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Abstract

The goal of the GOODSTEP project is
to enhance and improve the functionality of
a fully object-oriented database management
system to yield a platform suited for appli-
cations such as Software Development En-
vironments (SDEs). The baseline of the
project is the O2 database management sys-
tem (DBMS). The O2 DBMS already in-
cludes many of the features required by SDEs.
The project has identifed enhancements to
O2 in order to make it a real software en-
gineering database management system.
These enhancements are essentially upgrades
of the existing O2 functionality, and hence
require relatively easy extensions to the O2

system. They have been developed in the
early stages of the project and are now ex-
ploited and validated by a number of software
engineering tools built on top of the enhanced
O2 database system. To ease tool construc-
tion, the GOODSTEP platform encompasses
tool generation capabilities which allow for
generation of integrated graphical and textual
tools from high-level speci�cations. In addi-
tion, the GOODSTEP platform provides a
software process toolset which enables mod-
eling, analysis and enaction of software pro-
cesses and is also built on top of the extended
O2 database. The GOODSTEP platform will
be validated using two CASE studies carried
out to develop an airline application and a
business application.

�This work has been funded by the EU under con-
tract No. 6115 (ESPRIT-III project GOODSTEP)

1 Objective of GOODSTEP

The goal of the GOODSTEP project is
to develop a sophisticated database system
dedicated to the support of software develop-
ment environments (SDEs) and make the ba-
sis for a platform for SDE construction with
a software process toolset and generators for
graphical and textual integrated tools imple-
mented on top of it.
The GOODSTEP project started Septem-

ber 1992 and will last for three years. This
paper mainly reports on the �rst year of work
within the project.
The baseline of the project is an exist-

ing European commercially available object-
oriented database product: O2 [4]. Rather
than developing a new database manage-
ment system from scratch, GOODSTEP will
enhance and improve this product.
Besides the enhancements and improve-

ments of O2 which make it an admirably
suited system for SDEs, the project pro-
vides a number of test cases and performs
case studies to evaluate and justify the ap-
proach. This includes porting and devel-
oping a number of existing software engi-
neering tools on top of the new platform,
the development of tool generation capabili-
ties to exploit the features of a fully object-
oriented system, and the development of ad-
vanced software process modeling capabili-
ties which, once again, exploit the provided
features of O2.
The choice of an object-oriented database

management system as baseline of the
project derives from the inadequacy of re-
lational database systems for software engi-
neering applications, which has been recog-
nized for quite some time [22, 25]. This has
resulted in a great e�ort in both the indus-



trial and research communities to extend the
current database technology towards more
powerful and 
exible database management
systems. In particular, in this context we are
interested in the work done on the develop-
ment of object-oriented database systems.
The class of object-oriented database sys-

tems can be roughly classi�ed in two cat-
egories: those o�ering the full functionali-
ties of the object-oriented data model, which
we will refer to from now on as object
database systems (ODBSs) [10], and those
o�ering only a subset of the object-oriented
model, which we will call structurally object-
oriented database systems. The main dis-
tinction between structurally object-oriented
databases and object database systems,
which is also the main drawback of the
�rst class, is that most of the structurally
object-oriented database systems, such as
PCTE/OMS [17], Damokles [12], assume a
certain level of granularity of the objects to
be stored and retrieved and that they further
cannot de�ne encapsulation of data struc-
tures by operations. These systems either
support relations between coarse-grained ob-
jects such as products of the SE life cycle
(e.g. A is the speci�cation of B, A is owned
by developer Q, etc.), or else support a rather
�ne-grained level of objects such as syntac-
tic units of programs or speci�cations (i.e.
statements, variables, procedures, etc.).
In practice, many software engineering

tools require support for both levels of granu-
larity. By contrast, object database systems
are the best approach to support sophisti-
cated e�cient storage and retrieval of objects
at arbitrary levels of granularity [13].
The project amply demonstrates two im-

portant features of an object database sys-
tem. In the �rst place, it enables much eas-
ier implementations of SE-tools than when
using conventional DBMSs. This is because
the richer semantics of the object oriented
model is most suited to the complex data
handled in software engineering applications,
and also because there is no problem of �xed
granularity of objects. In the second place,
it signi�cantly improves the functionality of
software tools which can be based upon it.
The software architecture of GOODSTEP

is illustrated in Figure 1. GOODSTEP en-
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Figure 1: The GOODSTEP SDE platform

hances the functionalities o�ered by O2, by
adding new functionalities to its kernel or on
top of it. Moreover, two tool sets have been
developed together with the enhanced O2

system to constitute the GOODSTEP plat-
form. The �rst toolset (TCT) supports the
generation of new tools. The other set of
tools support development, simulation and
execution of software processes (SPT). In
particular it integrates the tools generated
by the �rst tool set. Both SPT and TCT sup-
port the development of a customized SDE.
The rest of the paper is structured as fol-

lows: In Section 2, we �rst describe the
GOODSTEP platform in some detail. In
Section 3, we describe the fundamental re-
quirements for the underlying database sys-
tem as required by the GOODSTEP plat-
form. In Section 4, we show how these re-
quirements are addressed by O2 and we de-
scribe the planned O2 extensions. Finally,
Section 5 concludes the paper while drawing
attention on ongoing and further work.

2 Building the GOODSTEP Plat-
form for Software Develop-
ment Environments

The methods and languages to be used for
the development of a software application {
be they graphical or textual languages { de-
pend on the application domain. For exam-
ple, real-time applications require di�erent
speci�cation and implementation languages



than �nancial or medical applications. More-
over, the process models that support an ap-
plication development best can not be pre-
de�ned. They depend not only on the appli-
cation domain, but also on the organization
and on the people who are running the pro-
cesses. Current SDEs su�er from their se-
lection of speci�c combinations of languages
and often assume a particular process. Both
usually do not completely cover the needs
of any software development and impose a
pre-speci�ed development mode. Instead,
the software industry demands customiz-
able SDEs, which may be easily adapted to
the evolving needs of software development.
GOODSTEP addresses this need by provid-
ing means to

� de�ne the process used for developing
a software system within the software
process tool-set and

� generate the tools needed during the
course of a software process using the
tool construction tool-set.

Using the process tool-set a model tailored
to the needs of a particular institution or
even project can be modeled, analyzed and
later used for running a software project.
Using the tool construction tool-set, it will
be possible to de�ne and generate concep-
tual schemas and de�ne and generate a set
of integrated syntax-directed software devel-
opment tools from appropriate speci�cation
languages.

2.1 Software Process Modeling and
Enactment

Software process modeling and enactment
is supported in GOODSTEP by the SPADE
(Software Process Analysis Design and En-
actment) environment. SPADE provides a
domain-speci�c language for the modeling
and enactment of software processes called
SLANG (Spade LANGuage). SLANG is
based on high-level nets and is given formal
semantics in terms of a translation scheme
from SLANG objects into ER nets. ER
nets [18] are a mathematically de�ned class
of high-level Petri nets that provide the de-
signer with powerful means to describe con-
current and real-time systems. In ER nets,

it is possible to assign values to tokens and
predicates to transitions, describing the con-
straints on tokens consumed and produced
by transition �rings.

2.1.1 SLANG

We describe SLANG by means of a simple
example. A SLANG speci�cation of a pro-
cess fragment is presented in Figure 2. For
an elaborated discussion of SLANG, we refer
to [7].
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Figure 2: A Model of a Process Fragment in
SLANG

The example models a process activity to
test executable modules of a software sys-
tem. The net associated with the activity
is activated as soon as another process ac-
tivity (SLANG nets are hierarchically orga-
nized in activities) puts a token that repre-
sents a module successfully compiled on the
place Executable Modules and some other to-
kens representing test data on the place Test
Cases. For each such test case, a test is ex-
ecuted (modeled by transition Execute Test)



and the results are cumulatively recorded in
an error report. If no more test cases are
available, transition EndTest �res, thus end-
ing the activity, and producing a token that
models the error report in place Final Test
Results. Note that ExecuteTest is described
as a black transition; meaning that the tran-
sition is not atomic; it invokes the execution
of the testing program and then the execu-
tion of the net is resumed without waiting
the tests to be completed. This mechanism
is used in SLANG to model the invocation of
tools such as those generated with the tool
construction toolset.
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Figure 3: Type De�nition of Tokens for Net
in Figure 2

To complete the formal de�nition of the
net, the token types must be de�ned. These
types are de�ned by attaching type de�ni-
tions to places. Type de�nitions are orga-
nized in a type hierarchy, de�ned by an \is-
a" relationship. The root of the hierarchy is
the type ProcessData. Types inherit the at-
tributes and operations of their ancestors in
an object-oriented style. The example of the
type hierarchy used in the net of Figure 2 is
given in Figure 3.
To support process evolution, i.e. \changes

on the 
y" [21], type descriptions may be
added or changed during process enactment.
The change of a type requires instances of
that type to change accordingly.

2.1.2 SPADE

SPADE [6]is a software process environment
that supports the enactment of process mod-
els written in SLANG. The enactment of the
process model causes the automatic execu-
tion of computer-based actions and guides
the behavior of people involved in the pro-
cess. In addition to the description of a
software production process, a SLANG pro-
cess model may also include the speci�cation
of a software meta-process. Therefore, pro-
cess enactment involves the execution of ac-
tivities of both the production process and
the meta-process. The meta-process mod-
els those actions that do not aim at software
production, but concern the management
of the process itself: creation/modi�cation
of activities, object types, etc. The re
ec-
tive nature of SLANG makes it possible to
manipulate the process de�nition (i.e., Pro-
cessTypes and ProcessActivities) in the same
ways other process data are manipulated,
therefore enabling process evolution.
Important requirements for database sys-

tems arise when we consider the problem of
process evolution [5]. All information de-
scribing a SLANG speci�cation (process type
descriptors and process activities) and the
process state (all instances of ProcessData
and its subtypes) have to be stored in a
repository, i.e an O2 database. The SLANG
interpreter uses O2 to access both the de-
scription of the process model and the pro-
cess data produced and modi�ed as result of
its enactment.
While it is not possible to change the def-

inition of the SLANG language (�xed part
of the schema), all other components can be
changed. Changes to the instances of the
�xed part of the schema (e.g. arcs and tran-
sitions), and changes to the modi�able part
of the schema (e.g. token types) correspond
to changes in the process model. Changes
to the instances of the modi�able part corre-
spon to changes in the state of the enacted
process model.

2.2 Tool Construction

The GOODSTEP platform contains two
tool generators. The �rst one is the Graph-
Project compiler that is capable of gener-



ating graphical tools. The second is the
GENESIS compiler which takes a speci�-
cation written in the object-oriented tool
speci�cation language GTSL [8] and au-
tomatically derives textual syntax-directed
tools. We �rst discuss the functional and
non-functional properties users1 require from
generated tools and then sketch some issues
on tool design which later on have an im-
pact on the database functionality required
to make tool generation feasible.

2.2.1 Requirements on Software De-
velopment Tools

The tools to be generated will be used by
users to edit, analyze and transform docu-
ments. To give as much support to users as
possible, the tools must be syntax-directed
according to the languages in which docu-
ments are written.
Besides dealing with errors concerning the

context-free syntax, tools should also deal
with errors concerning both the internal
static semantics of documents and inter-
document consistency constraints. The tools
may allow temporary inconsistencies to be
created during edit operations, since docu-
ment creation in a way which avoids such
temporary inconsistencies is impractical in
many cases.
Obviously, documents must be stored per-

sistently because they must survive editing
processes. Moreover, users require tools to
operate as safely as possible, i.e. in case of
a hard- or software failure they expect in-
tegrity preservation of documents (their im-
mediate usability by the same or other tools)
against hard- or software failures. Also sig-
ni�cant user e�ort must not be lost in case
of a failure, i.e. any completed change a user
performed to a document must persist in the
database.
When the consequences of user actions are

persistent, users must have the ability to
backtrack or \undo" such actions when mis-
takes are made. Thus, users may want to

1As the users of the GOODSTEP platform have
di�erent roles, we distinguish in the sequel users
which are the developers that use the customized
GOODSTEP platform in order to develop an appli-
cation from SDE builders who use the features pro-
vided by the GOODSTEP platform for customizing
it to obtain a particular SDE.

store intermediate versions of a document so
that they can revert to a previous revision
if their subsequent modi�cations turn out to
be ill-chosen.
Finally, users expect acceptable perfor-

mance from the tools such that their work-

ow is not interrupted.

2.2.2 Issues in Tool Design

What is a document in the database?
The common internal representation for
syntax-directed tools such as syntax-directed
editors, analyzers, pretty-printers and com-
pilers is a syntax-tree of some form. In prac-
tice, this abstract syntax-tree representation
of documents is generalized with context-
sensitive edges to an abstract syntax-graph
for reasons such as e�cient execution of doc-
uments, consistency preservation of docu-
ments, and user-de�ned relations within doc-
uments. Such context-sensitive edges are not
con�ned to within individual documents {
context sensitive edges frequently exist be-
tween components of distinct documents. As
an example c.f. Fig. 4 where they relate
nodes in a graph of module interface speci�-
cations with corresponding nodes in another
graph of module body speci�cations. This
leads to a project-wide abstract syntax graph.
For a detailed discussion of context-sensitive
edges we refer to [14].

How is it stored? Due to the require-
ments of persistence and integrity, a per-
sistent representation of each document un-
der manipulation must be updated as soon
as each user-action is �nished. Typically
a user-action a�ects only a very small por-
tion of the document concerned, if any.
Given that the representation under manip-
ulation is an abstract syntax-graph, the up-
date can easily become ine�cient if, �rstly,
a complex-transformation between the graph
and its persistent representation is required
and, secondly, the persistent representation
is such that large parts of it have to be
rewritten each time, although not being
modi�ed. This would for instance be the
case, if we had chosen to store the graph in a
sequential operating system �le which is up-
dated at the end of each user-action.
Such ine�ciency can be avoided completely
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Figure 4: Excerpt of a project-wide Abstract Syntax Graph

if the persistent representation takes the
form of an abstract syntax graph itself, with
components and update operations that are
one-to-one with those required by the tools
concerned.

3 Requirements on Databases
for Software Engineering

In this section we outline the requirements
on a DBMS that arose during design of both
the software process toolset and the tool con-
struction tool set. A detailed discussion of
the requirements can be found in [14].

DDL/DML The types of tokens as de-
�ned by SLANG types must be established
in the schema in order to have the process
engine storing tokens in O2. For the same
reason, the overall structure of project-wide
abstract syntax graphs has to be de�ned in
terms of the data de�nition language of the
database system and it must be established
and controlled by the database's conceptual
scheme. This implies that the data de�ni-

tion language is appropriate to cope with the
complexity inherent in project-wide syntax-
graphs. To manage this complexity the
distinction of objects and types, encapsula-
tion of objects' attributes by operations and
information-hiding as well as inheritance to
express generalisation/specialisation should
be applicable to the data de�nition. There-
fore, a powerful type mechanism including
object constructors for expressing di�erent
types of aggregation and method de�nitions
to achieve encapsulation must be provided.

Schema Updates Due to the re
ective
nature of SLANG we require support for
schema updates from the database system as
a prerequisite for a SPADE implementation.
This has a number of implications. First of
all, the database system must enable intro-
duction of new type de�nitions, changes to
existing type de�nitions and even deletion
of type de�nitions even though the database
may have been �lled with instances already.
As the process engine cannot be stopped for
executing the schema updates, these updates
must be possible, even if other concurrent



DBSE applications such as tools are operat-
ing against the database. Process data may
have been created and accessed under con-
trol of the schema which has to undergo a
change. These data must not be lost or cor-
rupted otherwise by the change. This re-
quires means to adapt the data structures
of existing data to the changed structures.
Since the process engine can not be stopped
for performing these changes, migration of
data must be atomic, i.e. either done com-
pletely or not at all.

Versions The DBSE must support cre-
ation and management of versions of those
subgraphs that represent versionable docu-
ments. In particular, it must enable its
clients to derive a new version of a given
subgraph, to maintain a version history for a
subgraph, to remove a version of a given sub-
graph, and to select a current version from
the version history.

Views A project-wide abstract syntax graph
may contain a lot of redundant information {
in Fig. 4 nodes of type FunctionModule, De-
clIdent, OperationList and the edges ToIdent
and ToExport are duplicated in the interface
and body subgraphs. Eliminating this du-
plication by sharing the aggregation subtrees
concerned has the following advantages: (1)
the conceptual schema is simpli�ed (2) stor-
age of the schema and corresponding data re-
quires less space, and (3) consistency preser-
vation especially across document bound-
aries becomes much easier. If subtree shar-
ing is to be used, tools accessing the project
graph need a view mechanism like that of-
fered in many relational database systems, to
maintain appropriate separation of tool con-
cerns and so allow separate tool development
and maintenance. These tool-oriented views
must be regarded as virtual graphs since they
are not actually stored in the DBSE, but up-
dates on views by tools must propagate au-
tomatically to the underlying project graph.

Active capabilities When abstract syntax-
graphs are changed by one user, other users
may have to be noti�ed about this change.
This can be achieved with a trigger facility.
Triggers may be used also to support con-

trol integration of the tools and process in-
tegration. Control integration implies that
a tool can invoke another tool to perform
some piece of software process it is carrying
out. A process model governs the invocation
of tools and a tool is invokable only if the
model allows it. Triggers are required also
to support the integration of software pro-
cess interpreters and the integration between
these interpreters and the tools.

Transactions The database system must
preserve the integrity of the abstract syntax-
graph and the process state against hard- or
software failures. Therefore the system must
support atomic transactions, i.e., a transac-
tion mechanism that enables grouping a se-
quence of update-operations such that they
are either performed completely or not per-
formed at all. To ensure that a tool can re-
cover in case of a failure to the state of the
last completed user-action, each completed
DBSE transaction must be durable.

Distribution In an SDE distribution of
activities is important. This can be achieved
by allowing for distributed accesses from the
users' (client) workstations to a database
server. Following this approach, however,
care must be taken that the server does
not become a performance bottleneck for the
whole environment.

4 Enhancing the O2 ODBS

Relational database systems are inappro-
priate for storing project graphs, since (1)
the data model can not express syntax
graphs appropriately, (2) relational database
systems do not support versioning of doc-
ument subgraphs and (3) relational views
are not updatable in general. No struc-
turally object-oriented DBMS meets all of
our requirements. Those that are capa-
ble of e�ciently managing project graphs
such as GRAS [20], lack functionality w.r.t.
views, versioning, access rights and ad-
justable transaction mechanisms, and distri-
bution. Others that o�er these functionali-
ties such as PCTE/OMS [17] or CAIS-A [2]
are unable to e�ciently manage the large



collections of small objects as they occur in
project graphs and are therefore inappropri-
ate. The approach of GOODSTEP is there-
fore to start from an existing object-oriented
DBMS which is the O2 system since this
already addresses some of the requirements
presented previously. This will be discussed
in Subsection 4.1. A major e�ort in GOOD-
STEP is devoted to enhancing O2 enhancing
or adding functionalities for schema evolu-
tion, version management, view de�nitions
and active database capabilities. This will
be addressed in Subsections 4.2-4.5.

4.1 Features o�ered already by O2

In [13] we have shown how to implement
the structure de�nition of project-wide ASGs
within a schema of a fully object-oriented
DBMS in general and within O2 in partic-
ular. In O2 we would therefore de�ne com-
mon properties of nodes within classes. The
type of the class then de�nes attributes and
outgoing edges as instance variables. Navi-
gation along edges is implemented by deref-
erencing. Consistency of the graph de�ni-
tion can be checked at compile-time based
on O2's type system. For schema simpli�-
cation purposes, inheritance is used to de-
�ne common properties of nodes only once
in a superclass. Integrity of a syntax graph
is enforced by encapsulation, i.e a tool can
not modify edges and attributes directly, but
must use the methods de�ned for that pur-
pose. The computations necessary for per-
forming these methods can be done within
the schema because the data de�nition lan-
guage of O2 is computational complete. We
have shown in [5] how the execution of the
process engine can be implemented using the
O2 query language [3].
O2 o�ers a transaction mechanism which

can be used for grouping a set of update
statements such that they are performed
completely and are then durable or not at
all. This enables updates of process states
as well as changes to a syntax-graph to be
done in an integrity preserving manner.
O2 provides for distributed access from

several clients to several central databases.
These client/server accesses exchange pages.
Given the clustering mechanism of O2 [9]
we can manage to transfer many nodes of

a syntax graph with a single network call.
A further contribution to e�ciency is that
execution of methods de�ned in the schema
is done on the client thus avoiding a perfor-
mance bottleneck on the servers.

4.2 Schema Evolution

Schema evolution in an object database
system refers to the ability to change
both the schema and consequently the
database. Every time a schema is modi-
�ed the database has to be updated to be
brought to a consistent state with respect to
the new schema. A schema can be changed
using special primitives, see for example [24].
The corresponding database updates are per-
formed using user-de�ned conversion func-
tions whose input parameters are instances
of the old and the new schema class de�-
nitions. Being executed they transform ob-
jects of the database to conform to the new
schema. The SDE builder has to de�ne a
conversion function for each modi�ed class
in the new schema. System default transfor-
mations are applied in case no explicit con-
version functions are given by the builder.
From a point of view of an SDE builder,

after execution of the appropriate conver-
sion functions, the entire database conforms
to the the new schema. From an imple-
mentation point of view, conversion func-
tions are updates to the database. There
are mainly two strategies for implementing
database conversion functions: immediate
and lazy [19]. In the �rst case, all objects
of the database are updated immediately af-
ter the execution of all conversion functions.
In the second case, objects are updated only
when used (i.e. conversion functions are exe-
cuted only when objects are e�ectively used).
No matter what strategy is used, the ef-

fect on the database has to be the same: the
database must be in a consistent state with
respect to the new schema [16]. For a more
detailed discussion of O2 schema updates us-
ing lazy evaluation of conversion functions
we refer the interested reader to [15].

4.3 Versions

Our goal for extending the O2 database
system with version management facilities is



to provide a Version Manager, implemented
as a prede�ned O2 class which provides a
set of methods for manipulating the di�er-
ent versions.
The granularity of versioning is that of

composite objects. These composite objects
implement subgraphs of the project-wide ab-
stract syntax graph. We provide a class
Version which enables a tool to de�ne com-
posite objects at run-time. Instances of this
class are the smallest entity known by the
version manager. The di�erent objects be-
longing to a composite object are versioned
together. Therefore the class Version pro-
vides several basic methods which allows the
SDE builder to:

� Create a version (i.e. initialize a version
history graph),

� Add or delete objects to a version, thus
including/removing them in/from the
versioned composite object

� Derive a new version from an existing
version,

� Determine a particular version as de-
fault version,

� Select a particular version di�erent from
the default version,

� Delete a version by removing it from the
DAG,

� Retrieve a version,

� Navigate through the version history
graph.

This will provide a tool builder with the
basic functionality to maintain di�erent ver-
sions of those subgraphs of a project-wide ab-
stract syntax graph that represent versioned
documents.

4.4 Views

The baseline of this part of the project is
the view mechanism de�ned in [1] and ex-
tended in [23]. In our approach, the de�ni-
tion of a view is similar to the de�nition of
a schema. A virtual schema is, like a nor-
mal schema, an organizational unit meant to
encapsulate a set of related intentional def-
initions. The main di�erence is that a real
schema describes the structure and behavior

of real data stored in the database whereas
a virtual schema describes a virtual world.
A view is thus in our context a special kind

of schema with certain restrictions. We use
the term virtual schema as a synonym of view
in what follows and the term real schema is
used in contrast to virtual schema to avoid
confusion.
Like a real schema, a view includes de�-

nitions of classes, methods, types, functions
and named objects. It may also import and
export de�nitions from other schemas, al-
though these mechanisms are given a slightly
di�erent semantics. In addition, virtual def-
initions can be included in a virtual schema.
As a matter of fact, the distinguishing point
between a real and a virtual schema is the
fact that the latter has at least one virtual or
imaginary class (possibly imported) whereas
the former has only real classes.
A virtual schema is always derived from

another virtual or real schema, which we call
its root schema. When we de�ne a view we
must therefore declare its root schema. The
root schema of a view determines on which
databases it can be activated, namely those
databases instantiated from its root schema.
Using these virtual schemas an SDE

builder is enabled to de�ne virtual abstract
syntax graphs on top of conceptual graphs
stored in the database. These graphs can be
accessed and modi�ed in a way customized
towards particular tools.

4.5 Active Capabilities

In the framework of GOODSTEP active
rules have been introduced in O2 as a means
of supporting SDE construction. We can
only sketch here and refer for an elaborated
discussion to [11]. Rules we consider are pro-
duction rules based on the Event-Condition-
Action (ECA) formalism. The overall se-
mantics of an ECA rule is: \Whenever the
event E occurs, if the Condition C holds then
execute Action A".
In our context, rules are components of

an O2 schema; they are de�ned at the same
level as types, classes and applications. They
are thus considered at a higher level than
programs, methods and data manipulation.
This approach allows to control the execu-
tion of more general operations than meth-



ods calls or manipulation of a single entity
(an entity is an object or a value) and to as-
sociate rules to transaction, program or ap-
plication executions. Rules respect encapsu-
lation and transparency: they are triggered
by authorized operations related to persis-
tent or transient entities. Rules can be ex-
ported/imported between schemas which in-
creases reusability. Finally, for the purpose
of programming guidelines, rules are isolated
from programs and methods: a rule can be
activated or deactivated only through rules.
The event part of a rule de�nition speci-

�es which events will trigger the rule. Pro-
posed event types can be divided into two
categories. The �rst category is made of
entity manipulation event types which are
generated by manipulations (creation, dele-
tion, update, etc.) of entities. The second
category is made of applicative event types
which are associated to the begin or end of a
transaction, an O2 program or application.
The Condition part is made up of predi-
cates (O2SQL queries) over entities. The
Action part is made of any O2C code. Con-
ditions and Actions can operate on persistent
or transient entities.
Based on the atomic transaction model of

O2, we de�ned two kinds of rules: (1) im-
mediate rules which are executed right af-
ter the occurence of the triggering event and,
(2) deferred rules (corresponding to cumula-
tive changes on entities) which are executed
at the end of the transaction (just before
its validation) in which triggering events oc-
cured. The choice of rules to be executed
is based on (i) a total rule ordering ensured
by the system and (ii) on the notion of ex-
ecution cycle. A cycle describes the execu-
tion of a sequence of operations belonging
to user-de�ned transaction, a program or a
rule. Every execution cyle is associated with
a delta structure containing data related to
the triggering operations considering the net
e�ect of these operations. Delta structures
can be accessed in Conditions and Actions
using speci�c operators.

5 Conclusions and Ongoing Work

In this paper, we have limited the presen-
tation of the project mainly to show the ra-

tionale of the project. We have discussed the
requirements posed to an SDE and the way
we propose to tackle them. The �rst inte-
grated version of the GOODSTEP platform
is due at the end of 1994.
Currently, we are starting to use the

GOODSTEP platform within two case stud-
ies. The aim of the �rst case study is to
customize the platform to an SDE for use
within typical information system develop-
ment processes. This SDE will then be used
by an industrial partner for development of
an information system supporting university
adminstration. In a second case study we are
going to customize the GOODSTEP plat-
form for use within airline software projects
of another industrial partner. These projects
reuse C++ classes from a variety of class li-
braries. The customised SDE for this project
is going to support the development and
maintenance process of C++ class libraries.
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