
Next-Generation Viewpoint-based

Environments

Wolfgang Emmerich, George Spanoudakis and Anthony Finkelstein

Dept. of Computer Science, The City University,

Northampton Square, London EC1V 0HB, UK

femmerich|gespan|acwfg@cs.city.ac.uk

Abstract

This paper discusses the notion of, and outlines requirements for Viewpoint-

based Environments. These are next-generation CASE environments, which sup-

port the speci�cation of requirements from multiple perspectives or so-called view-

points. Requirements for such environments are mainly concerned with the detec-

tion and management of interference between viewpoints. Viewpoint-based Envi-

ronments should also support the cooperation of multiple developers and maintain

development histories in terms of multiple viewpoint versions. We brie
y sketch

an architecture for such environments and outline a research agenda for developing

them.

1 Viewpoint-based Environments

It has been widely recognised that a software development method that is appropriate for
a particular software process might prove disastrous if it is applied to another process. A
classical information system might best be de�ned using an entity relationship approach.
A database schema can be generated from the entity relationship model and a fourth
generation language might be used to implement forms and reports. A safety-critical
real-time system, in contrast, must not be developed in this way. It will require a formal
speci�cation to be de�ned, for instance in Z [7], and its implementation should partially
be proven against this formal speci�cation. As we will not be able to suggest a method
mix that can be used in any development method, the need arises to support the design
of development methods and their integration into a method mix that is tailored towards
particular processes. The Viewpoint framework as discussed in [4, 5] have been dedicated
to this problem. Viewpoints are de�ned as a loosely-coupled, locally managed object
encapsulating representation knowledge, development process knowledge and partial
speci�cation knowledge about a system and its domain. Viewpoints are structured into
�ve slots:

1

� The style slot describes the representation scheme used by the viewpoint.

� The work plan slot describes development actions together with a strategy for their
application to construct the viewpoint.

� The domain slot describes the area of concern of the viewpoint and sets its context
in the overall system under construction.

� The speci�cation slot describes the viewpoint domain in the representation scheme
determined by the style slot.

� The work record slot records the history and current state of the viewpoint devel-
opment.

A viewpoint template is a viewpoint type in which the style and work plan slots have
been �lled. It may be instantiated and then yields a viewpoint where the remaining slots
can be �lled. A method de�nition can then be seen as a collection of related viewpoint
templates. The instantiation of various viewpoint templates need to be supported by
appropriate tools. These tools will provide the necessary editing commands and/or
assembling actions for implementing the workplans for these templates and will keep
track of work records in a way transparent to the viewpoint owners. Such tools may need
to be con�gured into integrated environments if their associated viewpoint templates
together constitute a development method. We will refer to such con�gurations as
viewpoint-based environments. The requirements for such environments are discussed
below and built on a series of experiments, prototypes and systems developed by the
authors and contributors of the viewpoints framework.

2 Advanced Requirements

A single tool will enable viewpoint owners or other tools to construct viewpoints by
instantiating viewpoint templates. Viewpoint construction will be supported by editing

commands for all the assembly actions identi�ed in the work plan of the template. It will
also be supported by browsing commands allowing the visualisation of the viewpoints'
contents and traversing of relationships between viewpoints. To the extent that these
relationships associate viewpoints of di�erent templates it is necessary to support an
e�ective communication between tools.

The autonomous instantiation of viewpoint templates doesn't necessarily require tools
to be substantially di�erent from generic text and graphics editors or hypertext viewers.
The distinguishing feature of a viewpoint-based environment is the fact that viewpoints
may interfere with each other to the extent they refer to or assert properties of common
aspects of the system under development and its domain. This interference may take the
form of either a mere ontological overlap (i.e. incorporation of components in di�erent
viewpoints referring to common aspects of the "real world") or an inconsistency between
ontologically overlapping viewpoints. In both cases it needs to be managed.

2

The interference management which is required (or indeed possible) varies. In certain
cases it might need to be lazy, leaving it up to the viewpoint owner to decide about
both the kind of the checks and the time to perform them. This avoids the disruption
of viewpoint development by noti�cations of overlaps and inconsistencies, which could
- anyway - be dealt with later on. In other cases, interference management might need
to be eager. Certain overlaps and inconsistencies may lead to a waste of e�ort if they
become apparent only very late in the development process, if at all. To avoid them,
an eager approach where viewpoint owners get immediate feedback from automatically
invoked checks, is necessary. These two approaches regarding the time of interference
management can be supported by tools, which switch between eager and lazy interfer-
ence checks.

Similarly, the way to deal with detected interferences may vary. In some cases, inter-
ference should be prevented. This might be appropriate in cases where many further
actions would be a�ected by a pending interference. Prevention goes hand in hand with
eager checking. Interferences that should be prevented can be dealt with in three di�er-
ent ways. The �rst is the immediate rejection of the command, whose completion would
cause an interference. The second is to let the tool undertake a set of default actions,
appropriate for dealing with the type of interference detected. The third is to guide the
viewpoint owner(s), according to some resolution strategy, to rectify immediately the
problem or otherwise to abort the execution of the problematic command. However,
there are types of interference that may well be tolerable. These might be interferences
among evolving viewpoints or viewpoints which re
ect di�erent perspectives over which
a decision cannot be reached for the time being or which should be maintained along
the system life-cycle. Interferences of those types should be maintained as pending and
be dealt with whenever the viewpoint owner(s) or the overall progress of system devel-
opment requires. In dealing with them, viewpoint owners may decide to rely on default
or guidance-based resolution strategies.

Di�erent resolution strategies may or may not be required to deal with tolerated incon-
sistencies. Some inconsistencies may just be due to di�erent point of views that do not
cause any harm and may well coexist. Developers should not be forced to resolve these
inconsistencies. Others, however, may have a negative impact on the development of
related viewpoints and should be resolved at some stage, de�ned in the workplan slot of
the viewpoint. The resolution strategy that is to be deployed then depends on whether
only a single or multiple developers are involved. If a single developer is the owner of all
the viewpoints involved in the inconsistency, he/she will have complete freedom to de-
cide when and how to remove the inconsistency. All in-viewpoint consistency constraint
violations fall into this category. If di�erent developers are owners of viewpoints in-
volved in a con
ict, negotiations among them will be required to agree who will perform
actions to resolve the inconsistency. We note that signi�cant cooperation is involved in
this and viewpoint-based tools will have to support this cooperation.

If multiple developers cooperate on the resolution of interference, it will be inevitably
necessary to review the impact of each other's changes as they occur. In the above
example and with an eager approach towards constraint checking, an inconsistency of
the Booch viewpoint should be removed as soon as the other developer has changed the

3

C++ class name. With a lazy approach, the designer of the Booch diagram should see
the resolution after he has applied the respective check command the next time. We
note that viewpoint-based tools have to be integrated in a way that they can access and
update each other's viewpoints in a concurrent way.

It is often not appropriate for a developer to be disturbed by other developers' changes.
Developers may want to work in isolation for some period of time, especially when they
perform major changes to a viewpoint. Moreover,their changes should only become
visible to other developers after they have reached a certain degree of (in-viewpoint)
consistency. A way of achieving this is to arrange for viewpoint-based tools that are
able to maintain di�erent versions of a viewpoint. Version management has so far
only gained widespread attention for source code viewpoints that are produced during
implementation tasks, but we strongly believe that any viewpoint produced during any
task of a software process deserves the same attention. The concept of viewpoint versions
is not only required for isolating developers from each other, but also to keep track of
the viewpoint history while a system is under maintenance. When a system is ported
to a new platform, for instance, the versions of viewpoints for the previous platform
must be retained. Developers will then need to freeze versions of a viewpoint so as to
prevent it from being further modi�ed. This will be necessary whenever a viewpoint
has reached a state to which it might have to be restored in the future. Developers
will then need a mechanism to derive a version from another frozen version and select a
particular version. Then successive changes must only be done in that selected version.
If no version is selected, a default version of a viewpoint will be used. Further version
management support is required for labelling versions, traversing through the version
history graph and for merging di�erent alternatives to a common successor version.

Given that viewpoints exist in di�erent versions and inter-viewpoint consistency has to
be checked, a need arises to maintain viewpoint con�gurations. A viewpoint con�gura-
tion is determined by a viewpoint that serves as a component model and a number of
version selection rules. The component model viewpoint identi�es all viewpoints that
are components of a con�guration. Version selection rules then identify for each com-
ponent viewpoint the particular viewpoint version that belongs to the con�guration.
Version selection rules can be explicit or associative. Explicit version selection is based
on the identi�cation of a version for each component viewpoint. Associative version se-
lection rules determine versions by a particular property they have to ful�ll. An implicit

selection rule determines the default con�guration. It consists of all default versions
of all component viewpoints and can be considered as the baseline of a development.
Di�erent versions of the component model viewpoint are then used to store di�erent
con�gurations.

We note that it is often not required to de�ne a viewpoint whose only purpose is to serve
as a component model. It is rather very likely that such a viewpoint can be identi�ed
among the viewpoints that are produced anyway. In the above example, the Booch class
diagram viewpoint can serve as a component model. Any class in the Booch diagram
represents two viewpoints. One for the C++ class interface de�nition and another one
for its implementation.

4

3 Architectural Considerations

An autonomous implementation of viewpoint tools has always been one of our major
concerns. Autonomy to this respect means that viewpoint tools are developed and
executed in a distributed way and that they can be developed in a heterogeneous manner.
We suggest employing an object request broker architecture, like OMG/CORBA to
achieve this. About a dozen implementations have become available and they can be
used to provide access to viewpoints in a heterogeneous and distributed manner.

To achieve persistent storage of viewpoints, concurrent viewpoint access as well as ver-
sion and con�guration management, we advocate the use of object databases [1, 2].
Therefore, the structure de�nition as de�ned in viewpoint templates has to be imple-
mented in an object database schema. Instances of this schema then implement di�erent
viewpoint speci�cation slots. The transaction management of object databases can be
used to control concurrent access of viewpoint based tools, if transactions are used
to implement individual tool commands rather than complete editing sessions. Some
object database implementations provide version management facilities for composite
objects so that the composite objects that represent viewpoint speci�cation slots can be
versioned on behalf of viewpoint based tools.

4 Summary and Further Work

We have discussed requirements for a next-generation of Viewpoint-based Software De-
velopment Environments. These requirements were mainly concerned with interference
detection, management and their resolution. Furthermore, we have identi�ed the need
for cooperation that should be computer-supported. Finally di�erent versions and con-
�gurations of viewpoints must be maintained. We then brie
y sketched how to achieve a
heterogeneous and distributed environment architecture on the basis of OMG/CORBA
and how to address persistent storage of viewpoints, concurrency control and version
management by employing object databases.

We have to investigate how these environments can be constructed systematically. A �rst
approach was taken in [2], where the high-level GOODSTEP tool speci�cation language
(GTSL) [3] was developed together with a compiler for this language. We believe that
many of the techniques suggested there can also be applied for the speci�cation of
viewpoint-based environments. The feel, however, that it is possible to raise the level
of abstraction so as to make tool speci�cation even more simpler.

A method for the reconciliation of speci�cations on the basis of detecting ontological
overlaps has been de�ned. This method is based on a computational model for the
detection of similarities [6]. This method needs to be implemented in the above ar-
chitectural setting of distributed computing based on OMG/CORBA and persistent
storage in object database systems.

5

References

[1] R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufman,
1993.

[2] W. Emmerich. Tool Construction for process-centred Software Development Envi-

ronments based on Object Database Systems. PhD thesis, University of Paderborn,
Germany, 1995.

[3] W. Emmerich. Tool Speci�cation with GTSL. In A. L. Wolf and J. Kramer, ed-
itors, Proc. of the 8th Int. Workshop on Software Speci�cation and Design, Velen,

Germany. IEEE Computer Society Press, 1996. To appear.

[4] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system development.
Int. Journal of Software Engineering and Knowledge Engineering, 2(1):21{58, 1992.

[5] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the Rela-
tionships Between Multiple Views in Requirements Speci�cation. IEEE Transactions

on Software Engineering, 20(10):760{773, 1994.

[6] G. Spanoudakis and P. Constatopoulos. Elaborating Analogies from Conceptual
Models. International Journal of Intelligent Systems, 1996. To appear.

[7] J. M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, 1989.

6

