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Abstract. We argue that, despite a substantial number of proposed and
existing new database systems, a suitable database system for software
development environments and especially process-centred environments
does not yet exist. We do so by reviewing and re�ning the requirements
for such systems in detail based on a number of examples. We then sketch
a number of available and archetypical database systems and indicate
why they do not meet these requirements.

1 Introduction

Software development environments (SDEs) include tools which support most of
the software life-cycle phases, i.e. construction and analysis of the correspond-
ing documents and document interdependencies. Sophisticated integrated envi-
ronments enable the incremental, intertwined and syntax-directed development
and maintenance of these documents such that errors are easily traced back
through di�erent documents and necessary changes are propagated across doc-
ument boundaries to correct the errors (c.f., for example, [11, 9, 4]). Such envi-
ronments should provide multi-user support3, i.e. they should have exible and
adaptable mechanisms (often called "design transactions") to control access by
a number of users to shared information. The construction of such environments
and corresponding advanced design transaction mechanisms is an area of active
research (c.f., for example, [2, 20, 22]). We call this latter kind of environment a
process-centred environment (PSDE), because the provided multi-user support
is or rather should be based on a well-de�ned development process, i.e. the def-
inition of the users' responsibilities, their corresponding access rights, and the
schedule of the activities to be carried out by them.

For any kind of environment, a large number of objects and corresponding
relations on very di�erent levels of granularity have to be stored and retrieved,

3 As the people normally called software developers are the users of an SDE and this
paper discusses only SDEs, we use the term user instead of developer hereafter.



and, in case of a process-centred environment, these objects must be manipu-
lated under the control of an advanced transaction mechanism. An underlying
database management system is thus a key component of a PSDE and if not
chosen carefully, could become a major performance bottleneck when the PSDE
is in use.

As early as 1987, Bernstein has argued that dedicated database systems for
software engineering, specialised with respect to functionality and implemen-
tation, are necessary [3]. He, and others [22] argued that the functionality and
e�ciency of existing systems (in particular, relational systems) do not adequately
support the construction of software engineering tools and environments. A num-
ber of systems, some of which di�er radically from standard relational technol-
ogy, have since been described in the literature and some are now available as
commercial products.

In this paper we argue that, despite the substantial number of these new
database systems, a suitable database system for SDEs, and especially PSDEs,
does not yet exist. We are aware of the fact that we put very stringent require-
ments on those database systems as we require that the systems (1) allow to
e�ciently manipulate abstract syntax graph representations of documents and
(2) provide advanced transaction mechanisms on those graphs to enable sophisti-
cated multi-user support (c.f. section 3). Many existing commercial environments
or tools resp. [13] and even PSDEs [15, 22] developed as research prototypes do
not (yet) have those stringent requirements, because they handle documents as
monolithic blocks. This, however, reduces signi�cantly the possibility of check-
ing and preserving inter-document consistency and thus provides no adequate
support for incremental, intertwined development and maintenance of software
documents. We even believe that partly due to missing appropriate database sys-
tems, the currently available environments lack appropriate functionality with
respect to support of evolutionary software development. Thus, this paper adds
an important viewpoint to the discussion about dedicated software engineering
databases, because the other papers known to us have either never expressed
such a stringent requirements list (like Bernstein) or have never discussed them
in full detail (like [16]).

This paper reviews and re�nes, in sections 2 and 3, Bernstein's requirements
based on our own experiences in building environments and tools. Section 4 then
briey reviews a number of available database systems, and sketches that these
requirements are not met by them. It �nally, sketches the ongoing work to remedy
the situation.

2 Process centred Software Development Environments

Architecturally, a process centred software development environment consists of
the following main components:

{ a process engine that coordinates the work of developers involved in a project,



{ a set of integrated, syntax-directed tools that allow developers to conve-
niently manipulate and analyse documents and to maintain consistency be-
tween related documents of di�erent types, and

{ an underlying database for software engineering (DBSE) which is capable of
storing project information and documents.

2.1 The Process Engine

The process engine executes a formal description of a software process in order
to coordinate the work of the users involved in a project. In more detail this
covers the following issues.

Multi-User support The process engine determines for each user participating in
a project a personal agenda that indicates on which documents he or she may
perform particular actions. The contents of the agenda depend on

{ the user's responsibilities in the project and
{ the current state of the project.

The invocation of tools that enable a user to perform the actions contained in
an agenda is controlled by the process engine via the agenda. In simple terms,
the agenda acts as a menu from which the user selects his or her next activities.

In most projects a number of users work in parallel on di�erent parts of the
overall project activity. This means that changes to a user's agenda are not only
necessary due to his or her own actions. They are also necessary when some other
user changes the state of a document on which the �rst user's agenda depends.
As each user usually works at a personal workstation, the agendas must be
presented and updated in a distributed fashion. Likewise, the tools that are
called via the agenda have to access documents in a distributed fashion.
To ensure orderly use of documents in parallel development activities, the process
engine must also be able to create versions of documents, or sets of documents,
to retrieve a particular version and to merge version branches of documents.

E�ciency The state of the project changes, when a new document is introduced
or an existing document is deleted, when a document is declared to depend on
some other document, when a document becomes complete or when it becomes
incomplete due to a change in some other document it depends on. Although
this list is incomplete, it already indicates that changes to project states occur
frequently. All of them cause a recomputation of the agenda. As a user cannot
perform any tasks while his or her agenda is being computed, the computation
must be done e�ciently.

Persistence and Integrity The process engine may need to be stopped from time
to time. Therefore it must be able to store the state of the project persistently in
order to prepare a restart. Even if it is stopped accidentally e.g. by a hardware
or software failure, it must resume with a consistent project state. Moreover,



such a failure must not result in a signi�cant loss of project information. Thus
we require that the process engine preserves integrity of any project information,
i.e. it ensures that continuation of any operation is possible after any failure.

Change It has been widely recognised that software processes can not completely
be de�ned in advance [17, 19]. The process being executed needs to be changed
\on the y" from time to time. For example, new users may participate in the
project, responsibilities may be rede�ned, new types of documents may be in-
troduced or new tools for manipulation of these documents may need to be
integrated.

Reasoning capabilities As it might not always be clear to a user why a particular
document is to undergo a particular action, the process engine should have the
capability to explain this to the user. For instance, the process engine should be
able to answer questions from a user like \What is the state of the speci�cation of
module m1?", \Who else is involved in the project?" or \What happens if I now
code module m1?". The latter example indicates that the reasoning capabilities
do not only explain how a particular project state was reached, i.e. the past
(as in classical expert system reasoning) but that they also give insights about
possible future consequences of a particular action.

2.2 Highly integrated syntax-directed tools

Syntax-direction The tools contained in a PSDE are used by users to edit, anal-
yse and transform documents. To give as much support to users as possible, the
tools should be directed towards the syntax of the languages in which documents
are written. In particular, they should reduce the rate at which errors concerning
the context-free syntax are introduced to documents.

Consistency preservation Besides dealing with errors concerning the context-free
syntax, tools should also deal with errors concerning both the internal static
semantics of documents and inter-document consistency constraints. The tools
may allow temporary inconsistencies to be created both during input and as the
result of edit operations, since document creation in a way which avoids such
temporary inconsistencies is impractical in many cases.
Tools should also support users in removing inconsistencies. In particular, follow-
on inconsistencies such as use of a non-existing import, could be removed on
demand by change propagation, such as propagating the change that rede�nes
the import to all places where it is used.
Finally, tools must allow the user to de�ne additional semantic relationships
during the course of a project. For instance, dependencies between the source-
code, the test plans and the technical documentation on the level of identi�er
names (and corresponding section titles in the technical documentation) may
only be de�ned in this way.



Persistence and Integrity Obviously, documents must be stored persistently be-
cause they must survive editing processes. Moreover, users require tools to op-
erate as safely as possible, i.e. in case of a hardware or software failure they
expect that the integrity of documents (their immediate usability by the same
or other tools) will be preserved and that signi�cant user e�ort will not be lost.
Thus, we require the persistence to be achieved as follows: An interactive session
with a tool of the PSDE consists of a sequence of user-actions like changing the
type-identi�er exported in a module or adding a parameter to a procedure. We
require from tools that a user-action is persistent if and only if it is completed.
Moreover, user-actions must be designed in a way that the integrity of a docu-
ment is guaranteed whenever a user-action is completed. In case of a hardware
or software failure we require that the tools should recover to the last completed
user-action.

Backtracking When the consequences of user actions are persistent, users must
have the ability to backtrack or \undo" such actions when mistakes are made.
Thus, in addition to the document versions used for management purposes in a
multi-user project, users may want to store intermediate revisions of a document
so that they can revert to a previous revision if their subsequent modi�cations
turn out to be ill-chosen.

E�ciency Very fast typists can type about 300 characters per minute. In this
case, the time between successive keystrokes is about 200 milliseconds. Thus any
response time of an editor below 200 milliseconds is non-critical, as users are
never going to recognise them as delays.
Unlike secretaries, users do not type continuously. They frequently pause to
think about what to do next. These thinking periods break the basic sequence
of user transactions into a higher-level sequence of task-oriented transactions. If
the non-trivial processing that a tool carries out is aligned with these natural
breaks in user interaction, much higher response times may be acceptable.
In other circumstances, users may accept much higher response times, if they
occur less frequently and can be justi�ed by the complexity of the task con-
cerned [24]. No user, for instance, would reject using a compiler just because it
needs more than a second to compile a source.

3 Requirements for DBSEs

3.1 Persistent Document Representation

What is a document in the database? The common internal representation for
syntax-directed tools such as syntax-directed editors, analysers, pretty-printers
and compilers is a syntax-tree of some form. In practice, this abstract syntax-tree
representation of documents is frequently generalised to an abstract syntax-graph
representation for reasons such as e�cient execution of documents, consistency
preservation by tools, and user-de�ned relations within documents.



PROCEDURE InitWindowManager(y:<TypeIdentifier>);

VAR x:<TypeIdentifier>;

BEGIN

WHILE <BooleanExpression> DO

x:=Expression;

<Assignment>

END

END InitWindowManager;
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Fig. 1. Modula-2 external textual and internal graph representation

As an example of a small excerpt from an internal Modula-2 program repre-
sentation c.f. Fig. 1 which will be used to explain further details in the following.

Consistency checking on a document can be done by attribute evaluations
along parent/child paths in the document's attributed abstract syntax tree. The
evaluation paths are computed at generation-time based on attribute dependen-
cies. This approach, however, has proven to be quite ine�cient even for static
semantic checks of a single document, because of the long path-lengths involved.
Techniques based on the introduction of additional, non-syntactic paths for more
direct attribute propagation have been developed [14, 12]. Such non-syntactic
paths are examples of context-sensitive relationships which connect syntacti-



cally disjoint parts of a document, and are used in both consistency checking
and change propagation when the document is changed (c.f. the " " edge
which connects declaration and use of an identi�er in Fig. 1).
Most PSDEs o�er test and execution of software documents by interpretation of
the document syntax-tree. Such interpretation can be achieved purely in terms of
an attributed syntax-tree itself but is very ine�cient. For executable documents,
therefore, the abstract syntax-tree representing the document is commonly en-
hanced by additional edges that indicate the control ow in order to enable more
e�cient interpretation (c.f. the " " edges exemplifying the control ow of
a while statement in Fig. 1).
As noted in section 2.2, the user may also introduce additional user-de�ned
relations between document parts for purposes of documentation, traceability,
etc.. All such relationships must also be seen as edges in the abstract syntax
graph that represents the document during manipulation, as illustrated by the
" " edge labelled AllInitialiseProcs which connects all procedures which
implement create/initialise operations.

How is it stored? Due to the requirements of persistence and integrity, a per-
sistent representation of each document under manipulation must be updated
as each user-action is �nished. Typically a user-action a�ects only a very small
portion of the document concerned, if any. Given that the representation under
manipulation is an abstract syntax-graph, however, the update can easily be-
come ine�cient if, �rstly, a complex-transformation between the graph and its
persistent representation is required and, secondly, the persistent representation
is such that large parts of it have to be rewritten each time, although not being
modi�ed. This would for instance be the case, if we had chosen to store the
graph in a sequential operating system �le which is updated at the end of each
user-action.
Such ine�ciency can be avoided completely if the persistent representation takes
the form of an abstract syntax graph itself, with components and update oper-
ations that are one-to-one with those required by the tools concerned. To allow
this approach, therefore, the DBSE must support the de�nition, access and incre-
mental update of a graph structure of nodes and edges with associated labelling
information. To preserve the integrity of the abstract syntax-graph, the DBSE
must support atomic transactions, i.e., a transaction mechanism that allows us
to group a sequence of update-operations such that they are either performed
completely or not performed at all. To ensure that a tool can recover in case of
a failure to the state of the last completed user-action, each completed DBSE
transaction must be durable.

Inter-document relationships Context-sensitive relations and user-de�ned rela-
tions between document components, as discussed above, contribute to the need
for an abstract syntax-graph representation of a software document. In practice,
however, such relations are not con�ned to within individual documents { they
frequently exist between components of distinct documents. As an example c.f.
Fig. 2.
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Fig. 2. Internal representation of Inter- and Intra-document Relations

The �gure illustrates the connection of the previously shown source-code
graph (Fig. 1) with the corresponding parts of a design document and the tech-
nical documentation respectively. Thus a module de�nition in the design docu-
ment has inter-document relationships with the implementation of that module
in the corresponding implementation document. Likewise, a paragraph in the
technical documentation may be linked to the corresponding (formal) module
de�nition in the design document, for traceability reasons.

To handle these inter-document relationships in a consistent way, the obvious
strategy is to view the set of documents making up a project as a single project-
wide graph. This approach, however, immediately reinforces our concern that
the cost of updating its persistent representation should be independent of the
overall size of the graph concerned, and requires that the DBSE must avoid
imposing limits on the overall size of the graphs it can handle.

We note that this generalisation to a single project-wide graph does not nec-
essarily undermine the concept of a document as a distinguishable representa-
tion component. If we distinguish between aggregation edges in the graph which



express syntactic relationships, and reference edges, which arise from control,
context-sensitive or user-de�ned relationships, then a document of the project is
a subgraph whose node-set is the closure of nodes reachable by aggregation edges
from a document node (i.e., a node not itself reachable in this way), together
with all edges internal to the set4. The edges not included in this way are then
necessarily the inter-document relationships inherent in the project.

3.2 Data De�nition Language/Data Manipulation Language
(DDL/DML)

The kinds of nodes and edges required to represent a project, and the attribute
information associated with each, cannot be determined by the DBSE itself. It
should be de�ned and controlled, however, by the DBSE in order to have dif-
ferent tools sharing a well-de�ned project-graph. The overall structure of the
project's syntax-graph should therefore be de�ned in terms of the data de�ni-
tion language of the DBSE and be established and controlled by the DBSE's
conceptual schema.
As a minimum, we require that the data de�nition language can express the
di�erent node types that occur within the graph, that it can express which edge-
types may start from node types and to which node types they may lead, and
that it can express which attributes are attached to node types. Such basic re-
quirements are common to any graph storage.
In practice, the data de�nition language should be tailored to the syntax graphs
that the DBSE is used to store. Structures that occur often in syntax-graphs
are lists, sets and dictionaries of nodes that contain nodes of possibly di�erent
types. The data de�nition language should therefore o�er means to express these
common aggregations as conveniently as possible.

As argued previously, changes to the internal syntax-graph should become
incrementally persistent. Therefore, edit operations performed by tools on doc-
uments have to be implemented in terms of operations modifying the inter-
nal syntax-graph. These operations should be established as part of the DBSE
schema for mainly two reasons:

Encapsulation The structure de�nition of the project-graph should be encap-
sulated with operations which preserve the graph's integrity. They then pro-
vide a well-de�ned interface for accessing and modifying the graph. In order
to enforce usage of this interface, the operations must become part of the
DBSE schema.

Performance Executing graph accessing and modifying operations within the
DBSE is more e�cient than executing similar operations within tools as the
number of nodes and edges that need to be transferred from the DBSE to
tools via some network communication facility is reduced signi�cantly.

4 What we call a subgraph here, is comparable to the notion of a composite entity in
PACT VMCS (cf. [23])



To establish graph-modifying operations as part of the DBSE schema, the DML
must be powerful enough to express them. This means in particular, that the
DBSE's DML must be capable of expressing creation and deletion of nodes and
edges as well as assignment of attribute values. Moreover, the DML must be
computationally complete, as alternatives and iterations are needed in graph-
modifying operations for navigation purposes.

In addition, we noted in subsection 2.1 that the user may wish to query the
project state via a reasoning component in the process engine. In practice, such
queries may also arise from within the process engine itself, and from the process
engineer who maintains the process governing any project.
The process engine needs to query the project's current syntax graph in order
to extract information about the states of documents on which the engine must
base its decisions. An example for such a query could be: select all program
modules from the set of modules for which programmer p1 is responsible that
are incomplete but whose speci�cations are complete.
The process engineer may want to query the internal project graph in order to
determine the project state.
The queries to be answered by the reasoning component are not known in ad-
vance, they have to be formulated in a process-related query language and must
be translated by the reasoning component into a DBSE query. Likewise the
queries the process engineer will use are not known a priori, i.e. at the time the
PDSE is being built, so they cannot be precompiled. Thus, the DBSE must o�er
ad-hoc query facilities to be used by the process engine, and indirectly by the
user and the process engineer.

3.3 Schema Updates

In section 2.1 we noted that the process being executed may have to be changed
\on the y". The DBSE must therefore enable the de�nition of new types of
nodes and edges that are to be included in the internal syntax graph. Existing
nodes and edges must not be a�ected by this kind of schema update.
Moreover, it is necessary that new types of edges can be added to existing types
of nodes to allow the integration of nodes of newly de�ned types into an existing
syntax graph. This implies that existing nodes whose types are modi�ed by such
a schema update can migrate from the old type to the modi�ed one.

Consider as an example, the introduction of a new quality assurance proce-
dure to be applied to all future documents as well as existing ones. The new
procedure may require that the person who reviews a document writes a review
report that is attached to the document. Furthermore his or her name is to be
recorded as an attribute of the reviewed document. In this situation, the schema
of the internal syntax graph needs to be modi�ed: A new document type review
report must be included and each reviewable document needs to have an addi-
tional node to record the document's reviewer and an additional edge to express
its relationship to the review report.



3.4 Revisions and Versions

Given the overall representation of a project de�ned in section 3.1, the DBSE
must support the creation and management of versions of those subgraphs that
represent versionable document sets. In particular, it must enable its clients to
derive a new version of a given subgraph, to maintain a version history for a sub-
graph, to remove a version of a given subgraph, and to select a current version
from the version history. In doing so it must resolve between alternative dupli-
cation strategies, both within versions and for extra-version relations, preferably
in a de�nable way.

Within versioned subgraphs the DBSE must resolve between fully lazy, fully
eager and hybrid duplication strategies for the nodes and aggregation edges of
the subgraph concerned. Fully lazy duplication gives maximum sharing of com-
ponents, and hence minimum storage utilisation, but complicates the update
process during user edits. Fully eager duplication avoids all such complications,
but implies maximum storage utilisation. To meet the needs of all PSDE func-
tions, a de�nable hybrid strategy between these two may have to be supported
by the DBSE.
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The DBSE must also resolve between alternative strategies for handling both



intra- and inter-document relationships (or reference edges). Within a document,
reference edges will normally be treated (like aggregation edges) as version-

duplicated (i.e., a new edge is automatically created for each version created).
In particular circumstances, however, such edges may be seen as version-speci�c
(and hence not duplicated when new versions are created). Relations between
documents within a versioned document set (i.e. within a con�guration) are
treated similarly, i.e., they may be either version-duplicated or version-speci�c.
Relations between a versioned document and a document outside the versioned
set are also subject to the same basic choice, but version-duplication in this leads
to a state which we call version-transparent since the same relation necessarily
holds between all versions within the versioned set and the same (component of
the) unversioned document. Again a de�nable hybrid strategy may be necessary
for e�ective PSDE support.

Fig. 3 depicts the logical view of the module design graph being under ver-
sion control. An additional (version-speci�c) edge ToPredVers is introduced that
makes the version history explicit by leading for each document node to the doc-
ument node of the predecessor version. An example of a version-transparent edge
is the ToDoc edge connecting a function module node with the corresponding
section title node in the documentation subgraph.

3.5 Access Rights and Adjustable Transaction Mechanisms

Requirements on the DBSE functionality which stem from the multi-user support
of PSDEs, are the de�nition of access rights for particular documents and parts
thereof and the de�nition of a variety of transaction mechanisms to control and
enable parallel access to shared information by multiple users.

In more detail, to de�ne access rights, the DBSE must be able to identify
users and arbitrary many (probably nested) user groups. Secondly, the DBSE
must allow to de�ne and modify the ownership of subgraphs (which could even
be a single node) at any time. Similarly, a subgraph may be accessed by several
groups. Thus a subgraph needs to maintain its group memberships. Thirdly, the
DBSE must allow to de�ne and modify access rights for a subgraph individually
for its owners and groups at any time. Finally, the DBSE must enforce that the
de�ned access rights are respected by all its users5.

Conventional transaction mechanisms which control parallel updates of the
database have been proven to be too restrictive to be used in PSDEs because
they could result in a rollback which deletes the e�ect of a possibly long-lasting
human development e�ort, or they could block the execution of a certain activity
for days or even weeks. Both situations are untolerable.

Consequently, advanced transaction mechanisms such as split/join transac-
tions [21] or cooperating transactions [18] have been developed. Their common

5 The kind of discretionary access control required here is similar to that provided
by modern operating systems like e.g. UNIX. It di�ers in that a subgraph can have
more than one group that may access it. Thus, we can express access rights in a more
exible way without introducing arti�cial user groups.



characteristics is that they relax one or more properties of conventional trans-
action mechanisms which are atomicity, consistency preservation, isolation and
durability. For a detailed overview and critical evaluation of those mechanisms
we refer to [2].

We argue, however, that none of them is powerful enough to be incorporated
as the transaction mechanism into the database of a PSDE. As already argued
in [20], only the process engine which knows the current state of an ongoing
project, can decide whether and when to request a lock for a particular subgraph
and how to react, if the lock is not granted. It also de�nes whether a transaction
is executed in isolation or in a non-serialisable mode.

The requirements for the transaction mechanisms of a DBSE are that it
o�ers the possibility to de�ne and invoke either a serialisable transaction or a
non-serialisable transaction which only guarantees atomicity and durability.

Atomicity and durability are needed to preserve the integrity of the project
graph against hard/ or software failures as required in subsection 2.1 and 2.2
resp. Serialisability is needed, for example, when project state information and
corresponding user agendas are updated (c.f. subsection 2.1). This information
must not be invalidated by parallel updates as that could hinder the process
engine from continuing its work or let the user perform unnecessary work. For-
tunately, these updates are relatively short and do not involve any human inter-
action. Moreover, computation of a users' agenda only incorporates read access
to project's state information such that it may be performed in an optimistic
mode.

An example of a situation where transactions are either executed in a serial-
isable or non-serialisable mode depending on the project state is the following.
During the very �rst development of a document, editing the document could
and should be done in isolation until the document has evolved into a certain
mature state, maybe a state where the document is released. During mainte-
nance phase, a released document should be always consistent in itself as well as
with respect to other documents. Thus a transaction which does change propa-
gations due to error corrections should be executed immediately, even if a�ected
documents are currently accessed by other transactions.

3.6 Distribution

Distribution of the project activities over a number of single-user workstations
can be achieved in two ways. The �rst is to allow for a distributed access from
the users' (client) workstations to a DBSE server. The second way would be
to distribute transparently the syntax graph itself over various DBSEs that are
locally accessible from user's workstations.

With the �rst approach, the server would surely become a performance bot-
tleneck for the whole PSDE. Hence, this approach seems feasible only for small
projects (say less then 10 users). It is, however, worth consideration, as many
projects are either small projects or can be split into fairly independent sub-
projects that are small enough.



With the second approach, the process engine can arrange that those parts
of the internal syntax graph that represent a particular document are locally
accessible from the workstation of the responsible user6. The tools that operate
on the syntax graph, however, should not need to know anything about the phys-
ical distribution of the syntax graph, i.e. the distribution must be transparent
for them. It should rather be the responsibility of the DBSE to manage physical
distribution.

3.7 DBSE Administration

As the contents of the DBSE might be the most important capital of software
houses, issues of data security are very important. This involves two aspects:
access to the database and the possibility of hardware crash recoveries.

The DBSE must be able to restrict the access to its objects such that non-
authorised persons are excluded from any access. This means that the DBSE
must be able to identify its users. Additionally, the DBSE must enforce authen-
tication e.g. by assigning passwords to DBSE users such that it can assure that
persons correspond to DBSE users.
For purposes of user management, the DBSE has to o�er means to be used by
a database administrator (DBA) in order to enter new users and groups to the
DBSE, to change user informations like passwords, to remove users from the
set of known users and groups from the set of known groups, and to change
membership to groups.

Moreover, data stored in the DBSE must be protected from any hardware
failures such as disk crashes. Therefore the DBSE has to o�er means for dumping
the contents of the DBSE to backup media like e.g. tapes. As the size of a project
database may be too large to be completely backed up daily, the DBSE must
allow for incremental backups. The DBA should not have to shut down the
database in order to perform these incremental backups.

3.8 Views

As proposed in subsection 3.1, the project graph may contain a lot of redundant
information { in Fig. 2 the nodes Function,Module, DeclIdent, OperationList and
the edges ToIdent and ToExport are duplicated in the design and implementa-
tion subgraphs. Eliminating this duplication by sharing the aggregation subtrees
concerned has the following advantages: (1) the conceptual schema is simpli�ed
(2) storage of the schema and corresponding data requires less space, and (3)
consistency preservation especially across document boundaries becomes much
easier. Such sharing cannot be contemplated, of course, if automatic consistency
preservation between documents is inappropriate.

If subtree sharing is to be used, tools accessing the project graph need a view
mechanism like that o�ered in many relational database systems, to maintain

6 Though the document itself is locally accessible, there may still be inter-document
relationships in the internal syntax graph, that lead to remote nodes.
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Fig. 4. Reducing Redundant Information with Views

appropriate separation of tool concerns and so allow separate tool development
and maintenance.

Fig. 4 sketches how the redundancy which exists in Fig. 2 is reduced in a new
schema. The schema will be accessed by the design editor and the implementa-
tion editor through two views. The �gure depicts the conceptual project-graph
together with the design and implementation view of this graph.
The design view of a function module node is declared to hide the ToHiddenOps
edge de�ned in the conceptual schema as these operations shall not be seen at
the module interface level. The design view also renames the ToExportedOps

edge of a conceptual function module node to ToExport. Finally, the design view
hides the ToDecl and ToStat edges de�ned for procedure declaration nodes in
the conceptual schema from each procedure declaration node in the design view.
Consequently, all node types reachable only from these edges in the conceptual
schema are also hidden in the design view.



The implementation view of a function module declares the ToProcs edge to
lead to a node of a virtual node type which is constructed by concatenation of
the lists accessed via the ToExportedOps and ToHiddenOps edges of a function
module in the conceptual schema. This allows us to have exported and hidden
operations merged in one operation list of the implementation graph.

These tool-oriented views must be regarded as virtual structures since they
are not actually stored in the DBSE, but updates on views by tools must prop-
agate automatically to the underlying project graph.

Introduction of a view mechanism, however, has non-trivial consequences for
the access control mechanisms required (since users see this access control as
applying to document views) and for the versioning policy which the PDSE
designer or the users may adopt. Detailed resolution of these issues is largely a
matter of PSDE design and is thus beyond the scope of this paper. We note,
however, that provision of such a view mechanism is clearly a requirement for
e�ective PDSE design and implementation.

4 State-of-the-Art in DBMS Technology and Further

Work

Relational DBMSs are inappropriate for storing project graphs, since (1) the
data model can not express syntax graphs appropriately, (2) RDBMSs do not
support versioning of document subgraphs and (3) RDBMSs can not be used to
implement customised transaction schemes.
No structurally object-oriented DBMS meets all of our requirements. Those that
are capable of e�ciently managing project graphs, lack functionality w.r.t. views,
versioning, access rights and adjustable transaction mechanisms, and distribu-
tion like GRAS [16]. Others that o�er these functionalities are unable to manage
the large collections of small objects as they occur in project graphs and are
therefore inappropriate like e.g. PCTE [10] or Damokles [6]. Moreover, none of
these systems enables encapsulation of nodes with operations, which we regard
to be crucial.
For this reason we focus on ooDBMSs like GemStone [5] or O2 [1] in the future.
As general databases, they have not been designed to manipulate a particu-
lar granularity of objects. They provide powerful schema de�nition languages
which particularly enable encapsulation, inheritance and polymorphism. Some
have been proven to perform fast enough even while accessing document sub-
graphs from a remote host [7]. A more detailed investigation and reasoning about
the non-appropriateness of existing RDBMSs and structurally object-oriented
DBMSs is done in [8].

Currently, we are porting the Merlin PSDE to an ooDBMS and enhancing
Merlin with syntax-directed tools which store their document subgraphs in this
ooDBMS. Merlin is a research project (c.f. [20, 19]) at the University of Dort-
mund carried out in cooperation with STZ, a local software house. One result
of Merlin is the prototype of a PSDE based on a rule based description of the
software process



The requirements discussed in this paper provide the foundation for the ESPRIT-
III project GoodStep (General Object-Oriented Database for SofTware Engi-
neering Processes) whose goal is to extend the ooDBMS O2 to make it partic-
ularly suitable as a DBSE. The project will improve version management, add
view de�nition capabilities and break up the transaction management to enable
implementation of customised transaction schemes with the O2 system.
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