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We use the variational quantum Monte Carlo method to calculate the density-functional exchange-
correlation hole nxc, the exchange-correlation energy density exc, and the total exchange-correlation
energy Exc of several strongly inhomogeneous electron gas systems. We compare our results with the
local density approximation and the generalized gradient approximation. It is found that the nonlocal
contributions to exc contain an energetically significant component, the magnitude, shape, and sign of
which are controlled by the Laplacian of the electron density.
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The Kohn-Sham density-functional theory (DFT) [1]
shows that it is possible to calculate the ground-state prop-
erties of interacting many-electron systems by solving only
one-electron Schrödinger-like equations. The results are
exact in principle, but in practice it is necessary to ap-
proximate the unknown exchange-correlation (XC) energy
functional, Exc�n�, which expresses the many-body effects
in terms of the electron density n�r�. The current popu-
larity of density-functional methods in condensed matter
physics, quantum chemistry, and materials science reflects
the remarkable success of fairly simple approximate XC
energy functionals.

In the local density approximation (LDA), the XC hole
nxc�r, r0� about an electron at r is approximated by the XC
hole of a uniform electron gas of density n � n�r�. This
works surprisingly well, but not well enough for many
chemical and biological applications. The most widely
used correction to the LDA is the generalized gradient
approximation (GGA) [2–4], in which the effects of in-
homogeneity are modeled using the semilocal approxima-
tion Exc �

R
dr f�n, j=nj�, where f is some parametrized

nonlinear function of n and =n. A common feature of all
current GGAs is that their construction is guided by limit-
ing behaviors and sum rules; they are designed to fit vari-
ous integrated quantities such as total exchange energies of
atoms or ionization energies of molecules, but incorporate
little or no information about the behavior of local quanti-
ties such as nxc�r, r0� and the exchange-correlation energy
density exc�r� in strongly inhomogeneous systems. This
may explain why current GGAs, although better than the
LDA in many situations, are not consistently able to de-
liver the very high accuracy of �0.1 eV required to study,
e.g., most chemical reactions. To open a new direction in
the search for improved functionals, we use the variational
quantum Monte Carlo (VMC) method [5] to calculate nxc
and exc for several strongly inhomogeneous electron gases
and analyze the performance of the LDA and the GGA in
these systems in detail.

The inhomogeneous electron gases considered all had
the same average electron density n0 � 3��4pr3

s �, where
0031-9007�01�87(3)�036401(4)$15.00
rs � 2a0 (approximately the same as for Al). The strong
density modulations were one dimensional and periodic,
with a roughly sinusoidal profile. Three different modula-
tion wave vectors q # 2.17k0

F were investigated, where k0
F

is the Fermi wave vector corresponding to n0. The strong
variation of n�r� on the scale of the inverse local Fermi
wave vector kF�r�21 � �3p2n�r��21�3 results in a strik-
ingly nonlocal behavior of nxc that cannot be described by
semilocal corrections to the LDA. We show, however, that
the LDA errors in exc have a dominant and energetically
significant component, the magnitude, shape, and sign of
which are controlled by the semilocal quantity =2n�r�. Be-
cause it depends only on n and j=nj, the GGA is unable
to correct the LDA errors in Exc resulting from this com-
ponent adequately, and worsens the LDA in two of our
three systems. The relevance of Laplacian terms has been
pointed out previously [6], but our calculations provide the
first quantitative evidence of their importance in strongly
inhomogeneous systems and for exc.

Our starting point is the adiabatic connection formula
[7], which expresses Exc�n� as the volume integral of an
XC energy density exc defined by [8]

exc�r, �n�� �
1
2

Z
dr0

n�r�nxc�r, r0�
jr 2 r0j

, (1)

where nxc is the coupling-constant-averaged XC hole. The
definition of exc used in the construction of the GGA dif-
fers from ours by an integration by parts that does not affect
the integrated Exc. We favor Eq. (1), however, because of
its clear physical interpretation and because it aids compar-
ison with the LDA XC energy density, which is constructed
from an approximate hole.

The XC hole nxc is obtained via a coupling-constant
integration,

n�r�n�r0� 1 n�r�nxc�r, r0�

�
Z 1

0
dl�Clj

X
i

X
j�fii�

d�r 2 ri�d�r0 2 rj� jCl	 ,

(2)
where Cl is the antisymmetric ground state of the Ham-
iltonian Ĥl � T̂ 1 lV̂ee 1 V̂ l associated with coupling
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constant l. Here T̂ and V̂ee are the operators for the ki-
netic and electron-electron interaction energies, and V̂ l �
SVl�ri� is the one-electron potential needed to hold the
electron density nl�r� associated with Cl equal to n�r�
for all values of l between 0 and 1. Our VMC method
[9] for calculating nxc and exc from Eqs. (1) and (2) is
a generalization of the scheme used by Hood et al. [10].
It amounts to treating both Cl and V l variationally and
determining the variational parameters by simultaneously
minimizing the variance of the local energy [11] and the
deviation of nl from n [9].

The VMC simulations were performed for a finite spin-
unpolarized electron gas in a face-centered cubic simu-
lation cell subject to periodic boundary conditions. The
exact interacting ground-state density n�r� was chosen
a priori, and the constrained minimization scheme was
then used to find, at each l, the exact (within VMC) wave
function Cl and external potential Vl corresponding to
that density [12]. At full coupling (l � 1), V l�r� is the
exact external potential of the many-electron system with
ground-state density n�r�. The input density n�r� was gen-
erated by solving, within the LDA, the Kohn-Sham equa-
tions for an external potential of the form Vq cos�q ? r�,
where Vq was fixed at 2.08e

0
F and e

0
F is the Fermi en-

ergy corresponding to n0. The advantages of this proce-
dure are that the input electron density is guaranteed to be
noninteracting v-representable and that the Slater determi-
nant of single-particle orbitals is by construction the exact
many-body wave function corresponding to l � 0. The
(density-functional) exchange contributions to exc, nxc,
and Exc, obtained from this Slater determinant, are there-
fore also exact [9].

We consider potentials with q � 1.11k0
F , 1.55k0

F , and
2.17k0

F , and cells containing 64, 78, and 69 electrons,
respectively. The adiabatic calculations were performed
using six equidistant values of l in the range �0, 1�
and with the Slater-Jastrow ansatz given in [9] as our
many-body wave function. At each l, we used a total
of 20 variational parameters in Cl and up to seven
coefficients in the plane-wave expansions of nl and
Vl. The optimization of the parameters in Cl and
Vl was performed using 96 000 statistically uncorre-
lated electron configurations. This was sufficient to
reduce the root mean square deviation of nl�r� from
n�r� to less than 0.5% of n�r� for all values of l

and all systems. The expectation values were calcu-
lated [5] using 106 independent configurations of all
electrons. Throughout, we used the modified electron-
electron interaction described in [13], which virtually
eliminates the finite-size errors arising from the long
range of the Coulomb potential. The statistical errors were
negligible except in nxc in low-density regions, where
they were much smaller than the differences between nxc

and nLDA
xc . The largest systematic errors are caused by the

finite size of the system and the approximate nature of Cl.
These errors combine such that, even in a homogeneous
electron gas, eVMC

xc fi eLDA
xc . To circumvent this problem,
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we performed additional VMC calculations of the XC en-
ergies of finite homogeneous electron gases with N � 64
and rs � 0.8, 1, 2, 3, 4, 5, 8, and 10. This enabled us
to construct a Perdew-Zunger parametrization [14] of the
VMC XC energy per electron of a finite uniform electron
gas with N � 64. By using this parameterization to cal-
culate eLDA

xc in all systems studied, we largely eliminated
the systematic errors in the calculated differences between
eVMC

xc and eLDA
xc . The same parametrization was also used

as input for the evaluation of EGGA
xc [2], a procedure that

we assume mitigates the errors in EGGA
xc 2 EVMC

xc .
In Fig. 1 we show snapshots of the deformation of

nVMC
xc around an electron moving in the q � 1.11k0

F sys-
tem along a line parallel to q, the direction of maximum
inhomogeneity, from a density maximum towards the tail
of n�r�. The XC hole is plotted as a function of r0 around
a fixed electron at r, with r0 ranging in a plane parallel
to q. Also shown is the corresponding LDA hole nLDA

xc
[7]. At the density maximum (not shown), both nVMC

xc
and nLDA

xc are centered at the electron. However, unlike
nLDA

xc , which is always spherically symmetric, nVMC
xc

is contracted in the direction of the inhomogeneity. As
the electron moves away from the density maximum to
a point on the slope (top panel), the nonlocal nature of
nVMC

xc becomes manifest. While nLDA
xc is still centered

at the electron and is rather diffuse, nVMC
xc lags behind

near the density maximum and is much more compact.
The nonlocal behavior of nVMC

xc becomes remarkable at
the density minimum. Here nVMC

xc has two large nonlocal
minima, each centered at a density maximum �2.80 a.u.

FIG. 1 (color). The VMC and LDA nxc�r, r0� for the q �
1.11k0

F system plotted around an electron fixed at r (indicated
in the figure), with r0 ranging in a plane parallel to q: (top)
electron on the slope; (bottom) electron at a density minimum.
The solid line shows the direction parallel to q (see Fig. 2 for
the profile of the electron density along this line).
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away from the electron (the small fluctuations of nVMC
xc

at this point are statistical errors). The LDA hole, by
contrast, is spread over the whole system in order to
satisfy the sum rule [7]:

R
dr0 nLDA

xc �r, r0� � 21. This
striking nonlocality of nVMC

xc also occurs in the other two
systems we considered, and similar nonlocal behavior
has previously been observed for the exchange plus
Coulomb hole of the hydrogen molecule [15]. Clearly,
semilocal corrections are unable to significantly improve
the LDA description of the XC hole in our systems, and
fully nonlocal approximations are required. We found,
however, that, despite the strong nonlocality of nVMC

xc ,
the LDA errors in eVMC

xc can be described in terms of a
semilocal quantity, the Laplacian of the electron density.

In Fig. 2 we show eLDA
xc 2 eVMC

xc for two of the strongly
inhomogeneous systems studied, where eLDA

xc is calculated
using the exact ground-state density n�r�. (The very simi-
lar graph for the third system has been omitted to save
space.) The results are plotted along a line parallel to
q (we call this direction y� . Also shown are n�r� and
=2n�r� plotted along the same line. It is apparent that
the shape, magnitude, and sign of the LDA errors in exc
closely follow the shape, magnitude, and sign of =2n�r�.
The LDA errors in exc are large and negative in regions
where =2n�r� is large and negative (around density maxi-
ma), and large and positive in regions where =2n�r� is
large and positive. The GGA XC energy density is not
defined via Eq. (1) and is not shown here [16]. The
VMC values of the integrated Exc are shown in Table I,
along with the differences DELDA

xc � ELDA
xc 2 EVMC

xc and
DEGGA

xc � EGGA
xc 2 EVMC

xc (the version of the GGA used
here is due to Perdew, Burke, and Ernzerhof [2]). The
LDA errors in Exc reflect the profound effect of the Lapla-
cian errors in exc and change sign from positive (for the
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FIG. 2. The upper graphs show eLDA
xc 2 eVMC

xc along a direc-
tion parallel to q for two different strongly inhomogeneous
systems. The lower graphs show the corresponding electron
densities (light lines) and Laplacians (heavy lines). Distances
are in units of the Fermi wavelength l

0
F � 2p�k0

F .
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q � 1.11k0
F system) to negative (for the two other sys-

tems) as q increases and the negative contributions to
Dexc, which occur where =2n�r� , 0, become dominant.
The GGA corrections are by construction always negative
[2–4]; they improve ELDA

xc for the q � 1.11kF system but
worsen it for the two other systems. We note that GGA
corrections also worsen the LDA in quasi-two-dimensional
electron gases [17], a shortcoming shared by the recently
proposed meta-GGA (MGGA) [18]. Although our sytems
are not quasi two dimensional [19], we believe that a simi-
lar semilocal effect lies behind the failure of the GGA in
both cases, namely, an increasing negative contribution to
the LDA errors in exc originating from the strongly nega-
tive Laplacian around the peak of n�r�. Similar errors are
known to occur near the nuclei in molecules, but are over-
compensated by positive errors in the bonding and outer
regions [20]. We note that, since =2n�r� integrates to zero,
an energy-density correction proportional to =2n�r� would
not improve ELDA

xc . As shown below, however, the depen-
dence on =2n observed here is nonlinear.

The exchange-correlation energy density is a unique
functional of the electron density. Provided that the
electron density has a convergent Taylor expansion about
the point r, it can therefore be written as exc�r, �n�� �
exc�r, n�r�, =in�r�, =i=jn�r�, . . .�. The GGA may be
viewed as an attempt to approximate this mapping by
a nonlinear function of n�r� and =in�r� only. In the
case of the exchange energy (although not, unfortunately,
the correlation energy), a uniform scaling argument [21]
shows that ex � Fx�s, l, . . .�eLDA

x , where ex is the exact
(density-functional) exchange-energy density obtained
from Cl�0 [9], Fx is an enhancement factor, eLDA

x
is the exchange-energy density within the LDA, and
s � j=nj��2kF �r�n�r�� and l � =2n��4k2

F �r�n�r�� are a
dimensionless gradient and a dimensionless Laplacian,
respectively. Figures 3a and 3b are scatter plots compar-
ing the values of Fx at different points in space with the
values of s and l at those points. Because n�r� appears in
the denominator of l and s, the maximum absolute values
of l and s occur where the electron density is smallest and
are largest for the q � 1.11kF system.

The two-valued nature of Fig. 3a arises because the
mapping from s to position is two-valued in our systems.
For example, s is zero at both the minimum and the maxi-
mum of the density, where the required corrections to the
LDA exchange hole are completely different, as can be in-
ferred from Fig. 1 [22]. In sharp contrast, Fig. 3b shows

TABLE I. Exchange-correlation energies (Hartrees per elec-
tron) and the LDA and GGA errors in this quantity for different
values of the wave vector q. The statistical errors in EVMC

xc are
indicated.

q�k0
F EVMC

xc DELDA
xc DEGGA

xc

1.11 20.3289 6 0.001 10.0042 10.0001
1.55 20.3127 6 0.001 20.0005 20.0074
2.17 20.2882 6 0.001 20.0066 20.0140
036401-3



VOLUME 87, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 16 JULY 2001
0.0 1.0 2.0 3.0 4.0
s

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
F

x

q=1.11kF

q=1.55kF

q=2.17kF

−2 4 10 16 22 28
l

(a) (b)

FIG. 3. The left panel (a) plots values of the exact exchange
enhancement factor Fx against values of the reduced density
gradient for three strongly inhomogeneous systems. The right
panel (b) plots values of the exact exchange enhancement against
values of the reduced density Laplacian.

that Fx is a simple and almost unique function of l, with the
physically different regions around the maximum and the
minimum of the density corresponding to regions of nega-
tive and positive Laplacian, respectively. This suggests
that the inclusion of Laplacian terms may allow the con-
struction of simpler and more accurate approximate func-
tionals. Springborg and Dahl recently reached a similar
conclusion [23] based on their studies of the exchange-
energy densities of closed shell atoms, although their defi-
nition of ex differs from ours. In most gradient expansions,
the Laplacian terms allowed by symmetry are transformed
into j=n�r�j2 terms via an integration by parts. This is pos-
sible only when the dependence on l is linear, however,
which is not the case here, as can be seen from Fig. 3b.
Furthermore, the integration by parts destroys the physi-
cal interpretation in terms of the XC hole and so hinders
further progress. We note that there is a one-to-one rela-
tionship between position and l in each of our systems, and
so an enhancement factor of the form Fx�l� might not be
as universal as Fig. 3b suggests. However, the consistent
results obtained for all three systems, the energetic signifi-
cance of the Laplacian terms, and the strong similarities
between the form of the Laplacian and the LDA errors in
exc (see Fig. 2) give us confidence in the physical impor-
tance of the Laplacian in describing inhomogeneity correc-
tions to the LDA.
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