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Abstract

This article describes a Java Card programming environment which to a large extent
is generated from formal specifications of the syntax and semantics of Java Card, the
JCRE (Java Card Runtime Environment), and the Java Card APIs. The resulting
environment consists of a set of tightly integrated and somewhat smart tools, such
as a Java specific structure editor and a simulator which allows an application to
be tested before being downloaded to a card. Furthermore, the simulator analyses
the applet in question in order to find out the structure of the accepted commands.
This information is then used to automatically adapt the GUI of the simulator.
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1 Introduction

This paper describes a programming environment for Java Card?® [8,19] ap-
plications which is being developed within the OASIS project? at INRIA
Sophia-Antipolis.
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The Java Card environment is developed within Centaur [5], a generic, in-
teractive programming environment generator. It makes it possible to create
programming tools such as structure editors, compilers, interpreters based on
formal specifications of the syntax and semantics of the language in question.
These are then integrated into a graphical programming environment which
also can provide viewers for important structures such as stacks, heaps, and
objects during interpretation. Centaur thus allows sophisticated tools to be
developed quickly at a high level of abstraction. Furthermore, having access
to the formal semantics provides the potential for proving interesting proper-
ties about applications within the same framework, and since the semantics
is executable it can be tested and debugged which is important if it is to be
used as the basis for proofs. Proving properties is of key importance in this
context since security is often a prime concern in applications involving smart
cards. However, this article focuses on the basic aspects of our programming
environment, such as editing, testing, and debugging.

The rest of this article is organised as follows. In the next section, we discuss
related work. Then we present the architecture of our environment and explain
how it is generated from various formal specifications. The following sections
each discuss one major part of the Java Card environment in greater detail, il-
lustrating through a running example (see appendix A for the complete source
code). Finally, we present conclusions.

2 Related work

The central aspect of the programming environment presented in this article
is that it to a large extent is generated from formal specifications of the syntax
and semantics of Java Card. This puts it apart from most other Java Card en-
vironments. From a formalisation perspective, the emphasis on programming
environments means that our design choices are a bit different from much
of the related work in that area. In this section, we will first look into the
programming environment aspects, and then continue with the formalisation
aspects.

Sun has developed free tools around Java Card: a converter (available since
November 1999) and a simulator. The latter allows Java Card applet code to be
simulated, but unfortunately it has no debugging facilities such as breakpoints,
step by step execution, or variable value inspection. Thus it works as a black
box taking a file of command APDUs as input (byte sequences in textual
format) and giving back a file of response APDUs as output. Moreover, all the
tests cannot be performed since it is not possible to simulate card withdrawal
or power failure.



There are also commercial Java Card development kits, for instance Odyssey
lab™ from Bull, Cyberflex™ from Schlumberger, GemXpresso RAD™ from
Gemplus, Sm@rtCafé Professional™ from Gieseke & Devrient, GalatIC™
from Oberthur Card Systems. These kits contain a card reader, cards, and soft-
ware tools (a converter, a loader, a tool to test applets on the card, and some-
times a simulator). According to [6], the programming environment providing
the best coding support is GemXpresso™™. It offers a wizard to help developers
in creating Java Card applications which takes care of low-level issues such as
handling APDUs. For testing and debugging, Sm@rtCafé™, currently being
the the only environment offering a Java Card specific simulator-debugger,
has the edge. An ideal Java Card specific simulator-debugger should be able
to give information about the stack and the storage, to handle atomic oper-
ations when card withdrawals or power failures are simulated and to inspect

the JCRE contents.

Our aim is obviously not to compete with these smart card manufacturers, but
to propose new methods for creating development environments with innova-
tive functionality. For example, most of the currently commercially available
Java Card environments are really Java environments augmented with some
extra tools. In particular, a standard Java compiler is used to compile Java
source code into byte code. Thus a developer would not know for sure whether
the application being developed conforms to the Java Card subset until an at-
tempt is made to convert the compiled code into a CAP file. In contrast, our
editor makes it impossibleto write code which does not conform to the Java
Card subset.

We have put a lot of effort into making it easy to simulate and test the be-
haviour of Java cards at the APDU level. While communication at the APDU
level and the associated code to interpret APDU commands and dispatch
on hem is the current standard for writing Java Card applets, and will con-
tinue to be the standard for the foreseeable future in legacy contexts, it has
been proposed that higher-level protocols would be more appropriate for new
developments. For example, Vandewalle and Vétillard [21] propose a design
framework where a card application is viewed as a remote object. Its methods
are invoked through a proxy object executing on the CAD. Behind the scenes,
a special protocol called DMI (Direct Method Invocation), built on top of the
APDU standard, handles the communication (this is all similar to how Java’s
RMI works). This framework has been implemented in the GemXpresso RAD
environment by Gemplus. It is used by their wizard to help applet develop-
ments. A recent work of Hagimont and Vandewalle [13] uses the DMI facility
to propose a control of access rights between remote applications based on
software capabilities.

Since DMI is still based on APDUs, this and similar protocols could be incor-
porated directly on top of what we have. This might have advantages since



the simulation would be sufficiently detailed to make it possible to simulate
events such as card withdrawal or power failure. On the other hand, since the
aim of such protocols is to hide the low-level communication details, it might
make more sense to simulate such protocols directly. It would not be difficult
to adapt our environment in this way, but one should probably still keep the
simulation capability at the APDU level as well for those who needs or prefers
this.

Concerning the formal semantics of Java and Java Card, there is already a
large body of work in the area. In the following, we will just consider some
representative examples.

Drossopoulou and Eisenbach [11] have described the semantics of Javag, a
large, sequential, subset of Java, with the main goal of proving type sound-
ness. The semantics is described in small-step style, which should facilitate
an extension to cover concurrent aspects. Syme then formalised most of this
semantics in his theorem proving system Declare [20]. An executable ML pro-
gram can be extracted which makes it possible to test and debug the specifi-
cation. Since the focus was on type safety, Javag only includes the features of
Java which are essential for that purpose. Aspects which were left out include
constructors, class variables, local variables (and concurrency).

Another example is the work by the Bali team at Munich; see Oheimb and
Nipkow [18] for example. Among other things, they formalised the type sys-
tem and the operational semantics for a significant subset of sequential Java,
reasonably similar to Javag. Again, a major goal was to prove type soundness.
Unlike the work by Drossopoulou and Eisenbach, a big-step semantics was
used.

In contrast to the formalisations discussed above, we strive to cover as much
of Java and Java Card as possible (including concurrency?®), since we want
to use the formal semantics as a component of a programming environment.
This also means that we have formalised parts of the JCRE and the Java Card
APIs. Furthermore, like Syme, we also emphasise the importance of having
an executable specification for testing and debugging purposes. On the other
hand, we have not addressed the static aspects of Java or Java Card. That is
not to say that this is not an important aspect of a programming environment,
but thus far we have chosen to prioritise the dynamic aspects.

There is also a body of work focusing on the J(C)VM; that is, to study the Java
and Java Card semantics at the byte code level. Examples include Lanet and
Requet [17] (a formalisation of most of the JCVM in B), Cohen [9] (formal-
isation of the so called Defensive JVM in Common Lisp), and more recently
Barthe et al. [4] (formalisation of the complete JCVM in Coq). These works

5 Java Card may well become a concurrent language too in the future.
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Fig. 1. Programming environment architecture.

all aim to be complete or at least fairly complete, and, like the work presented
in this paper, the formalisations of Cohen and Barthe et al. are executable. In
contrast, we chose to work at the source level since we wanted to describe the
semantics of Java and Java Card as such, and since we did not want to rely on
external Java tools to provide an interpretative capability in our programming
environment.

3 Overview

3.1 The Environment

Our Java Card environment is made up of two parts: a structure editor and a
simulator for testing applets. The simulator in turn consists of three parts: the
APDU (Application Protocol Data Unit) format extractor, the CAD (Card
Access Device) simulator, and the Java Card simulator. Figure 1 shows the
architecture of the environment. Both parts of the environment understand
normal text files, so it is easy to import existing code, to replace the editor
with some standard editor like Emacs, or to use the structure editor on its
own. Compilation to byte code and functionality related to loading applets
onto physical cards is outside of the scope of this work, but existing free or
proprietary tools could easily be interfaced from the environment.

Figure 2 gives an overview of the interfaces of the different parts of the en-
vironment. The top left corner shows the structure editor window. In the
lower half of the figure, one can see the window for constructing and send-
ing generic APDUs (New APDU), the menu for selecting applet-specific com-
mands (Extracted Commands), and a window for constructing and sending an
APDU for a selected, applet-specific command (Purse PURSE_DEPOSIT). The
top right corner shows the APDU log and a window showing a failed regression
test (see section 5). The command and APDU log windows all belong to the
CAD simulator. Finally, in the center: the window for setting interpretation
parameters belonging to the Java Card simulator.
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Fig. 2. Overview of the different tools comprising the environment.

The editor is Java Card specific. Thus the developer is assured that the writ-
ten code is free from syntax errors and respects the Java Card subset of Java.
Moreover, the editor facilitates development of Java Card code by displaying
context-sensitive menus containing all valid syntactic constructs for any se-
lected part of the source code. This feature is useful for people beginning to
write Java Card applications, for example smart card developers used to writ-
ing assembler code. But it can also be useful for experienced programmers,
who could, for example, enter the skeleton of a complete if-statement with a
single selection from a menu.

An important aspect of the environment is that it enables the developer to test
and debug an applet on a work station. It is not necessary to download it to a
real Java Card, or having access to a card reader. This is achieved by providing
simulators for the Java Card and the CAD. This should in itself cut down the
time for the test-debug-change cycle significantly: if an applet runs well on the
simulator, it will run well on the Java Card. However, heterogeneous Java Card
platforms run different virtual machines, each of which has specific features
in terms of optimisation, allocation, or external library. We aim at providing
a high-level view of the applet behavior such that applet providers can claim
that their applets verify important security properties that are valid for every
platform.

In addition, our environment makes it easy to study the communication be-
tween the applet and the CAD in terms of sent and received APDUs, as well
as the inner workings of the applet itself. The simulation environment also
provides a facility to extract APDU formats from applet source code.
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3.2 Tool Generation

All the above mentioned tools were created using the Centaur system. Figure
3 illustrates the relationships between the developed specifications on the one
hand, and the generated tools on the other.

To obtain the structure editor, we have specified a Java Card parser and a
pretty printer or unparser. The parser specification defines the concrete and
abstract syntax of the Java Card language as well as tree building functions.
It is written using the Metal formalism which permits the concrete and ab-
stract syntax to be specified simultaneously. This specification is then used
to automatically generate a parser. The parser is responsible for translating
Java Card source (text) into an abstract syntax tree which is how Java Card
applets are represented inside the environment. The PPML specification is
then used to translate an abstract syntax tree back to text, e.g. for display
purposes within the editor, or for storing the Java Card program in a file.

The central part of the Java Card simulator is the dynamic semantics of Java
Card, specified in Natural Semantics using Typol [16]. Typol is the language
used to specify semantics in Centaur. It is a typed, declarative, logic language
with backtracking, unification and pattern matching mechanisms (see section
6 for an example). The Java Card semantics is specified on the level of the
abstract syntax, and thus it also needs to refer to the Java Card abstract
syntax specification. For studying the behaviour of an applet during execu-
tion, it is possible to view important runtime structures. These structures are
represented internally as trees. Thus PPML is used to specify the unparser.



The APDU format extractor also works on the abstract syntax tree of a Java
Card applet. In addition, it uses data structures specific to the analysis task,
which are again specified using Metal and PPML. The extractor itself is writ-
ten in Typol.

4 The Java Card Structure Editor

This section describes the features of the editor. We illustrate by explaining
how to write a small Java Card program, which also will be used as Ariadne’s
thread in the following sections.

Our editor is dedicated to the Java Card language. It prevents the developer
from making errors w.r.t. the general Java syntax (e.g. a semicolon or a brace
missing), but also from making errors related to the specificities of Java Card
(e.g. using the char, long, double, float primitive types, multidimensional
arrays, or the synchronized, volatile, transient keywords) [10]. These
latter errors would otherwise only be discovered when converting class files
into CAP (Converted Applet Program) files since standard Java compilers are
used to compile Java Card programs. Anyone who uses our editor will only
encounter errors related to the static semantics (e.g. undefined variables, type
errors) when compiling, and no errors at all during the conversion stage.

Applets are stored as plain Java Card text files. This makes it easy to import
existing Java Card applications into our environment, or to use traditional
text editors for development should that be desired.

Internally, the applet being edited is represented as an abstract syntax tree.
Syntax colouring is made possible by specifying different styles (font, size,
colour) in the unparsing rules. Note that, unlike a conventional text editor
like Emacs which does not do a proper parsing, we are sure that the colours
will always be correct. Moreover the formatting scheme (i.e. indentations,
where the braces are set) is the same for all the Java Card programs ensuring
consistency regardless of author.

The editor provides two ways for writing source code: free text editing or
syntax-directed editing. In the first mode, the editor behaves like a normal
text editor, but the written part is parsed when this mode is exited. Thus,
only syntactically correct program fragments can be inserted into the abstract
syntax tree. The other mode facilitates the development by displaying the
valid syntactic constructs which can replace the selected part of the code in a
context-sensitive menu. When any of these constructs is selected, its structure
replaces the selected part and only the placeholders need to be filled in by the
developer (a placeholder starts with a dollar sign). If the placeholder is for
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Fig. 4. Start menu and syntax-coloured applet skeleton.

an identifier, the completion mechanism can be used to avoid writing the full
name of an identifier which occurs somewhere else in the program.

When starting writing a Java Card program from scratch, a menu allows
either an applet pattern or a class pattern to be inserted into the empty editor
window; see figure 4. If the developer chooses the applet pattern in the menu,
the skeleton of an applet is displayed. This skeleton contains the structures of
the applet constructor and the main methods i.e. process, install, select,
deselect and getShareableInterfaceObject. The install method already
contains the creation of the applet object and the registration call to the JCRE.
Thus, the developer only needs to fill in the placeholders.

Figure 5 shows a menu of the available block statements and the result of
selecting and inserting the if-pattern into an applet being developed. This is
a simple purse applet, which we are using as the running example in the rest of
the article. The complete program can be found in appendix A. The services
provided by this applet are deposits, withdrawals, and balance inquiries. See
Chen [7| for an introduction to how to write Java Card applets. Finally, also
note that comments are handled. They are seen as decorations in the abstract
syntax tree and correctly handled by the pretty printer (in green on lavender
background).

5 The CAD Simulator

The CAD simulator gives the user the possibility to interactively test ap-
plets. It provides a graphical user interface which allows both generic and
application-specific APDUs to be constructed and sent to the Java Card sim-
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Fig. 6. The general layout of APDUs.

ulator. It also allows the returned response APDUs to be inspected. An APDU
log records all sent and received APDUs. The CAD simulator allows these ses-
sions to be stored and later re-used in order to undertake regression testing.

While the basic APDU layout and some commands are standardised (figure
6), any particular application necessitates the definition of application-specific
commands. Since an APDU is just a byte sequence, it would in principle be
enough if the CAD simulator simply allowed arbitrary byte sequences to be
assembled and sent. But that would clearly be rather inconvenient for the
user under normal circumstances. It is far easier to just specify the contents
of an APDU and let the simulation environment take care of the packing (and
unpacking) details.

However, this means that the CAD simulator needs to be told about the de-
tails of application specific APDUs, such as what command names there are,

10
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Fig. 7. The structure of an applet description. Square brackets indicate a list.

the command number for each one, the names and types of any arguments
(in the data field), etc. To make it possible to use the CAD simulator with-
out first having to provide a separate specification of the application specific
APDU formats, we have developed a tool, the APDU format extractor, which
extracts this information from an applet by static analysis. The extraction
scheme works reasonably well since a Java Card applet usually is written in
a very stylized way (there is always a method process which does the ini-
tial command decoding, the basic layout of the APDUs is standardised, etc.).
Thus a developer typically just has to write the applet code, or indeed, get
code from somewhere else, and the CAD interface will automatically adapt
itself to the applet (or applets) in question. The results from an analysis can
be saved to avoid having to re-analyse known applets.

Figure 7 shows a somewhat simplified structure of the applet descriptions
returned by the format extractor. For the purpose of the CAD simulator, an
applet is described by its name and AID (applet ID, for selecting the applet),
and descriptions of the accepted commands and their associated formats. The
format extractor works by symbolically executing the applet code, keeping
track of data dependences and constant and variable names in the process.

The APDU extraction process consists of four steps :
(1) Statement filtering

(2) Command identification

(3) Command APDU arguments analysis

(4) Response APDU analysis

The APDU format extractor is written in Typol, using inference rules and
axioms for each step of the extraction process.

Step 1 transforms the program in order to keep only the statements that

11



instructions |- call(Util.arrayCopy,SrcBuffer, Src0ff, DestBuffer, DestOff, Length)
-> arrayAssign((SrcBuffer, Src0ff,Length ),
(DestBuffer,Dest0ff,Length)).instructions)

Fig. 8. Extraction of the arrayCopy statement.

Lookup(instructions |- bufferAccess is APDUIdent.getBuffer() [ISO.0FFSET_INS])
Intersection(|- INS, GetValue(Command)-> InsForThen)
UpdateCommandsList( AppletSpecification |- (CLA, InsForThen), GetName(Command)
-> NewAppletSpecification)
Intersection(|- INS, Not(GetValue(Command)) -> InsForElse)
(CLA, INS), instructions, APDUIdent
|- if (bufferAccess == Command), AppletSpecification
-> (CLA, InsForThen ), (CLA, InsForElse), NewAppletSpecification

Fig. 9. Analysis of the conditions concerning the second byte of the APDU buffer.

we are able to analyse and to find important method calls such as calls in-
side the current class and calls to system methods like arrayCopy. Figure
8 shows how this filtering is done in Typol for a call to arrayCopy: given
a list of instructions, each statement is considered in sequence, to build a
new list of instructions. Here the pattern-matching on the one hand focuses
on invocation (call statement) and on the other hand imposes the name
of the method (Util.arrayCopy). Parameters of the considered statement
(SrcBuffer, SrcOff, DestBuffer, DestOff, Length) are re-used to build
the instruction arrayAssign which is then stored in the resulting list. Array
copying is important because the APDU buffer is an array, and array opera-
tions may thus concern the APDU.

Step 2 analyses the conditions of if-statements in order to find accesses to
the first and second byte of the APDU buffer. These two bytes (designated
as CLA and INS) are used to distinguish between different instructions. A
list of CLA and INS bytes being tested for are extracted from the condition
of each if-statement. The if-statements are then transformed into blocks
labelled with the corresponding CL4A and INS for further analysis. Moreover,
this step creates the list of pairs (CL4, INS) which are valid for the given
applet being tested for) and the list of pairs (CLA, INS) which are invalid
(which cause a CLA_NOT_SUPPORTED or INS_NOT_SUPPORTED exception). Figure
9 gives one of the main rules of the second step which analyses the condition
of an if-statement, updates the list of existing commands, and returns the
corresponding CLA and INS sets. In this rule, Lookup is a function which
performs a lookup in a set of statements and follows dependences graph to
determine whether two expressions are equal (after evaluation) or not. GetName
is a function that takes an expression and returns a string in order to give a
name to the corresponding statement (for example when the expression is an
identifier it returns the identifier name).

Step 3 examines accesses to the APDU buffer and updates the list of arguments
a command APDU should contain. The fifth byte of the APDU is the length

12
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Fig. 10. Ilustration of the extraction process.

of the data field which itself starts at the sixth byte. The APDU extractor
considers the data field as a list of arguments of different lengths and positions,
which are to be identified by the analysis. When an access to the APDU
buffer is encountered, the position (given by the offset of a call to arrayCopy,
getShort, or similar), the length (2 for a getShort method, for example), and
the name to be associated with the thus identified argument can normally be
determined. Then the list of arguments of the corresponding commands has
to be updated. The currently analysed block (corresponding to the nearest
if-statement) contains the list of commands concerned by the analysed buffer
access.

Step 4 is similar to step 3 and determines the structure of the response APDU.

Figure 10 gives an example which schematically illustrates the principle behind
the extraction process. See Henrio [14] for further details.

It could happen that the analysis carried out by the format extractor fails due
to an applet not being sufficiently stylized. In that case, the user can create
the applet description manually by using an editor.

The CAD simulator also allows standard applet installation and selection
APDUs to be sent, as well as arbitrary APDUs assembled from scratch. The
latter is useful for sending non-conforming APDUs in order to test that an
applet handles invalid commands correctly, for instance. Furthermore, there
is an option to simulate card withdrawal, which optionally can be combined
with saving the state of the running card. The card simulator can be initialized
from such a saved state.

When applied to the Purse example, the extractor determines that the name
of the applet is Purse, and that this applet accepts three commands:
PURSE_DEPQOSIT, PURSE_WITHDRAW, and PURSE_BALANCE_CHECK with instruc-
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Fig. 11. The CAD simulator command selection window.
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Fig. 12. The CAD simulator command send window and the APDU log.

tion numbers 1, 2, and 3 respectively. PURSE_DEPOSIT is found to have one
short (2-byte) argument amount0fDeposit at position 5, and PURSE_WITHDRAW
is similarly found to have one short argument amountOfWithdraw at position
5. Finally, the extractor determines that all commands return a short result
purseTotal, i.e. the resulting balance.

The result of the analysis is sent to the CAD simulator which opens a window
which allows one of the three identified commands to be sent to the applet;
see figure 11. Once one of these commands has been selected (by clicking on
it), a second window pops up which allows any parameters to be filled in
prior to sending the complete APDU to the applet; see figure 12. Many of
the numeric fields of this window (CL4, INS, etc.) are fixed as they are given
by the command in question and only present for information purposes. The
window also shows the full details of the sent command APDU and, eventually,
the received response APDU in the form of byte strings. Figure 12 shows the
result once a deposit of 101 Euros has been made to an empty purse. Note
that the resulting balance is 101 (0x0065) Euros. The figure also shows the
APDU log which keeps track of all sent and received APDUs and allows them
to be examined.

6 The Java Card Simulator

The central part of the Java Card simulator is an executable specification of
the dynamic semantics of the Java Card language [19]. It is expressed in Nat-
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ural Semantics, small-step style, using Typol. Thus the semantic rules express
the stepwise transformation of the abstract syntax tree of an applet into the
final result. The semantic specification is derived from a Java specification also
developed within our group [2,3]. Almost the entire Java semantics has been
re-used without changes to make it easy to profit from further developments of
it (or vice versa). As there is no concurrency on a Java card, the scheduler was
changed [10]. There is only one active thread and a thread may only be acti-
vated when some special program points are reached. Furthermore, executable
specifications of Java Card APIs (i.e. specifications of Java Card classes such
as AID, APDU, APDUException, Applet, JCSystem) have been added. On the
top, we have specified a minimal JCRE with the duties to receive command
APDUs, select applets, dispatch commands APDUs between applets, and send
response APDUs to the terminal.

The principle of Typol rules is the following: inference rules and axioms are
structured in sets, that deal with a same object (evaluateExpression for
instance). Each rule w has a number of premises P, P, ..., P, and
one conclusion P. If all premises are true, then the conclusion holds and the

rule applies.

Figure 13 shows some Typol rules from our Java Card semantics. They are
concerned with giving the semantics of an if-statement. The first rule says
that an if-statement where the condition is not yet in normal form, is to be
rewritten to an if-statement where the condition has been evaluated one step
further by the rule evaluateExpression. The parameters ObjL1 and ClVarL1
(and variations) are the object list and class variable list, respectively, i.e. they
represent the current global state of the Java machine. 0ThId is the id of the
currently executing thread. The actual if-statement is embedded in what is
referred to as a ‘closure’ (constructed with the operator clr), which represents
the rest of the computation for a thread (in some global state). In particular,
a closure contains a list of instructions, of which the first one is the current
instruction. Other important parts of the closure are the object id (corre-
sponding to this object), and an environment for local variable bindings.

The two following rules state that an if-statement where the condition is in
normal form (i.e. true or false), should be replaced by either the then-branch
or the else-branch depending on the condition.

It should be pointed out that the current semantics is incomplete in some
respects. For example, it is a dynamic semantics which currently does not
perform static type checking. As a consequence, overloading resolution is not
handled completely accurately. However, since Java Card applets tend to be
small and fairly simple, the current limitations have as yet not caused any
major problems.
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If_EvaluateExpression:
evaluateExpression(0bjL1, ClVarLl, Envl, 0ThId, ObjIdl, Mode
|- Exprl -> 0bjL1i_1, ClVarL1_1, Envi_1, Expri_1, InstL2, ThStatus) &
appendtree (InstL2, insts[if(Expri_1, Statl, Stat2).InstL1], InstL3)
ObjL1, ClVarLi, 0OThId
|- clr(0bjIdil, Mode, MethName, Envl, insts[if(Exprl, Statl, Stat2).InstL1])
-> ObjL1_1, ClVarLi_i,
clr(0bjIdl, Mode, MethName, Envi_1, InstL3), ThStatus ;
provided diff(Exprl, true()) & diff(Exprl, false());

If _False:
ObjL, ClVarL, _
|- clr(0bjId, Mode, MethName, Env, insts[if(false(), _, ElseStatement).InstL])
-> 0bjL, ClvVarL,
clr(ObjId, Mode, MethName, Env, insts[ElseStatement.InstL]), executing() ;

If_True:
ObjL, ClvarL, _
|- clr(0bjId, Mode, MethName, Env, insts[if(true(), ThenStatement, _).InstL])
-> 0bjL, ClVarL,
clr(0bjId, Mode, MethName, Env, insts[ThenStatement.InstL]), executing() ;

Fig. 13. Excerpts from the Java Card dynamic semantics specification.

The formalisation of the JCRE covers the basic aspects of the runtime sys-
tem such as loading and registration of applets, selection and deselection of
applets, and the primitives necessary for communication with the runtime en-
vironment, i.e. the CAD simulator in our case. There is also support for saving
and loading the state of a running card. This is used to simulate card insertion
and withdrawal, but it is also useful for debugging since it makes it possible to
get back to some interesting state without having to restart debugging from
scratch, or if one simply would like to take a pause and continue from where
one left off at some later point.

When it comes to the APIs, there are two basic approaches. One possibility
is to describe them in Java, somehow making use of built-in primitives where
necessary. The API classes would then be loaded into the simulation environ-
ment prior to the loading of any applets. The other approach is to describe
the semantics of the API classes and their methods directly in Typol. Basi-
cally, this means that there is a set of hard-coded rules for each method which
describes what happens when the method in question is invoked. We have
chosen the latter approach for the following reasons:

e If we implement some of the APIs in Java Card, all the corresponding code
will be interpreted by Typol rules which would take much more time. This
API code would also be visible during debugging, even though it can be
expected to be reasonably correct (once released for applet development,
not during the development of the API code itself, of course).

e [t is natural and simple to let the API methods be the built-in primitives.
Otherwise, it would be necessary to provide access to lower level primitives
by some other means. Moreover, in that case, many of the API methods
would not do more than just invoke such a primitive anyway.
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Fig. 14. The Java Card simulator during execution of the Purse applet.

e Having the semantics of important methods directly available as Typol rules
hopefully makes it easier to prove properties about the specification as well
as individual applets.

The specification of the Java Card APIs is not as yet complete. For example,
the mechanisms for atomic transactions and object sharing, as well as the
related API methods, are currently not in place.

During simulation, the developer can follow the execution in detail at a se-
lectable speed through a graphical user interface. It is also possible to stop
(interactively or by setting breakpoints), single step, and continue. The break-
point and single stepping facilities currently work at the level of the semantic
rules, not at the level of the Java Card source code. This is suitable for debug-
ging the Java Card specification, or for a user who would like to learn about
the semantics of Java card, but it is not ideal for debugging applications. Im-
proved debugging support in this respect is something which we plan to look
into.

Other features include textual browsers for inspection of variables and objects.
Our Java environment [3] provides a dynamic, graphical view of the created
object structures which would be useful also for the Java Card environment.
This functionality could easily be carried over.

Figure 14 shows the Java Card simulator executing the Purse applet just after
having received an APDU requesting the deposit of 100 Euros. The large
window is the main Typol debug window which shows the current rule. It is
equipped with buttons for controlling the execution. The small window shows
the value of the variable commandAPDU which has been selected in the main
window. The shown value is the received command APDU: note the value
0x0064 = 100 in the APDU’s data field.
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7 Conclusions and future work

This article described a Java Card programming environment which to a large
extent has been generated from formal specifications of the syntax and seman-
tics of Java Card. Through this approach, we were able to develop a set of
tightly integrated tools with useful and novel functionality, such as the APDU
format extraction, at a high level of abstraction. The main features of the
environment from a user perspective are:

e Java Card-specific structure editor.

e CAD simulator which makes it easy to send and receive APDUs.

e Automatic extraction of the APDU formats from applet source code and
automatic adaptation of the user interface of the CAD simulator accord-
ingly.

e Semantics-based Java Card simulator with facilities for monitoring the ex-
ecution and important data structures.

This makes the environment useful for applet developers, applet testers, and
people wanting to learn about the Java Card semantics.

Furthermore, the fact that a formal, dynamic Java Card semantics is the ba-
sis of the simulator, means that it has been possible to test and debug this
formalisation. This is important since a correct formalisation of the language
semantics is a prerequisite for proving properties about programs and analyses
concerning dynamic properties of programs, something we believe is particu-
larly important in the context of typical smart card applications. For exam-
ple, in the framework of Java cards with several applications, we are starting
some work on static analysis of object sharing between applications [15]. One
outcome of this research could be a facility for statically detecting sharing
violations or the absence of such violations. Since a violation will cause an
exception, it would clearly be reassuring to know that this cannot happen.

Our environment provides a Java Card specific editor. Thus the developer is
assured that his code is Java Card code and is free from syntax error. This
greatly reduces the number of Java compiler and converter errors and saves
development time. Thus our aim is not to build an environment fulfilling
commercial requirements, but we do think it provides innovative features that
could be integrated to existing environments in order to improve them.

It still remains to include the complete set of APIs, and to support loading
applets from more than one file. The current semantics is still missing a few
features. This should be addressed. We would also like to further improve
the debugging support, for instance by making it possible to set breakpoints,
single step, etc. at the Java Card source level. We also aim to integrate capa-
bility for graphical object structure browsing along the lines found in Attali et
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al. |3]. Finally, it is planned to move towards a SmartTools®-based solution,
SmartTools being the 100 % Java successor to Centaur.
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A Source code for the Purse applet

[/ kokskok sk sk ko sk ok sk koo ok ok sk sk sk otk ok ok sk ko sk ok sk sk o sk ook ok ko sk sk sk ok sk ke ok ko sk ook ok sk ko ok ok
* Purse Class

stk ok sk ook ok ok sk ok o sk ks ook sk s sk sk e ok ok ok ke sk ok sk ks sk ok ek ok sk ok sk sk ok sk ks ok sk ko sk sk sk ok /
import javacard.framework.*;

class Purse extends Applet {
protected final static byte PURSE_OP_CLA = (byte) 0xDO;
protected final static byte PURSE_DEPOSIT = (byte) 0x01;
protected final static byte PURSE_WITHDRAW = (byte) 0x02;
protected final static byte PURSE_BALANCE_CHECK = (byte) 0x03;
private final static short PURSE_MAX = (short) Ox7FFF;
private short purseTotal;
protected Purse() {
purseTotal = (short) 0;
}
public static void install(byte[] bArray, short bOffset, byte bLength)
throws ISOException {
Purse myPurse = new Purse();
myPurse.register();
}
public boolean select() {
return true;
}
public void process(APDU apdu) throws ISOException {
byte[] buffer = apdu.getBuffer();
if (buffer[0] == PURSE_OP_CLA) {
if (buffer[1] == PURSE_DEPOSIT)
purseDeposit(apdu, buffer);
else
if (buffer[1] == PURSE_WITHDRAW)
purseWithdraw(apdu, buffer);
else if (buffer[1] == PURSE_BALANCE_CHECK)
purseBalanceCheck(apdu, buffer);
} else if (selectingApplet()) {
/* Do nothing. */
}
}
[ Fkskkokskokkskokkokokdkokkkokkkokkk Private Methods sskskoksokskskokskokokskokokokkokskokoskk ok kokkok /
private void purseDeposit(APDU apdu, byte[] buffer) {
int Lc = apdu.setIncomingAndReceive();
short Le;
short amountOfDeposit = Util.getShort(buffer, (short) 5);
short temporaryPurseTotal = (short) (amountOfDeposit + purseTotal);
if (amountOfDeposit > O && temporaryPurseTotal <= PURSE_MAX) {
purseTotal = temporaryPurseTotal;
Util.setShort(buffer, (short) 0, purseTotal);
apdu.setOutgoingAndSend ((short) 0, (short) 2);
}
}
private void purseWithdraw(APDU apdu, byte[] buffer) {
int Lc = apdu.setIncomingAndReceive();
short Le;
short amountOfWithdraw = Util.getShort(buffer, (short) 5);
short temporaryPurseTotal = (short) (purseTotal - amountOfWithdraw);
if (amountOfWithdraw > O && temporaryPurseTotal >= 0) {
purseTotal = temporaryPurseTotal;
Util.setShort(buffer, (short) O, purseTotal);
apdu.setOutgoingAndSend ((short) 0, (short) 2);

}

private void purseBalanceCheck(APDU apdu, byte[] buffer) {
Util.setShort(buffer, (short) 0, purseTotal);
apdu.setOutgoingAndSend ((short) 0, (short) 2);
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