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Abstract. Measurements in the visible wavelength range at
high spectral resolution (1.3̊A) have been made at Longyear-
byen, Svalbard (15.8 E,78.2 N) during an interval of intense
proton precipitation. The shape and Doppler shift of hy-
drogen Balmer beta line profiles have been compared with
model line profiles, using as input ion energy spectra from
almost coincident passes of the FAST and DMSP spacecraft.
The comparison shows that the simulation contains the im-
portant physical processes that produce the profiles, and con-
firms that measured changes in the shape and peak wave-
length of the hydrogen profiles are the result of changing
energy input. This combination of high resolution measure-
ments with modeling provides a method of estimating the
incoming energy and changes in flux of precipitating protons
over Svalbard, for given energy and pitch-angle distributions.
Whereas for electron precipitation, information on the inci-
dent particles is derived from brightness and brightness ratios
which require at least two spectral windows, for proton pre-
cipitation the Doppler profile of resulting hydrogen emission
is directly related to the energy and energy flux of the inci-
dent energetic protons and can be used to gather information
about the source region. As well as the expected Doppler
shift to shorter wavelengths, the measured profiles have a sig-
nificant red-shifted component, the result of upward flowing
emitting hydrogen atoms.

Key words. Ionosphere (auroral ionosphere; particle precip-
itation) – Magnetospheric physics (auroral phenomena)

1 Introduction

Renewed interest has recently developed in auroral hydro-
gen emissions, the spectroscopic signature of energetic pro-
ton precipitation into the atmosphere. While not usually the
major source of particle energy flux associated with aurora
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(compared with electron precipitation) protons are an inte-
gral component of magnetospheric plasma that finds its way
into the ionosphere. The proton component responds differ-
ently from the electron component to a variety of forcing and
energisation mechanisms that eventually lead to precipitation
into the atmosphere, producing auroral emission features.

Satellite and rocket-borne instruments yield in situ mea-
surements of the energetic particle fluxes; global imaging
provides the large-scale precipitation pattern. Hydrogen line
profiles measured with ground-based instruments give infor-
mation needed to study in detail the physical processes that
protons undergo as they penetrate into the atmosphere. Since
ground-based instruments make continuous observations at
one location they are well suited to study the variability and
temporal evolution of the proton aurora. To investigate the
interaction of protons with the atmosphere requires good
spectral resolution and appropriate time resolution. The in-
strumental resolution must, therefore, be sufficient to map
accurately the line profile, in order to show the Doppler shift
and broadening without masking any physical effects, such
as a small wavelength shift of the peak. High spectral resolu-
tion also shows any contaminating spectral emission features
in the profile.

We report the first results of measurements of the Hβ line
of hydrogen acquired at Svalbard (15.8 E, 78.2 N) with a new
spectrograph, operating at a resolution (FWHM) of 1.3Å and
with integration times as short as 10 s. We show that these in-
strumental parameters are sufficient to identify clearly a red-
shifted wing of the profile and variations in the shape and
peak of the emission profile. These measurements are well
explained by a recently developed proton/hydrogen transport
model (Galand et al., 1998). A short review of both measured
and modeled hydrogen line profiles is presented in Sect. 1. It
was fortuitous that several satellites measured the proton pre-
cipitation and resulting UV emissions over Svalbard during
the proton aurora event measured from the ground. Parti-
cle data have been used as input to the Galand et al. (1998)
model, providing the first direct comparison of hydrogen pro-
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files measured at high spectral resolution with model profiles
using realistic energy spectra as input. The observations from
the several coincident instruments are described in Sect. 2.
The model is described briefly in Sect. 3 and in more detail
in an Appendix. The results of the comparison of measured
and modeled profiles are given in Sect. 4. The implications
and future direction of this work are discussed in Sect. 5 and
Sect. 6.

1.1 Ground-based observations of auroral hydrogen lines

The early history of auroral hydrogen emission line mea-
surements has been well documented by Eather (1967). Ve-
gard (1939) used a photographic spectrograph to make the
first measurements of the Hα and Hβ lines from Oslo, Nor-
way. He identified a diffuse Hβ line that peaked 5̊A short-
ward of the unshifted wavelength of a laboratory source. He
later interpreted the observation to be due to neutralized pro-
tons entering the atmosphere at high velocity (Vegard, 1948).
Gartlein (1951) confirmed the observation and interpretation
with detection of the Hα, Hβ , and Hγ lines. With greater res-
olution Meinel (1951) obtained spectra that clearly showed
that precipitating protons of very high velocity are responsi-
ble for an extended short wavelength tail in the line profile.
Eather and Jacka (1966) made measurements in the magnetic
zenith and the magnetic horizon directions, noting that the
Hβ line was broadened in both directions and that the zenith
profile was shifted, in addition, toward shorter wavelengths.
This observation provided definitive proof that energetic H
atoms and the associated proton beam precipitating into the
atmosphere are guided by the geomagnetic field.

Photographic recording of spectra required long exposure
times, thus denying attempts at dynamic and morphologi-
cal studies. Spectrophotometers were developed by Hunten
(1955) and Montalbetti (1959) to increase the time resolution
by using photoelectric detectors. Improvements followed the
adoption of ever more efficient photomultipliers. The small
slit area of spectrometers, however, is a basic limitation to
the light gathering power of these instruments. The next step
was the filter photometer developed by Omholt (1957). The
large geometric factor, together with photoelectric detection,
vastly improved the sensitivity (and time resolution) of the
hydrogen line measurements. Initially, filters of 10Å FWHM
were used which also had relatively poor rejection outside
the design passband, allowing emission features other than
hydrogen to pass into the detector. A channel measuring
the background was required for a meaningful measurement.
Zwick and Shepherd (1963) used a photoelectric Fabry-Perot
(F–P) spectrophotometer with a filter to isolate a single F–P
passband to obtain hydrogen line profiles and a background
measurement. While this method yielded an unambiguous
intensity measurement, the transmission was not as good as
that of a filter photometer. Improvements in interference fil-
ters resulted in a narrower passband (a fewÅ), a higher trans-
mission, better rejection outside the passband, and a larger
area, yielding excellent throughput. Continuous tilting of
such a filter scanned the Hβ line and the background radi-

ation, allowing intensity measurements of the line as low as
a few Rayleigh. This tilting-filter technique enabled Eather
and Jacka (1966) to make much progress in studying auroral
hydrogen emission.

Measurements of hydrogen line profiles at high resolu-
tion continued to prove challenging. Scanning spectrometers
were favored for many years (Johansen and Omholt, 1963;
Harang and Pettersen, 1967). The Fastie-Ebert design opti-
mised throughput using long curved entrance and exit slits.
Even so, long integration times are required to record the line
profile with a minimum of noise. Since wavelength scan-
ning records only a small segment of the line at a time, it
is not practical to use a spectral resolution less than about
4Å for the weak hydrogen lines without resorting to long
integration times. Fastie-Ebert scanning spectrophotometers
were used to study hydrogen line profiles by Henriksen et al.
(1985), Sigernes et al. (1994), Sigernes (1996), Lorentzen
et al. (1998), Deehr et al. (1998), and Lummerzheim and Ga-
land (2001). Application of CCD detectors to spectroscopy
allowed for the simultaneous registration of all spectral ele-
ments of a line profile, resulting in a large sensitivity gain.
Such imaging spectrographs are currently the optimal instru-
ments for high spectral resolution measurements of auroral
hydrogen lines (Baumgardner et al., 1993). One such instru-
ment, the High Throughput Imaging Echelle Spectrograph
(HiTIES), is described in Sect. 2.2 and used in the present
study.

1.2 Modelling of the hydrogen line profile

Transport of fast protons into the atmosphere, their energy
degradation and scattering, and their conversion to neutral
atoms needs to be solved in the process of deriving Doppler
profiles of radiating hydrogen atoms. The parameter required
is the velocity distribution of the emitting atoms, equiv-
alent to the wavelength dependence of the profile. Sev-
eral theoretical models of proton/hydrogen transport have
been developed and published, based on: a Monte Carlo
method (Kozelov, 1993; Lorentzen et al., 1998; Synnes,
1998; Ǵerard et al., 2000; Solomon, 2001), a range theoretic
method (Rees, 1982), or an explicit solution of the coupled
proton/H atom transport equations (Basu et al., 1993; Strick-
land et al., 1993; Galand et al., 1998); but only a few include
collisional angular redistribution, which is a key process to
include in order to interpret the Hβ profile at high spectral
resolution.

Eather and Burrows (1966) adopted the formulation devel-
oped by Chamberlain (1961) to construct theoretical hydro-
gen line profiles for proton fluxes penetrating a dipole geo-
magnetic field with a range of energy and pitch-angle dis-
tributions. Comparison with observed profiles (Eather and
Jacka, 1966) showed that the profiles cannot be modeled by
assuming monoenergetic proton fluxes. However, either ex-
ponential or power law distributions and an isotropic pitch
angle distribution yield a reasonable match to observed pro-
files. S̈oraas et al. (1994) used Chamberlain’s derivation to
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construct synthetic line profiles that they compared with Hβ

observations from two sounding rockets.
Gérard et al. (2000) decribed the H+/H transport using a

stochastic Monte Carlo approach. Their model includes col-
lisional angular redistribution and was applied to the Lyman-
α Doppler profile. No comparison with observed Doppler
profiles was proposed. Also using a Monte Carlo method
(but without collisional angular redistribution), Lorentzen
et al. (1998) compared their model output to the Hβ Doppler
profiles they acquired from Svalbard. The spectral resolu-
tion of the instrument was such that the red Doppler-shifted
part of the profile was well within the instrumental broaden-
ing. The measured profile could be modeled without includ-
ing collisional angular redistribution. Galand et al. (1998)
solved the coupled kinetic transport equations including col-
lisional angular redistribution, to model the Hβ magnetic
zenith Doppler profile. They were the first to show that when
collisional angular redistribution is taken into account in the
transport equations, a long wavelength tail is predicted, the
signature of hydrogen atoms travelling out of the atmosphere
(upward). Lummerzheim and Galand (2001) provided the
first observational evidence for a red wing of physical ori-
gin using a 0.43 nm resolution spectrometer from Poker Flat,
Alaska. They showed that the measured red wing was in
agreement with that predicted by the model of Galand et al.
(1998) through collisional angular redistribution.

The present work adopts the Galand et al. (1998) model
with collisional angular redistribution to predict the Hβ

Doppler profile. The detailed shape depends on the precipi-
tating proton energy spectrum and pitch-angle distribution.

2 Observations

2.1 Proton event over Svalbard, 26 November 2000

An unusually intense proton precipitation event occurred on
26 November 2000. It followed a sudden increase in the so-
lar wind density from 10 cm−3 to 25 cm−3 and subsequent
increases in solar wind velocity from 450 km/s to>600 km/s
measured by the ACE and Wind satellites. The main effect of
this fast shock in the solar wind was observed on the ground
at Longyearbyen at 12:00 UT, although bursts of hydrogen
emissions were observed during the morning hours follow-
ing initial, smaller increases in solar wind velocity and den-
sity. A short-lived negative excursion of theBz component
of the IMF at around 15:00 UT resulted in a characteristic
brightening of the emissions from proton precipitation in the
cusp, which is the subject of a separate paper (Lockwood
et al., 2003). The ground-based measurements that are de-
scribed here were made at Longyearbyen (15.8 E, 78.2 N)
on Svalbard, which was in the afternoon sector at the time
of the largest variations in the optical emissions associated
with the proton precipitation (Lanchester et al., 2003). The
large scale effects of the proton event are seen clearly with
data from the Spectrographic Imager (SI12)/FUV instrument
on the Imager for Magnetopause-to-Aurora Global Explo-

ration (IMAGE) satellite, which provides 5–10 s images of
the Doppler-shifted Lyman–α emission at 2-min intervals of
the entire auroral oval. This emission, like the Hβ emis-
sion, is produced solely by proton precipitation into the at-
mosphere (Frey et al., 2001). Particle spectra from the FAST
satellite and from the DMSP satellites F12 and F13 provide
the input to modeling of the Hβ profiles measured below the
satellites, which passed very close to the Longyearbyen site.

2.2 Ground-based Imaging Spectrograph HiTIES

The High Throughput Imaging Echelle Spectrograph (Hi-
TIES) provides simultaneous measurements at different non-
contiguous wavelength regions (Chakrabarti et al., 2001;
McWhirter et al., 2003; Lanchester et al., 2003). It employs
an echelle grating used at high orders with a free spectral
range of 33̊A. The data recorded to date have demonstrated
that the imaging spectrograph is capable of measuring auro-
ral emissions, in particular Hβ , with high spectral resolution
and high time resolution. Measurements presented here are
at 60 s integration, but measurements were made at 10 s res-
olution, which showed clear Hβ profiles, albeit rather noisy.
The field-of-view is a narrow slit of 8◦ centred on the mag-
netic zenith. The data presented in this paper have been
integrated over the central 4◦ of the slit, which for an Hβ
emission has the effect of increasing the signal-to-noise ra-
tio without any loss of information. Integrating data over a
smaller angular range does not affect significantly the mag-
netic zenith profiles. However, the instrument has been de-
signed to detect small spatial changes at high time resolu-
tion for dynamic auroral structures, during which the angular
range of integration is kept as small as possible. In addi-
tion to the Hβ spectral window, two others were used on this
campaign to measure the N+

2 1N bands (4635–4660̊A) and
(4690–4715̊A) (Lanchester et al., 2003), which in the present
work are used as an indicator of electron precipitation, useful
for checking the background emission.

Hβ emission profiles at 60 s resolution are plotted as a time
sequence in Fig. 1a from 13:00–16:00 UT on 26 Nov 2000.
The intensity scale is in arbitrary units (counts), which are
proportional to brightness in Rayleighs. The position of
the unshifted Hβ line is marked at 4861.3̊A. This sequence
shows that the intensity of the Hβ emission increased in
several bursts. The peak wavelength is shifted to shorter
wavelengths throughout, the result of line-of-sight velocity
of downward moving hydrogen. There is a significant red
shifted wing in the line profile throughout the event, a con-
sequence of upward moving hydrogen. The shift of the peak
appears to decrease with time, which is seen more clearly in
Fig. 2. Two profiles of the Hβ line are shown from within
the bursts in intensity at 13:33 UT and 15:12 UT (marked
with arrows in Fig. 1a). The intensity scale is arbitrary, but
subsequent figures use the same intensity axis (counts from
0 to 1000), in order for direct comparisons to be made. The
instrument function is overlaid. The red shift and the peak
shift are greater than the FWHM of the instrument function,
and, therefore, cannot be explained by instrumental broad-
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Fig. 1. (a) Time series of Hβ profiles. The arrows mark the times of
the profiles in Fig. 2.(b) Time history of Lyman–α intensity at lon-
gitude of Longyearbyen (15.8◦ E). Times of the passage of FAST
and DMSP satellites over the latitude of Longyearbyen (78.2◦ N)
are marked. Each pass has 5 points at one-minute intervals, centred
on 13:16 UT, 14:07 UT, 14:38 UT and 15:28 UT, respectively.

ening. As will be shown later, the red wing is induced by
collisional angular redistribution occurring inside the proton
beam, confirming earlier observations by Lummerzheim and
Galand (2001). Note that as well as a change in the shift of
the peak, the profiles have also changed in shape (see Fig. 2).
These profile shapes are the subject of this investigation.

2.3 Measurements from above (IMAGE)

Lyman–α images from the IMAGE/SI12 instrument have
been combined in Fig. 1b, which is a time sequence of slices
centred on the longitude of Longyearbyen (15.8◦) and av-
eraged over 1◦ in longitude. The geographic latitude of
Longyearbyen is marked at 78.2◦. The hydrogen emission
intensity measured from above at this latitude can be seen to
vary with time in a similar way to that measured in Hβ from
below (Fig. 1a), with several distinct bursts. The equator-
ward drift with time seen in Fig. 1b has two components.
The position of the oval moves to the south as the after-
noon progresses, but superimposed on this is a very abrupt
expansion of the oval following the southward turning of
the IMF Bz component. This expansion occurs at around
15:30 UT following a brightening of emissions in the cusp
(Lockwood et al., 2003). This is then followed by a sub-
storm in the 24 MLT sector, and a poleward return of the
emission region. As a result of these events, the emissions
measured over Longyearbyen near the start of the interval
plotted in Fig. 1 are at the centre of a region of precipitation,
but progressively they are from the northern edge of the op-
tical features. However, there are certainly temporal changes
within the large spatial movement southwards, also seen in
the Meridian Scanning Photometer measurements of the Hβ
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Fig. 2. Hβ profiles at times of increased intensity (marked with
arrows in Fig. 1a). The instrument function is superimposed.

emissions from Longyearbyen (not shown). Therefore, de-
convolving temporal and spatial effects is difficult.

Plotted on Fig. 1b are the latitudinal coordinates of
the FAST spacecraft for two consecutive passes around
13:16 UT and 15:28 UT, and of the F12 and F13 spacecraft
at around 14:07 UT and 14:39 UT. The plotted points are one
minute apart (see figure caption for exact times). It must be
remembered that this is a temporal plot along the abscissa,
and, therefore, the satellite positions marked here contain no
longitude information. They act only to show the relative
position in latitude of the satellites to the emission regions.

2.4 In situ particle measurements (DMSP)

Measurements from the pass of the F12 spacecraft closest to
Longyearben are plotted in spectrogram form in Fig. 3. The
satellite passes slightly to the east and north of Longyear-
byen, which lies near the poleward edge of the region of
proton precipitation at around 14:39 UT. The proton spec-
tra from the F13 spacecraft when close to Longyearbyen at
14:07 UT are similar in energy and flux to the F12 pass in the
region of proton precipitation, and are not shown here. There
is no pitch-angle information as DMSP satellites view in the
local zenith.

2.5 In situ particle measurements (FAST)

The two FAST passes during the interval under study show
a temporal evolution between consecutive orbits, with an in-
crease in the incoming energy flux measured by the satellite
detectors. Mapping down the geomagnetic field to 500 km
height is performed to provide spectra at the top of the iono-
sphere as input for modeling. This assumes there are no sig-
nificant electric fields between the height of FAST and the
ionosphere; no evidence for such fields is seen in either the
electron or in the proton data. In the proton measurements
used here, the fluxes are isotropic in the loss cone, which
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Fig. 3. DMSP F12 energy spectrogram of electrons (top) and ions (bottom).

is calculated to beθ < 30◦. Only protons within this loss
cone will interact with the collision dominated ionosphere.
Because of the isotropy, and the absence of a parallel elec-
tric field below FAST, the differential number flux of protons
at FAST is equal to the differential number flux at the iono-
sphere.

For orbit 16 927 shown in Fig. 4 the satellite passes to
the east of Longyearbyen at 13:16 UT, but for the next or-
bit (16 928) seen in Fig. 5 it is almost directly overhead at
15:28:30 UT. The top panel of these figures contains the en-
ergy flux carried by precipitating (θ < 30◦) ions mapped to
the ionosphere. This is a lower limit of the energy flux, as
FAST measures only up to 28 keV, and from the lower pan-
els it can be seen that ions of higher energies are likely to
be significant. The second panel in each of Fig. 4 and Fig. 5
is the downgoing differential energy flux. The lower panels
in these two figures show the full pitch-angle distribution, in
order to emphasise the isotropy of the precipitation. Only
spectra within the loss cone are used as input to the model.
The loss of upgoing protons at 180◦ pitch-angle is clear.

In the later pass, the spatial variation in the energy spectra
as the satellite crosses the precipitation region shows a clear
dispersion in energy, with energy decreasing with decreasing
latitude. The position of Longyearbyen is within the separate
region of precipitation poleward of the main region. It can
be interpreted from the IMAGE data as structure along the
polar cap boundary. Several discrete regions of emission are
evident in the Lyman–α images.

3 The Galand model of the hydrogen Doppler profile

The model developed by Galand (1996) is a comprehensive
proton transport code. It solves the steady-state Boltzmann
equations for protons and H atoms and gives the proton and
H atom fluxes as a function of altitude, energy, and pitch-
angle, starting from a specified incident flux at the top of the
atmosphere. The solution includes the introduction of dis-
sipative forces to simulate the energy loss from collisions,
and includes angular redistribution from collisions and mag-
netic forces (Galand et al., 1998; Galand and Richmond,
2001). Collisional angular redistribution is taken into ac-
count through elastic collisions and through charge-changing
collisions (i.e. capture and stripping). A phase function is in-
cluded which can be considered as the probability function
of angular redistribution through collisions. It has been suc-
cessfully validated by comparison with rocket particle data
of Söraas et al. (1974) and with the model of Basu et al.
(1993) (Galand et al., 1997). Starting with an incident pro-
ton beam, the resulting H emission Doppler profiles are de-
termined from the computed particle fluxes, neutral densi-
ties and emission cross sections. Since the transport equa-
tions are linear with respect to the incident proton flux, the H
Doppler profile is directly proportional to the energy flux of
the incident proton beam. A full description of the model is
given in the Appendix.
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Fig. 4. (top panels) Energy flux of
downgoing ions and energy spectro-
gram from FAST at around 13:17 UT.
(bottom panels) Energy flux as a func-
tion of ion pitch-angle vs. energy, and
as a function of energy for three differ-
ent pitch-angles. The times are marked
in the top panels.
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Fig. 5. (top panels) Energy flux of
downgoing ions and energy spectro-
gram from FAST at 15:28 UT. (bottom
panels) Energy flux as a function of ion
pitch-angle vs. energy, and as a func-
tion of energy for three different pitch-
angles. The times are marked in the top
panels.
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Fig. 6. Integrated Hβ profiles showing geocoronal contamination
when Hβ emission is weak after 15:46 UT.

4 Results: measured and modeled profiles

4.1 Analysis of the observed Hβ profiles

Flat fielding and dark current subtraction are applied rou-
tinely to the data frames from the HiTIES instrument. Wave-
length calibration is performed using Fraunhofer absorption
lines present in the scattered light solar spectrum measured
during the twilight hours near noon at Svalbard. The uncer-
tainty on the resulting wavelength scale is±0.05Å.

Background subtraction is required to eliminate the effect
of emissions from electron precipitation underlying the hy-
drogen emission. For the Hβ profiles the region at the high
wavelength end (>4870Å) of the data frame is used. Pixels
beyond the red-shifted profile are averaged and subtracted
from each frame. The effect of resonant scattered sunlight
is a problem for the auroral Hβ emission measurements be-
tween about 8:00 UT and 13:30 UT in late November. The
spectrograph sees scattered solar Hβ and other species in ab-
sorption throughout the “daylight” hours. When no cloud or
precipitation is present, these data can be used in the wave-
length calibration process. However, in the data presented
below there was indeed proton precipitation from 12:00 UT
onwards, and a method has been developed to extract the
emission profiles resulting from proton precipitation from the
sunlight contaminated background. The profiles from these
times must always be treated with caution. In the results pre-
sented below the possible effect of sunlight will be discussed
whenever it is relevant.

Other contaminating emissions are found to persist in the
data. The most important is at the unshifted wavelength of
the hydrogen line at 4861.3̊A. The likely cause is the res-
onant fluorescent component of geocoronal hydrogen emis-
sion, which varies in strength throughout the day and night,
and appears to be strongest after bursts of proton precipita-
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Fig. 7. Comparison of measured profile with modeled profiles using
as input the spectra shown in Fig. 10. The dot-dash curve is the
contribution of the unshifted line which has been removed in the
solid curve.

tion. The occurrence of this emission is of interest in itself,
and will be discussed elsewhere. It has been observed previ-
ously at auroral latitudes by Kerr and Hecht (1996), who used
a Fabry-Perot spectrometer in quiet conditions to measure a
weak (8 Rayleigh) emission of the Hα line. In the present
data the narrow unshifted emission line dominates the spec-
trum at times when the Doppler shifted emission is of low
intensity. The effect of the unshifted line is shown in Fig. 6,
which is an integration of all profiles between 15:45 UT and
17:00 UT. A Doppler shifted Hβ profile is present, but it is
weaker than the unshifted line at this time. In order to elim-
inate it from the Doppler profiles the unshifted line emission
has been fitted to a Gaussian shaped profile, and then sub-
tracted from the data. An example can be seen in Fig. 7
when the effect was clearly visible at the unshifted wave-
length. The measured profile before the subtraction of the
geocoronal line is plotted as a dot-dash line, and the result-
ing profile is the thick solid line. The other curves in this
figure will be discussed below.

4.2 FAST pass at 13:16 UT

Sample ion energy spectra have been chosen from the satel-
lite passes shown above (see Fig. 1b) to use as input to the
model. The first FAST orbit at 13:16 UT does not make
such a good conjunction with Longyearbyen as the subse-
quent orbit, passing to the east by several degrees of lon-
gitude. However, the two orbits indicate a temporal and/or
spatial evolution of the proton precipitation at the latitude of
Longyearbyen between 13:00 UT and 15:30 UT. The vari-
ability of the spectra at the time of the first pass is clear from
Fig. 4, with a significant high energy component not mea-
sured by the spacecraft. The particle flux chosen as input to
the model from 13:16:07 UT is plotted in Fig. 8. The parti-
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Fig. 9. Comparison of measured profiles at three different times
with modeled profile, using as input the spectrum shown in Fig. 8.

cle data have been integrated over 3 s, and mapped down the
geomagnetic field to the ionosphere. Above 28 keV, where
the measurements cut off, a high energy tail for the energy
spectrum has been extrapolated for input to the model, as de-
scribed in Sect. 2.5. Between 28 keV and 100 keV, the last
few energy bins of the measured flux are used for the extrap-
olation. At energies greater than 100 keV the slope is taken
from results of the Proton I rocket experiment (Söraas et al.,
1974). This experiment was on the nightside, and, therefore,
may not be the most appropriate shape. The high energy
part of the spectrum is certainly an unknown in these data,
particularly at times after 13:16 UT. It can be seen in the
bottom panels of Fig. 4 that the measured energy spectra at
13:17:40 UT, 13:19:00 UT and 13:19:30 UT have peak ener-
gies much higher than 30 keV.

In order to compare the measured hydrogen line profiles
with model results using this FAST pass, there are two prob-
lems: (1) the lack of good conjunction of the satellite with
Longyearbyen and (2) the possible effect of solar absorption
lines. The model profile is plotted in Fig. 9 and compared
with three measured profiles (with solar absorption lines sub-
tracted) during the interval of the FAST pass. These exam-
ples show the increase in intensity of the Hβ emission over
Longyearbyen between 13:16 UT and 13:29 UT. The model
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Fig. 10. DMSP F12 input particle flux at 14:37 UT and 14:39 UT
with high energy extrapolation.

profile is scaled to the peak of each profile, as is the case in all
subsequent figures comparing model and measured profiles.
The overall fit is good, but there is a higher level of uncer-
tainty for these data than with later examples, with a combi-
nation of solar absorption and geocoronal emission affecting
the region around the unshifted wavelength of Hβ . However,
we believe that the methods used to eliminate these effects
are sufficient to provide excellent Doppler profiles during this
time. The effect of the scattered sunlight was greater at the
times shown in the first two panels, but was minimal by the
third.

4.3 DMSP pass at 14:39 UT

The DMSP F12 satellite passed through the region of proton
precipitation between 14:36 UT and 14:40 UT, with maxi-
mum energy flux measured between 14:37–38 UT when the
satellite was to the east of Longyearbyen. It then passed to
the north of Longyearbyen, by which time it was out of the
main precipitation region. This can be determined from the
Lyman–α emissions measured by IMAGE. For this reason,
two spectra have been used as input to the model to show
the difference between the middle of the precipitation region
at 14:37 UT and a region at the northern edge at 14:39 UT.
These are shown in Fig. 10 with extrapolation at large ener-
gies. The change from extrapolation to applied slope is made
at 60 keV for the 14:37 UT spectrum and at 90 keV for the
14:39 UT spectrum, in order to make the most realistic high
energy tail in each case.

Modeling of these input spectra show clearly that the mean
energy of incoming protons has a large effect on the resulting
profiles. The two model profiles are plotted in Fig. 7 with
measured profile superimposed. As mentioned above, the
contribution from the unshifted line is the dot-dash curve,
and the measured profile after its subtraction is the thick
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Fig. 11. FAST input particle flux with high energy extrapolation.

solid line (see Sect. 4.1). The model result using the input
spectrum from the middle of the proton precipitation region
makes a very good fit to the measured profile, whereas the
input spectrum from the northern edge of the region under-
estimates the incoming proton flux at high energies signifi-
cantly.

4.4 FAST pass at 15:28 UT

The closest approach to Longyearbyen was by the FAST
satellite between 15:28 UT and 15:29 UT. The distributions
in pitch-angle and energy can be seen in the lower two sets
of panels in Fig. 5 at one-minute intervals between 15:28 UT
and 15:31 UT. The downgoing flux of ions was isotropic at
this time. The bottom panels of Fig. 5 show how the ion en-
ergy spectral shape varied. There is a clear, almost monoen-
ergetic peak of 1 keV at 15:28 UT, which decreases gradu-
ally in energy with decreasing latitude (as seen in the second
panel of Fig. 5). By 15:29 UT this distribution has reduced in
intensity, forming a gap in precipitation as the satellite trav-
elled equatorward, entering the region of more intense and
higher energy proton precipitation by 15:31 UT.

Spectra from three chosen times (15:28:30 UT, 15:29:37
UT and 15:31:41 UT) have been averaged over 3 s, and
mapped down the geomagnetic field to the ionosphere
(Fig. 11). They have had the same extrapolation procedure at
high energies as the spectrum shown in Fig. 8.

The model results for these spectra are plotted in Fig. 12.
The short wavelength wing decreases with decreasing mean
energy of the incident proton flux, which is 14.0 keV, 4.9 keV
and 7.7 keV for the 15:28 UT, 15:29 UT and 15:31 UT spec-
tra, respectively. The measured profile of 60 s integration at
this coincident time is superimposed (thick line). The inte-
gration interval is from 15:27:36 UT to 15:28:36 UT, which
covers the time of closest approach of the FAST satellite to
Longyearbyen. There is very good agreement over the whole
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Fig. 12. Comparison of measured profile with modeled profiles us-
ing as input the spectra from FAST at 15:28:30 UT, 15:29:37 UT
and 15:31:41 UT shown in Fig. 11.

profile, apart from the extreme red wing. Although the blue
wing is sensitive to the extrapolation of the incident pro-
ton flux at high energies, changing this input results in no
change to the red wing of the model profile, which is the re-
sult of upward-moving hydrogen. Angular redistribution is
most effective at low energies. These upward moving hy-
drogen atoms result from the precipitating protons after they
have undergone energy degradation in the atmosphere. The
shape of the red wing is thus almost independent of the en-
ergy distribution of the precipitating protons at the top of the
atmosphere.

In order to give a smoother profile for comparison with
model profiles, an integration over the time of the increased
flux (15:05 UT to 15:31 UT) is shown in Fig. 13, along with
the same model profiles as shown in Fig. 12. Apart from
the far red and blue wings, the profile fits the shape of the
model results very well. It is possible that other contami-
nating emissions are present (e.g. see Fig. 6) at either side
of the Hβ Doppler profile, at around 4847̊A and 4869Å.
No attempt has been made to remove these effects from the
present data, and the physical processes creating these in-
creased emissions have not yet been identified.

4.5 Profile fitting

From Fig. 1 and Fig. 2 it appears that there is a change in
the wavelength of the peak intensity through the afternoon,
from shorter to longer wavelengths. This would result from
a decrease in the mean energy of the incoming protons, or
from a change in the energy distribution. The FAST ion data
indicate that the mean energy was indeed higher at the time
of the first pass (13:16 UT). The energy flux was greater at
the time of the later pass (15:28 UT). This is also confirmed
by the HiTIES measurements, which registered the greatest
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Fig. 13. Integrated Hβ profiles at time of increased intensity be-
tween 15:05 UT and 15:31 UT. The same model profiles shown in
Fig. 12 are included.

intensities between 15:00 UT and 15:30 UT.
In order to investigate the possible change in the peak

wavelength, the measured profiles have been analysed using
a method described in Lummerzheim and Galand (2001). A
synthetic line profile is constructed from a Gaussian shape
with different half widths on the blue and red sides of the
peak, thus accounting for the different Doppler shift pro-
duced by precipitation towards the instrument and scattering
of hydrogen away from the instrument, respectively. These
synthetic spectra are fitted to the measured profiles, using
a nonlinear least-squares fitting method. This method has
been used to give a summary of the changes in the shape
and peak intensity of the measured profiles. The results are
shown in Fig. 14. There is evidence of a small variation of the
peak wavelength (∼1.5Å) between 13:50 UT and 15:29 UT.
There is also a steady reduction of the width of the blue wing
between 13:00 UT and 14:30 UT. It then remains constant.
The red wing (not shown) does not change appreciably af-
ter 14:00 UT, but is wider and more variable in the earlier
profiles. The data after 16:00 UT have a low signal-to-noise
ratio. It is also apparent from the spread of the fit parame-
ters that the most reliable estimates are from the periods of
increased emission (see bottom panel of Fig. 14). Figure 15
shows the fitted and measured profiles for four selected times
with the peak wavelength marked. This figure shows that
even when the intensity is at a lower level between the bursts
of emission, the fitting procedure is reasonable.

5 Discussion

The events of 26 November 2000 proved to have many inter-
esting features, some of which have been reported elsewhere
(Lockwood et al., 2003). These events provided the first clear
measurements of Hβ profiles made with the HiTIES instru-
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Fig. 14.Variations in fitted paramaters of profiles: (top) peak wave-
length, (middle) width of blue wing and (bottom) intensity in counts
per minute.

ment on Svalbard. The prolonged incidence of proton pre-
cipitation in an extended region encompassing Svalbard dur-
ing the early afternoon hours gave the first opportunity to
compare the changes in the measured hydrogen profiles with
results of modeling, using as input several different energy
spectra from satellites passing over Longyearbyen, and over
the proton precipitation region. The changes in the profiles
at 60 s resolution gave evidence for the variability of the in-
coming protons in flux and energy. After 13:00 UT, when
the effect of solar scattering was reducing, several bursts in
Hβ emission were measured at Longyearbyen, as shown in
Fig. 1 and Fig. 14, superimposed on a steady background of
emission. As can be seen from the Lyman–α emissions from
the IMAGE satellite in Fig. 1b, these formed a band which
was centred over Longyearbyen at 13:00 UT but gradually
moved south relative to the ground station, the result of the
Earth’s rotation. At 15:30 UT the effect of a southward turn-
ing of IMF Bz caused a sudden expansion of the auroral oval,
and consequently, a further movement of the peak emission
southward of Longyearbyen. The changes in the measured
Hβ Doppler profiles appear to reflect this spatial change, with
a decrease in the blue wing, and a small but steady decrease
in the shift of the peak of the profiles, most probably indi-
cating a reduction in mean energy of the incoming protons
during the afternoon.
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Fig. 15. Fitted profiles for four dif-
ferent times showing changes in the
fitted peak and halfwidth of the blue
wing. The intensity scale is in counts
per minute.

In order to justify these conclusions a detailed compari-
son of measured and model profiles has been made. The best
direct comparison is from FAST orbit 16 928 at 15:28 UT.
This is immediately before the time that the emissions moved
south of the ground station and at the end of one of the
bursts in flux. The satellite passed almost directly overhead
at 15:28:30 UT. The model profiles and the integrated ob-
served profiles (Fig. 13) are very close in shape for the peak
value and most of the blue wing. The 60 s profile at 15:28 UT
(Fig. 12) also compares well with the model result, even
though the brightness was reduced at the end of the final burst
of emission. The blue wing is more raised in the integrated
profile, indicating higher mean energy of the incoming pro-
tons earlier in the interval. The raised blue wing reflects the
presence of a high energy tail to the energy spectrum of the
incoming protons. In order to provide an input spectrum to
the model, we have estimated the contribution that this high
energy tail makes to the spectrum, and it can be seen from the
three model curves in Fig. 13 that changes could be made that
would satisfy the measured shape. The contribution from a
peak in energy of∼5 keV in the 15:31 UT spectrum is seen
in the width of the profile near the peak value.

The measured red wing is mostly fitted well by the model
results in the examples shown. In order to fit the red wing
more precisely it may be necessary to take collisional angu-
lar redistribution up to higher energies in the model than has
been done here. The effect of this change is seen in Fig. 16.
Here the input spectrum from FAST at 15:28 UT has been ap-
plied to the model with collisional angular redistribution be-
low 1 keV and again below 50 keV, as an extreme example.
If collisional angular redistribution is applied up to higher
energies, particles of higher energies are scattered upwards.
As a result, the red wing extends to larger wavelengths. The
curves in Fig. 16 are normalised: the total brightness for the
50 keV case is about 50% of the 1 keV case, as in the former
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Fig. 16. Collisional angular redistribution applied below different
energy thresholds.

fewer particles reach the E-region atmosphere and, therefore,
less excitation occurs. The model has no restriction regarding
the phase function and its dependence on energy. It has been
assumed in the analysis that the phase function is constant
over energy. Above 1 keV, the phase function is small. For
this reason the results shown in Sect. 4 have collisional an-
gular redistribution applied below 1 keV. This is an area that
can be investigated with the acquisition of more data under
different conditions.

It can also be seen from Fig. 16 that the effect of colli-
sional angular redistribution at high energies is also a factor
in producing a variation in the peak wavelength. Not only is
the red wing more raised with the change in upper limit for
the backscattered component, but the peak wavelength oc-
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Fig. 17.Comparison of three different model runs corresponding to
the best fit to measured profiles at times of satellite passes.

curs at longer wavelengths. The model results also indicate
that a small change in the peak wavelength with a change in
mean energy is predicted. Figure 17 shows three model pro-
files using satellite spectra from different times (13:16 UT,
14:37 UT and 15:29 UT), with different energy distributions.
There is a small change in blue shift near the peak of the
profiles, which matches quite well the measured results from
these three times. More distinct changes could be achieved
in the model results if anisotropy is taken into account.

The measured profiles show variations in the peak wave-
length, with a move from shorter to longer wavelengths be-
tween 13:00 UT and 14:30 UT, although it can be seen from
Fig. 14 and Fig. 15 that there are excursions from this trend,
especially during the earlier part of the event. The observed
trend agrees with the satellite particle measurements of the
precipitating energy distributions, which show that there is a
decrease in the mean energy between the two passes. The
IMAGE Lyman–α data also show that temporal bursts in
emission are superimposed on the background emission that
is gradually moving southward away from Svalbard, indicat-
ing that the observed changes measured on the ground reflect
the fact that the incoming protons have a changing energy
distribution across the spatial extent of the region of precip-
itation. The energy spectrum with high energy tail occurs
in the middle of the region. As the region of precipitation
moves over the ground station the measured blue wing of the
profiles reduces. The peak wavelength and the blue wing of
the profiles are very closely linked; the shape of the whole
profile gives the complete energy distribution of the incom-
ing protons.

Although the comparison between measured and mod-
eled profiles has been limited to times when spacecraft have
passed close to Longyearbyen, there is still a problem of
separating spatial and temporal changes measured on the
ground. For the 15:28 UT pass, the location of Longyearbyen

is very close to the edge of a separate emission structure, and
this makes the interpretation of the ground-based measure-
ments more crucial to the understanding of the changes in
energy input. It shows that temporal and spatial changes of
precipitation on quite short time scales are the likely expla-
nation for the very variable Hβ line profiles that are mea-
sured. At the time of the DMSP pass at 14:37 UT, it appears
from the Lyman–α images from IMAGE that the F12 satellite
skirted the edge of the region of most intense proton emis-
sion. For the 13:16 UT FAST pass the IMAGE data (Fig. 1b)
show that Longyearbyen is close to the middle of the precip-
itation region at this time, and therefore an input spectrum
from the middle of the intense region is more likely to be ap-
propriate. However, the spectra measured by FAST do not
extend high enough in energy to make this a valid compari-
son here. Again, there is much variation in the energy spectra
measured by FAST, which is interpreted as spatial changes.
These could indeed be related to temporal bursts of emission,
and varying profile shapes measured on the ground during
this interval, seen in Fig. 1 and Fig. 14. Another limitation of
this comparison between measured and modeled profiles is
the fact that the model is one-dimensional. Therefore, the ef-
fect of horizontal transport is not included. Proton beams are
spread out when they are partially neutralised through col-
lisions (Davidson, 1965; Johnstone, 1972; Iglesias and Von-
drak, 1974; Kozelov, 1993). There could be a small contri-
bution to the measured profiles from neighbouring regions,
which is not accounted for in the model. The spatial varia-
tions measured by FAST are of the order of 20 km.

The combination of global images and satellite particle
measurements is particularly powerful in choosing the input
spectra most suited to model the resulting emission profiles
measured from the ground. The results discussed here are the
first such comparison of measured Hβ profiles at high resolu-
tion with model profiles obtained from independent satellite
measurements of the incoming energy distributions.

6 Conclusions

1. Measured Hβ profiles give an excellent estimate of the
variations of incoming proton mean energy and en-
ergy flux. During a strong proton precipitation event
over Svalbard, mean energies of a few keV to>15 keV
were measured by particle detectors on satellites flying
over Longyearbyen, which corresponded to changes in
the shape of Doppler profiles measured with a ground-
based imaging spectrograph (HiTIES). The high reso-
lution and sensitivity of the HiTIES instrument allowed
for small changes in the peak wavelength to be detected.
These changes were most probably the result of changes
in the energy spectra of the incident particles. Further
investigations of the source of these changes will need
to consider the anisotropy of the incident proton beam
and the dependence in energy of the phase function.

2. Modelled Hβ profiles, using the measured energy spec-
tra from satellites as input, closely resemble the mea-
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sured profiles in shape. In particular, the reduction in
the extent of the blue wing reflects the decreasing mean
energy during the event. As well, the presence of an
extended red wing confirms the result of Lummerzheim
and Galand (2001) that there is a backscattered compo-
nent of hydrogen atoms. This is the first observation on
the dayside of a red wing of physical origin.

3. Lyman–α measurements from IMAGE/SI12 show how
the large-scale emission region over Svalbard is related
to the measurements on the ground. In this event we in-
terpret changes in the peak wavelength and profile shape
measured with HiTIES as the result of both spatial and
temporal changes in the precipitating flux of protons
over Svalbard. The global images are invaluable in the
choice of the most appropriate particle data from FAST
and DMSP satellites to give realistic input spectra for
the model.

4. The high energy part of the input spectra is not mea-
sured by satellite detectors above 30 keV. It is clear from
the measured Hβ profiles presented here that a large
proportion of the incoming protons have energies above
this value. The measured emission profile could provide
even more information about the high energy tail of the
incoming proton distribution with a proposed change of
filter to include more of the blue shifted wing below
4843Å. The HiTIES instrument thus provides a con-
tinuous measure of the precipitating energy distribution
of protons over Svalbard, dark and cloud-free skies per-
mitting.

Appendix The Galand model of the hydrogen Doppler
profile

The present model solves the coupled transport equa-
tions for the proton and hydrogen fluxes8P (s, E, µ) and
8H (s, E,µ) as a function of the distances along the mag-
netic field line, energyE, and cosine of the pitch-angleµ.
The equations are (Galand, 1996; Galand et al., 1997; Ga-
land and Richmond, 1999):
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In both equations the first term on the left side specifies
the change in particle flux along a magnetic field line. The
second term accounts for the variation in pitch-angle in a
non-uniform magnetic field. The third and fourth terms rep-
resent the energy degradation through non-charge-changing
reactions (excitation, ionisation and elastic scattering) and
charge–changing reactions (stripping (01) and capture (10)),
respectively. The energy degradation is taken into account
through a dissipative force.

On the right side of the equations the collision term is re-
duced to pure elastic reactions for all processes. The energy
losses are included on the left-hand side. The first term ac-
counts for particle loss by all collision processes. The second
term describes particle gain through angular scattering while
the last term gives the particle gain through angular redistri-
bution in the charge-changing reactions.

Denoting protons and hydrogen atoms byγ ( = P, H),
collisions with neutral species byα ( = N2, O2, O) and col-
lision type byk ( = excitation, ionisation, elastic scattering)
the energy loss function is

Lk
α,γ (E, µ′

→ µ) =

W k
α,γ (E,µ′

→ µ)σ k
α,γ (E)ζ k

α,γ (E, µ′
→ µ), (A3)

whereW k
α,γ is the energy loss,σ k

α,γ is the collision cross sec-

tion. ζ k
α,γ is the normalized phase function which specifies

the angular redistribution. Applicability of the continuous
energy loss approximation is discussed and justified by Ga-
land (1996) who also gives numerical values for theWs and
σs. The phase function uses the screened Rutherford cross
section. Denoting the scattering angle by2,

ζ(cos2) =
4ε(1 + ε)

(1 + 2ε − cos2)2
, (A4)

where

cos2 = µµ′
+

√
1 − µ′2

√
1 − µ2 cos(φ − φ′), (A5)

andµ andµ′ are the cosine of the pitch-angle before and af-
ter collision;φ andφ′ are azimuthal angles before and after
collisions, respectively,ε is an energy dependent screening
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parameter that increases with decreasing energy for electron
collisions. The variation ofε for protons and hydrogen atoms
is not known, and a constant value of 1×10−3, is adopted be-
low 1 keV (Galand et al., 1998). Forward scattering approx-
imation is applied above 1 keV, unless specified otherwise.

L01
α in the proton transport equation (P) is the loss function

for stripping of a hydrogen atom, which becomes a source of
protons whileL10

α is the loss function for electron capture
which becomes a source of hydrogen atoms in the hydrogen
transport equation (H). The corresponding phase functions
areζ 01

α andζ 10
α . Terms in the transport equations that include

these parameters represent the coupling between proton and
hydrogen atom fluxes.

The total absorption cross section,σ T
α,γ (E) is the sum of

the ionization, excitation, elastic and charge-changing cross
sections.nα(s) is the number density of neutral particlesα at
distances along the field line. The MSIS 90 (Hedin, 1991)
neutral atmosphere is adopted, being a function of location,
local time, magnetic activity and solar index.

Compared with collisional angular redistribution the effect
of the magnetic mirror force can be neglected when simulat-
ing the Doppler profile of hydrogen. The effect of magnetic
mirroring is mainly seen above 250 km, whereas most of the
excitation occurs at altitudes below this. The second term on
the left side of the P and H transport equations is set to zero
in the present application.

Proton precipitation is sufficiently uniform over extended
regions to justify a one-dimensional transport simulation in
a plane parallel atmosphere (Davidson, 1965). A proton flux
of specified energy and pitch-angle distributions precipitates
at the upper boundary, 500 km. In the energy range of auroral
proton fluxes absorption is complete at the lower boundary,
95 km.

The line-of-sight integrated Doppler profile of an emission
line in the magnetic zenith is

D(λ) =

∫∫
ds dv⊥Pr`v(s, λ, v⊥), (A6)

with photons cm−2 s−1 nm−1 expressed in terms of the vol-
ume emission ratePrlν(s, λ, ν⊥) integrated over the distance
s and the velocity componentv⊥ perpendicular to the mag-
netic field. In terms of the variabless, E, µ and applied to
the Hβ line (Galand, 1996; Galand et al., 1998),

Pr`v(s, λ, v⊥) =

mc

λo

(
1 −

v‖

c

)2 v⊥√
v2
‖

+ v2
⊥

· PrHβ (s, E, µ), (A7)

whereλ0 is the unshifted wavelength,m the mass of the hy-
drogen atom;c is the speed of light;v‖ is the velocity com-
ponent along the magnetic field line

v‖ = µ

√
2E
m

; v⊥ =

√
1 − µ2

√
2E
m

;

λ =
λo

1 −
µ
c

√
2E
m

. (A8)

The production rate of Hβ photons is

PrHβ (s, E, µ) =

2π
∑
α

∑
γ

nα(s)σ
Hβ
α,γ (E)8γ (s, E, µ), (A9)

where the emission cross section as a function of energy,

σ
Hβ
α,γ , is taken from Van Zyl and Newman (1980) and from

Yousif et al. (1986) for collisions of P and H with N2 and O2.
The emission cross section for collisions with O is assumed
to be 0.7 of the O2 cross section (Strickland et al., 1993).
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