slightly cooled layer below. As we
shall see this argument raises the question of why long-lasting plumes form at all in
natural flows. A possible answer is given in § 6.

The physical arguments for convection in the form of plumes and puffs, as proposed
by Hunt (1998) are tested here with some detailed analysis and with a numerical
simulation and an experimental study of thermal convection over solid layers of
varying diffusivity.

2. Order-of-magnitude physical analysis
We consider a thermally conducting slab or solid base lying between the levels

x3 = −hb and x3 = 0 with thermal diffusivity κb. Above this base, between x3 = 0 and
x3 = h there is a layer of fluid with thermal diffusivity κ and kinematic viscosity ν

(see figure 1). Above x3 =h there is an insulating solid (or approximately stationary
fluid above a stable inversion layer). A uniform vertical heat flux H0 is applied below
the solid base. At the bottom of the fluid layer, i.e. x3 = 0, this flux is reduced to
ρcpFθ =H0h/(h + hb). The mean temperature at the interface at x3 = 0 is T0, and at
x3 = h is Th.

Several studies of convective turbulence (e.g. Lohse & Grossmann 2000) have
derived order-of-magnitude expressions for the heat transfer (or Nusselt number, Nu)
as functions of temperature difference (or Rayleigh number, Ra). As in those studies,
we first assume that the flow near the surface, i.e. in the surface layer, is not fully
turbulent, even though the turbulence in the interior is fully developed with chaotic
motions over a wide range of space and time scales. Our focus is on how eddy motion
depends on boundary conditions and on the Reynolds and Péclet numbers of the
flow, where

Re=
w∗h

ν
, Pe=

w∗h

κ
. (2.1)

The convective velocity scale w∗ is defined by

w∗ = (gβFθh)1/3, (2.2)

where Fθ is defined in terms of the heat flux H (see § 1). Equation (2.2) gives the
order of magnitude of the r.m.s. velocity in the interior of the flow, as will become
apparent from the numerical results to be presented below.

When the Reynolds and Péclet numbers lie in the range 1 � Re � 102 and 1 �
Pe � 102, the eddies develop as Rayleigh–Taylor bulge-like instabilities growing on
the heated surface layer. Their horizontal scale is of the order of the thickness � of
this layer. Across these bulges the temperature drop is 
T (see figure 2 and Lohse &
Grossmann 2000). The vorticity generated on the edge of the bulge, which is in
proportion to −(∇ρ × ∇p)/ρ2, amplifies the vertical velocity wl and converts the
bulge into an upward moving ‘puff’. Balancing inertial and buoyancy terms shows
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that

wl ∼ (gβ
T �)1/2 ∼ w∗. (2.3)

The assumption here that wl ∼ w∗, which will verified later, is based on the fact that
the velocity in the plume or puff is most intense at the top of the surface layer† where
the plumes/puffs originate and decreases as they rise and grow. Note that there is a
horizontal velocity into the growing puff/plume and because this takes the form of
a boundary layer the maximum is near the top of this layer.

Once the puffs/plumes develop, the nonlinear inertia forces associated with the
entrainment into them control their horizontal spacing which is of the order h

(the most unstable wavelength of Rayleigh–Bénard convection). Since the average
contribution by the surface heat flux (hFθ ) is equal to the flux carried by the bulge
(
T w∗�) it follows that


T w∗/Fθ ∼ h/�. (2.4)

The horizontal flow into the plume/puff is of the order of w∗. Applying the advection–
diffusion balance to the surface layer leads to an estimate of its thickness given by

� ∼ hPe−1/2. (2.5)

These results can be expressed in terms of the Rayleigh number

Ra =
gβ (T0 − Th) h3

νκ
, (2.6)

and the Nusselt and Prandtl numbers

Nu =
Fθh

κ (T0 − Th)
, Pr=

ν

κ
. (2.7)

Since 
T ∼ (T0 − Th) it follows from (2.3) that

Ra ∼ Pe5/2Pr−1, (2.8)

so that with help of (2.4) we find Nu ∼ (Pr Ra)1/5. Other Ra–Nu relations (see Lohse
& Grossmann 2000 and Castaing et al. 1989) result from slightly different models of
eddy structure. For recent laboratory experiments up to Ra ∼ 1014 see Niemela et al.
(2000).

The flow pattern in the instability bulge is affected to some extent by the vorticity
of opposite sign generated by the no-slip condition at the base surface. This leads to
an internal layer of thickness δv (see figure 2). For moderate values of Re and Pe,
δv ∼ � and this tends to produce a double maximum in the vertical velocity. Also, the
vorticity generated by the friction at the surface tends to prevent the puff structure
from developing into a plume.

We now consider the effect of varying the thermal diffusivity κb and thickness hb

of the base. Let us first introduce the length scale �b as the distance over which heat
is conducted in the base on a time scale h/w∗, where

�b ∼
√

κb

h

w∗
.

† In a laminar or turbulent plume from a constant-buoyancy source the peak velocity decreases
with height as w ∼ (gβFθ )

1/3 x
−1/3
3 . The reason why in a turbulent convective layer the average

value of w′2 increases slowly as ∼ x
2/3
3 with height is because the plume widths increase with z and

because downdraughts are blocked by the surface (Hunt 1984).
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If κb is very large and hb small enough so that κb � κ and �b � hb, then persistent
plumes tend to form, extending upwards from the surface layer towards the top of
the fluid layer at z ∼ h.

But there is a different flow pattern if the thermal diffusivity of the base is reduced.
First we consider a slight reduction where ∞ >κb � κ . We also ensure that hb is
increased sufficiently so that �b � hb. Then the heat flux from the bottom of the slab
reaches the surface so ‘slowly’ that the surface temperature is changed significantly
(by order 
Tb within the thermal layer �b) through the downward cooling motion
induced on the flanks of the puff within the time scale h/w∗ during which the puff
grows. 
Tb can be estimated by equating the rate of heat gained by the fluid, as it
moves along the surface, to the upward flux of heat in the base reaching the surface
by conduction, i.e. 
Tbw∗/h ∼ Fθ/�b. With the expression for �b given above we find
that �b is less than the slab thickness hb, if

Pe>
κb

κ

(
h

hb

)2

. (2.9)

Then 
Tb is given by


Tb


T
∼ �

�b

∼
√

κ

κb

. (2.10)

Thus, as expected, the lower the thermal diffusivity of the slab the greater the
temperature fluctuations at the surface. Note that we have assumed that the horizontal
diffusion of heat in the slab (over a scale of the order h) is much smaller than the
vertical diffusion, which requires that �b � h.

As a result of this surface cooling, both the local density and the hydrostatic
pressure rise by O(ρgβ
Tb�) in the surface layer. If this is of the order of the
momentum of the horizontal flow into a puff, i.e. ρw2

∗ , it tends to block the surface
velocity feeding into the puff. Since the pressure rise is greatest at the surface and the
horizontal velocity is greatest at the top of the layer, the puffs are only suppressed if
gβ
Tb� � w2

∗ or from (2.3) and (2.10)

�

�b

� 1 or
κb

κ
� 1. (2.11)

Since ui∂p/∂xi > 0, this induces a change in surface velocity away from the puff,
see figure 2(a)(i). Therefore, for κb � κ , over the period h/w∗ when the base near the
puff is cooling, the source of warm fluid into the puff is cut off. The buoyant fluid
in the puff, that was produced before the surface cooled, rises from the surface as
a coherent vertical eddy, similar to a vortex ring (see figure 2b). This suggests that
plumes or larger puffs can only form if the surface is not significantly cooled by the
heat flow into the puff. Also it implies that where puffs form as a result of small base
diffusivity the spatial variation of the surface temperature is of the order of the scale
of the puffs. This is of the order � near the surface layer, and is a reduction by a
factor of O (�/h) from the scale with a high-diffusivity base. A similar reduction in
time scale occurs because large puffs cannot be formed.

Even if 1 � κb/κ so that the horizontal pressure gradient in the surface layer is not
large enough to stop the formation of plumes directly, there can be a transformation
of their structure caused by the time-dependent behaviour of the heat flux into the
plumes that form above the surface layer. Consider what happens if the flux of
buoyant fluid rising from the base of a plume decreases significantly in the time h/w∗
that it takes the fluid situated initially between the levels x

(1)
3 and x

(2)
3 (see figure 2c, ii)
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to reach the upper boundary. It is found from a simple analysis of such an unsteady
plume (Morton et al. 1956) that the plume breaks up into elongated puffs because
the more buoyant upper region entrains external fluid into the lower region where the
upward buoyant motion is weaker. This causes the plume to ‘pinch-off’ and hence
generates an elongated puff.

At much higher Reynolds numbers, the flow in the surface layer and in the interior
of puffs and plumes is highly turbulent with eddies generated by local buoyancy forces.
Where the surface layer meets the lower surface at x3 = 0 there is a local logarithmic
shear profile (Sykes, Henn & Lewellyn 1993) which is determined by small eddies
blocked by the surface. The thickness of the surface layer is found to be of the order
of � ∼ h/10 (Hunt 1984). (Note that this is much larger than if the surface layer
were laminar at the same Reynolds number.) Within this layer where the horizontal
velocity profile (on the time scale of the plumes/puffs) is logarithmic (Sykes et al.
1993) there is a much thinner surface shear layer. Its depth L is determined by the
equilibrium between the local rates of production of turbulent energy and dissipation
(e.g. Townsend 1976) so that L = u3

∗c
/ε∗. Here ε∗ is the rate of dissipation in the

core, i.e. ε∗ ∼ w3
∗/h ∼ gβFθ0, and the local surface friction velocity driven by the large

eddies is u∗c
∼ w∗/ ln (�/z0) (Hunt 1998). This implies that L is equal to the local

Monin–Obukhov length scale. In this case, the much thinner vortical layer generated
by the surface friction does not significantly affect the development of plumes/puffs
at the top of the surface layer (unlike the case of lower Reynolds number convection)
as illustrated in figure 2(b).

Now, as before, let us consider the base conductance κb to be small while the base
is deep enough that the horizontal heat flux in the base cannot even out the surface
temperature changes as a result of the advection by eddies (i.e. �b � hb). The surface
temperature then decreases on the horizontal scale �b towards the locations of
puffs/plumes (though it rises to a local maximum just under the puff/plume where the
surface velocity is zero, see figure 2a, i). Because the surface layer is highly turbulent
and well mixed, most of the temperature decrease in the fluid (caused by the surface
cooling) occurs across the thin surface shear layer of thickness is of order L. This is
much less than �. The hydrostatic pressure variation can then be estimated as

gβ
TbL ∼ gβFθLh

w∗�b

. (2.12a)

This should be much greater than w2
∗ for plumes to be affected by the change in

heat flux. With the expressions for �b and 
Tb given above, the following criterion
can then be derived for the reduced surface conductance to cause the cut-off of the
plume:

w∗h

κb

> ln6(h/zo). (2.12b)

Since, generally at high Reynolds number, criterion (2.12b) is satisfied, some other
reason is needed to explain why plumes form in high-Reynolds-number atmospheric
flows such as those observed by Priestley (1959). Our hypothesis is that this is because
radiation processes at the ground surface provide sufficient heat input to the plumes
so as to maintain a constant surface temperature. In fact on hot days and in desert
climates the primary thermal balance at the surface during the day is controlled by a
balance of radiation flux. Then 
T∗ in the surface layer is much less that the estimate
(2.12a) and there is no tendency for the plume to be cut off. However, in cloudy
day-time conditions, the conditions when puffs were observed by Scorer (1954), this
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is not so and the heat transfer is determined more by the conduction of heat between
the ground and the atmosphere.

The above analysis suggests that the surface heat conductance affects the eddy
structure and the statistics in the surface layer. However, it may have much less effect
on the r.m.s. and peak values of temperature in the flow, since these are largely
associated with the centres of plumes and puffs (see Hunt et al. 1988). The average
value of temperature at the surface (for a given average heat flux) depends mainly
on the slow variation of temperature over the whole surface layer and therefore may
not be very sensitive to the base conditions and eddy structure. These conjectures
together with the other results of this analysis are now explored by the numerical
simulations reported in § 3. Further geophysical examples are given in § 6.

3. Numerical simulations
3.1. Governing equations

The system to be simulated consists of a thermally conducting solid layer, called the
base, lying below a layer of fluid. In the solid layer we need to solve only the energy
equation, which reduces to a heat diffusion equation, while in the fluid layer both
the momentum and energy equations need to be considered. The flow is taken to be
incompressible and all fluid properties are assumed constant. To model the variation
of density with temperature in the body force term, the Boussinesq approximation is
used.

All variables in the equations are non-dimensionalized in terms of the depth of
the fluid layer h and the convective velocity scale w∗ given by (2.2). Note that the
temperature scale is θ∗ = Fθ/w∗, where Fθ is the correlation of the temperature and
vertical velocity fluctuations at the bottom of the fluid layer. This results in the
following equations for continuity, momentum and energy written in Cartesian tensor
notation, for the normalized velocity components ui , pressure p and temperature θ

in the fluid layer:

∂ui

∂xi

= 0,

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ θδi3 +

√
Pr

Ra∗

∂2ui

∂x2
j

,

∂θ

∂t
+ uj

∂θ

∂xj

=
1√

PrRa∗

∂2θ

∂x2
j

,




(3.1)

where Pr = ν/κ is the Prandtl number and Ra∗ denotes a modified Rayleigh number
based not on the temperature difference, but on the characteristic temperature θ∗.
Thus

Ra∗ =
gβθ∗h

3

νκ
.

In the solid base the non-dimensionalised diffusion equation is

∂θ

∂t
=

1√
PrRa∗

κb

κ

∂2θ

∂x2
j

.

3.2. Numerical details

The velocity and temperature fields in the fluid and the temperature field in the
base are solved independently as a function of time. We first assume the temperature
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flux at the surface of the fluid layer to be given and use this flux at the top of the
solid base as a boundary condition for the diffusion equation. The new value for the
temperature flux at the upper surface of the base is then used as a boundary condition
for the energy equation in the fluid layer. At the interface, the difference in diffusivity
between the fluid and the solid must be taken into account. In order to represent
the temperature flux at the interface Fθi

= −ki∂θ/∂z correctly, we use the harmonic
mean of the two conductivities given by ki = 2kkb/(k + kb) as the overall diffusivity
at the interface (see Patankar 1980). In addition to the combined computation of the
fluid layer and base we also compute convection in the fluid layer for the case of a
constant flux and a constant temperature as boundary condition at the lower surface.

In the fluid, the Navier–Stokes equations and the energy equation are discretized by
means of a second-order finite volume method on a staggered grid (the temperature
and pressure are located in the centre of a grid cell). For the time advancement a
second-order Adams–Bashforth scheme is used. In the solid, the energy equation is
discretized by means of a second-order finite volume method in the vertical and a
direct solver using a Fourier transform is applied in the horizontal directions. For the
time advancement a backward Euler method is applied.

In the horizontal directions periodic boundary conditions are assumed for the
temperature and the velocities in both the fluid layer and the base. At the lower and
the upper boundary of the fluid layer a no-slip condition for the velocity is set. A
zero heat flux is prescribed at the upper boundary and at the bottom of the base a
heat flux H0 = ρcpFθ (1 + hb/h) is applied so that the mean heat flux at the bottom
of the fluid layer is ρcpFθ .

Computations are carried out for two values of the Rayleigh number, Ra∗ = 104

and 105. In both cases the Prandtl number is Pr = 0.7. With Re ≡ w∗h/ν =
√

Ra∗/Pr
this results in Reynolds numbers of approximately 119 and 375, respectively. Note
that these Reynolds numbers are much less that the threshold value of about 104

above which there is a significant inertial subrange in the turbulence spectrum and
the velocity profile in the surface layer is logarithmic.

The simulations are performed in a rectangular box with the aspect ratio of the
fluid domain equal to 5:1. The depth of the conductive layer is the same as the
depth of the fluid (hb = h). The numerical mesh in the fluid layer consists of 403

gridpoints for Ra∗ =104 and 1003 for Ra∗ = 104. This is sufficient for fluid motions
on the Kolmogorov dissipation scale η to be resolved. With the mean value of the
dissipation in the fluid layer equal to ε = 0.5gβFθ it follows that

η

h
=

(
2Pr3/2

Ra
3/2
∗

)1/4

, (3.2)

so that η/h � 0.08 and η/h � 0.014 for Ra∗ =104 and 105, respectively.
The smallest temperature length scale δθ in the base is estimated as δθ ∼ �b =√
κbh/w∗ which leads to

δθ

h
=

√
κb/κ√
Ra∗Pr

.

Thus for the mesh of 403 grid points and Ra∗ = 104, the computation may be
considered fully resolved for a ratio of κb/κ > 0.05, and for the case of 1003 grid-
points and Ra∗ = 105 for κb/κ > 0.01.
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Figure 3. The variance of the surface temperature fluctuations normalized with θ∗ as a
function of the ratio κb/κ . The dashed line is the scaling relationship given by (2.10) which is
valid only for κb/κ > 1. The angle brackets here and in subsequent figures indicate an average
over a horizontal slab of the numerical simulation results.

4. Results and interpretation of the numerical simulation
In the following sections we present the results of our numerical simulations. All

results pertain to a quasi-stationary boundary layer for which the total temperature
flux in the fluid layer and base is a linear function of height. The statistics are
computed by averaging the data over a horizontal plane and by averaging over at
least 10 time scales h/w∗.

Let us first verify with help of these numerical results the scaling relationship
that we have derived in § 2 for the variance of the temperature fluctuations at the
surface at moderate Reynolds numbers. This variance is illustrated in figure 3 for the
two Ra∗ cases. We find that the scaling relationship (2.10) is followed for κb/κ > 1.
The deviation of the scaling relationship for κb/κ < 1 is related to the fact that the
temperature rise of a fluid particle entering and leaving the surface layer cannot be
greater than the mean temperature rise 
T .

4.1. One-point statistics

The vertical profile of the mean value of the temperature difference non-
dimensionalized by θ∗, θ − θm, is plotted in figure 4. Here, θm is computed as the
vertically averaged temperature in the core, defined as �, i.e. x3/h > 0.2 for Ra∗ = 104

and x3/h > 0.1 for Ra∗ = 105. The lines in figure 4 represent various values of the ratio
κb/κ . We find that for each individual value of Ra∗ the curves for different values
of the ratio κb/κ overlap. Furthermore, when x3 > � the curves for the two values of
Ra∗ coincide. In other words, figure 4 shows convincingly that the mean temperature
profiles are quite insensitive to the value of the base conductance.

There is a sharp decrease of θ − θm in the fluid surface layer above the base, by
a factor of 5 for Ra∗ = 104 and a factor of 10 for Ra∗ = 105 which is of the same
order as the ratio h/� as predicted by (2.4) where � is the thickness of the surface
layer. Note that in many measurements of the bulk properties of convection, the
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Figure 4. The profile of the difference of the non-dimensional mean temperature with respect
to its mean value in the core of the boundary layer for two values of Ra∗ The lines represent
the results for values of the ratio κb/κ between 10 and 0.1.

temperature difference between the surface and the core is normalized on the surface
flux according to

Nu =
Fθh

(T − Tm) κ
=

RePr

θ − θm

. (4.1)

In the previous section we have estimated that Re = 115 and Re= 375 for the two
cases that we compute here. At these low Reynolds numbers the surface layer is
effectively laminar so that the linear variation of θ with x3 in the lowest layer differs
greatly from the logarithmic variation measured at very high Reynolds numbers in
the surface layer of the atmospheric convective boundary layer (e.g. Kader & Yaglom
1990).

The vertical profiles of the variance of the vertical component of the velocity, u2
3,

(normalized with the convective velocity w∗) are plotted in figure 5. Again we observe
little sensitivity near the surface as a function of κb. Above the surface layer, in the
middle of the fluid layer, there is some variation although there seems to be no clear
dependence of this variation on the ratio κb/κ .

By contrast the profiles of the temperature variance θ ′2 illustrated in figure 6
show in the surface layer a clear dependence on the base conductance. Because the
mean temperature gradient is greatest in the surface layer, the effect of any change
in the vertical velocity fluctuations must cause the greatest difference in the peak
values in this region. Note that (θ ′2)1/2 is a sizeable fraction of the mean temperature
drop across the surface layer (about 30%) because, as the plumes/puffs grow and
decay, they are continually changing the local temperature field. This is why θ ′2 is
particularly sensitive to κb in this part of the flow. Figure 6 also shows the temperature
fluctuations for the two special cases of a constant surface flux, Fθ , and a constant
surface temperature. For the case of a constant flux, this leads to a much higher
surface temperature in the stagnant region below the plume than for the case of a
conducting base. As a result the overall level of temperature fluctuations is increased.
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Figure 5. The profile of the variance of the vertical velocity fluctuations for the two cases of
Ra∗ non-dimensionalised with w∗ for some values of the ratio κb/κ .

The temperature fluctuations near the surface for the case of the constant surface
temperature remain quite small over the whole surface layer. It seems that the constant
surface flux and the constant surface temperature are limiting cases for the ratio κb/κ

approaching infinity and zero, respectively.
Finally, we mention that the profiles presented in this section agree well with the

experimental data of Adrian, Ferreira & Boberg (1986) and the direct numerical
simulations of Coleman, Ferziger & Spalart (1994).

4.2. Real time statistics and flow visualizations

Further insight into how the eddy motion and temperature field change, as κb varies,
comes from examining individual realizations of these fields. Figures 7(a) and 7(b)
show instantaneous contours of the temperature in the horizontal plane at the fluid–
solid interface (x3 = 0) for two cases of the ratio κ/κb. The effect of base diffusivity on
the scale of the temperature variations at this interface is quite clear. In figures 7(c)
and 7(d) the instantaneous temperature field at the top of the surface layer, i.e.
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Figure 6. Profiles of the variance of the temperature fluctuations for the two cases of Ra∗
non-dimensionalised with θ∗ for some values of the ratio κb/κ .

x3 = 0.1h ∼ �, is illustrated. In both cases of κ/κb we can distinguish hexagonal
patterns of bands of hot fluid, which have also been found by Schmidt & Schumann
(1989) who incidentally applied a constant-flux boundary condition.

Figures 8(a) and 8(b) show contours in the vertical plane of the temperature field.
It is clear that the effect of lowering the base conductance is to reduce the horizontal
length scale of the temperature fluctuations close to x3 = 0. But there is not much effect
in the core. Note that the typical width of the puffs/plumes is about 0.25h ± 0.05h

thus confirming the hypothesis and many previous observations and simulations that
these regions are quite thin compared to the downdraughts between them. Comparing
figures 8(a) and 8(b) shows that with low base diffusivity the average vertical extent
of the heated plumes is less than with higher diffusivity, where in most cases the
plumes extend from the ground to the top of the fluid layer. In the former case the
unsteady plumes break up into puffs and some of them reach the top. In the latter
case there is a relatively steady structure that persists well beyond the time it takes
for particles to travel from the surface to the top of the layer (i.e. h/w∗).
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Figure 7. Instantaneous temperature field in the (x, y)-plane (light: hot, dark: cold) for the
case Ra∗ = 105 in a horizontal plane for the cases: (a) κb/κ =0.1 and x3 = 0; (b) κb/κ = 10.
and x3 = 0; (c) κb/κ = 0.1 and x3 = 0.1h; (d) κb/κ =10. and x3 = 0.1h.

The effect of varying the base conductance on how plumes and puffs develop in
time can be understood by the analysis of time series. Such time series have been
collected at a number of x1, x2-positions for the following variables: the normalized
surface temperature, the normalized temperature in the base at some distance below
the surface and both the temperature and vertical velocity w at the top of the surface
layer x3 = �. The temperatures are corrected for the steady rise in mean temperature
by subtracting a linear trend as a function of the time. As a result the average over
the time series of all corrected temperatures is zero. The corrected temperatures are
indicated by θ ′

g , θ ′
x3=−0.1h and θ ′

x3=0.1h for the surface temperature, the temperature in
the base and the temperature in the fluid layer, respectively. Based on the time series
of the surface temperature we define events as occurrences where θ ′

g deviates by more
than one standard deviation from its mean and these are denoted as a ‘hot surface
event’. We show in figure 9 an average ‘hot surface event’ by taking the mean over
four individual events where the time origin has been centred on each event. Note
that all temperatures have been scaled with the value of θ ′

g at time t = 0. The results
of a similar analysis where θ ′

g is less than one standard deviation below the mean
values is shown in figure 10 as a ‘cool surface event’.
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Figure 8. Instantaneous temperature field in the (x, z)-plane (light: hot, dark: cold) for the
case Ra∗ = 105 in a vertical plane for the cases: (a) κb/κ = 10; (b) κb/κ =0.1.

Both figures 9 and 10 suggest that the time scale of an event is smaller than h/w∗
irrespective of the ratio κb/κ . As the horizontal velocity of a plume/puff is estimated
to be 0.1w∗ and its width about 0.25h, a typical plume/puff moves at most a distance
of about 1/4 of its width during its evolution time as indicated in figure 2. The
figures 9 and 10 also suggest that the plume/puff strength varies with time over a
period of about 0.5h/w∗. Furthermore, it follows from figure 9 that when θ ′

g reaches
its maximum, the temperature and vertical velocity at x3 = 0.1h reach their maximum
somewhat earlier. The temperature and vertical velocity at x3 = 0.1h appear to
be well correlated. Note how the cooling events shown in figure 10 are also
associated with lateral movements, which explains the asymmetry of the curves. For the
cases with κb/κ = 0.1, regions where the surface cools, i.e. ∂Tg/∂t < 0, coincide with
regions where u3 < 0, corresponding to core fluid impinging on the surface.

Both figures 9(a) and 9(b) show that the fluid near the base has its maximum
temperature in the local stagnation flow just after the plume centreline passes this
point. Here the vertical velocity reaches its maximum velocity of about 0.7w∗. The
reason for this delay is that both plumes and puffs move, which produces a warm
wake on the ‘trailing’ side of these eddies (as it does with jets placed perpendicular to a
cross-flow, Coelho & Hunt 1989). Note that the plume (κb/κ = 10) has a deeper wake,
while in the puff case (κb/κ = 0.1) the surface temperature recovers more quickly (see
figure 9c). This is because outside the rising puff there are downdraughts of slowly
moving cooler fluid. This fluid is entrained into the base region of the puff quite close
to the puff centreline (see figure 2c).

4.3. Time and space cross-correlation

The previous discussion on the changes in space and time structure of puffs/plumes
as the base diffusivity varies can be tested by examining the changes in the time and
space cross-correlations of u3 and θ .
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Figure 9. Hot surface events; the time evolution of the temperature fluctuation at three
heights and the vertical velocity at one height for an event where the fluctuating surface
temperature θ ′

g = θ ′(x3 = 0) is larger than the mean plus one standard deviation. The results
shown denote the average over four individual events. The time when θ ′

g reaches its maximum
has been taken as the origin. All temperatures shown have been scaled with the value of θ ′
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the time equal to zero, θg0. (a) κb/κ = 10; (b) κb/κ = 0.1; (c) comparison of the time variation
of θ ′

g/θg0 between the high and the low base thermal diffusivities.
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Figure 10. Cool surface events; the time evolution of the temperature fluctuation at three
heights and the vertical velocity at one height for an event where the fluctuating surface
temperature θ ′

g = θ ′(x3 = 0) is smaller than the mean minus one standard deviation. The results
shown denote the average over four individual events. The time when θ ′
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has been taken as the origin. All temperatures shown have been scaled with the value of θ ′

g at
the time equal to zero, θg0. (a) κb/κ = 10 and (b) κb/κ = 0.1.

First, figure 11(b) shows that at the top of the surface layer the integral scale of the
temperature fluctuation is not affected by the reduction of the base diffusivity. This
is consistent with qualitative examination of figure 7, which shows that the transition
of plumes to elongated puffs as κb decreases does not affect their horizontal scale. By
contrast figures 11(a) and 11(b) confirm the qualitative picture shown in figure 7 that
at the surface (x3 = 0), when the base diffusivity is low, there is a significant reduction
by 40% of the horizontal temperature length scales.

The autocorrelation for the temperature fluctuations and velocity fluctuations at
the surface and at the top of the surface layer is plotted in figures 12(a) and 12(b).
It shows that the time scale of the eddy motion is reduced by about 30% by the
reduction of the thermal diffusivity of the base. Unlike the spatial structure, which
is only reduced at the surface, the time scales are also reduced in the interior of the
convective region. This is consistent with our concept discussed in § 2. The reduction
of κb to a value less than κ leads to shortened plumes or elongated puffs with a
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Figure 11. Spatial correlation of the temperature fluctuations for the two cases of κb/κ:
(a) at the fluid–base interface x3 = 0; (b) at the top of the surface layer x3 = 0.1;

similar spatial form in the lower part of the convective layer as for high κb. They also
have a shorter time scale as they re-form slightly more frequently than the steadier
plumes which extend right to the top of the fluid layer when κb � 1.

5. Qualitative laboratory experiments
To explore the general concepts developed here a qualitative laboratory test

was conducted in the Environmental Fluid Dynamics Laboratory at Arizona State
University.

A square (0.3 × 0.3 m2) glass tank with an aluminium base with a thickness of
hb =1mm was heated by contact with an electrically heated ceramic plate. The depth
h of water within the tank was 0.1 m and κ = 10−6 m2 s−1. The flow was visualized
with neutrally buoyant particles of about 2 mm in diameter. The experimental flow
patterns were recorded by video. The typical velocity in the tank was 0.01 m s−1

so that the value of the Reynolds number becomes Re � 103. With κb =10−4 m2 s−1

the characteristic thermal distance �b = (κbh/w∗)
1/2 � 30 mm. Thus �b � hb, so that

the base provided an effectively constant heat flux. In this situation the criteria for
unsteady plume behaviour (see equations (2.9)–(2.11)) are not exceeded and therefore
steady conditions can be expected. In fact a steady plume was observed, as in other
experiments for similar conditions. In this case the plume centreline was located at
about a third the distance along the tank. The horizontal flow at the bottom boundary
moved steadily into the plume.

In the second experiment a 15 mm aluminium plate was attached at the bottom
of the tank with a tight fit so that there was good thermal contact. Immediately the
flow structure changed. The plume, while remaining vertical, moved continuously and
bodily around the tank, and smaller puffs were observed growing from the bottom.
In this case �b is still greater than hb but the unsteady behaviour was quite noticeable
especially at the surface.

Finally a small air gap of about 1mm was introduced between the tank bottom
and the thick plate. This reduced the effective value of κb for the solid base by a
factor of about 4 and thence �b to a value less than hb. A further substantial change
in eddy motion occurred near the lower surface, which became quite unsteady and
took the form of random puffs, with a length scale of about 1/5 of the depth of the
convecting layer (h). This was a significantly smaller scale than of the plume in the
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Figure 12. (a) Time correlation of the temperature fluctuations for the two cases of κb/κ
at and below the fluid solid interface. (b) Time correlation of the temperature and vertical
velocity fluctuations for the two cases of κb/κ at x3/h = 0.1.

previous cases. Occasional unsteady elongated puffs were observed above the surface
layer, which varied in length up to about h/2. Note that in this flow at values of
the Reynolds number higher than the DNS, transition to puffs occurs even when
κb � 10κ .

These results are consistent with the concepts derived in § 2 and our numerical
simulations.

6. Discussion and conclusions
A number of connected concepts about convection over solid surfaces with finite

conductivities arise from our order-of-magnitude analysis, numerical simulation and
visualisation experiment and from other studies. First, if the surface temperature
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or surface heat flux is effectively constant, then the unstable stratification of the
fluid near the surface generates persistent plumes that extent upward through the
convective layer. For solid bases heated from below and which have a finite thickness
hb this situation only occurs in a certain parameter range. Plumes can also form with
other heat transfer processes at the solid–fluid interface such as large radiation fluxes.
These keep the surface temperature constant independently of the base diffusivity. If
the Reynolds number is not so large that the surface layer is not highly turbulent (i.e.
w∗h/ν < 103), then for a ‘thick’ base in which the heat transfer varies on a time scale
that is large compared to the eddy time, i.e. w∗hb/κb � 1, plumes occurs only if the
base thermal diffusivity is high relative to that of the fluid κb/κ > 1.

However, if the Reynolds number is very large, i.e. w∗h/ν > 104, and when molecular
diffusion processes are negligible in the flow, for a typical rough surface we conclude
that plumes cannot occur – unless there is a special heat transfer process which
ensures that the surface temperature is effectively uniform and largely unaffected by
the heat transferred through the eddy motion. In the atmospheric boundary layer this
occurs when the heat transfer at the surface is dominated by the radiation.

Secondly this study shows that if the base is thick (i.e. w∗hb/κb > 1), if the Reynolds
number is moderate (i.e. w∗h/ν < 103) and if the base thermal diffusivity is less than
that of the fluid (i.e κb/κ < 1) the primary eddy motion has reduced vertical and
horizontal length scales (especially near the bottom surface) and a smaller time scale.
When κb/κ < 1 these unsteady eddies have the form of finite-length plumes emerging
from the surface layer which break off into elongated puffs.

When κb/κ � 1 the vertical scales of the puffs decrease and spherical-like puffs
form in the surface layer. But they grow in scale as they rise through the convective
layer. A notable feature of this distinction in the form of eddy motion is that it
greatly affects neither the overall heat transfer rate (i.e. Nu) nor the r.m.s. value of
the velocity fluctuations in the central part of the fluid layer.

These concepts can be applied even when convection is driven by other kinds of
buoyancy fluxes or when affected by other kinds of flow processes. For example when
thermal convection is combined with mean shear, the formation of buoyant eddies is
strengthened by the enhanced mixing in the surface layer as if the base had a higher
thermal diffusivity (Hunt 1998). As the shear stress increases in these flows, plumes
form which are aligned with the mean velocity and are reinforced by the natural
vortices formed in shear layers that are aligned with the mean flow (Townsend 1976).
When there is ‘compositional’ convection driven by the release of higher (or heavier)
fluid from the layer near the boundary, the eddy motion depends on how the buoyancy
fluxes vary with the fluctuation in the compositional concentration affected by the
eddies (by analogy with the temperature fields considered here). Since in geophysical
convection, such as in the Earth’s core or below freezing sea ice, the Reynolds number
is very large (Re � 104), the mechanism for the formation of puffs dominates because
effectively the compositional layer is not very highly diffusive (even if it is turbulent)
relative to the time scale of the convective eddies. This explanation is consistent with
the numerical simulation of Höllerbach & Jones (1993) and Backhaus & Kämpf
(1999) which show puff- rather than plume-like eddy structure. The latter predictions
have been confirmed by the recent acoustic measurements of velocity fluctuations in
turbulent convection in the Arctic ocean by Uscinski et al. (2003). In particular they
found that the typical velocity of the puffs was about equal to w∗ (see § 2).

The reduction in the time scales of the eddy structure from those of plumes to
puffs is significant for these two geophysical process. In the first case it amplifies the
generation of the unsteady electrical currents that sustain the Earth’s geo-dynamo
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and causes the fluctuation and even reversal of the magnetic field. In the second
case it enhances the generation of internal waves in the stably stratified layer below
the convective layer and thereby thickens the layer (e.g. Fernando & Hunt 1997).
Although w∗ increases in proportion to h1/3, the frequency of the characteristic waves
w∗/h decreases and therefore a new equilibrium structure of the convective layer is
established.

In these and other types of convection, the boundary of the convective zone may
be a fluid boundary across which the convective eddy motion is coupled to eddy
motion in another layer. An example is the case where convection in the atmosphere
is driven by a warm ocean, especially in the high latitudes where radiation is less
significant. Typically, within the ocean’s ‘mixed’ layer below the surface, there are
turbulent motions with a r.m.s. velocity ub and a length scale �b. Because of the
air/water density difference, the ocean acts as like a solid base but with a thermal
diffusivity that is much larger than that of a solid because it is equal to the eddy
diffusivity in the mixed layer. The vertical eddy diffusivity is

Kb ∼ ub�b.

But the effect of the ocean mixed layer on the atmospheric convective turbulence
depends on whether it can transport heat horizontally over the scale of the fluctuations
in the atmospheric temperature. These occur over a length scale that is much
larger than �b, being determined by the scale (h) of the large convective eddies
in the atmosphere (where typically h ∼ 103 m). This transport is determined by the
longitudinal diffusivity K ′

b, which, as explained by G. I. Taylor (Taylor 1954), is
larger than κb as a result of the shear motion in the mixed layer. From Sullivan’s
(1971) experiments and numerical study of this effect K ′

b ∼ 10ub�b. Therefore, the ratio
criterion for the formation of plumes in high-Reynolds-number convective turbulence
is satisfied if

K ′
b

w∗h
∼ 10ub�b

w∗h
>

1

ln (h/z0)
.

For typical magnitudes (ub ∼ 0.01–0.1 m s−1, �b ∼ 10–100 m, w∗ ∼ 1 m s−1, h ∼ 103 m
and z0 ∼ 10−2 m) these two quantities are of the same order of magnitude and
therefore plumes or elongated puffs can exist in the atmosphere above the ocean
surface as is frequently found in satellite photographs (e.g. Houghton 1991).
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knowledge support from the National Science Foundation and J. C. R. H. from the
Natural Environmental Research Council and the Center for Polar Observation and
Modelling at UCL.
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