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Abstract

Background: The perception of brightness depends on spatial context: the same stimulus can appear light or dark
depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a
stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than
stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than
equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the
Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take
advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple
Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of
brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI
studies.

Results: Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We
show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural
scenes that would have been experienced by the human visual system in the past. We further show that the complexity of
this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an
efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship
between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of
colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI.

Conclusions: The data suggest that perceptions of brightness represent a robust visual response to the likely sources of
stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses.
While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post
receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this
suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past
interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not
directly to the world beyond.
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Introduction

Brightness has been defined as the perceived intensity of a visual

stimulus, irrespective of its source. Lightness, on the other hand, is

defined as the apparent brightness of an object relative to the

object’s reflectance. Thus increasing the intensity of light falling on

an object will increase its apparent brightness but not necessarily its

apparent lightness, other things being equal [1]. Saturation is a

measure of the spectral ‘‘purity’’ of a colour, and thus how

different it is from a neutral, achromatic stimulus. Hue is the

perception of how similar a stimulus is to red, green, blue etc.

Luminous efficiency, or luminosity, measures the effect that light

of different wavelengths has on the human visual system. It is a

function of wavelength, usually written as V(l) [2], and is typically

measured by rapidly alternating a pair of stimuli falling on the

same area of the retina; the subject alters the physical radiance of

one stimulus until the apparent flickering is minimised. Thus

luminance is a measure of the intensity of a stimulus given the

sensitivity of the human visual system, and so is integrated over

wavelength [3]. Luminance is thought to be used by the brain to

process motion, form and texture [4].

Clearly, brightness is monotonically related to luminance in the

simplest case: the more luminant the stimulus is, the brighter it

appears to be. However, the Helmholtz-Kohlrausch (HK) effect

shows that the brightness of a stimulus is not a simple

representation of luminance, since the brightness of equally

luminant stimuli changes with their relative saturation (i.e. strongly

coloured stimuli appear brighter than grey stimuli), and with shifts

in the spectral distribution of the stimulus (e.g. ‘blues’ and ‘reds’

appear brighter than ‘greens’ and ‘yellows’ at equiluminance) [1;

5–6].

The HK effect has been measured in a variety of psychophysical

studies [7–8] and is often expressed in terms of the (variable) ratio

between brightness and luminance. A simple example of this
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phenomenon is shown in Figure 1. The upper panel shows a blue

dot encircled by yellow wedges of various intensities. The lower

panel in the same figure shows the yellow wedge that observers

typically chose as being ‘‘equally bright’’ to the blue dot, and the

wedges that are equally luminant and equally reflective (and

therefore equally radiant under a constant light) as the dot. (Note

that the specific measures of luminance and radiance will depend

in part on the nature of the display; the observers in this case were

shown a paper copy under natural daylight illumination.) An

important aspect of the HK effect – that is usually overlooked – is

the asymmetry in the wavelength-dependency of the effect.

Specifically, short wavelength light (blue) appears brighter than

equiluminant long wavelength light (red) [9].

Together, these observations demonstrate that the shape of a

stimulus’ spectral distribution (in addition to its spatial informa-

tion) can be described as providing a ‘context’ for its perceived

intensity. While such spectral ‘contextual effects’ on the brightness

of a stimulus have been accurately modelled from colorimetric

information (e.g. by using the Ware-Cowan equations [1, p. 142]),

there remains no clear explanation for this phenomenon [9].

Previously, it has been argued that spatial context alters the

brightness of a stimulus because the visual system has adapted to

the complex statistical relationship between images and scenes

experienced previously [10–12]. While proving to be a useful

framework for rationalising illusions of brightness and the like, a

problem with this framework is that the visual experience of

individuals (with regard to surface reflectance and illumination)

and that of their evolutionary ancestors is unknown if not

unknowable. (For a counter-example see ref. [13] with quantitative

explanations of perceived orientation.) To overcome this limita-

tion, one recent strategy has been to replace the human observer

with a simulation, such as an artificial neural network [14–15] or a

Bayesian ideal observer [16]. This can then be embedded in an

ecologically-relevant synthetic environment, where experience can

be perfectly controlled and behaviours unambiguously measured.

Using this strategy, we have previously shown that a variety of

brightness illusions represent a robust response to the statistical

relationship between images and scenes, independent of specific

features of the visual system itself [15] (see also ref. [17] for a

complementary explanation for illusions of space).

More generally, ideal observer analysis provides a principled

approach for understanding natural tasks including vision. An

ideal observer is a model that performs a given task in an optimal

way, limited only by the information available and explicitly

specified constraints [16]. They have been used to provide insight

into a number of vision science problems, such as comparing

measurements of primate photoreceptors with receptors that are

‘‘ideal’’ for detecting fruit amongst foliage [18]; analysing human

performance at an image classification task [19]; and modelling

the colour appearance of small spots [20].

Here, we build on this computational approach and combine

the ideal observer model with the known human cone sensitivities,

thus incorporating what would have been the statistical mapping

from scenes to post-receptoral neural signals in the past. The aim

in doing so is not to model human perception explicitly, but to

determine whether human perception – in this case the HK effect

– represents a robust solution to the relationship between scenes

and images (retinal responses) that must have been experienced by

the primary visual cortex during evolution.

Results

A scene is the physical structure of the world as described by the

spectral properties of light emitted or reflected from objects in the

world. We define an image as the retinal photoreceptor response

to light that reaches the eye, and perception as the conscious or

behavioural response to the image. In the experiments described

below, we first build a simple model of natural scenes, retinal

responses (‘images’) and predicted reflectances (‘perception’), and

show that it corresponds to human perception of the brightness of

colours. We then alter first the statistics of scenes; second the

retinal response functions (and hence the statistics of ‘‘natural’’

images); and third the relationship between scenes and images;

and in each case measure the effect on predictions of reflectance

by the ideal observer.

Modelling scenes and retinal responses
Here we describe our model of scenes and images (independent

of perception) that will be used as the basis for modelling the

source of the HK effect. We begin with the proportion of light that

a surface reflects at different wavelengths, which is described by

that surface’s spectral reflectance function (SRF). For natural

surfaces, SRFs tend to vary smoothly [21–22] probably due to the

absorption patterns of individual molecules within the surface that

are superimposed on each other by molecular interactions [21].

Previous models combining as few as five suitable basis functions

Figure 1. Demonstration stimulus for the Helmholtz-Kohl-
rausch effect. Top: Example of a stimulus used to measure the
relationship between reflectance, luminance and brightness. Bottom:
The wedge most frequently selected by subjects as the best match to
the brightness of the blue dot. The wedges that are equally radiant and
equally luminant with the blue dot are also indicated.
doi:10.1371/journal.pone.0005091.g001
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have been shown to accurately model natural surfaces [21,23].

Therefore, to produce synthetic SRFs that are naturalistic while

also being relatively straightforward to control and interpret, we

use a mixture of Gaussian basis functions. The value of a single

Gaussian function G, at any given wavelength l, is characterised

by its mean (m), variance (s2) and amplitude (a):

G l; m,s,að Þ~ a

s
ffiffiffiffiffiffi
2p
p exp {

l{mð Þ2

2s2

 !

By mixing a number of Gaussians together, more complex and

realistic SRFs can be defined:

G l;Hð Þ~ 1

n

Xn

i~1

G l; mi,si,aið Þ

where H is the set of model parameters defining n Gaussian

components. To test the natural relevance of this model, we fitted

such a mixture of Gaussians to each of a sample of pixels from

hyperspectral images of natural scenes. These are rural scenes,

principally vegetative, filmed under clear skies in direct sunlight

[24]. We use the published estimated reflectance spectra of

random portions of the scenes. Using three Gaussian components

fitted using a standard least-squares optimisation procedure, this

analysis resulted in r-squared scores in the range 0.91–0.96,

demonstrating that natural surface reflectances are indeed

accurately modelled in this way. (See Methods, ‘‘Fitting Gaussians

to hyperspectral data’’ for details.)

To complete our model of natural scenes, we model the

illumination of the synthetic surfaces just described with natural

daylight, as defined by the CIE ‘‘standard illuminant’’ D65. To

calculate this, at each wavelength l, we multiply the value of the

SRF by the proportion of D65 at that wavelength. Thus, each of

our scenes is a synthetic SRF under D65 illumination, producing

an emitted spectral power distribution (SPD).

To model the resulting retinal response arising from each scene

(i.e. a synthetic surface under D65 illumination) we calculate the

response vector c for long-, medium- and short-wavelength human

cones: c~ L,M,Sð Þ [25]. (See Methods, ‘‘Retinal responses’’ for

further details.) Luminous efficiency, or luminosity is defined as

V = 0.64315*L+0.39595*M [2]. This is the sum of long- and

medium-wavelength cone activity, weighted in proportion (ap-

proximately) to their existence in the retina [3].

Finally, in this model we assume that brightness is the visual

system’s estimate of the amount of light reflected from a surface.

With a constant source of illumination, this represents the estimate

of reflectance, and is therefore proportional to R~Ð 700

400
G l;Hð Þdl. This is the area under the mixture of Gaussians

that define the SRF, and is the total proportion of incident light

that is reflected by the surface. For the rest of this paper, we define

a surface’s brightness as the area under its SRF, and ignore the

scaling constant.

A set of such scenes and retinal responses defines a ‘training set’

that is used to optimise the Bayesian ideal observer model

described below.

Modelling the ‘psychophysical’ test set
While the spectra used for the ‘training set’ are consistent with

natural spectra, the spectra used for measuring the ideal observer’s

‘predicted reflectance’ of surfaces (the ‘test set’) are the much

simpler spectra used in psychophysical experiments for measuring

the HK effect in humans. Here, each stimulus is defined by a

narrow-band spectral power distribution (SPD), consisting of a

single rectangle whose dominant wavelength, width and height

correspond to the mean, variance and amplitude of the Gaussian

spectra described above. This can be thought of as the emission of

an idealised xenon arc lamp, filtered to produce a square cut-off,

as is commonly used in traditional colorimetric studies. A set of

10,000 such spectra was used covering the whole range of

monochromatic wavelengths, with different intensities and satu-

rations.

In order to determine whether the HK effect is a robust

response to the non-linear relationship between images and scenes,

it is necessary to relate the qualities of surfaces and images to their

perceptual qualities (i.e. their hue, saturation and brightness). This

must be done in a way that is independent of the observer to avoid

hidden biases in the results. By limiting our test set to simple

Gaussian spectra, the physical correlate of hue is readily defined as

the wavelength corresponding to the peak of the training/test

spectrum, and the physical correlate of saturation as the standard

deviation of the intensity of the spectral power distribution of the

training/test spectrum. The latter gives a score of zero for uniform

stimuli – corresponding to human percepts of grey, black and

white – and larger scores for SPDs with ‘‘narrower’’ peaks. Note

that this measures the deviation of the intensity of the SPD around

the mean intensity, and not the deviation of the wavelength around

its mean. The variance of the wavelength is a parameter of the

Gaussian functions described above. (See Methods, ‘‘Physical

correlates of colour properties’’ for further details.)

Bayesian ideal observer analysis
An ideal observer is a theoretical model that performs a task as

well as is theoretically possible, relative to the available

information and any specified constraints. Any Bayesian ideal

observer works in several stages [16]. First, it computes the

likelihood function, i.e. the distribution of the target variable given

the observed variables. Second, it convolves this likelihood

function with the prior probability distribution of the target

variable(s) to get a function proportional to the posterior

distribution. Third, this posterior is convolved with the utility

function. And finally, the maximum of this function is identified as

the optimal prediction of the target variable(s). In the model here,

the task of the ideal observer is to predict the reflectance of a

previously unseen surface (‘scene’) given only the corresponding

cone response functions (‘image’) and a finite set of previous

observations (‘experience’). We assume that all types of prediction

errors are equally costly, so the utility function can be ignored.

Thus, our ideal observer must calculate the value of R that

maximises the product of the probability of observing the cone

activations given the reflectance R, and the prior probability of R:

R̂R~arg max p c Rjð Þp Rð Þð Þ ð1Þ

where R̂R is the optimal estimation of R. By the definition of

conditional probability, this is identical to

R̂R~arg max p c,Rð Þð Þ ð2Þ

where we use the joint distribution of c and R for convenience.

Thus R̂R, the estimate of the physical correlate of brightness, is the

value of R that maximises p(c,R) for the observed cone activations

c. Any errors, i.e. any discrepancy between R andR̂R, must be due

to insufficient information contained in the cone responses c, or

insufficient data in the sample of previous observations used to
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estimate the distributions. One such real-world example is

metamerism, when two distinct surfaces produce identical cone

responses under some particular illuminant and are therefore

indistinguishable, even if they are easily distinguishable under

some other illuminant [24].

A dataset of 25,000 distinct scenes (surfaces under D65

illumination) and their corresponding images was generated. This

dataset defined the full history of ‘previous observations’ of the

ideal observer, and therefore characterises the visual environment

to which the observer is adapted. Surface SRFs were generated by

an equal mixture of three Gaussian functions with uniform

distributions of m, s and a (ranges: 100#m#1000; 1#s#100;

1#a#100). In this way ‘scene space’ was uniformly sampled,

which means the prior probability for all surfaces is equal.

Furthermore, the cone response functions c and the surface

reflectance R (scenes) together define the joint probability

distribution in equation (2).

To predict the reflectance corresponding to a novel SPD given

the corresponding three cone responses, the ideal observer simply

searches through the 25,000 ‘previous observations’ to find the

reflectance that generated the most similar pattern of cone

responses. Here, ‘most similar’ is defined as the shortest Euclidean

distance between the training and novel images, in terms of the

cone response vectors, c. Given the available information, and

without making further assumptions, this is guaranteed to return

the most likely R̂R estimate in equation (2). While a more

sophisticated model could interpolate between several close

examples, such as with a k-nearest neighbour classifier, any such

interpolation would require making further assumptions about the

statistics of scenes, stimuli and perception. Conversely, this model

cannot reliably extrapolate in response to novel stimuli beyond its

past experience. However, as long as the test images used are

within the broad distribution of training experiences, this will not

affect the results. Note also that the model does not incorporate

adaptation in response to each stimulus’ brightness or colour. This

is equivalent to giving only brief stimulus presentations to a human

observer.

To determine the accuracy of the ideal observer, we set the ideal

observer a simulated ‘psychophysical’ test composed of 10,000

novel scenes (created as described above) and their corresponding

images. The root-mean-squared (RMS) error between the

predicted and true reflectance was then calculated, after both

had been standardised to the range 0–1. The resulting RMS error

was 0.099. This only slightly improved with much larger training

sets, presumably due to metamerism as discussed above. Thus, the

ideal observer was able to accurately predict the reflectance (which

we take to be the physical correlate of brightness) of a novel

spectral stimulus given only a finite set of known ‘experiences’.

Measuring the HK effect in the Bayesian Ideal Observer
We next investigate the first feature of the HK effect.

Specifically, we ask whether the ideal observer shows a positive

correlation between brightness and saturation for equiluminant

stimuli – like humans. The test set of 10,000 novels scenes and

images was again presented to the ideal observer. Figure 2A plots

s (the physical correlate of saturation) against R̂R (the physical

correlate of brightness) for a constant luminance. Clearly,

increasing the physical correlate of saturation of a stimulus

increases the ideal observer’s predicted reflectance of that same

stimulus (correlation coefficient r = 0.992, p,10212), consistent

with human perception.

We next considered the second major aspect of the HK effect.

Specifically, we ask whether the ideal observer also shows a

relationship between hue and brightness of equiluminant stimuli

that is qualitatively similar to humans. In other words, does the

ideal observer predict the reflectance of ‘red’ and ‘blue’ stimuli to

be greater than equiluminant ‘yellow’ or ‘green’ stimuli? Using the

same 10,000 novel scenes and corresponding stimuli as in the

experiment just described, we plot in Figure 2B the predicted

reflectance, R̂R, for groups of samples of constant luminance

arranged according to dominant wavelength. Each line corre-

sponds to a constant luminance from 0.011 (‘low’; bottom line) to

0.152 (‘high’; top line), chosen to represent the quartile intervals of

the range of luminance scores in the test set. As expected, the three

levels of luminance are clearly separated as three levels of

predicted brightness, with high-luminance stimuli corresponding

to bright surfaces. Note, however, that each line also shows a clear

dip around 550 nm, corresponding to a lower predicted

reflectance for middling wavelengths (greens and yellows)

Figure 2. The Bayesian ideal observer predictions of reflec-
tance. A) Predictions of reflectance as s (the physical correlate of
saturation) varies, for a constant luminance. Low saturation surfaces
lead to low predictions of reflectance, and high saturation to high
predictions of reflectance. Error bars indicate 1 standard error. B)
Predictions of reflectance as m (the physical correlate of hue) varies, for a
constant luminance. The ideal observer predictions of reflectance for
different dominant wavelengths, grouped by low (L, 0.013), medium (M,
0.051) and high (H, 0.14) luminance values. This shows that for any
given luminance, yellows and greens are seen as less reflective than
blues and reds. Error bars indicate 1 standard error.
doi:10.1371/journal.pone.0005091.g002
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compared to wavelengths at the ends of the spectrum (reds and

blues), which again is consistent with human perception.

Furthermore, the predicted reflectance of the ‘blue’ surfaces is

higher than that for red surfaces, which is a more subtle and less

reported aspect of the HK effect that is also present in human

measurements [9].

Taken together, these results show a strong qualitative similarity

between our Bayesian ideal observer and human perception vis-à-

vis the HK effect. This suggests that the HK effect exists in

humans in part because human perception is adapted to the

complex statistical relationship between scenes and images, and

not, for example, due to particular brain physiology. We next

sought to determine the underlying cause of this statistical

relationship between images and scene to which the visual system

has adapted.

The effect of scene statistics. We now consider whether the

HK effect represents the frequency of occurrence of different

surface colours (i.e. is a direct consequence of specifically the

statistics of scenes). For example, if ‘blue’ and ‘red’ surfaces were

experienced more often, then it could be argued that the visual

system should adapt directly to these statistical regularities and

perceive red and blue surfaces to be brighter than yellow and

green surfaces at equiluminance. To investigate this, we generated

new training sets by varying the distribution of m (the physical

correlate of hue) used to generate the mixture of Gaussians

defining the SRF. We then tested the resulting ideal observer

models on the same ‘‘psychophysical’’ test set used above.

We first introduced a bias towards mid-wavelength surface

reflectance functions by forcing one of the three component

Gaussians to have a centre (m) of 550 nm. The remaining two

components had random means as with the experiments described

above. This simple change in the distribution of training surfaces

produces a new ideal observer that has still experienced a wide

range of SRFs, but has experienced some hues much more often

than others. Figure 3A shows the resulting predictions of

reflectance as the test hue varies, for constant luminance scores.

Although there is some change, the overall pattern is much the

same, namely that there is a large drop in predicted reflectance

around the centre of the visual spectrum.

In a second training set, the distribution was altered making reds

and blues more common. In half the records, one Gaussian

component was forced to have a centre at 450 nm, and in the

other half, it was forced to be at 650 nm. In all cases, the

remaining two Gaussian components had random centres, and all

widths and amplitudes were random, as before. Despite this

change in the distribution of m, the predicted reflectances of SRFs

with dominant wavelengths in the middle of the visible range

remained lower at equiluminance (Figure 3B), and reflectance

remained correlated with saturation (r = 0.98; p,10212).

We conclude that the HK effect of the ideal observer is largely

independent of the distribution of the dominant wavelength in the

historical training sample, i.e. it is independent of this particular

scene statistic. In both of the experiments just described the

correlation between saturation and predicted reflectance was still

significantly positive (r<0.98; p,10213).

The effect of retinal response statistics
For a given scene, the image that it generates in the eye depends

on the nature of the photoreceptors. By adjusting this aspect of our

model, we can ask to what extent the specific features of the

(human) cone response functions – as incorporated into our ideal

observer model – are responsible for the different aspects of the

HK effect (i.e., the statistics of images). Unlike psychophysical

studies on humans, we are of course free to alter the number of

cone types and their peak sensitivities (l-max) in the synthetic

world. One parallel in the natural world is the presence of oil

droplets in the cone cells of many species of birds, which act as

long pass filters [26] and effectively alter the cell’s peak

sensitivities. One constraint is that luminosity is defined in terms

of observed long- and medium-wavelength sensitive cone respons-

es (L- and M-cones); we therefore limit ourselves to three-cone

models in these experiments.

To alter the formation of images in our model, we adjusted the

medium-wavelength cone sensitivity function to have a different

peak sensitivity, without changing the overall shape of the

function. The default l-max values for the L-, M- and S-cones

are 570, 545 and 445 nm respectively, based on humans [25]. We

first increase the M-cone l-max from 545 nm to 560 nm, and

then in a second experiment, decrease it to 505 nm (which is

halfway between the L- and S-cone peaks). The L- and S-cone

sensitivities remain unchanged throughout. We use these new cone

sensitivities to define the ideal observer’s images for both the

training set and the test set. Figure 3C shows the results for an M-

cone l-max of 560 nm and Figure 3D shows the corresponding

results for an M-cone l-max of 505 nm. Both cases show that even

a substantial shift in the M-cone response function has little effect

on the predicted reflectance of the stimulus: the HK effect

remains. In both of these cases, the correlation between saturation

and predicted reflectance is again significantly positive (r<0.97;

p,10210).

Together, then, the experiments demonstrate that changing

either the scene statistics or the image statistics does not fundamentally

change the ideal observer’s Helmholtz-Kohlrausch effect. This

suggests that the HK effect in humans is unlikely to be caused by

such aspects of the visual ecology or visual system. We now

investigate whether the HK effect arises from the relationship between

scenes and images.

The effect of the relationship between scene and retinal
response statistics

We train an ideal observer on a data set with one relationship

between scenes and images, and then test it on a new data set with

a different relationship. More specifically, we train the model using

filters to vary the intensity of incident light at specific wavelengths.

This experiment can be thought of as modelling the effect of

wearing ‘‘purple’’ (green-absorbing) contact lenses for an extended

period of time (allowing for adaptation at all stages of the visual

system), and then removing them and testing the resulting patterns

of perception before any ‘‘re-adaptation’’ can take place.

First, we introduce a coloured filter to the ideal observer. This

reduces light intensity in the middle of the visible spectrum to a

degree specified by a Gaussian function centred at 550 nm.

Averaged across many scenes, this filter transmits around 80% of

light at 450 nm and 650 nm and just 5% at 550 nm. If the same

filter is used during training and testing, then there is little effect as

Figure 4A shows, except for an overall reduction in the predicted

reflectivity. The characteristic dip in the middle of the spectrum

remains. However, if this ‘‘purple’’ filter is removed and the same

ideal observer is re-tested, then its behaviour changes consider-

ably, as shown in Figure 4B. The most obvious effect is that the

predictions of reflectivity are now typically higher: removing the

filter means that more light is reaching the photoreceptors overall,

so each scene appears lighter than before. More importantly,

however, Figure 4B also shows a considerable ‘‘flattening’’ of the

range of responses, suggesting a substantial reduction in the

strength of this aspect of the HK effect.

To quantify the degree of this flattening, we can calculate the

sample standard deviation of the predicted reflectance scores for
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each experiment. The standard deviations for the initial experi-

ments, as shown in the three curves of Figure 2B, are 0.0750, 0.1209

and 0.1580 for the low, medium and high luminance cases

respectively. The average equivalent scores across the previous

experiments (i.e. the results shown in Figures 2B and 3) are 0.0689

(60.023), 0.1159 (60.023) and 0.1542 (60.044). For this final case

(Figure 4B) the scores are 0.0387, 0.0650, and 0.0784 respectively,

showing that the predicted reflectances vary much less with

wavelength (about half as much) in this final experimental case. As

before, the correlation between saturation and predicted reflectance

was still significantly positive (r<0.95; p,10213).

Thus changing the statistical relationship between the scenes

and images (the retinal responses), by introducing a filter ‘‘in front

of’’ the receptors during training and then removing it, leads to a

fundamental change in brightness. We therefore conclude that the

HK effect in humans is a direct consequence of adapting –

presumably in post-receptor processing – to the statistical

relationship between images and their source scenes.

Colour brightness in the brain
Where in the brain might this ‘adaptation’ to the statistical

relationship between luminance and surface reflectance (our

physical correlate of brightness) take place? Previous experiments

have suggested that activity in V1 is correlated with brightness

[27–31]. This implication, however, is inconclusive because the

test stimuli used in the relevant studies usually differed in spatial

contrast, which is more highly correlated with human V1 activity

than brightness is [29]. On the other hand, the HK effect affords

the opportunity to vary brightness without varying either luminance

or spatial contrast.

Figure 3. Ideal observer predictions when training scenes with altered scene or image statistics. A) Ideal observer predictions when
training scenes are biased towards ‘‘green’’. The training set of SRFs is a mixture of 3 Gaussians as before, but here one component is forced to be
centred at 550 nm, which typically appears green. For comparison, the previous ‘‘default’’ results from Figure 2B are shown using dotted lines. B)
Ideal observer predictions when training scenes are biased towards ‘‘red’’ and ‘‘blue’’. The training set SRFs are still a mixture of 3 Gaussians as before,
but here one component is forced to be centred at either 450 nm (‘‘blue’’) or 650 nm (‘‘red’’) for each surface. For comparison, the previous ‘‘default’’
results are shown using dotted lines. C) Ideal observer predictions with increased M l-max. The M-cone peak sensitivity is now 560 nm on both
training and test sets, instead of the usual 545 nm. For comparison, the previous ‘‘default’’ results are shown using dotted lines. D) Ideal observer
predictions with decreased M l-max. The M-cone peak sensitivity is now 505 nm on both training and test sets, instead of the usual 545 nm. This is
mid-way between L-cone and S-cone l-max values. For comparison, the previous ‘‘default’’ results are shown using dotted lines.
doi:10.1371/journal.pone.0005091.g003
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Subjects were presented with the three coloured annuli shown

in Figure 5: (1) a blue ‘standard’ annulus having the maximum

saturation and luminance generated by a typical LCD projector;

(2) an equiluminant saturated yellow annulus; and (3) an equally

saturated yellow annulus whose intensity could be adjusted by

each participant to match the brightness of the blue standard. All

stimuli were viewed against the same black surround, making

chromaticity the only contextual parameter to luminance

(luminance being determined by spectrophotometric measure-

ment). In a further experiment, the yellow annuli were replaced

with less-saturated blue annuli that were either equiluminant with,

or seen as being equally as bright as, the saturated blue annulus.

The retinotopic responses in V1 to each different annulus in

Figure 5 were measured using high-field functional MRI (see

Methods, ‘‘fMRI acquisition’’). The retinotopic V1 response evoked

by the saturated blue annulus was significantly greater than that

evoked by the equiluminant yellow (Subject 1: T9 = 14.77; p,0.0001;

Subject 2: T9 = 3.71, p = 0.0024) or less-saturated blue annuli (Subject

2: T4 = 2.94, p = 0.0212; Subject 3: T3 = 4.5814, p = 0.0098), as

shown on the right of Figure 5. In contrast, the cortical responses to

annuli matched for brightness were nearly identical, despite the

physical difference in their luminance (an identical pattern of

responses was also found in area V4; data not shown).

The responses of human V1 therefore more closely reflected the

brightness than the physical luminance. There has been little

previous study of how V1 responses to chromatic stimuli vary as a

function of luminance, although V1 shows robust responses to

chromatic stimuli per se [32]. We cannot therefore entirely rule out

the possibility that such a close correspondence between brightness

of chromatic stimuli and V1 activity represents a coincidentally

identical response to two different hue-luminance response

functions. Nevertheless, taken together with the empirical work

presented here, the most parsimonious explanation is that

responses of V1 correlate with brightness, and thus surface

reflectance, suggesting that processing leading up to V1 accom-

modates the non-linear relationship between images and scenes.

Discussion

The HK effect, like its close relations – simultaneous brightness

contrast, the Hunt effect and the Abney effect – is an example of

how the human perception of brightness is not a direct mapping of

a light stimulus. Rather, spatial, temporal and spectral context

influence the brightness that one perceives. In the case of the

Helmholtz-Kohlrausch (HK) effect, more saturated (purer) colours

appear brighter than less saturated colours at equiluminance, as do

red and blue colours compared to yellow and green colours. This

complex relationship between luminance and brightness was first

described by Helmholtz but never subsequently explained, despite

extensive study. Here we show that it is likely to be an adaptive,

robust solution to the problems caused by the complex relationship

between images and scenes, which is itself conferred by the

spectral sensitivity of the cones. Put simply, red and blue spectral

stimuli appear brighter than equiluminant yellow and green

stimuli, and more saturated stimuli appear brighter than less

saturated stimuli, because the former in both cases would have

signified more reflective surfaces in the past. We further suggest

that this statistical relationship concerning the different responses

to equiluminant stimuli is represented in the functional structure of

the human primary visual cortex, where we show activity in V1 is

better correlated with brightness than with physical luminance.

Why should the spectral quality of a stimulus alter its
brightness?

There is increasing evidence to suggest that, whatever the

mechanisms, natural visual systems evolved to encode the past

empirical significance of stimuli [11–13]; [33–35]. The merits of

this view notwithstanding, the principal obstacle for directly testing

this hypothesis in humans is the paucity of information about

actual visual experiences. Most statistical models of brightness,

therefore, focus either on what it is possible to measure (e.g. the

statistics of natural images), or make predictions based on

assumptions about the physical world, visual experience and/or

psychophysical measures of perception itself. However, this

limitation can, to a certain degree, be overcome in simpler

systems (natural or synthetic) by raising and/or evolving them in

highly controlled visual ecologies. This has been successfully

achieved with experiments of bumblebees [35] and artificial-life

systems [36]. Here we directly explored the empirical basis of

human brightness and lightness perception by taking advantage of

Figure 4. Ideal observer predictions with a green-absorbing
filter. A) Ideal observer predictions when trained with a green-
absorbing filter and tested with the same filter on the standard test set.
For comparison, the previous ‘‘default’’ results are shown using dotted
lines. The predictions are now smaller, but follow the same overall
pattern. B) Ideal observer predictions when trained with a green-
absorbing filter and tested on the ‘‘unfiltered’’ standard test set. For
comparison, the previous ‘‘default’’ results are shown using dotted
lines. The predictions now follow a very different pattern.
doi:10.1371/journal.pone.0005091.g004
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the fact that the visual system is differentially sensitive to

wavelength.

Measures of responsiveness to spectral stimuli (such as cone

absorption spectra and tests of threshold detection as a function of

spectral composition) all show that the human visual system is less

sensitive to long and short wavelength light than to light of middle

wavelengths [2,37]. Previous modelling has clearly demonstrated

that the cone response functions [38,4] and early post-receptor

processing [39–40] are efficient solutions that maximise the

information content of the stimuli that fall onto the eye. The

consequence of this efficient coding, however, is that it imposes an

inherent bias in early visual processing: surfaces reflecting predom-

inantly long and/or short wavelengths (and thus appear red or blue,

respectively), and surfaces that reflect a narrow range of wavelengths

(and thus appear more saturated) will on average generate a weaker

luminance signal than surfaces that reflect predominantly middle

wavelengths (Figure 6). This means that if the visual brain represents

scenes according to the similarities among their constituent objects,

in addition to efficiently encoding the images each scene generates,

then post-receptor processing must explicitly encode the non-

uniform sensitivity of its receptors in order to ‘‘re-engineer’’ the

probable scene from any image. This could be achieved by weighting

the interaction between the luminance channel and the colour

opponent channels according to the relationship experienced

between the retinal image and reflectance. Indeed, specific

weighting functions between these channels have been suggested

in previously colorimetric studies, but no ecological rationale for

their differential weighting has been offered. We therefore asked

whether the HK effect represents an adaptation in post-receptor

processing to this known statistical bias, which causes blue and

red stimuli to appear brighter than equiluminant yellow or green

stimuli, and more saturated stimuli to brighter than less saturated

stimuli; and also whether this bias is represented in the activity in

the V1, which may itself result from a differential weighting of

the luminance and opponent channels.

We tested this hypothesis in two types of experiments. First, we

created a simple synthetic model of human visual ecology, and

embedded within this ecology an ideal observer. Importantly the

HK effect was still present in the ideal observer when the scene

statistics were drastically altered (such as changing the frequency of

certain colours). Equally, the HK effect of the ideal observer was

largely unaltered when statistics of images arising from the

synthetic ecology were altered (such as by changing the response

functions of the photoreceptors). Second, we showed that changing

the statistical relationship between scenes and retinal images did

change the HK effect for the ideal observer, to the extent that the

characteristic relationship between hue and reflectance was greatly

flattened (Figure 4B). Because a large fraction of the mid-spectrum

light is attenuated by the filter during training, a stronger stimulus

is now required at these wavelengths to generate the same

luminance. During the subsequent test, without the filter, these

same stimuli generate a much greater luminance, reducing or even

inverting the characteristic dip in responses seen normally. Thus

changing the historical scene/image relationship effectively

removes the HK effect, strongly suggesting that it is this

relationship that accounts from the HK effect in humans. Note

that our model does not attempt to distinguish between evolution

and learning. Instead, we model the ‘adaptation’ of the visual

system to its environment, irrespective of the timescale involved or

the nature of the encoding (such as genetic or neurophysiological).

The other key feature of the HK effect is that more-saturated

surfaces appear brighter than equiluminant less-saturated surfaces.

To understand this, consider the spectral power distribution (SPD) of

the light reflected by a highly saturated ‘‘blue’’ surface. This SPD will

have a peak in the short-wavelength region of the spectrum, and will

be relatively low elsewhere. Suppose we then decrease the saturation

by steadily ‘‘whitening’’ the SPD, while keeping the total energy of

the light (as shown by the area under the SPD curve) constant.

Recalling that the luminous efficiency function peaks near the centre

of the visible spectrum [2], this decreasing saturation can only lead to

an increase in luminosity. Conversely, if the luminosity is held

constant, then a decrease in saturation will correspond to a decrease

in the total energy of the SPD; as before, if we assume a constant

illuminant, then this can only be caused by a decrease in reflectance.

Figure 5. fMRI experiments: stimuli and results. Top row: The blue standard (left), equiluminant yellow (middle), and equally bright (right)
annuli used in the first fMRI experiment; the relative responses (percent signal change) of primary visual cortex (V1) to the these stimuli (in the same
left-to-right order as shown in the left panels) are shown on the right for two subjects (S1, S2). Error bars indicate one standard error. Bottom row: Blue
standard (left), equiluminant low-saturated blue (middle), and equally bright low-saturated blue (right) annuli used in the second fMRI experiment;
again the relative response of primary visual cortex (V1) of two subjects to these stimuli are indicated on the right (S2, S3). Display conventions are as
for the upper row. Evidently V1 activity is consistent with the probable image-source relationship rather than the characteristics of the stimuli as such.
doi:10.1371/journal.pone.0005091.g005
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The exact nature of this correlation between saturation and

brightness for equiluminant lights will depend on the specific

SPD and on the observer’s luminous efficiency function. For

SPDs that are most intense in the middle of the visible spectrum

(e.g. yellow or green lights), the effect will much reduced, which

is consistent with the higher inter-subject variability that has

been reported for such stimuli, and even the occasional reversal

of the correlation [9]. Nonetheless, when averaged across many

equally radiant stimuli with dominant wavelengths across the

visible spectrum, the mean correlation between saturation and

luminance will be negative as described above. This means that

for two equiluminant SPDs, the one with the greater saturation is

likely to have been reflected from a surface with greater

reflectance than the other. Therefore the human visual system

predicts that the more saturated surface is brighter than the other

surface, as reported in the literature [1,5,6,9] and as shown by

our model.

That perceptions of colour are explained by the statistics of past

experience with natural scenes has been suggested and tested

previously [41–42,12,15,21]. Of particular relevance is work that

shows that the cumulative density functions of the joint probability

distributions between the ‘physical correlates’ of hue, saturation

and brightness, predict the HK effect [41]. Consistent with this

possibility, the research described here provides an explicit

explanation of the HK effect in terms of the inevitable bias in

the ‘experience’ of later visual areas in terms of human cone

fundamentals, irrespective of how they evolved or what they

encode. We further show that this bias - rather than a bias in the

distribution of natural spectra or in the cone response functions per

se - is sufficient to explain the HK effect.

Where is the statistical relationship between the
brightness of images and scenes encoded in the brain?

Next, we investigated the neural correlates of colour

brightness. In particular, we sought to determine whether the

primary visual cortex represents stimulus luminance or bright-

ness, and, by inference, the probable reflectance of the spectral

stimulus. In two high-field functional MRI experiments, three

participants with normal vision were presented with three

coloured annuli (Figure 5). In both experiments the response

to the blue standard was significantly greater than to the

equiluminant yellow or unsaturated blue annuli. In contrast,

responses from V1 were nearly identical when the annuli were

matched for brightness, despite quite different luminance values.

This is independent of any individual variations in the luminosity

function, which, had this been a complicating factor, would have

been as likely to increase the cortical response as to decrease it.

Thus, responses at the earliest cortical stages of processing in

humans are more consistent with the brightness of a spectral

stimulus than its luminance. This suggests that human V1

encodes the underlying similarity in the reflectance values of

stimulus sources, rather the luminance values in the correspond-

ing retinal images.

Changing the radiance of the surround of an achromatic target

changes the brightness of that target. Correlated with this

Figure 6. Relationship between luminance, object reflectance and colour percepts. Left: The yellow and blue objects reflect the same
quantity of light and appear equally bright to observers. However, due to the lower sensitivity of the retina to shorter wavelengths, the stimuli arising
from the two objects elicit very different luminance signals. Right: A darker yellow object reflects less light but generates the same luminance signal
as the blue object. It nonetheless appears less bright than the blue object.
doi:10.1371/journal.pone.0005091.g006

The Brightness of Colour

PLoS ONE | www.plosone.org 9 March 2009 | Volume 4 | Issue 3 | e5091



conscious change in brightness are changes in the activation of

cells in V1 in retinotopic register with the target [43]; [27–28].

Though consistent with the hypothesis that V1 encodes brightness,

such a conclusion is tempered by the fact that the test stimuli used

also varied in physical contrast. Here, however, the psychophysical

and neuroimaging data presented cannot be accounted for by any

changes in the spatial context of the stimulus. Rather, it is the

spectral distribution of each stimulus that provided the necessary

context for the spectra’s luminance. In other words, the perceptual

‘meaning’ of the luminance signal varied according to its

constituent wavelengths, suggesting a direct relationship between

luminance and chromaticity processing.

Consistent with this view, three recent, meticulous psychophys-

ical studies revealed strong, non-linear interactions between the

human luminance channel and chromatic opponent channels [44–

46], thus providing the necessary pre-cortical substrate for the

correspondence between colour brightness and V1 activity

reported here. While arguing for a potential retinal locus for

these interactions, these authors also highlighted previous studies

showing colour-luminance interactions at the level of single V1

cells [47–49]. Together, these and other related studies in other

visual qualia [30,50] suggest that early, non-linear interaction

between opponent channels evolved not to encode the physical

attributes of stimuli per se, but to encode the statistical relationship

between stimuli and their past empirical sources, manifesting itself

in this case as colour brightness.

Conclusion
The current study demonstrates that contextual effects on

brightness are due to the visual system’s attempts to identify the

most probable source of ambiguous image data. To do this, it uses

the statistical relationship between images (the activation of

photoreceptors) and scenes (objects and conditions in the natural

world), a relationship encoded in the functional structure of early

visual areas.

Materials and Methods

Fitting Gaussians to hyperspectral data
For five hyperspectral natural images [51], we randomly

sampled 1000 pixels, making a total of 5000 natural spectra, each

sampled at 10 nm intervals. For each spectra, we used the Matlab

Curve fitting toolbox (v. 1.1) to fit 1, 2 or 3 Gaussian components

using a least-squares optimisation. Although there was variation

between the scenes, as would be expected, using more components

gave a closer fit to the data, with 3 Gaussian components giving a

very good fit. Specifically, the models’ r-squared scores (the

coefficient of determination, which measures the proportion of

variability in the data accounted for by the model) were typically in

the range 0.20–0.56 when using one Gaussian; 0.73–0.91 with two

Gaussians; and 0.91–0.96 with three Gaussians. This last class of

models produced residual root-mean-squared errors in the range

0.001–0.062, showing that 3 Gaussian components allow the

hyperspectral data to be modelled very closely. Note that this is

measured independently of any observer.

Physical correlates of colour properties
The ‘psychophysical’ test set was designed to approximate the

kind of stimuli used in typical psychophysical studies, with the

requirement that we could sensibly calculate ‘‘physical correlates’’ of

perceptual properties of colour, such as hue, saturation and

brightness. Figure 7 shows three spectral power distributions

(SPD), coloured using an RGB mapping. Each SPD here is defined

by a single Gaussian, centred at 550 nm. We used this mean as the

physical correlate of hue. All three have the same area under the

curve (limited by the range 400–700 nm), as indicated by the

constant R score. This area is the reflectance, which we used as the

physical correlate of brightness, with a constant illuminant. These

are equivalent (up to a scaling factor) under a constant illuminant.

Finally, the standard deviation of the intensity (on the y-axis) of the

three curves is shown as s, ranging from 0.11 on the left to 0.0021 on

the right. Larger values correspond to a more sharply peaked

Gaussian and smaller values to a flatter Gaussian. We therefore used

this as a physical correlate of saturation.

Retinal responses
For each spectral power distribution (SPD) we calculate the

human cone responses using known spectral sensitivities [25]. If

L(l) is the sensitivity of the long-wavelength sensitive cone to light

with a wavelength of l, and G(l) is the amplitude of the SPD at

wavelength l, then the total response of the L-cone isP700
l~400 L lð ÞG lð Þ, and similarly for the medium- (M) and short-

(S) wavelength sensitive cones.

Figure 7. Three example Gaussian spectral power distributions. The standard deviation of the intensity (y-axis) of the three curves are the
physical correlates of the perceived saturation of the corresponding spectra, with the highest on the left and the lowest on the right. The area under
each curve (i.e. the reflectivity) is constant.
doi:10.1371/journal.pone.0005091.g007
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Based on these values, we also calculated the corresponding

values of the luminous efficiency function (or luminosity), for use

when calculating the constant-luminosity response curves in

several figures. Equation 5 in reference [2] gives the energy-based

function, equivalent to V(l) = 0.64315 L(l)+0.39595 M(l).

In all cases, we used the energy unit form of the 2u cone

fundamentals, using data available from the Colour & Vision

database http://cvrl.ucl.ac.uk.
Bayesian ideal observer data. All data were generated and

analysed using Matlab (v.6.5). To avoid complications with

modelling adaptation, and with data on different scales, each

variable was independently rescaled to the range zero to one. This

range was used for each cone activation function, for the

luminosity values and for the reflectance scores. Thus the values

used are all relative rather than absolute. For the cone values, this

is a form of von Kries adaptation [4].

Each scene is a single uniform surface: any additional surface in

the input adds another dimension to the joint probability

distribution, which then requires the use of exponentially larger

data sets to estimate. For example, if we use a scene of

10610 = 100 surfaces, each characterised by three cone response

values and a reflectance value, the resulting joint distribution has

400 variables. This requires a sample of data in 400 dimensions,

and to be representative such as sample would be impracticably

large.
fMRI subjects and stimuli. Three healthy volunteers (aged

28–35 years) gave written informed consent to participate in the

experiments, which were approved by the local ethics committee.

Subjects 1 and 2 participated in experiment 1, and subjects 2 and

3 participated in experiment 2. All were neurologically normal and

had normal or corrected-to-normal vision. In the first experiment

stimuli comprised of three different patterns were presented within

a smoothed annular window centred on fixation that subtended

from 3u to 7u. The CIE coordinates of the blue standard were

Y = 2.6; x = 0.154; y = 0.107); of the equiluminant yellow stimulus

were Y = 2.6; x = 0.357; y = 0.438; and of the equally-bright yellow

annulus were Y = 3.6; x = 0.362; y = 0.470. In the second

experiment, the CIE coordinates of the blue standard were as

above; the less-saturated, equiluminant blue were Y = 2.6;

x = 0.178; y = 0.150; and the equally-bright blue annulus co-

ordinates were Y = 4.1; x = 0.178; y = 0.150.

The pattern stimuli were presented repeatedly in blocks of

20.8 seconds with a presentation time of 500 ms and an inter-

stimulus-interval of 540 ms. Each stimulus block was presented

twice with randomized sequence and a 20.8 second fixation-only

baseline between blocks. To monitor attentiveness, participants

were required to maintain gaze on a central fixation spot and

perform a simple task that involved detecting a small brightness

change at the fixation spot. Stimuli were presented using an LCD

projector (NEC LT158) with a frame rate of 60 Hz that projected

onto a screen at the head-end of the scanner. This image was

viewed through a front-coated mirror with near-flat spectral

reflectance profile. The projector was controlled by a graphics

card (NVIDIA Quadro4 900 XGL) using Cogent software (http://

www.vislab.ucl.ac.uk/Cogent). The spectral properties of the

stimuli were individually measured in situ from the screen using

a photo-spectrometer (PR-650 SpectraScan). These data were

used to provide look-up table for individual coordinates in colour

space.

fMRI acquisition. A Siemens Allegra 3T scanner with

standard head coil was used to acquire Blood Oxygenation

Level Dependent (BOLD) contrast functional MRI EPI volumes

with 32 axial slices at an isotropic resolution of 36363 mm

(TR = 2080 ms; TE = 30 ms; flip angle 90u). In experiment 1 ten

runs each comprising 126 volumes were acquired per subject. In

the second experiment we acquired five runs for subject 2 and four

runs for subject 3. For each subject a T1-weighted structural image

and standard retinotopic mapping BOLD contrast volumes using

meridian stimulation were also acquired.

fMRI data analysis. Data were analysed using SPM2

(http://www.fil.ion.ucl.ac.uk/spm) and MrGray [52]. For the

retinotopic mapping, to identify V1 we created a mask volume

defining this area. This was obtained using the meridian localisers

from the retinotopic mapping sessions following standard

definitions of V1, together with segmentation and cortical

flattening in MrGray. For the main experiment, after discarding

the first six images of each scanning run to allow for magnetic

saturation effects, the remaining images were realigned, and then

co-registered with the structural scans of the individual

participants. Data for each of the three stimulation conditions

were modelled voxel-wise using a general linear model [53]. This

model consisted of box-car regressors for each stimulus type

convolved by a canonical hemodynamic response function in

SPM2. Regression parameters resulting from analysis of the

imaging time series for the main experiment were then extracted

for all voxels activated by the annulus in V1, and then divided by

the mean signal per run and voxel for conversion to percent signal

change
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