
An Architecture for Viewpoint Environments based on
OMG/CORBA

Wolfgang Emmerich

Dept. of Computer Science, City University

Northampton Square, London EC1V 0HB, U.K.

we@city.ac.uk

Abstract

One of the major goals of the Viewpoint framework is to
allow for heterogeneous and distributed implementation of
viewpoint-based tools. This poses a number of challenges on
the integration of tools into a viewpoint-based environment.
We review di�erent infrastructures that could be deployed
for tool integration and argue that the OMG/CORBA archi-
tecture provides the best support for achieving heterogene-
ity and distribution. We then discuss how viewpoint-based
tools can be integrated on the basis of CORBA. This in-
volves the integration of di�erent viewpoint representations
as well as their presentation at user interfaces.

1 Introduction

A number of di�erent tasks have to be performed during the
construction of a software-intensive system. Any such sys-
tem of non-trivial size requires multiple developers with dif-
ferent knowledge and expertise to cooperate on the di�erent
tasks involved. Tasks range from requirements analysis over
architectural and component interface design to component
implementation, component test and integration test.

During the di�erent tasks, the system is considered from
multiple perspectives. Requirements analysis tasks tend to
take di�erent end-user perspectives and focus, for instance,
on the functionality a system should o�er from di�erent
users' point of view. Architectural design tasks take the per-
spective of an engineer who decides how the system should
be constructed. Note that there are usually even multi-
ple perspectives required during single tasks. Dardenne et
al., for instance, suggest in [2] di�erent requirements engi-
neering perspectives for goals, actions, agents, constraints,
entities and relationships. Developers have to realise these
di�erent perspectives for documentation and communica-
tion purposes in documents or artifacts, which we refer to
as viewpoints so as to emphasise that they are di�erent per-
spectives on the same system. We shall use the terminology
established in [7].

2 Integrated Tools

Viewpoints are de�ned in a formal language as determined
by the viewpoint's style slot. As di�erent viewpoints repre-
sent di�erent perspectives of the same system they are not
fully independent of each other. There are rather multiple
consistency constraints between the di�erent viewpoints. A
viewpoint de�ning a goal in a requirements speci�cation, for
instance, might use an entity de�nition and the use must
match the entity declaration in some other viewpoint. This
viewpoint might even be de�ned by some other developer.
The large number of viewpoints in a system de�nition to-
gether with the various consistency constraints generate de-
velopers' demand for tool support. To be able to handle
inter-viewpoint consistency constraints tools have to be in-
tegrated into viewpoint-based environments.

For each di�erent viewpoint template, there will have
to be a tool available, that enables developers to create in-
stances of this template. Tool should o�er assembly actions
that create or modify the di�erent viewpoint fragments as
de�ned in the viewpoint's style slot. The tool will then have
to accomplish persistent storage of viewpoints. It should
also support developers in achieving viewpoint consistency
by o�ering in-viewpoint check actions that check for syn-
tactic and static semantic correctness of the viewpoint. As
viewpoints are often related to other viewpoints, tools also
have to support achieving inter-viewpoint consistency. This
involves inter-viewpoint consistency checks, automated con-
sistency preservation actions, such as change propagations,
and management of temporarily tolerated interferences. Fi-
nally, the tool will have to take measures for integrity preser-
vation of viewpoint representation against both, concurrent
changes of multiple users and hardware or software failures.

An important concern during the de�nition of the view-
point framework has been to allow for heterogeneity [7]. The
initial Viewer [9] did not explore this aspect but was rather
a homogeneous and centralised proof-of-concept prototype
developed in Smalltalk. Heterogeneity includes the auton-
omy to choose whatever base technology is appropriate for
the construction of viewpoint-based tools. Indeed, the �rst
three of the above requirements, i.e. facilities for viewpoint
assembly, viewpoint persistence and in-viewpoint checks can
be dealt with in a fairly autonomous way. Viewpoint tool
builders can choose a programming language and reuse ap-
propriate frameworks for internal viewpoint representation.
They may choose to store viewpoint representations in op-
erating system �les, as a Smalltalk image or in an object
database. They can, �nally, deploy di�erent strategies for

implementing in-viewpoint check actions. This autonomy,
however, cannot be granted for the other concerns.

To check for inter-viewpoint consistency constraints, one
viewpoint-based tool will have to access the representation
of related viewpoints that are maintained by some other
viewpoint-based tool. Then integrity against concurrent up-
dates of multiple users or hardware/software failures cannot
be preserved locally, because they may involve changes to
distributed tools. Hence, inter-viewpoint consistency checks
and integrity preservation can only be addressed by an in-
tegration of multiple tools. The goal of allowing for au-
tonomous viewpoint tool implementation seems to be con-
tradictory to the integration of tools. We will, therefore,
review integration infrastructures for the degree to which
they support both.

3 Integration Infrastructures

3.1 Object Databases

In [6] we argued that a common database should be used as
a tool integration infrastructure and database requirements
were outlined that would facilitate this integration. An
object database was extended to meet these requirements
in the GOODSTEP project [8] and we have demonstrated
in [4] how sophisticated tools can be constructed on top of
the extended system. Tools in this environment support
C++ class library design, implementation and documen-
tation and the environment facilitates inter-viewpoint con-
sistency checks and preservation, support of multiple con-
current users as well as version and con�guration manage-
ment. Their implementations utilise database features, such
as object-oriented schema de�nition for �ne-grained docu-
ment representation, database transactions for concurrency
control and a version manager for composite objects. The
approach of relying on a single and centralised database,
however, has a number of disadvantages that may restrict
its applicability.

Firstly, databases are rather passive components. Hence
they lack su�cient primitives for control integration. Ob-
ject databases, for instance, do not provide a primitive that
a tool, which has performed a change to a viewpoint, can
use to inform concurrently running tools that would have
to redisplay viewpoints to visualise the change. Secondly,
the approach of using an object database for tool integra-
tion limits heterogeneity. All tool builders will have to use
the same object de�nition language to de�ne and implement
their tools' schemas before schema export/import facilities
can be used for tool integration purposes. Finally, a central
object database server will become a performance bottle-
neck, if the number of concurrent transaction requests ex-
ceeds its transaction throughput capacity.

3.2 Message Router

To implement control integration, the object database tool
architecture in [3] includes Sun ToolTalk, a message based
tool integration framework. Through this integration infras-
tructure, tools can exchange parameterised messages and
hence actively communicate with each other. This message
passing can not only be used for implementing control in-
tegration, but also for implementing inter-viewpoint consis-
tency checks between those tools that do not store view-
points in an object database. Therefore, a tool T1 would
send a message, which is interpreted as a check request, to

another tool T2. T2 would execute the check and send an-
other message to T1 transferring the result.

This message based approach to tool integration has sev-
eral weaknesses, which are not con�ned to Sun ToolTalk but
will also be found in other systems, such as the HP Broad-
cast Message Server. Firstly, the expressiveness of messages
is fairly poor. Messages can be parameterised, but parame-
ter types can only be of very limited number of atomic types,
such as strings, integers and booleans. Secondly, there are no
concepts for identifying similarities between di�erent mes-
sage types or expressing a certain behaviour of a message.
Thirdly, message typing is not statically checked. This may
lead to situations where one tool expects di�erent param-
eters of a message than the message sending tool has pro-
vided. Fourthly, messages are sent asynchronously, but in
many cases a sending tool would like to receive a response
immediately. Finally, message based integration frameworks
do not support concurrency control and also do not remove
the performance bottleneck of a central database server.

3.3 OMG/CORBA

These problems are reasonably well solved in OMG's com-
mon object request broker architecture (CORBA) [10]. Fig-
ure 1 displays an overview. The core component of this
architecture is an object request broker (ORB), which is
speci�ed in detail in [11]. An ORB delivers a client's re-
quest for invoking an operation to a server object, which
will execute the operation and then the ORB will deliver the
result to the client. Objects have a type, which is de�ned in
the OMG interface de�nition language (IDL). IDL supports
all main-stream object-oriented concepts, such as encapsu-
lation, multiple inheritance and polymorphism. Client and
server objects can be distributed and heterogeneous. They
need not be running on the same machine or the same op-
erating system, and need not be implemented in the same
programming language. CORBA object requests are syn-
chronous, though asynchronicity is supported by the event
noti�cation service (see below). The CORBA speci�cation
identi�es a large number of failures that can occur during
the processing of an event and ORBs are supposed to detect
those failures and notify clients that exceptional situations
have occurred. In addition to general failures, type speci�c
exceptions can be speci�ed in IDL.

Object Request Broker

CORBAServices

 CORBAFacilities
(horizontal, vertical)

Application
Objects

Figure 1: OMG CORBA

A number of fundamental problems that are common to
any heterogeneous and distributed computing architecture
are addressed as CORBAServices. Among others these in-
clude the de�nition of external names to objects (Naming),
distribution of events among multiple anonymous objects
(Event Noti�cation), maintaining relationships between ob-
jects and forging them to composite objects (Relationship),

the creation, migration and removal of objects (Lifecycle),
persistent storage of objects (Persistence), subsumption of
multiple object requests to atomic transactions (Transac-
tion), and object concurrency control (Concurrency). The
services have IDL interfaces and are available as CORBA
objects.

Layered on top of the services, the architecture de�nes
CORBAFacilities. These are components that are useful
horizontally across domain borders or speci�c for certain
vertical market segments. The �rst horizontal facility adop-
ted by the OMG is the distributed document component fa-
cility that evolved from the OpenDoc Framework produced
by Apple, IBM, CI Labs and Novell. It features document
components and their composition into compound docu-
ments as well as their portable visualisation across various
user interface platforms.

To utilise OMG/CORBA as a tool integration infras-
tructure, viewpoint-based tools, viewpoints as well as view-
point components have to be considered as CORBA Appli-
cation Objects. Therefore, their types have to be de�ned as
OMG/IDL interfaces and their implementations have to be
registered with an object request broker. The operations ex-
ported by viewpoint-based tools would be de�ned in IDL in-
terfaces. A viewpoint-based tool object, for instance, would
o�er operations to instantiate the viewpoint template associ-
ated with the tool so as to create a new viewpoint. Likewise,
viewpoint objects would o�er operations that implement the
work plan and eventually �ll the speci�cation slot. Invoca-
tion of these operations could then be requested by any other
client object belonging to the viewpoint-based environment.
As an example consider Figure 2, which includes IDL dec-
larations for a viewpoint-based tool for Entity de�nitions as
they would occur in a goal-oriented requirements analysis
environment.

#include "VP.idl"
module VPEntity {
exception LexicalError{short pos};
exception NameAlreadyDefined{Entity defined_in};
exception NameDoesNotExist;

interface EntityName : VP::ViewpontComponent {
readonly attribute string value;
void Scan(in string value)
raises(LexicalError);

};

interface Entity : VP::Viewpoint {
readonly attribute EntityName name;
void Expand();
...

};

interface EntityEditor : VP::ViewpointTool {
Entity CreateEntity(in string name)

raises(NameAlreadyDefined);
Entity FindEntity(in string name)

raises(NameDoesNotExist);
...

};
}

Figure 2: IDL Examples

The example outlines three interface de�nitions. Inter-
face EntityEditor de�nes a viewpoint-based tool for de�ning

entities. It provides an operation to create a new entity and
another operation to �nd an entity by name. Entity is the
interface for an entity viewpoint. We assume that a name
has to be de�ned for an entity, which is stored in an attribute
that is readable. Entity de�nes an operation Expand that can
be used to create a new name object and store it in the at-
tribute. EntityName has an attribute of type string where
entity names are stored. It exports an operation that scans
the attribute name for lexical correctness. User-de�ned ex-
ceptions are used for error handling.

The interface de�nitions are de�ned within an IDL mod-
ule VPEntity. This module de�nes the scope for declarations
and avoids name clashes with other modules de�ning other
viewpoint-based tools. Thus modules ensure the autonomy
of tool builders to choose appropriate identi�ers without
having to worry about name clashes with the choices of other
tool builders. The interfaces are derived from pre-de�ned in-
terfaces that de�ne common properties of viewpoint-based
tools, viewpoints and viewpoint components. These inter-
faces are de�ned in module VP, which is de�ned in �le VP.idl.
It is included to make its declarations known in module
VPEntity.

The bene�t of using CORBA to invoke an operation, as
opposed to a local procedure call is that the client object
need not be implemented in the same programming lan-
guage, it need not be running in the same process, it need
not run on the same operating system and can be distributed
over a local-area or even a wide-area network. The object
need not even know the physical location of the object it
requests the service from, but only needs to possess a refer-
ence on the object. In the example above a viewpoint-based
tool for goals, for instance, could check whether an entity
that is used in a goal de�nition exists by invoking operation
FindEntity. If the invocation reveals an exception, it can
create the entity. The two viewpoint-based tools, however,
can be implemented in completely di�erent languages and
be running on heterogeneous hardware platforms, but will
still be interoperable. For invoking these operations, the tool
for goal viewpoints would only have to possess a reference
of the object of type EntityEditor.

Naming: The principle way for a client object to obtain
an object reference of a viewpoint-based tool is to use the
naming service. Tools, therefore, register themselves with
the naming service and create a name binding between an
external tool name and the CORBA object implementing
the tool. Clients that wish to invoke an operation from a
remote tool can then obtain an object reference by submit-
ting the tool's external name to the naming service. In the
above example, a name binding of an external name and the
instance of type EntityEditor had to be created. Then the
goal viewpoint tool could resolve the name binding by sub-
mitting the external name to the naming service and obtain
the desired object reference.

Relationships: The CORBA relationship service provides
the foundation to manage di�erent relationships between
viewpoint components. To create a relationship between two
viewpoint components, neither the interfaces of the view-
point components nor the component objects themselves
have to be changed. Hence relationships can be added and
removed in a fairly autonomous fashion. The relationship
service distinguishes aggregation relationships and reference
relationships. Aggregation relationships can be used to de-

�ne the components of a viewpoint. Reference relationship
are used to refer in one viewpoint component to other com-
ponents of the same or other viewpoints. In the above ex-
ample, a goal that uses an entity can have a reference re-
lationship that can be exploited by a static analyser or to
implement e�cient change propagations. The use of the re-
lationship service also enables viewpoints to be treated as
composite objects by the lifecycle service. Then the lifecycle
service can be used to implement tool replication or migra-
tion to a di�erent hardware platform or viewpoint deletion.

Event Noti�cation: The CORBA event noti�cation ser-
vice enables the exchange of events between di�erent tools.
An event may be, for instance, that a viewpoint has been
changed. Objects can register themselves with an event
channel and declare interest in all events the channel will
be noti�ed about. A tool may then notify the event chan-
nel of an event occurrence and the channel would multi-cast
the event to interested parties. Asynchronous communica-
tion between viewpoint-based tools is achieved by a pair of
event channels, one for sending requests and another one for
sending results.

Persistence: CORBA persistence can be exploited for stor-
ing viewpoints and viewpoint-based tools persistently. The
service manages the storage of a CORBA object's state in
some datastore. The service supports di�erent types of data-
stores by three protocols. The direct access (DA) protocol
can be used with relational databases, the ODMG-93 proto-
col de�nes how object states are stored in ODMG compliant
object databases and a generic dynamic data object (DDO)
protocol can be used with any kind of data store, for instance
the �le system. Hence, this service supports autonomy of
viewpoint owners in choosing the appropriate database for
storage of viewpoints. The essence of these protocol de�ni-
tions are languages that are used to de�ne those attributes
of an object whose states have to be stored persistently.
These cannot be inferred from the interface de�nition be-
cause there may be hidden attributes that are not exposed
at the interface or exported attributes may not have to be
stored persistently. The protocols, therefore, either de�ne
or reuse data de�nition languages (DDLs). The DA proto-
col de�nes a DDL, which is a proper subset of IDL and the
ODMG-93 protocol reuses ODL, which is the schema de�-
nition language of the ODMG database standard [1]. The
persistence service implementation is supposed to provide a
compiler that generates the required code for actually stor-
ing and retrieving attribute values. Tool builders can exploit
the ODMG-93 protocol by using ODL to de�ne the set of
attributes that need to be stored. Then an ODL compiler
would generate an object database schema for these types
as well as code fragments that transfer attribute values from
CORBA objects into database objects and vice versa.

Concurrency: Viewpoint-based tools may chose to store
viewpoints in di�erent types of databases. Concurrency
control can, therefore, not be achieved by the concurrency
control manager of a single database system. Instead a fed-
erated concurrency control management is required. The
CORBA concurrency control service provides the primitives
for that by de�ning an interface for locksets. Locksets man-
age the set of locks that were granted to di�erent concurrent
threads or processes. If locksets are associated to viewpoints
or individual viewpoint components locksets can be used to

restrict concurrent viewpoint access so that viewpoint in-
tegrity is preserved. To achieve that, operations exported
by locksets have to be used to acquire, upgrade or release
locks on viewpoints or viewpoint components. The service
de�nes di�erent lock modes (such as read and write) and a
lock compatibility matrix such that a lock is only granted
if it does not con
ict with any lock that has been granted
before. The lock compatibility matrix is de�ned in a way
that lost updates or inconsistent analysis problems cannot
be caused by concurrent object accesses. The service is also
prepared to be used by the CORBA transaction service.

Transactions: Atomicity of a sequence of operation invoca-
tion requests, such as changes to a set of related viewpoints,
may not be achievable by database transactions if the re-
quests involve changes to viewpoint components stored in
di�erent database systems. It can also not be achieved if
viewpoints are stored in �le systems, which do not have
a transaction management at all. Therefore, other means
for facilitating atomicity have to be provided. The CORBA
transaction service provides a framework for implementing a
two-phase commit protocol which features atomicity of dis-
tributed and possibly nested transactions. Viewpoint-based
tools can ask a transaction coordinator to start and commit
transactions. The e�ect of all operation requests executed
between begin and commit will then be atomic, i.e. it will
be visible completely if the commit is reached or not at all if
a failure occurred or the transaction was explicitly aborted.
Transaction coordinators also isolate transactions from each
other. The coordinators, therefore, implicitly use the con-
currency control service. Every object that is accessed or
modi�ed during a transaction will be locked by the transac-
tion coordinator, and the coordinator will release all locks
during commit or abort.

4 User Interfaces and CORBA

The review above has clearly indicated that CORBA pro-
vides a useful infrastructure for integrating viewpoint-based
tools in a heterogeneous and distributed environment sup-
porting multiple developers. Now the question arises how
tool's user interfaces can be hooked into this infrastructure.
We sketch four di�erent approaches to user interface con-
struction and discuss for each of those how operations de-
�ned in viewpoint interfaces can be invoked.

User interfaces on UNIX platforms are built either by
reusing user interface management libraries, such as ET++
or Interviews, or by using a GUI builder that provides a
graphic editor to layout the user interface and then gener-
ates code fragments in Smalltalk, C or C++ to be �lled in
with the application code. If viewpoint-based tools are con-
structed following these approaches, interactions between
users and tools are implemented in Smalltalk, C or C++.
The IDL language bindings to Smalltalk, C and C++ can
be used for interfacing with CORBA objects implementing
the viewpoints functionality. The language bindings are im-
plemented in a static way by the IDL compiler. It generates
static invocation stubs in Smalltalk, C or C++. The user
interface can then invoke viewpoint operations that were
speci�ed in IDL as if they were C, Smalltalk or C++ oper-
ations.

The distributed document component facility (DDCF)
proposed by IBM and Apple seem to be very appropriate for
constructing user interfaces of viewpoint-based tools. Hav-

ing evolved from OpenDoc, DDCF supports the composition
of complex documents from simpler parts. These parts are
being created and edited by component applications. The
DDCF could be deployed for a viewpoint-based tool by de-
riving viewpoint types from the DDCF type for root parts
and types for viewpoint components from DDCF embedded
parts. Then viewpoints and viewpoint components would
inherit operations provided by the respective OpenDoc ap-
plications and OpenDoc would also take care of displaying
them. Operations speci�c for viewpoints, such as viewpoint
consistency checks could be added in the viewpoint speci�c
subtypes. Being a specialised CORBA facility, viewpoints
could then still be distributed and use the CORBA services
discussed above.

A portable way to construct user interfaces is to use Java.
The Java awt class library provides all primitives for user
interface construction and Java programming environments
are available that provide graphical user interface editors.
Although the OMG has not accepted a standardised Java
binding for IDL yet, there are several ORB products that
enable Java applets to communicate with other CORBA ob-
jects. Hence a viewpoint-based tool could have a user inter-
face implemented in Java and running in any Java enabled
Web browser. The user interface would then use a Java/IDL
binding to invoke operations that implement the viewpoint's
functionality via an object request broker.

User interfaces for viewpoint-based tools on Windows
PCs would likely to be constructed using Microsoft's OLE.
The OMG recently adopted the �rst part of a speci�ca-
tion for OLE/COM interworking, which includes a map-
ping between the two object models and between OLE and
CORBA. With the second part to be completed later this
year, it will be standardised how operations of CORBA ob-
jects are invoked from OLE objects and vice versa. This will
facilitate user interfaces of viewpoint-based tools running
on PCs while the viewpoint functionality is implemented in
CORBA objects.

5 Further Work

Although we have done some experimentation with ORB
products, we do not yet have a clear understanding of the
feasibility of the approach sketched here from a performance
point of view. We plan to develop a benchmark that repre-
sents a synthetic load that would be put on an ORB by a
viewpoint-based environment. We believe that most of the
techniques for developing dedicated object database bench-
marks presented in [5] can also be applied to a distributed
computing environment. The benchmark will then be used
to compare the performance of a number of object request
broker products and to see whether the response times are
su�cient for using ORBs within a viewpoint-based environ-
ment for which we want to develop a proof of concept pro-
totype following the architecture outlined here.

To date, there are about ten object request broker prod-
ucts in the market. None of them o�ers all the services
that have been adopted. An important observation is that
the persistence service is not implemented in a compliant
way by a single product. Also the concurrency control and
transactions services are not yet widely available. We are
currently studying the cause of this problem and may at-
tempt an implementation of these services with appropriate
partners.

References

[1] R. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufman, 1993.

[2] A. Dardenne, A. van Lamswerde, and S. Fickas. Goal-
directed Requirements Acquisition. Science of Com-
puter Programming, 20:3{50, 1993.

[3] W. Emmerich. Tool Construction for process-centred
Software Development Environments based on Object
Database Systems. PhD thesis, University of Pader-
born, Germany, 1995.

[4] W. Emmerich, J. Arlow, J. Madec, and M. Phoenix.
Tool Construction for the British Airways SEE with
the O2 ODBMS. Technical Report 1996/01, ISSN 1364-
4009, City University London, Dept. of Computer Sci-
ence, 1996.

[5] W. Emmerich and W. Sch�afer. Dedicated Object Man-
agement Benchmarks for Software Engineering Appli-
cations. In R. Welland, editor, Proc. of the Software En-
gineering Environments '93, Reading, UK, pages 130{
142. IEEE Computer Society Press, 1993.

[6] W. Emmerich, W. Sch�afer, and J. Welsh. Databases
for Software Engineering Environments | The Goal
has not yet been attained. In I. Sommerville and
M. Paul, editors, Software Engineering ESEC '93 |
Proc. of the 4th European Software Engineering Confer-
ence, Garmisch-Partenkirchen, Germany, volume 717
of Lecture Notes in Computer Science, pages 145{162.
Springer, 1993.

[7] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,
and M. Goedicke. Viewpoints: a framework for inte-
grating multiple perspectives in system development.
Int. Journal of Software Engineering and Knowledge
Engineering, 2(1):21{58, 1992.

[8] GOODSTEP Team. The GOODSTEP Project: Gen-
eral Object-Oriented Database for Software Engineer-
ing Processes. In K. Ohmaki, editor, Proc. of the
Asia-Paci�c Software Engineering Conference, Tokyo,
Japan, pages 410{420. IEEE Computer Society Press,
1994.

[9] B. Nuseibeh and A. Finkelstein. ViewPoints: A Vehicle
for Method and Tool Integration. In Proceedings of the
5th Int. Workshop on Computer-Aided Software Engi-
neering (CASE '92), Montreal, Canada, pages 50{60.
IEEE Computer Society, 1992.

[10] R. M Soley, editor. Object Management Architecture
Guide. Technical report, Object Management Group,
492 Old Connecticut Path, Framingham, MA 01701,
USA, 1992.

[11] R. M Soley, editor. The Common Object Request
Broker: Architecture and Speci�cation Revision 2.0.
Technical report, Object Management Group, 492 Old
Connecticut Path, Framingham, MA 01701, USA, July
1995.

