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Following the finite-time collapse of an unsteady interacting boundary layer (step
1), shortened length and time scales are examined here in the near-wall dynamics of
transitional-turbulent boundary layers or during dynamic stall. The next two steps
are described, in which (step 2) normal pressure gradients come into operation along
with a continuing nonlinear critical-layer jump and then (step 3) vortex formation is
induced typically. Normal pressure gradients enter in at least two ways, depending
on the internal or external flow configuration. This yields for certain internal flows
an extended KdV equation with an extra nonlinear integral contribution multiplied
by a coefficient which is proportional to the normal rate of change of curvature of
the velocity profile locally and whose sign turns out to be crucial. Positive values of
the coefficient lead to a further finite-time singularity, while negative values produce
a rapid secondary instability phenomenon. Zero values in contrast allow an interplay
between solitary waves and wave packets to emerge at large scaled times, this interplay
eventually returning the flow to its original, longer, interactive, boundary-layer scales
but now coupled with multiple shorter-scale Euler regions. In external or quasi-
external flows more generally an extended Benjamin–Ono equation holds instead,
leading to a reversal in the roles of positive and negative values of the coefficient.
The next step, 3, typically involves the strong wind-up of a local vortex, leading on to
explosion or implosion of the vortex. Further discussion is also presented, including
the three-dimensional setting, the computational implications, and experimental links.

1. Introduction
There are two major areas of practical interest that motivate the current work,

mainly concerning internal or external aerodynamics but with application also to
atmospheric, physiological and machinery dynamics among others. One is dynamic
stall, for example on pitching airfoils, turbine blades, or in unsteady internal flows,
and the other is transition from laminar to turbulent flow, on airfoils, flat surfaces or
in channels. Both have been subject to much experimental and computational study
over the years, e.g. see reviews by C. R. Smith et al. (1991), Doligalski, Smith &
Walker (1994), Smith (1993, 1995), references therein, and Lorber & Carta (1988).
Both areas involve very complex fluid dynamics, at large Reynolds numbers, with
various disparate length and time scales present, as typically for external flows a
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boundary layer is lifted away from the airfoil surface, accompanied by vortex roll-up
and ejection into the free stream outside. In consequence it is extremely difficult, if
not impossible, with present-day methods, to compute solutions for the flow fields
accurately at the large Reynolds numbers of real practical interest. It seems fairly
clear that theoretical backing which takes proper account of the largeness of the
Reynolds number is extremely desirable in both of these areas.

The present study is aimed at the large gap that exists, in these areas, between
the capabilities of accurate direct numerical simulations and the practical needs
which tend to be at much larger Reynolds number. There is a similar gap to be
bridged between studies of small-scale unsteady separation and the modelling of
larger-scale unsteady separation with vortex shedding, a gap that is addressed here
based initially on nonlinear singularities or break-ups in unsteady classical and/or
interactive boundary layers and internal flows. In the transition setting we address
break-up and the development of short-scale processes in the near-wall dynamics
of internal or external transitional boundary layers. The near-wall dynamics also
appears to be a key element in the make-up of turbulent boundary layers: see for
example Doligalski et al. (1994), Walker et al. (1989), Walker (1990a, b). This and
other theoretical aspects of turbulent boundary layers based on rational arguments
are examined by Smith, Doorly & Rothmayer (1990), Smith, Dodia & Bowles (1994),
Walker (1990a), C. R. Smith et al. (1991) (and references therein), including re-
normalization properties, sub-scales, spots and displacement-thickness enlargement.
The trend of the current theoretical and numerical work is presented below in terms
of consecutive steps, 0, 1, 2, 3, . . . . There are many possible scales and particular
contexts but all have a common theme.

In the context of dynamic stall, there are again several possible configurations and
scales involved, but many local flow features are virtually the same as for transition.
In motion due to an impulsively started thick airfoil or a pitching airfoil, the attached
classical unsteady boundary layer approaches the Van Dommelen (1981) singular-
ity, first, near which interaction between the pressure and the displacement takes
place, second: Elliott, Cowley & Smith (1983), Peridier, Smith & Walker (1991a, b),
Adams, Conlisk & Smith (1995), Cassel, Smith & Walker (1996). The action of the
classical unsteady boundary layer is regarded here as a ‘step 0’, prior to the pressure-
displacement-interactive stage which is ‘step 1’. Cassel et al. point out a delicate
dependence in the onset of interaction on the initial conditions. An alternative step 0
is associated with unsteady marginal separation (Smith 1982; Elliott & Smith 1985,
1987; Timoshin 1988), bringing in full pressure-displacement interaction next as the
step 1. Similar situations occur in transition, as we see below. Thus the unsteady
interactive step 1 represents a common thread throughout.

So §2 below starts with step 1, the unsteady interacting-boundary-layer system, the
two-dimensional version forming a central starting point (cf. the three-dimensional
version, which is considered by Hoyle & Smith 1994). This nonlinear stage often
corresponds to nonlinear Tollmien–Schlichting (TS) wave development, in the context
of transition, given that the linearized system captures linear TS waves (Smith 1979
and related references below). In the dynamic-stall context, the interacting stage is
encountered due to or even prior to (Cassel et al.) the local eruption in the classical
unsteady boundary-layer stage. Likewise, during transition, there can again be a
prior step 0, as above (Smith & Burggraf 1985; Smith et al. 1994, see also Zhuk &
Ryzhov 1982) or as a vortex–wave interaction (Smith & Walton 1989; Hall & Smith
1991; Smith & Bowles 1992; Walton & Smith 1992; Smith, Brown & Brown 1993).
The finite-time break-up of the interactive step 1 is summarized in §2 below, based
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on the theory in Smith (1988a), with Appendix A verifying its generality. (See also
computational and other aspects in Peridier et al. 1991a, b; Hoyle, Smith & Walker
1991; Adams et al. 1995). That leads on to the next stage, step 2, which is the basis
of this study and whose analysis starts in §3. There normal pressure gradients and a
developed nonlinear critical-layer jump (cf. Dickinson 1970; Stewartson 1978; Gajjar
& Smith 1985; Haynes & Cowley 1986; Smith & Bodonyi 1987) come into play
locally. Normal pressure gradients can enter in at least two ways: via a displacement
feedback in the outer uniform-shear motion for the external (or quasi-external) context
or directly from the normal momentum balance for certain internal-flow contexts.
These latter contexts yield an extended Korteweg–de Vries (KdV) equation for the
main pressure response. The extension from the KdV equation involves an extra
integral term which is due to a critical-layer jump and has a constant coefficient
µ. The key parameter µ itself is proportional to the normal rate of change of the
velocity-profile curvature in the neighbourhood of the critical layer.

The cases of positive µ, negative µ and zero µ are examined separately in §§4–6,
respectively, as they possess distinct characteristics. The first leads in to a further
finite-time irregularity and the second to a strong secondary instability. Thus before
the traditional soliton-containing stage normally associated with a KdV equation can
be reached more new physics comes into play in general. The special case of zero
µ however continues to large scaled times, acquiring then an intriguing structure
with solitary and travelling waves (§6). In the case of positive µ by contrast (§4)
the subsequent stage or step 3, which is considered in §7, is due essentially to the
formation of an increasingly strong, spanwise, vortex winding up, within the nonlinear
critical layer, together with faster time scales and still shorter length scales. The further
increase or decrease of the vortex strength is studied in §7. It is interesting to observe
that the criterion for the occurrence of the winding-up vortex here concerns the onset
of a maximum/minimum in the scaled local pressure variation p̃ (see also Hoyle et al.
1991),

p̃X → 0, (1.1)

along with an integral condition on the local velocity profile u0(y), namely

−
∫ ∞

0

[u0(y)− c]−2 dy = 0 (1.2)

(Smith 1988a) for the effective local phase speed c, where the coordinate y is in
the normal direction. (In (1.2) the upper limit of integration should be taken at an
upper boundary or symmetry line where appropriate, for instance in certain internal
motions.) The theoretical criterion (1.2) is met fairly closely in the channel-flow
transition experiments of Nishioka, Asai & Iida (1979) as quantitative comparisons
in Smith & Bowles (1992) show (see also Savin 1996; Smith 1996; Savin, Smith
& Allen 1998), while both (1.1), (1.2) are found to be met approximately in the
computations of Sandham & Kleiser (1992) (private communications 1991–94 with
Dr N. Sandham are gratefully acknowledged) and Jones & Fiddes (1994, private
communication) and Jones (1994). Again, (1.1) is used by Wintergerste & Kleiser
(1995) as a measure of the location of spikes or vortices near the end of transition in
their direct simulations. The criteria, then, according to the above evidence, correspond
to the formation of the so-called ‘first spike’ (at least) during certain transition paths
and possibly to Klebanoff-type breakdown (Schubauer & Klebanoff 1956; Klebanoff
& Tidstrom 1959; Klebanoff Tidstrom & Sargent 1962).

Further discussion is presented in §8. This includes the alternative external or
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quasi-external case of the extended Benjamin–Ono equation: for, although §§4–7 con-
centrate on the simpler, extended KdV, balance for special internal flows, the extended
Benjamin–Ono balance in fact has more general application, and so its analogous
properties are summarized in §8, these indicating a role reversal for positive and
negative values of µ. Also considered in §8 are the extension to the three-dimensional
version; connections with experiments and simulations; and the implications for
computational studies of internal or external dynamic stall and transition.

Non-dimensional variables are adopted, with the velocity (ū, v̄) in (x̄, ȳ) Cartesian
coordinates (streamwise, normal), the convective time t̄ and the pressure p̄ being such
that the non-dimensional airfoil chord, say, is unity, as is the characteristic free-stream
speed for external motions. The corresponding global Reynolds number Re is large,
and the typical undisturbed boundary-layer thickness is then of order Re−1/2. For
the case of internal motions the typical channel width, say, and the undisturbed
flow speed are both unity. Some of the scales that appear subsequently, as we go
beyond step 1 into steps 2, 3, may seem rather bizarre at first sight but the underlying
flow characteristics as indicated earlier are believed to be quite clear physically.
We address the incompressible regime, for definiteness, although the local dynamics
is virtually independent of the pressure-displacement law; it is also predominantly
inviscid, granted that by then viscosity has already had a profound effect during step
0 and/or step 1 in producing a critical profile u0(y) satisfying (1.2).

2. Finite-time break-up in unsteady interacting boundary layers (or the
nonlinear TS stage): step 1

Much work has been done theoretically and computationally on unsteady external
and internal boundary layers, in both the interactive (p̄ unknown) and the non-
interactive (p̄ prescribed) regimes. The present research starts with the interactive
case, regarded as step 1, a case which is both interesting and very generally useful,
with its capturing of linear TS waves in the linear regime for triple-deck scales and its
applications to transition and possible intermittency (see later), among other things,
in the nonlinear regime. Here we work mostly in terms of the incompressible triple-
deck case as our beginning, corresponding directly to the TS scales (see references
in §1), and extend to internal flow subsequently. Thus in the lower deck or viscous
sublayer, which is the main concern in the nonlinear TS stage, the flow solution has
the expansion

[ū, v̄, p̄] =
[
εu, ε3v, ε2p(x, t)

]
+ . . . ,

[
x̄, ȳ, t̄

]
=
[
x̄0 + ε3x, ε5y, ε2t

]
(2.1a,b)

near a typical station x̄ = x̄0, with the traditional factor ε ≡ Re−1/8 being small. An
extension can be made to more general local length scales ` between O(ε3) and O(ε6),
such that the successive factors in (2.1a, b) become δ, δ2Re−1/2`−1, δ2, `, δRe−1/2, `δ−1

in turn; here a viscous–inviscid balance requires δ = `1/3 and the range covered below
is then ε2 � δ 6 O(ε), although that can be extended further if viscous effects are
entirely absent. Given (2.1a, b) the governing equations here therefore are the scaled
planar unsteady boundary-layer equations, in a standard notation,

u = ψy, v = −ψx, (2.2a)

ut + uux + vuy = −px(x, t) + uyy, (2.2b)

subject to the boundary conditions

u = ψ = 0 at y = 0, (2.3a)
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u ∼ y + A(x, t) as y →∞. (2.3b)

The ȳ-momentum balance confirms that the scaled pressure p is independent of y,
and both p and the negative displacement A are unknown function of x, t. Among
the boundary conditions required to complete the system, the pressure-displacement
law depends on the particular context of interest, examples being the Cauchy–Hilbert
relation for subsonic external flows and Ackeret’s law in supersonic external flows.
The former applies in the present setting (2.1a, b) of an incompressible boundary
layer, in the form

p(x, t) =
1

π
−
∫ ∞
−∞

Aχ(χ, t)dχ

(x− χ) (2.3c)

from the potential-flow properties holding in the upper deck, of thickness O(ε3) in
ȳ, outside the O(ε4) thick boundary layer. There are many other contexts of interest
yielding other interaction laws, as noted by Smith (1988b), with the right-hand side of
(2.3c) replaced by±A, −Ax, −Axx for hypersonic-limit or liquid-layer flows, supersonic
boundary layers and wall jets, in turn, while short-scale interactions simply have A ≡ 0,
e.g. for δ less than O(ε). Various combinations are also encountered in some flow
configurations; see e.g. Brotherton-Ratcliffe (1986), Bowles & Smith (1992), Brown,
Cheng & Lee (1990) and below. Likewise, there are several useful interpretations at
finite Re. Finally here, an internal-flow context of particular concern is for symmetric
channel motion on an O(Re) length scale, such that[

ū, v̄, p̄, x̄, ȳ, t̄
]
∼
[
u, Re−1v, p, xRe, y, tRe

]
. (2.3d)

There (2.2a, b),(2.3c) hold again but subject to a mass-flow constraint

ψ = constant, uy = 0 at y = a, (2.3e)

where a is the channel half-width.
In all contexts, however, a finite-time break-up is possible according to the theory

in Smith (1988a), for the initial-value problem. The type of break-up singularity that
is probably the most common is the so-called moderate type, in which the length
scale

x− x0 = c(t− t0) + (t0 − t)3/2ξ (with ξ of O(1)) (2.4a)

contracts near the break-up position x = x0, at the break-up time t = t−0 , and the
scaled solution takes the form

[u, ψ, p] = [u0(y), ψ0(y), p0] + (t0 − t)1/2[u1(ξ, y), ψ1(ξ, y), p1(ξ)] + 0(t0 − t)3/4, (2.4b–d)

where p0 is constant and the characteristic y value remains O(1). Thinner sublayers
are brought into action near the critical layer, where u0 is equal to the phase speed
c and a nonlinear critical layer is provoked, and near the wall where a viscous wall
layer is required, but these need not concern us in detail yet; see Smith (1988a), and
compare with the subsequent sections. Analysis of (2.2) with the local expansions (2.4)

then leads (see last reference) to a nonlinear equation, p1p
′
1 = b̂(p1 − 3ξp′1), for p1(ξ)

with b̂ being a constant which, like the phase speed c, depends on integral properties
of the local velocity profile u0(y) at x = x0, cf. (3.6), (3.7) below. An assumed property

concerning the coefficient b̂ implicit in the last paper is verified in Appendix A to
be generally true, and we should also observe that the critical-layer jump here works
out to be zero, cf. the next section, while the higher-order terms in (2.4b–d) are
dependent on the particular context, as a comparison with Brotherton-Ratcliffe &
Smith (1987) shows. The p1 distribution above can be obtained explicitly (see also
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§§3,4 and in particular (4.4)). Hence a singularity in the pressure gradient is predicted,

with p− p0 ∝ |x− x0|1/3 locally at the time t = t0.
Computations of the unsteady interactive-boundary-layer development due to a

vortex above a plane wall (Peridier et al. 1991b), using a Lagrangian scheme, up
to the evolution of a singularity, provide strong support for the theoretical account
summarized in (2.4) and figure 1(a, b). We add in passing that there is a whole range of
possible singular forms (see Smith 1988a), all predominantly inviscid, stretching from
the moderate one above to a severe one in which p itself is discontinuous, analogous
to the singularities of the inviscid Burgers equation. For now we concentrate below
on the repercussions of the main break-up type (2.4) and the new physical properties
necessarily entering locally, as time advances.

3. The intrusion of normal pressure gradients: step 2
An order-of-magnitude argument indicates that, closer to the above singular posi-

tion and time (x0, t0), new physical influences come into play next which are associated
predominantly with normal-pressure-gradient effects as well as a development of a
new nonlinear critical-layer jump contribution. Normal pressure gradients can enter
in at least two ways, and here we address mainly the two representative configura-
tions (2.3c) for triple-deck external flow and (2.3e) for internal flow. The length and
time scales turn out to be reduced by factors ε3/2, ε for the triple-deck context and
Re−6/7, Re−4/7 for the internal-flow context, in the relevant moving frame, so that

x̄ = constant + δ1δ3cT + δ5X, t̄ = constant + δ3T , (3.1a,b)

where (δ1, δ3, δ5) denotes (ε, ε3, ε9/2) for the external triple-deck case and (1, Re3/7,
Re1/7) for the internal case, other cases being similar. The scales here follow from an
order-of-magnitude argument based on p̄ȳ in step 1 being of order Re−2 in the internal
flow context (from ūv̄x̄ evaluated using (2.3d)) but then growing like (t0 − t)−5/2 in
view of (2.4a, d) as t→ t0−. Thus the normal pressure variation then has typical size
Re−2(t0− t)−5/2. This becomes comparable with the solvability pressure level O(t0− t)
in Smith (1988a) when (t0 − t)7/2 decreases to Re−2, which along with (2.3d) confirms
(3.1b). The external scales follow similarly, the scales involved agreeing with those in
Smith (1977, 1996), Savin (1996). For definiteness we will keep to these two internal
and external cases below. There are two main tiers (i), (ii) now to investigate in the
ȳ-direction, as indicated schematically in figure 1(b) and as implied by the break-up in
§2, and an additional tier (iii) for the external case. There is also a viscous wall layer
present but this in essence is passive (being controlled by a linear unsteady-viscous
Stokes balance as in Smith 1988a), leaving the local dynamics predominantly inviscid.

The first tier (i) comprises the bulk of the local flow, in which the expansion holding
becomes

ū = δ1

[
u0(y) + δ2ũ(X, y, t) + δ2

2 ũ2(X, y, t) + . . .
]
, (3.2a)

v̄ = δ1δ4δ
−1
5

[
δ2ṽ(X, y, t) + δ2

2 ṽ2(X, y, t) + . . .
]
, (3.2b)

p̄ = δ2
1

[
p0 + δ2p̃(X, t) + δ2

2 p̃2(X, y, t) + . . .
]
, (3.2c)

for scaled X, y, T of O(1). Here ȳ = δ4y with δ4 being ε5 in the external triple-deck
context, but 1 in the internal-flow context, and δ2 denotes ε1/2, Re−2/7 respectively.
Analysis of the Navier–Stokes equations subject to the expansion (3.2) then leads to



Short-scale break-up in unsteady interactive layers 341

p

p0 + O(t0 – t)1/2

Length O(t0 – t)3/2

x0

(a)

x – c (t – t0)

± τw

τw ~ (t0 – t)–1/4

y(b)

II

I

III

u0

*
(y = y0)

Figure 1. On steps 1, 2. (a) Schematic diagram of the local behaviour of the scaled pressure p and
wall shear τw near break-up (Smith 1988a) of step 1. (b) Flow structure, with inflection point (*)
developed in the profile u0. Length scales I–III in the appropriate moving frame are as given in §§2,
3. For the external-flow case the termination of step 1 has I–III equal to ε5, ε5(t0− t)1/4, ε3(t0− t)3/2

respectively, whereas in step 2 where normal pressure gradients become significant the scales I–III
are ε5 (tier (i)), ε11/2 (tier (ii)), ε9/2 in turn and there is also an outer tier (iii) of normal extent O(ε9/2)
in ȳ. For the internal flow, I-III in step 2 are of order 1 (tier (i)), Re−2/7 (tier (ii)), Re1/7 in turn,
after being as in (2.3d) previously, and the profile u0 is assumed to satisfy the symmetry constraint
in (2.3e). A wall sub-layer is also present as indicated.

the first-order equations

ũX + ṽy = 0, (3.3a)

(u0 − c) ũX + ṽu′0 = −p̃X , 0 = −p̃y, (3.3b,c)

while at second order we obtain the balances

ũ2X + ṽ2y = 0, (3.4a)

(u0 − c) ũ2X + ṽ2u
′
0 +

[
ũT + ũũX + ṽũy

]
= −p̃2X, (3.4b)

θ1 [(u0 − c) ṽX] = −p̃2y. (3.4c)
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The constant factor θ1 is zero for external flow and unity for internal flow. The
solution of the leading-order system (3.3a–c) satisfying the required tangential-flow
condition at y = 0+ then has

ṽ = p̃X (u0(y)− c)−
∫ y

0

{u0(ŷ)− c}−2
dŷ, (3.5)

but with the scaled pressure response p̃(X,T ) remaining undetermined as yet. Instead
the requirement of effectively zero displacement at large y yields the break-up criterion
(1.2) between the phase speed c and the local streamwise velocity profile u0(y); this
requirement, we note, follows from most of the interaction laws mentioned in §2, an
exception being covered mainly by Brotherton-Ratcliffe & Smith (1987). The condition
of effectively zero displacement here is supported by order-of-magnitude arguments,
consistent with the law (2.3c) earlier (which implies that A is of the typical order
|x− x0| |p| and so becomes negligible locally) and with the size of the displacement
feedback in (3.12b) below for the external configuration, while we recall that the
upper limit in (1.2) should read a for the internal-flow configuration. The criterion
(1.2) agrees with that in Smith (1988a) for step 1, as expected, and it is also related to
the Burns criterion for water waves. The major novel feature for the current step 2,
however, for internal flow, is the non-zero normal pressure gradient induced at second
order via the inertial forcing term on the left-hand side of (3.4c). The other forcing
term at second order, also shown in square brackets, is in (3.4b) and corresponds
directly with the streamwise inertial effect found in Smith (1988a), leading to the p1

equation in §2 (and to part of (3.6) below). Solving (3.4a–c) then, given (3.5), (1.2),
we obtain a compatability relation for the second-order terms which yields, after
some manipulation, the governing equation between the unknown pressure response
p̃(X,T ), the unknown jump contribution j across the critical layer (tier (ii) below),
and the effective displacement contribution ∆ (from tier (iii) if present), namely

a1p̃T + a2p̃p̃X = a3p̃XXX + j + ∆. (3.6)

Here the constants a1, a2(=
1
2
b̂−1a1), a3 are integral properties of the local velocity

profile, given by

a1 ≡ p̃−1 −
∫ ∞

0

ũ

(u0 − c)2
dy, a2 ≡ p̃−2 −

∫ ∞
0

(ũ2 − ψ̃ũ′)dy
(u0 − c)2

,

a3 ≡ p̃−2θ1 −
∫ ∞

0

ψ̃2dy, where ψ̃ ≡
∫ y

0

ũdy,

with a1, a2 being essentially as in Smith (1988a) and a3 is new, being associated with
the new normal pressure-gradient influence for internal flow which results in the triple
derivative in (3.6). The contribution j, due to a velocity-jump effect across the critical
layer (ii), is analogous with that in Smith (1988a) for step 1 and it is considered next.

The second tier (ii), occurring near y = y0, is a predominantly nonlinear critical
layer for which the expansions

ū = δ1[c+ δ
1/2
2 U1 + δ2U2 + . . .+ δ2

2U4 + . . .], (3.7a)

ψ̄ = δ1δ4[const.+ δ
1/2
2 cY + δ2Ψ1 + . . .], (3.7b)

p̄ = δ2
1[p0 + δ2P1 + δ2

2P2 + δ
5/2
2 P3 + . . .], (3.7c)
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with

ȳ = δ4(y0 + δ
1/2
2 Y ), (3.7d)

hold with u0(y0) = c and the inflection-point condition u′′0(y0) = 0. Here ψ̄ is the stream
function satisfying ū = ∂ψ̄/∂ȳ, v̄ = −∂ψ̄/∂x̄. The form of (3.7a–d) is implied by the
behaviour of the solutions in tier (i) as y → y0± . Substitution into the Navier–Stokes
equations now produces the following streamwise-momentum balances:

U1U1X −Ψ1XU1Y = −P1X, (3.8a)

U1T +U1U2X +U2U1X −Ψ1XU2Y −Ψ2XU1Y = 0, (3.8b)

U2T +U1U3X +U2U2X +U3U1X −Ψ1XU3Y −Ψ2XU2Y −Ψ3XU1Y = −P2X, (3.8c)

U3T +U1U4X +U2U3X +U3U2X +U4U1X

−Ψ1XU4Y −Ψ2XU3Y −Ψ3XU2Y −Ψ4XU1Y = −P3X +U1Y Y , (3.8d)

subject to appropriate matching conditions at large |Y | analogous with those in Smith
(1988a); and continuity requires that Un = ΨnY (n = 1, 2, . . .). The normal-momentum
balance shows PnY to be zero for n < 4, so that P1 = p̃, P2 = p̃2(X, y0, T ), and so on.
In (3.8a–d), the first equation shows the critical layer to be predominantly nonlinear,
in the sense of Benney & Bergeron (1969), Haberman (1972), the second and third
equations turn out to be passive corrective effects, and the fourth equation provokes
the velocity jump referred to in the previous paragraph. Thus the first few solutions
are relatively straightforward,

Ψ1 = 1
2
b1Y

2 + b−1
1 p̃, U1 = b1Y , V1 = −b1p̃X , Ψ2 = a11(X,T )Y + b10(X,T ), (3.9a–d)

Ψ3 = 1
4
b3Y

4 + a12(X,T )Y 2 + b11(X,T )Y + c10(X,T ). (3.9e)

Here a11 = b1I1p̃ where I1 is the finite part of the integral in (3.5) evaluated at y = y0,
b10 = b11 = 0 in the present context, a12 = 3b3b

−2
1 p̃, c10X = b−1

1 (p̃2X + a11T + a11a11X −
2a12a10X), the constants b1, b3 come from the local expansion u0 − c = b1s+ b3s

3 + . . .
where s ≡ (y−y0), with the b2-term absent due to the inflection point, and V1 ≡ −Ψ1X

is the scaled normal velocity. In contrast, the solution for Ψ4 is more complicated. It
can be written as Ψ4 = 1

5
b4Y

5 + a13Y
3 + d10 + Φ4 with Φ4 ∼ c1LY ln |Y |+ c11

±Y at
large |Y |, and then the Y -derivative of the streamwise momentum equation reduces
to solving

b1Y τ4X − b−1
1 p̃Xτ4Y = −6b−3

1 (b1b3p̃T − 2b4p̃p̃X) {≡ m(X,T )} (3.10)

for the scaled vorticity τ4 ≡ Φ4Y Y , subject to certain boundary conditions at large |Y | ,
from which the velocity jump can be found. The solution then follows from Smith &
Bodonyi (1987), giving the required velocity jump

J = −b−1
1 −
∫ ∞
−∞
m(s, T ) ln |p̃(X,T )− p̃(s, T )| ds (3.11a)

across the critical layer, in scaled terms, provided that p̃ remains monotonic in X.
From this we can determine the jump term j, which is found to be b−1

1 ∂J/∂X and so
can be expressed in terms of the unknown pressure p̃.

Tier (iii), which is present for the external configuration, lies outside tier (i) and
has normal ȳ extent comparable with the streamwise x̄ extent, of order δ5. The flow
solution is a small perturbation, of the uniform shear ū = ε−4ȳ, forced by the wall
pressure response δ2

1δ2p̃ essentially (Savin 1996; Smith 1996), leading to Laplace’s
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equation for the velocity perturbations. Hence a displacement effect is produced in
the upper reaches of tier (i) associated with a ∂v̄/∂ȳ variation of order δ1δ2δ4/δ

2
5 and

proportional to the Cauchy–Hilbert integral of ∂2p̃/∂X2. This induced ∂ṽ2/∂ȳ is of
the same order as that (δ1δ

2
2/δ5) corresponding to ∂ṽ2/∂y in (3.2b) since δ4 = δ2δ5. In

consequence

∆ =
θ2

π
−
∫ ∞
−∞

∂2p̃

∂s2
(s, T )

ds

(X − s) (3.11b)

fixes the displacement (correction) effect, with θ2 being unity for the external context
or zero for the internal case.

Combining the analyses of the two tiers (i), (ii), therefore, together with (iii) where
necessary, we are left with the nonlinear evolution equation

a1p̃T + a2p̃p̃X = a3p̃XXX + µp̃X −
∫ ∞
−∞

[
p̃T (s, T ) + a−1

1 a2(p̃p̃s)(s, T )
]

ds

p̃(X,T )− p̃(s, T )

+
θ2

π
−
∫ ∞
−∞
p̃ss(s, T )

ds

(X − s) (3.12a)

for the local scaled pressure p̃(X,T ), where µ = 6b3b
−4
1 is a positive or negative

constant. We should repeat that an implicit property of the coefficient b̂ (namely

b̂ = a1/(2a2) = −b1b3/(4b4)) is shown in Appendix A to hold true quite generally.
The boundary conditions on (3.12a) are essentially

p̃ ∝ |X|1/3 as X → ±∞ (3.12b)

at finite times T , and the ‘initial’ conditions have the form

p̃ ∼ |T |1/2 f(ξ) as T → −∞, for ξ ≡ X/ |T |3/2 of O(1). (3.12c)

Here (3.12b) is to match the solution with that in the rest of the flow field, at x̄ values
outside the range of (3.1a), whereas (3.12c) is to join with the earlier behaviour in
(2.4b) at the end of step 1. Indeed, ξ is effectively the same variable as in (2.4a), and
f(ξ) ≡ p1(ξ); substitution of (3.12c) into (3.12a) leaves p1 = f(ξ) controlled by the

same equation as in §2, as required, and the constant b̂ is verified as equalling a1/(2a2).
See also (4.4) below. In (3.12a) the presence of the θ2 (or ∆) term, when combined with
the left-hand side alone, yields the Benjamin–Ono equation (cf. Kachanov, Ryzhov &
Smith 1993), an integro-differential equation which is consistent with a special case
of Savin (1996), Smith (1996).

In the remainder of this section and in §§4–6 we focus on the special internal-flow
context of zero ∆(zero θ2) and unit θ1, i.e. the extended KdV equation applying for

θ1 = 1, θ2 = 0, (3.13)

deferring further discussion of the extended Benjamin–Ono case corresponding to

θ1 = 0, θ2 = 1 (3.14)

until §8. At large negative times T , then, the terms on the left-hand side of (3.12a)
dominate and reproduce the break-up singularity of §2, as required for matching. As
scaled time T then increases, the two remaining right-hand terms (with ∆ neglected),
due respectively to the normal pressure gradient and to the critical-layer jump, come
progressively more into play. The latter, we note, happens to vanish identically when
the leading-order form (3.12c) only is applied, at large negative times, cf. Smith (1988a)
and §2. The appearance of the KdV-like balance in (3.12a) is perhaps not so surprising
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in retrospect, since the KdV equation in its more familiar context of water waves
arises from similar normal pressure-gradient effects, and likewise for the 1

7
th powers

in the scalings of (3.1), (3.2), cf. Whitham (1974), Smith (1977). It is worth observing
that this structure does not hold in the severe type of break-up (see §2) or in the
reversed-flow singularity encountered for steady interacting boundary layers (Smith
1988b) where the full Euler equations are immediately encountered instead. Given
the nonlinear KdV-extended equation (3.12a) with (3.13), which generally requires a
computational treatment as described below, it might be expected at first that, at
large positive times T , the system produces travelling solitary waves and decaying
waves. This is not true in general, however, as we shall see; the value of µ has an
important influence.

4. Solution behaviour for positive µ
The solution properties of (3.12a–c), (3.13) are found to depend crucially on whether

the parameter µ is positive, negative or zero. In this section we consider positive values.
Computational solutions of (3.12a–c), (3.13) were obtained by the following ap-

proach. First, the initial condition (3.12c) was imposed at a large negative time
T = −Γ by transforming

p̃→ a1a
−1
2 Γ 1/2p̃, X → Γ 3/2X, T → ΓT , (4.1)

which also serves to ‘normalize’ the constants present, converting (3.12a, c) to the
form

p̃T + p̃p̃X = a4p̃XXX + µ̃p̃X −
∫ ∞
−∞

[p̃T (s, T ) + p̃p̃s(s, T )] ds

p̃(X,T )− p̃(s, T )
, (4.2)

p̃ ∼ |T |1/2 f(ξ)/(2b̂) as T → −1, (4.3)

and leaving (3.12b) intact. Here µ̃ = a−1
1 µ is generally O(1), as is b̂, while a4 ≡

a3a
−1
1 Γ−7/2 is to be taken as small since Γ is large and positive. Second, the starting

behaviour (4.3) was imposed by setting

f = − 2√
3

sinh

[
1
3

sinh−1

(
33/2X

2

)]
(4.4)

which is an explicit solution for p1 = f(ξ); see §2 and also Hoyle (1991). Here we take

the value b̂ = 1
2

without loss of generality. Third, time-marching calculations of (4.2),
(4.3) with (3.12b), (4.4) were performed using two methods. Preliminary computations
by F.T.S. with Dr J. M. Hoyle reported in Hoyle (1991) tried the method of Greig
& Morris (1976) but modified to accommodate the unusual boundary condition
(3.12b) and the principal-value integral in (4.2). For the boundary condition (3.12b),
an appropriate simple moving solution of the inviscid Burgers equation was inserted
at a few points near either end of the X-range of integration. The principal-value
integral in (4.2), at any time step, was evaluated using a trapezoidal sum (similarly
to Davis & Werle 1982) with pressure values taken at the two time steps prior to
the current computational one. Thus the integral was treated as a passive term in
effect and this seemed to prove reasonably stable and accurate in some cases. The
results were checked for grid-size effects, which were found to be small with a few
exceptions; see next paragraph. Further, a change of sign in the coefficient a4 can be
accommodated by replacing (p̃, X, µ̃) by −(p̃, X, µ̃) in (4.2), (4.3), (3.12b), given also
that f in (4.4) is odd in X, and so a4 can be taken as positive without loss of generality.
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This also demonstrates solution dependence on the parameter µ̃ sgn(a4) generally, and
especially the sign of µ̃a4; but µ̃a4 = µa3a

−2
1 Γ−7/2, with a3 being positive from just

below (3.6), and thus the sign dependence is essentially on the coefficient µ alone.
Results were obtained for small positive values (typically 0.005) of the coefficient a4,
i.e. large Γ , and for various values of the coefficient µ̃.

A more robust method was then adopted, which we now describe. We began this
by adopting a fourth-order compact-difference scheme (Orszag & Israeli 1974; Hirsh
1975; Aubert & Deville 1983; Christie 1985; Li 1997) to compute the case of zero µ̃,
which is a standard KdV equation but with an unusual boundary condition in (3.12b),
the latter being handled by asymptotic large-|X| expansions to shorten the effective
integration range in |X|. The computations showed the compact-difference scheme
to be very suitable for that case. A fourth-order convergence rate was observed
satisfactorily in refinement of the grid spacing and the results obtained were in
agreement with previous ones. See Li (1997). Further discussion on the µ̃ zero case is
delayed to §6. For positive µ̃ the compact-difference scheme was extended such that,
at each time level, (4.2) is solved repeatedly in an iterative manner to force close
satisfaction of (4.2) at that level, the principal-value integral (CI, say) being treated
by a first-, second- or third-order formula developed using a Taylor expansion. The
iterations applied here contrast with the passive way in which CI is treated in the
previous method, and it is felt that the iterative procedure is central to guaranteeing
that the resulting discrete system readily preserves the properties of the original
continuous system as much as possible. Results are presented in figure 2(a–d), for
various positive values of µ̃. Tests on accuracy associated with the treatment of the
CI term, with grid sizes, with iterative tolerance and with the effects of varying Γ ,
proved very affirmative indeed, as did tests on stability of the scheme. Again, the
results agree broadly with ones obtained previously. For positive µ̃ the numerical
solutions tend to terminate at some finite time T = T̂0 at which the number of
iterations exceeds a prescribed large number, say 100. Generally, the larger µ̃ is, the
longer the solution lasts. At this termination time it was found that at some station
X = X̂0 the negative gradient −∂p̃/∂X(X̂0, T̂0) becomes very small, and around X̂0

the principal-value integral CI attains very large positive and/or negative amplitudes.

(Here X̂0, T̂0 are identified with X0, T0 below in the limit of zero grid spacing). Again
see figure 2(a–c). Also, the computations suggest that the location of X̂0 shifts in the
negative X-direction, towards the origin, as µ̃ increases, with the termination time
increasing with µ̃: see figure 2(d).

The general behaviour of the computed solutions is as anticipated at the end of §3,
with the left-hand terms in (4.2) dominating until the transformed time T becomes
relatively small. These terms force the pressure solution p̃ to move ‘inward’ until
sufficiently large gradients are produced that the right-hand terms can counteract the
inward trend. The special case of zero µ̃ forms a canonical problem for the KdV
equation in fact (see §6), and the solution can continue for all time T , forming a
nonlinear modulated wave packet at large positive T . All the present cases however
where µ̃ is positive seem to terminate at the onset of a maximum/minimum in the
scaled pressure p̃, at a finite time, in view of the final term in (4.2), as analysed below.

The response at the onset of a pressure maximum/minimum, at time T = T0− say,
where

p̃X → 0 (at some station X = X0), (4.5)

is significant for what follows later. Approximately, the scaled pressure response locally
tends to be dominated by the triple derivative in (4.2), with p̃ then approximately
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−d2(X−X0)
3 +d3(X−X0)(T −T0) to within an additive constant or so, where say the

constants d2, d3 are both positive. In more detail, on the other hand, the local length
scale around X = X0 is therefore O(T0 − T )1/2, so that χ ≡ (X − X0)/(T0 − T )1/2 is
O(1), and

p̃ ∼ d0 − d1(T − T0) + (T0 − T )3/2g(χ) + . . . , (4.6)

where d0 is the local pressure constant solution. From (4.2) the function g(χ) then
satisfies

−d1 = a4g
′′′ − d1µ̃g

′ −
∫ ∞
−∞

ds

g(χ)− g(s)
, (4.7)

subject to matching conditions with the pressure solution away from the turning
point.

A suitably normalized form of (4.7), obtained by setting χ = `cχc, g = d1`
3
cgc/(6a4)

where the positive length factor `c is unspecified as yet, is

−6 = g′′′c − 6µ̃g′c −
∫ ∞
−∞

ds

gc(χ)− gc(s)
. (4.8a)

The matching conditions then require

gc = −0(χ3
c) at large |χc| (4.8b)

in view of (4.6). The behaviour in (4.8a, b) may be made more specific as follows.
If (4.8a) is considered iteratively say, with its final term regarded as being lagged,
cf. below, then extra contributions A0c + A1cχc + A2cχ

2
c are implied in gc. At first

sight the three constants here appear to be arbitrary, determined perhaps by solution
properties of p̃ outside the χ-zone. However, an origin shift in χc, of A2c/3, can be
used to eliminate the extra χ2

c contribution by virtue of the χ3
c term in (4.8b) with unit

coefficient in the iteration, or equivalently an integrated form of (4.8a) may be taken,
while the constant contribution can then be absorbed into gc. So only one arbitrary
constant remains. Finally then the coefficient of the remaining χc contribution can
be made equal to minus one by appropriate choice by `c, given that the pressure is
approaching a maximum/minimum as T → T0−. Hence we seek the solution which
continues from gc = −χ3

c − χc for zero µ̃ and which in effect has zero A0c, A2c, with
−A1c kept as unity, for non-zero µ̃. Another relevant point now arises from examining
(4.8a, b) for small µ̃, when gc = −χ3

c − χc + 6µ̃gc1 say, yielding the linear equation

g′′′c1 = π
√

3(χ2
c + 4/3)−1/2χc

for gc1(χc). Hence the values g′′′c1(±∞) are different, implying that the χ3
c coefficient

associated with (4.8b) must be different at ±∞ for non-zero µc. Also, we observe that
integration gives a term O(χc`n |χc|) in gc1 at large |χc|, which indicates a higher-order
term ∝ |χc|n being present in gc as |χc| → ∞ with n distinct from 1 when µc is
non-zero. In consequence, a more precise rendition of (4.8b) is

gc ∼ −D±2 χ3
c as χc → ±∞, (4.8c)

where the constants D±2 are unequal in general, although both must be positive to
maintain the sense of the terminal solution outside the χ-zone and keep gc monotonic
in χc. In fact, analysis of (4.8a) at large positive χc subject to (4.8c) leads to the
requirement

D+
2 = 1− µ̃π√

3

{
1 + 2

(
D+

2

D−2

)1/3
}
. (4.9a)
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Figure 2 (a–c). For caption see facing page.



Short-scale break-up in unsteady interactive layers 349

0.7

0.5

0.3

0.1

–0.1

–0.3
0 0.2 0.4 0.6 0.8 1.0

0.5

0.4

0.3

0.2

0.1
0 0.2 0.4 0.6 0.8 1.0

T0
ˆ X0

ˆ

l~ l~

(d )

Figure 2. KdV-extended computed solutions, for µ̃ and a4 positive, in (4.2). See §4. Here (a–c) are
for µ̃ = 0.01, 0.4, 1 in turn, showing p̃ along with the principal-value integral CI at three times in
each case, while (d) gives the termination position and time against µ̃.

and similarly the large negative range requires that

D−2 = 1 +
µ̃π√

3

{
1 + 2

(
D−2
D+

2

)1/3
}
. (4.9b)

It follows that the ratio D ≡ D+
2 /D

−
2 , which must be positive, is fixed by the relation

(1− D1/3)/(1 + D1/3) = µ̃π/(
√

3) for a given µ̃. Hence

D = (1− µ̃π/
√

3)3/(1 + µ̃π/
√

3)3 (4.9c)

determines D uniquely for the interval |µ̃| <
√

3/π as shown in figure 3(a): see also

comments in §8. Then the values of D±2 can be found from (4.9a or b).

Numerical solutions of (4.8a, c) with D±2 determined via (4.9a–c) were obtained for
a number of µ̃ values, taking into account the specification of the three constants
A0c, A1c, A2c described after (4.8b). A finite-difference approach of nominal second-
order accuracy was followed, for given D and hence µ̃, setting g′c = q and coupling
this equation with that derived by replacing g′′′c in (4.8a) by q′′. Two-point differencing
was used on the g′c equation and centred differencing on the q′′ one, over a range
χ1 6 χc 6 χ2, with the principal value integral evaluated as a summation as in
Davis & Werle (1982) but including contributions from 3χ1 to χ1 and χ2 to 3χ2.
Concerning the boundary conditions and allowing for the three constants above, the
values −D∓2 χ3

c − χc were imposed on gc at the most left- and right-hand grid points
χ1(< 0), χ2(> 0) respectively, along with the value −3D−2 χ

2
1 − 1 at the former point

to fix the solution. Newton iteration was then applied to the difference equations
but with lagging used on all the summation terms except for the diagonal elements
in the matrix inversion required. In some cases under-relaxation was also adopted
when the iterative increments were added to the previous guesses. The iterative
process was continued until the solution was sufficiently converged. With a typical
grid of −4 (0.02)4 in χc symmetric about the origin approximately 2000 iterations
were required to reduce the increments to below 10−5, depending on the value of µ̃.
The results were also checked by other methods including an artificial-time marching
one to a steady state, whose solutions agreed closely with the present solutions. The
equation (4.8a) was found to be satisfied to within a residue of less than 0.0005
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Figure 3. (a) Dependence of µ̃, D±2 on D. Dashes show asymptote as D → 0+, µ̃→
√

3/π (≈ 0.5513).
(b) Sample results for gc versus χc, for D = 0.2, 0.3, 0.6, 1. The inset shows the variation of gc(0)
with D, together with small-(D − 1) (small-µ̃) theory (dashed curve) and grid effects (0,×). The
boundary here has |χc| = 4. Similar trends result for a boundary at |χc| = 8. (c) Q versus gc, where
Q ≡ 1/ (dgc/dχc): see Appendix B.

compared with a typical maximum term of magnitude O(103). Sample results are
shown in figure 3(b) for positive µ̃. Solutions for negative µ̃ values may also be
obtained however: simply reverse the signs of gc,χc, µ̃ above, and interchange D±2 , in
(4.8a–c) and the figure. Similarly the graph of µ̃ versus D for negative µ̃ may be
derived by replacing (µ̃, D) in figure 3(a) by (−µ̃, D−1), this leading to µ̃→ −

√
3/π as

D →∞. Further aspects of the terminal solutions are discussed briefly in Appendix B.
The extended KdV computations in figure 2 seem to fall in line with the local

terminal analysis in (4.6)–(4.9), for a range of non-zero µ̃ values. The growth in mag-
nitude of the principal-value integral CI in figure 2 near the end of the computations
for instance is in line with the large order of magnitude CI = O(T0 − T )−1 predicted
by the terminal analysis.

New physics is bound to come into operation next, associated primarily with a
change in the nonlinear critical-layer dynamics as studied in §7. Hence the present
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flow structure breaks down locally, marking the end of step 2 before the regime of
soliton formation mentioned earlier can be reached (directly anyway, cf. §6). We move
on to address the case of µ < 0.

5. Negative µ
Computations of (4.2)–(4.4) with (3.12b) but for µ̃ negative with a4 positive (corre-

sponding to negative µ) were performed using the second numerical method described
in the previous section. The results are summarized in figure 4(a, b) for µ̃ = −0.2,
which gives the fairly characteristic response for negative µ̃ values; others are in Li
(1997). Contrary to what might be expected from (4.6ff), the results for µ̃ < 0 indicate
a new feature appearing, that of short-scale instability. Weak approximately wave-
like disturbances are found to grow fast temporally and their typical growth rates
increase with refinement of the grid. This negative µ̃ case is a more complicated one
numerically, needing more effort on the modified computational method. Different
grid spacings and time steps showed the numerical solutions to be unstable, generally
terminating at significantly different times for different space and time steps, with
smaller steps yielding earlier terminations; the termination times are also somewhat
scheme-dependent. The form of this numerical phenomenon suggests, then, the pres-
ence of a short-wave instability for µ̃ negative (cf. Moore 1979; Smith 1982; Ryzhov
& Smith 1984 in other settings).

An analytical explanation seems to be the following. We focus on short waves of
typical given wavenumber α � 1 and unknown (complex) frequency ω. Then for a
given base solution p̃0(X,T ) say a linear disturbance of small amplitude O(ε̂) in p̃
and proportional to exp(iαX − iωT ) satisfies for positive α the eigenrelation

−iω + p̃0iα = −iα3a4 − µ̃(−iω + p̃0iα)iπ (5.1)

from (4.2), since the X,T variation in p̃0 is negligible now as in a parallel-flow
approximation. The contribution ∝ iπ in (5.1) stems from the Cauchy integral of
exp(iαx̃)/((X − x̃)p′0) with respect to x̃, with p′0 denoting ∂p̃/∂X(X,T ) which here is
constant to leading order. From (5.1) we then have the complex frequency

ω = αp̃0 − iα3a4(µ̃π + i)(µ̃2π2 + 1)−1, (5.2)

where strictly the αp̃0 term could be omitted at first order. In any case the implied
temporal growth rate is

ωi =
−µ̃πα3a4

(µ̃2π2 + 1)
. (5.3)

Hence there is short-scale instability, with positive ωi, for any negative µ̃; more
precisely this is for negative µ̃a4, corresponding to negative µ, although here we mostly
take a4 as positive anyway. We should remark that the terms on the right-hand side
of (4.2) are responsible for the result (5.3) and that (5.1)–(5.3) can be extended to a
Fourier transform result in an initial-value setting if necessary. Moreover, the growth
rate ωi increases very rapidly like α3 for increasing wavenumbers α, thus probably
making the present nonlinear initial-value problem ill-posed for negative µ̃, although
the linear result (5.3) remains valid only for ε̂α� 1.

The computations in figure 4 are qualitatively in keeping with the above analysis.
Attempts to obtain quantitative agreement were also made and were partly encour-
aging, although the very nature of the explosive secondary instability according to
the analysis is difficult to handle with sufficient accuracy numerically. Resolution is a
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Figure 4. Computed results for negative µ̃, positive a4 in (4.2): see §5. (a)
∆p̃(X,T ) ≡ p̃(µ̃ = −0.2) − p̃(µ̃ = 0) versus X; here ∆T = 0.0001, h = 0.006, a4 = 0.005. (b)
ln(MDPn) versus T ; ∆T , h, a4 are as in (a).

key factor, requiring a very small grid spacing, but that can enlarge the computation
time excessively. In our further work we turned to a coordinate transformation to
cluster grid points into the region of high activity in the solution (Li 1997), adopting
a second-order method coupled with a second-order formula for the principal-value
integral CI to compute in the transformed plane. This enabled much more resolution
to be applied generally. The subsequent results agreed with the limiting analysis and
in particular (5.3) to within a factor of about 2 in the temporal growth rate derived
from a log plot of successive numerical results, for a wavenumber α estimated to be
in the range 100–200, even though near the end of the calculations the typical value
of ε̂α rose to more than unity, indicating extra nonlinear effects, cf. the end of the
previous paragraph.

More details on the numerical growth rate are as follows. To evaluate it a base
solution (say P̃0) is needed for comparison, a seemingly reasonable choice being the
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(stable) solution for zero µ̃ since the instability for negative µ̃ develops soon after the
start of the calculation. Thus, after each time step, the maximum difference denoted
by MDPn(= maxj |p̃(Xj, Tn)µ̃<0 − p̃(Xj, Tn)µ̃=0|) between the results for negative µ̃ and
those for zero µ̃ is treated as the amplitude of the disturbances. Figure 4(a) shows the
evolution of ∆p̃(Xj, Tn) = p̃(Xj, Tn)µ̃=−0.2− p̃(Xj, Tn)µ̃=0 with time-marching, where the
short waves of the disturbance become more evident. The disturbance wavenumber
α for the evaluation of ωi is approximated by estimating the wavelength λ

(
= 2π/α

)
of the short waves. For the above case the estimated wavelength is 0.0365, so that
α ≈ 172, and ωi ≈ 11 490 from (5.3). It is found that once the disturbance emerges
clearly its wavelength does not change throughout the late stages of computation
for all cases we computed. The estimate of the numerical growth rates ωn is based
on the calculation of the maximum difference MDPn. At first MDPn are centred
near X = 0 and grow only slowly, but at a certain time they start to grow fast at a
location different from the original one, apparently in an exponential manner. The
logarithm, lnMDPn, should approach −ωiT according to the analysis in (5.1)–(5.3),
for asymptotically short wavelengths in the disturbance, and indeed the numerical
results do show a nearly linear development with T near the end of the calculation;
see figure 4(b). Therefore the numerical growth rates can be evaluated by calculating
the slope of the curve of lnMDPn versus T . The values of ωn for the above case are
estimated to be around 5000 in the last 7–8 steps. This is a typical case. Several other
results for different µ̃, a4, with µ̃a4 negative, as well as for different steps ∆T and
grid spacings h (in the transformed plane), are displayed by Li (1997), and here we
summarize the computational results as follows. First, for fixed h, µ̃ and a4, decreasing
the time step ∆T leads to decreasing λ and increasing numerical growth rate ωn, in
keeping with (5.3). Second, for fixed ∆T , h and a4, increasing |µ̃| (< 1) leads to a
slight change in λ (this change is possibly due to numerical accuracy) but increasing
numerical growth rate ωn, again in keeping with (5.3). Third, for fixed ∆T , h and
µ̃, increasing a4 leads to significantly increasing λ, but the change in the numerical
growth rate ωn is small. This is also in keeping with (5.3). Fourth, for fixed ∆T , µ̃
and a4, a change in h leads to a slight change in λ and the numerical growth rate ωn,
and it seems the change is due to numerical inaccuracy. Fifth, quantitatively, most
numerical growth rates produced fall into a range of values of approximately half
the theoretical growth rates in the last stage of calculations, although this is quite
sensitive to the value of α used in (5.3).

The secondary instability here implies that an examinaton of much shorter time
and space scales (as in the references mentioned earlier in this section and more
recently, in a different setting, Davis 1992; Ryzhov & Terent’ev 1997) is probably
necessary prior to the current step. It is interesting that the instability and ill-
posedness are based mainly on the balance of the new normal pressure gradient
and the nonlinear critical-layer jump arising in this work. It might be argued that
after a fast-growing disturbance such as in (5.1)–(5.3) becomes nonlinear a finite-time
singularity is encountered just as in §4. The more satisfying conclusion however is as
above, that extra physical effects need to be brought into operation beforehand, quite
possibly associated with a streamwise length scale equal or closer to O(ε5) rather than
the longer scale of the current step 2.

6. Zero µ
For zero µ̃ (and hence zero µ) (4.2) becomes a standard KdV equation, of which

many solution properties are well known, e.g. Drazin (1983), Drazin & Johnson
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(1989), Miles (1981), Whitham (1974). The boundary conditions (4.3), (4.4), (3.12b)
on the other hand appear to be non-standard, although related to step-like initial
conditions (see Peregrine 1966; Gurevich & Pitaevskii 1974), and they are found to
provoke an interesting response in the solution, which, unlike those of §§4,5, continues
to large positive times.

Computational results for (4.2)–(4.4), (3.12b) with µ̃ zero, derived as in the previous
two sections, are given in figure 5 at times T from −1 to 9. Following the smooth
start at large negative time corresponding to T = −1, the solution gradually develops
multiple (smooth) maxima and minima with increasing T and as expected multiple
waves and possible solitons appear at large positive T . The accuracy and stability
of the compact-difference method used was also checked against other methods for
other KdV cases, yielding favourable comparisons. In figure 5 at larger times a
beautiful wave packet travels along in the positive X-direction, and numerically it
seems this travel can be maintained accurately for a very long time indeed provided
that sufficiently small grid spacings and time steps are taken.

Of concern next is the solution behaviour as time T → ∞. An analysis of this
based on Whitham’s (1974) approach (and figure 6(a)) is presented in Appendix C.
Figure 6(b) shows the computational results for the amplitude of the first soliton and
its centre position as a function of time T , together with the asymptotic large-time
curves given by the analysis of Appendix C. The agreement is good for the amplitude,
whereas the centre-position prediction is more sensitive to the value of a coefficient
(Appendix C) in the asymptote as the example in the figure indicates.

7. Vortex wind-up: step 3
From §4, as time T approaches T0− when the scaled pressure first develops a local

maximum or minimum spatially, the unsteady forces in the critical layer become
significant relative to the nonlinear ones (cf. Dickinson 1970; Haberman 1972; Brown
& Stewartson 1978; Hickernell 1984; Bodonyi, Smith & Gajjar 1983; Gajjar &
Smith 1985; Haynes & Cowley 1986; Smith & Bodonyi 1987). For the balance of
forces then leaves the typical streamwise and normal length scales of the nonlinear
critical layer decreasing as (T0 − T )1/2, (T0 − T )3/4 respectively, in a similarity form.
Hence the main inertial operator there, which is spatial and proportional to |y| ∂/∂x
(scaled), diminishes as (T0 − T )1/4 whereas the temporal operator is of relative order
φ(T0 − T )−1, lagging behind the spatial operators in step 2 by an amount φ ≡ ε2/7.
The new balance of concern here therefore occurs when T0 − T is as small as φ4/5.
That makes the characteristic x, y scales decrease by factors φ2/5, φ3/5, from above.

The orders of magnitude, then, point to a new basic process, step 3, which is that
of local vortex formation arising inside the nonlinear unsteady critical layer, whereas
outside the flow structure remains much as in step 2. The length and time scales in
the appropriate moving frame are reduced in step 3, by respective factors ε4/35, ε8/35

compared with step 2, so that

x = constant + φ153/10
{
c̃t+ φ8/5x̃

}
, (7.1a)

t = constant + φ118/10t̃, (7.1b)

while the velocity and pressure fields are given by

u = εc+ φ51/10b1ỹ + . . .+ φ67/10I1b1P2 + . . .+ φ71/10(6b3b
−2
1 d0ỹ)

+φ75/10I1b1P3 + φ79/10ũ0 + φ83/10(ũ+ γ̃ lnφ) + . . . , (7.2a)
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Figure 6. (a) The structure of the zero-µ̃ solution as T →∞. For η < ηs, the solution is given by the
curve η = f − f3 with p̃ = T 1/2f(η), η = X/T 3/2. For η > ηs, the solution has the form of a wave
packet of cnoidal waves, with envelope β > f > a and mean M(η). The mean part is continuous
at η = ηs. (b) Comparisons between large-time predictions (solid curve) and computational results
(long dashes), for times T up to 9. See §6 and Appendix C. The short-dashed curve shows predictions
taking ηs = −0.12, rather than −0.0583 as the theory predicts.

v = −φ73/10P2x̃b
−1
1 + . . .− φ81/10P3x̃b

−1
1 − φ89/10 {b1ỹP2x̃ + P2̃t} I1 − φ91/10P4x̃b

−1
1

−φ97/10 {b1ỹP3x̃ + P3̃t} I1 + φ101/10ṽ0 − φ101/10P5x̃b
−1
1 + φ21/2ṽ + . . . , (7.2b)

p̄ = ε2p0 + φ9d0 − φ98/10d1t̃+ φ102/10P2 + . . .+ φ11P3 + φ12P4 . . . , (7.2c)

in the critical layer where y = ε5
(
y0 + φ8/5ỹ

)
now, with ỹ of O(1). This last scale

is due to the shrinking ∝ (T0 − T )3/4 of the previous normal scale of order ε5.
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In (7.2a–c) γ̃, p0, d0, d1 and the integral factor I1 are O(1) constants again. The y-
momentum balance shows that P2, P3, P4 are independent of ỹ, as expected. The
matching conditions include

ũ0 ∼ −6b3b
−2
1 d1t̃ỹ + O(ln |ỹ|), (7.3a)

ũ ∼ b3ỹ
3 + 6b3b

−2
1 P2ỹ + O(ln |ỹ|), (7.3b)

ṽ ∼ −3b3b
−2
1 P2x̃ỹ

2 + O(ỹ ln |ỹ|) (7.3c)

as |ỹ| → ∞. The solution outside the critical layer remains to some extent a Taylor
expansion of that in step 2 as (X,T ) → (X0, T0), as described below. Substitution
of (7.1a)–(7.2c) into the Navier–Stokes equations then leads to the continuity and
x̄-momentum balances

ũ0x̃ + ṽ0ỹ = 0, (7.4a)

ũ0̃t +−−−+ b1ỹũ0x̃ + b1ṽ0 − b−1
1 P2x̃ũ0ỹ = 0. (7.4b)

Differentiation of (7.4b), and the normalization

[
P2, x̃, ỹ, t̃

]
=

[
−d̂`3P̂ , −`x̂,−`

3/2d̂1/2

b1

ŷ,
t̂

`1/2d̂1/2

]
,

where d̂ = d1a1/(6a3) is assumed positive for now and ` is a length factor, give the
governing equation

τ̂t̂ + ŷτ̂x̂ + P̂x̂τ̂ŷ = 0, (7.5a)

with the constraints, inter alia,

τ̂ ∼ t̂+ O(ŷ−1) as ŷ → ±∞, (7.5b)

for the local normalized vorticity τ̂. The critical-layer dynamics in (7.5a, b) is coupled
in general with the flow solution outside, in the bulk of the motion where the normal
scale is larger, as studied in the next paragraph. There an analogue of the working for
step 2 shows that the normalized pressure P̂ (x̂, t̂) and the normalized velocity jump
across the critical layer,

Ĵ(x̂, t̂) ≡ −
∫ ∞
−∞
τ̂dŷ, (7.5c)

both of which are unknown, are linked now by the relation

−6 = P̂x̂x̂x̂ − 6µ̃Ĵx̂, (7.5d)

cf. (3.7), (4.7), subject to matching at large |x̂| which is similar to that in step 2. Thus the

inner–outer interaction is described generally by (7.5a–d) for τ̂(x̂, ŷ, t̂), Ĵ(x̂, t̂), P̂ (x̂, t̂).
Comparison with step 2 shows that in fact there is an overtake of the critical-layer
terms between steps 2, 3 in a time scale of order φ81/7, i.e. when t̂ is large, negative
and of order φ−8/35, although this overtake is a relatively passive affair concerning
only higher-order terms prior to step 3.

The flow in the bulk outside has ȳ = ε5y, and the expansion (from step 2)

ū = εu0(y) + φ11/2Ũ11(y) + φ63/10Ũ12 + φ67/10Ũ1 + φ15/2Ũ2 + φ79/10Ũ3 + . . . , (7.6a)

v̄ = φ73/10Ṽ1 + φ81/10Ṽ2 + φ17/2Ṽ3 + . . . , (7.6b)

p̄ = ε2p0 + φ9d0 − φ98/10d1t̃+ φ102/10P̃2 + φ11P̃3 + φ114/10P̃4 + . . . . (7.6c)



358 L. Li, J. D. A. Walker, R. I. Bowles and F. T. Smith

The term associated with the main jump Ĵ above is Ũ3 in (7.6a). Again from
the Navier–Stokes equations the streamwise momentum equations for (Ũ1, Ṽ1, P̃2),
(Ũ2, Ṽ2, P̃3) are as in step 2, while the normal momentum balances require P̃2, P̃3 to be
independent of y and hence equal to P2, P3 in (7.2c). The jump term is then governed
by

Ũ3x̃ + Ṽ3yb = 0, (7.7a)

(u0 − c) Ũ3x̃ + Ṽ3u0yb = −P̃4x̃ − Ũ12̃t, (7.7b)

where Ũ12 is independent of x̃, and the normal-pressure-gradient effect

(u0 − c)Ṽ1x̃ = −P̃4yb . (7.7c)

Integration of (7.7a–c) then confirms the result (7.5d), given that Ũ12 = d1t̃u0 and the
definitions of the integrals a1, a3 (which is positive) in §3.

The boundary conditions in x̂, on (7.5a–d), are of the form P̂ = −O(x̂3) at large
|x̂|, similar to those in §4 where the influence of the factor ` and the functions of
integration implied by (7.5d) are first discussed. The argument here runs similarly to
that in §4. There are at first sight three arbitrary functions of t̂ admissible through
integration with respect to x̂ in (7.5d), e.g. from considering an iterative solution.
Of these, one can be absorbed into P̂ as an origin shift without altering (7.5a–d).
A second can be absorbed as an origin shift in x̂ but accompanied by other re-
definitions. Specifically the subtraction of a function h′′(t̂) say from P̂x̂ is cancelled
out by subtracting h(t̂) from x̂ and h′(t̂) from ŷ, to leave (7.5a–d) intact again. These
shifts can be generalized further if necessary. The third and final function of t̂ is
associated to some extent with the length factor ` which does not appear in (7.5a–d).
Here interest can be confined for example to a solution connected with P̂ = −x̂3 + x̂t̂,
which produces a vortex wind-up starting at zero time t̂, for zero µ̃. This requires,
incorporating the shifts above,

P̂x̂ = −3x̂2 + t̂+ 6µ̃ =

∫ x̂

−∞
Ĵdx̂ (7.8)

as the twice integrated form of (7.5d). In (7.8) however the term t̂ in general can be
replaced by a general function of t̂, and indeed extensions of (7.8) indicate a solution
dependence on the local streamwise boundary conditions as well as on the value of
µ̃. Also in (7.8) the double bar on the integral sign denotes that terms of order unity
as x̂ → −∞ are to be omitted; we note that Ĵ is in fact O(x̂2) at large |x̂|, from the
match with §4. In similar fashion the integrand in (7.5c) could be replaced by (τ̂− t̂)
but with the bar still present because of the O(ŷ−1) decay of (τ̂− t̂).

The solution of the fundamental problem (7.5a–d) matches with that in §4 as
t̂→ −∞, as required, with the first term in (7.5a) then exerting a secondary influence
apart from an additive constant, giving precisely the previous jump Ĵ (for T → T0−)
in step 2. For O(1) times t̂ it is less simple. Some insight comes from the characteristics
or trajectories of (7.5a), given by dx̂/dt̂ = ŷ and dŷ/dt̂ = P̂x̂, i.e. dỹ/d̃t = −b−1

1 P2x̃,

so that d2x̂/dt̂2 = P̂x̂, on each solution curve of which τ̂ is constant from (7.5a).
The trajectories’ equation cannot be solved explicitly, however. Numerical solutions
of (7.5a–d) were sought directly but proved difficult to obtain accurately especially
in view of the complex far-field behaviour of τ̂ at large |x̂| and/or |ŷ|, and the
results were unclear. A more analytical approach, for small µ̃, was found to be more
enlightening, and this is summarized below (further details are available from the
authors).
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For small µ̃, (7.5d) gives the simple pressure result P̂ = −x̂3 + x̂t̂ at leading order,
on the time scale t̂ of O(1). That leaves (7.5a, b) to be solved for τ̂(x̂, ŷ, t̂), given P̂
just above, which sets a generic problem. Solutions for τ̂, however, found from the
behaviour of the particle trajectories (figure 7a), give the jump Ĵ from (7.5c) growing
in the form Ĵ ∝ t̂7/4 at large positive t̂, while typically |x̂| ∝ t̂1/2; see figure 7(b).

The growth means that eventually the 6µ̃Ĵx̂ term in (7.5d) becomes comparable

with the others. That happens when t̂ increases to O
(
|µ̃|−4/5

)
, by which stage the

vortex is strongly wound up (figure 7a). The implied next stage for small µ̃ has the

longer time scale t̂ = |µ̃|−4/5
t̄0 with t̄0 of order unity for the unknown captured

trajectories, and inner–outer interaction re-appears. The typical subsequent response
then depends mostly on the sign of µ̃ and shows that the vortex wind-up either
strengthens even more, to yield an explosive growth (figure 7c) in its area and length,
or it ultimately weakens, to produce an implosion (figure 7d). The former leads to
a singular termination at a finite value of t̄0 and the latter to a decaying form as
t̄0 →∞.

The implied terminal behaviour for order-one values of µ̃ is as follows. First, a
finite-time singularity can occur in which, for the majority of the strong (expanding)
vortex, the scaled vorticity, pressure, velocity jump and length scales satisfy[∣∣τ̂− t̂∣∣ , P̂ , Ĵ , x̂, ŷ] ∼ [(t̂e − t̂), (t̂e − t̂)−6, (t̂e − t̂)−2, (t̂e − t̂)−2, (t̂e − t̂)−3

]
(7.9a)

as time t̂ approaches the finite time t̂e. This is usually for negative µ̃ values although
there is dependence also on the precise streamwise boundary conditions, referring
back to (7.8). Second, and usually for positive µ̃, a decaying vortex is produced as

t̂→∞, its scaled length
=

L and area
=
a being such that[

=

L,
=
a
]
∼
[
t̂−5/4, t̂−5/2

]
(7.9b)

then. The terminations (7.9a, b) are in line with the computed results in figure 7(c, d)
respectively.

8. Further comments
This work has studied the impact of normal pressure gradients (step 2) and then

vortex winding-up (step 3) typically which come into force, with shortened length and
time scales, beyond the finite-time break-up of the interacting boundary-layer stage
(step 1). Further comments are as follows.

8.1. Comments on step 2

The main governing equation of step 2 is the supplemented KdV or Benjamin–Ono
equation, balancing the momentum in effect integrated normally across the entire
local flow including the critical layer against the integrated normal pressure difference
and producing a controlling parameter µ (see (iii) below), along with the choice of
∆ or a3. The governing equation holds irrespective of the local pressure-displacement
interaction law. For the special internal-flow case of negligible ∆ on which the
work of §§4–6 concentrates (cf. the external case (3.14) which is described later in
this subsection), three distinct types of solution path are found as time increases
depending on whether µ is positive, negative or zero.

For positive µ, associated with sgn (µ̃a4) being positive (in practice we took the
normalized constants µ̃, a4 as both positive then), §4 indicates that the flow solution
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becomes singular within a finite value of the new scaled time. This termination
happens at the onset of a maximum/minimum in the scaled surface pressure, a
matter followed up in §7. The precise terminal form obtained in §4 holds only for a
finite range of µ̃ values but Appendix B provides a guide to the terminal form outside
that range and in any case much interest is in the sub-range of small µ̃ values (e.g.
see §7), which is covered by §4. Another interesting detail is the increasing steepness
of the pressure curves, around X = 0 in figure 2(a, b), as µ̃ is increased, suggesting
perhaps a subtle interplay eventually with the above onset.

It is interesting that the terminal form in §4 also applies in principle to a finite
range of negative µ values (i.e. µ̃, a4 of opposite signs), for §5 shows the time-
marching problem for negative µ to have strong secondary instability present which
raises inherent difficulties with regard to well-posedness. It could be argued that with
sufficiently smooth input data the terminal singularity as in §4 is still relevant then
of course, but in general much shorter-scale physics must come into the reckoning,
and at earlier times. (This, we repeat, is for the extended KdV case.) For zero µ
on the other hand (§6) the standard KdV equation applies. The boundary conditions
appear non-standard, however, and they induce a mixture of solitary and non-solitary
waves, and of two coupled streamwise length scales, at large positive scaled times. The
length scales, it can be shown, are such that the next step encountered reinstates the
interacting boundary-layer system on the longer scale (as in §2) but, on the shorter
scale, provokes the Euler system, and these two systems are coupled together: when
time T becomes as large as Re4/7 in this internal-flow context the longer scale in §6
increases by a further Re6/7 whereas the shorter scale decreases by a factor Re−1/7.
Incorporating the x̄ scaling of §3 we therefore obtain the two streamwise length scales
O(Re) (as in §2) and O(1)(= O(ȳ)), respectively, and hence the two systems above.
The coupled system above likewise merits further study. A similar coupling occurs in
the theory on spots in Smith et al. (1994), who note the likelihood of further sublayer
bursting(s) arising between the shorter-scale Euler flows and the surface.

The boundary conditions on the KdV case in §6, incidentally, may appear non-
standard but in fact there are clear applications to water waves and to the formation
of bores. On long distance and time scales, proportional to the Reynolds number (as in
(2.3d)), a viscous liquid layer is controlled by the interactive boundary-layer equations
across the depth of the fluid with unknown pressure proportional to the unknown
depth, cf. the shallow-water balance. These have been studied by Bowles (1990, 1995),
Higuera (1994) and actually correspond to step 1 of the present Introduction. If the
unsteady form of the equations is considered then the break-up of (2.4a–d) leads to
the Burns (1953) formula ∫ h

0

1

(u0 − c)2
dy = Fr

Figure 7. On main properties in step 3, for small |µ̃|. (a) Plot of ŷ vs. x̂ for a particle trajectory

captured in the vortex, over the range 2 6 t̂ 6 70. (b) Jump Ĵ/t̂7/4 against x̂/t̂1/2, computed from τ̂

profiles, at large t̂. Arrows show the vortex ends. (c) Computed results, versus s(≡ |µ̃| t̂5/4), for the

scaled area
=
a and length scale

=

L of the evolving vortex in two representative cases (i), (ii) when µ̃ is

negative. The area and length in terms of x̂, ŷ coordinates are |µ̃|−1 =
a, |µ̃|−2/5 =

L respectively. (d) The

scaled vortex area
=
a and length

=

L computed for positive µ̃, and corresponding asymptotes 1,2 for

large µ̃4/5 t̂. Results shown are all for case (ii) except that the computed
=
a variation for (i) is also

indicated, by circles, for comparison.



362 L. Li, J. D. A. Walker, R. I. Bowles and F. T. Smith

for the break-up criterion. Here h is the local depth and Fr is the Froude number,
assumed to be of order one. This criterion can be met for all values of Fr with
c < 0 and c > umax, the maximum value of u0, corresponding to up- and downstream
travelling bores respectively. There is also the possibility of roots with 0 < c < umax
depending on the form of u0. There is no critical layer in the former cases, so that
µ = 0 and the next stage, stage 2, leads to the familiar KdV scales for long waves. The
pressure gradients (and hence wave slopes) become O(Re−3/7) rather than O(Re−1)
and locally the skin friction is increased to O(Re1/7). The bore, consisting of a leading
set of solitary waves and followed by a train of cnoidal waves, then develops according
to the description of §6 and Appendix C. At large times the wave train lengthens
to be O(Re) in length, but the individual waves themselves become short and steep
so that the KdV equation is no longer adequate to describe them; this process is
analogous with the long–short coupling discussed in the previous paragraph.

Some research is also in progress on the three-dimensional version of the current
work, starting with the three-dimensional extension of the finite-time singularity of §2
in Hoyle & Smith (1994). Several aspects of this need more consideration including
the likelihood that there are a number of possible break-up terminations of step 1
for a three-dimensional unsteady interacting boundary layer. The three-dimensional
extension into steps 2, 3 should also be tackled.

Likewise, other cases of internal/external motion exist (e.g. entry flows), including
mixtures of the internal and external contexts of (3.12a), but the present external-
flow case (3.14) with its extended Benjamin–Ono system appears to have the widest
application. Computed solutions for (3.14) (with (3.12a)) are presented in figure 8
for various µ̃, a5 values, in the normalized form for which (a1, a2, a3, µ, θ2) in (3.12a)
take the values (1, 1, 0, µ̃, a5) in effect, in view of a transformation analogous with
that in (4.1). More details on the compact differencing used here are given by Li
(1997). The numerical solution for zero µ exhibits a packet of travelling waves and
can be maintained for a very long time with sufficiently small grid sizes and time steps
(similarly to §6); see figure 8(a–d). We observe that here the eventual direction of travel
clearly reverses. Large-time features are again given in Appendix C. For non-zero µ,
opposite signs of µ̃, a5 yield stable behaviour leading on to a finite-time singularity,
similar to that in §4, whereas with µ̃, a5 having the same sign the solution exhibits a
secondary instability phenomenon akin to that of §5 (in particular −µ̃a4α

3 in (5.3) is
replaced now by + µ̃a5α |α|). Here we present just four computational examples to
demonstrate the point; see figure 8(e–h), where L,M denote the approximations for
the two Cauchy integrals in µ̃, a5 respectively. Thus the sensitive dependence (in the
special case in §§4–6) on the parameter µ is repeated here in the more general case
but with the roles of µ positive or negative being reversed. Since the most physically
sensible profiles give the curvature parameter µ (≡ 6b3b

−4
1 ) being negative as in figure 1

for example, it follows also that in this more common, extended Benjamin–Ono, case
secondary instability is not encountered and instead a termination as in §4 is relevant.
That in turn also points to the subsequent study of wind-up in §7 as being typical.

8.2. Comments on step 3

Step 3 involves the new unsteady, interactive, critical layer effects that come into
action in a fundamental problem of local vortex wind-up (§7); this, we repeat, is for
the special internal flow but it yields many generic features. Although the secondary
instability in §5 strictly limits the relevance of §7 to positive µ for that special flow,
the opposite is true for the more general external or quasi-external flow, as indicated
at the end of §8.1 above, for which negative µ values are more sensible physically
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Figure 8(a, b). For caption see page 367.

anyway. Thus again step 3 represents the typical next step. No further secondary
instability is found, step 3 indicating instead two different vortex evolutions arising
at large Re and depending largely on the sign of µ. There is also some dependence
on the streamwise boundary conditions (in §§4,7), implying that the flow further
upstream and downstream still manages to exert some local influence. Each type of
evolution however is unaffected ultimately by earlier, historical, vorticity values, to
leading order, unlike in the Brown & Stewartson (1978) setting.
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The next stage, step 4, may be expected to have the fuller response ∂P̂ /∂t̂+P̂ ∂P̂ /∂x̂
essentially replacing the constant contribution on the left in (7.5d), a contribution
which stays in play at the termination of step 3 in §7. The vortex evolutions for small
µ in step 3 could also shed light on multiple vortices, when connected with the simpler
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KdV and Benjamin–Ono regimes of §6 and §8.1 above; in the more general extended
Benjamin–Ono context the triple-derivative term in (7.5d) is replaced by a Cauchy
integral, a case meriting future study.

8.3. On the scales and parameters

The controlling scales are indeed rather bizarre, and in practice some extreme ones
may only emerge at very large Re values, but the appearance of 1/7 and 1/5 powers
of Re in step 3, for the internal case, is not surprising, in view of the combined
importance then of the normal pressure gradients and the critical-layer dynamics.
The study of the complicated physical mechanisms entering, via the distinct temporal
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steps 1, 2, 3, etc., provides additional intuitive insight into the local flow dynamics
including the vortex wind-up. In particular the sign of the parameter µ is identified
as key throughout. This is because of the clear dependence on sgn(µ̃a4) in §§4–7,
combined with the relation µ̃a4 = (µa3)/(a

2
1Γ

7/2), in which both the denominator and
the constant a3 are positive, the latter from manipulation of the integral definition of
a3 in §3. The value of the key parameter µ, to reiterate, comes directly from the local
non-dimensional velocity profile u0(y), as µ = 6b3/b

4
1 = u′′′0 /(u

′
0)

4 at the critical level
y = y0. In consequence, the distinctions between the flow properties for positive and
negative µ, in steps 2, 3, whether for the special internal context or for the contrasting
more general context (see end of §8.1), depend solely on the curvature-gradient term
b3, which is negative in most physical configurations.
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Figure 8. Numerical solutions for the extended Benjamin–Ono case, i.e. (3.12a) with
(a1, a2, a3, µ, θ2) = (1, 1, 0, µ̃, a5); see §8: (a–c) µ̃ = 0, a5 = −0.1, showing (a, c) p̃, (b) M. (d) has
µ̃ = 0, a5 = −0.05, showing p̃; (e–h) (µ̃, a5) equal to (−0.1, 0.1), (0.1, −0.1), (−0.1, −0.1), (0.1, 0.1) in
turn, showing p̃, L, M.

8.4. Links between steps 1–3 and experiments or simulations

The repercussions for direct or indirect numerical simulations seem to be fairly
straightforward: the simulations should be arranged so as to acknowledge the (some-
times delicate) scales and interactions shown by the theory, if accuracy is to be
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preserved at large Re. The current work possibly supports more the use of reduced
equation sets, rather than the usual direct simulation approaches, for large Re, per-
haps along with zonal methods, for example. In either case the theory indicates in
principle the grid-resolution requirements needed to capture accurately the small-scale
properties of the local dynamics that control for instance vortex formation within the
boundary layer. The composite system consisting of the interacting boundary-layer
equations but coupled with ∂v/∂t+u∂v/∂x = −∂p/∂y (p = p(x, y, t) now), for instance,
would appear to accommodate all the dominant physical features found theoretically
in steps 2, 3 and possibly 4. Some studies of that composite system are in Smith,
Papageorgiou & Elliott (1984), Smith (1991).

Meanwhile qualitative and quantitative links of the theory with numerical sim-
ulations as well as with experiments have already been described near (1.1), (1.2),
for step 1 (and partly step 2). Another link, concerned with steps 1–3, is as fol-
lows. Using the technique of wavelet transforms Gaster (1993) and Shaikh & Gaster
(1994) identify four disturbance frequencies becoming active as transition deepens
in modulated TS wavepackets. A tentative comparison can be made between the
above experimental measurements and the theory pursued in this paper. In addition
to the basic TS frequency there is some evidence in the nonlinear development prior
to spiking of a subharmonic component. This we would identify with the vortex of
the three-dimensional nonlinear wave–vortex interaction described by our step 1 of
the Introduction. As transition deepens, localized bursts of oscillations at 5–6 times
the TS frequency are observed and identified as the first spikes. Their appearance
is deterministic in nature, although their fine structure does not seem to be. This
third frequency may be associated with the current step 2. The highest frequency, at
20 times the fundamental, is seen to arise within these spikes as transition deepens
further. One possible interpretation is that this is the frequency associated with the
vortex roll-up described in step 3 (§7). However, the evolution of this frequency com-
ponent is found experimentally not to be deterministic and an alternative transition
path such as in the initial-value setting of Savin (1996), Smith (1996), Savin et al.
(1998) may be being followed at this stage and possibly in step 2 also.

Further, Sandham & Kleiser’s (1992) channel-flow computations, showing a number
of vortices being produced as transition deepens, raise the matter of a theoretical
explanation of the continued strengthening of certain vortices compared with others.
Brinkman & Walker (1996) also report multiple vortices appearing, in company
with rapid wall-layer breakdown, in their more recent model simulations. Again, an
explanation seems desirable for the effectiveness of using the pressure and in particular
its maxima and minima to monitor the creation of vortices in later transition (see
also Wintergerste & Kleiser 1995 and near (1.1)), and likewise for the impact of
vortex interactions, in Sandham & Kleiser’s and Brinkman & Walker’s computations.
Allied issues are raised by Dr F. N. Shaikh’s reporting (private communications 1994–
5) of contrasts in the behaviour of spanwise vortices observed in his experimental
studies with Professor M. Gaster, on deepening transition in boundary layers, and by
Professor C. R. Smith’s experimental observations in near-wall turbulence and vortex
eruptions. There seems to be a fair amount in common between these observations
and the theory, for instance in Sandham & Kleiser’s (1992) noting of the short spatial
and temporal scales of the spanwise vortices compared with TS scales and their use
of the pressure extrema to track the appearance of vortices, in line with the current
steps 1–3. The contrasting responses of the typical vortices in step 3 (see explosions
and implosions) seem in keeping with the above experimental and computational
observations of vortex strengthening and weakening.
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The theory, then, is felt to provide some encouraging signs that despite its com-
plications and subtleties much more of transition and of the internal and external
dynamic-stall process can be understood and explained, and this may lead on to
implications for control of the process. There is much still to be done, of course,
numerically and analytically, and indeed it could turn out that shorter and shorter
time and length scales come into operation subsequently (cf. §§4–7), including the
Euler stage as in the corresponding severe break-up or in steady flow as mentioned
in section 3 and as described in this section.

Thanks are due to ARO (grant nos. DAAL-03-92-G-0040 and R&D 7728-AN-01
through Dr T. Doligalski and Dr R. Reichenbach), AFOSR (contract no. AFOSR-
J-0007 through Dr A. Nachman), SERC, ESPRC, ULCC, for support of various
aspects of this research, and to the referees for comments.

Appendix A. On finite-time break-up in the general case
The theory in Smith (1988a) implicitly takes the ratios a1/(2a2) and −b1b3/(4b4) to

be equal, i.e. that

λ̄2b1b3 + 2λ̄1b4 = 0, (A 1)

where the integrals λ̄1 ≡ −a1, λ̄2 ≡ −a2 are those used in the above paper. We show
below that in fact (A 1) is true in the general case.

The main point, which has not been used previously, is simply that t = t0 (T = 0) is
the first time t at which the integral I ≡ −

∫ ∞
0

(u− ĉ)−2dy hits zero. Hence in particular

I must be one-signed at the slightly previous time t = t0 − ∆̂, for all x, where ∆̂ is
small and positive. Here, towards the end of step 1,

u = u0(y) + ∆̂1/2u1 + . . . [in the bulk], (A 2)

u = c0 + ∆̂1/4b1η + ∆̂1/2a11 + . . .+ ∆̂
=
u4 + . . . [in the critical layer], (A 3)

ĉ = c0 + ∆̂1/2c1 + . . . , (A 4)

and c0 equals c in (2.4a–d), while ĉ is the inflection speed,

u = ĉ where uyy = 0. (A 5)

Substitution of (A 2)–(A 4) into the above condition of one-signedness of I then
requires

I = −
∫ ∞

0

(u0 − c0)
−2dy + ∆̂1/2

{
−2−
∫ ∞

0

(u1 − c1)

(u0 − c0)
3
dy + CLB

}
+ . . . (A 6)

to be one-signed (or zero), where the first integral vanishes identically as in (1.2) and
CLB is a critical-layer contribution studied below. The term in ∆̂1/2 in (A 6), however,
can be rewritten to give the requirement that

−p1λ̄2 + c1λ̄1 + CLB (A 7)

is to be one-signed (or zero). The expression (A 7) follows from integrating by parts
the definitions of a1, a2 just after (3.6), given (3.3b) and taking account of the finite
parts. Thus a1 becomes

a1 = −
∫ ∞

0

(u0 − c)−2
(
u′0Ī − (u0 − c)−1

)
dy

= 2−
∫ ∞

0

(u0 − c)−3dy, (A 8)
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on integrating the (u0−c)−2u′0 part, where −Ī is the integral in (3.5), while a2 becomes

a2 = −−
∫ ∞

0

(
ψ̂1û

′
1 − û1

[
u′0ψ̂1 − 1

]
[u0 − c]−1

)
(u0 − c)−2 dy

= −−
∫ ∞

0

ψ̂1

(
û1

u0 − c

)′
dy

(u0 − c)
−−
∫ ∞

0

û1dy

(u0 − c)3

= −2−
∫ ∞

0

û1(u0 − c)−3dy, (A 9)

on integrating the primed part, where ψ̂1 ≡ (u0 − c)Ī = ψ1/p1 = ψ̃/p̃ and û1 ≡ ψ̂′1 =
u1/p1 = ũ/p̃: see just after (3.6), and in (2.4c, d). Hence (A 7) is verified.

An alternative verification of (A 7) may be obtained from considering

−
∫ ∞

0

[
(u− ĉ)ux̄ + vuy

]
(u− ĉ)−2dy (A 10)

along with the continuity equation ux̄ + vȳ = 0, where x̄ ≡ x − ĉt. On the one hand,
integration by parts shows that (A 10) is zero, since v/(u − ĉ) is zero at y = 0, ∞
in effect. On the other hand, under the expansions (A 2), (A 4) the value of (A 10)
becomes proportional to ∆̂1/2 multiplied by terms in p′1, p1p

′
1. These are found to

reproduce the expressions (A 8), (A 9) for a1, a2, which then yield (A 7) after insertion
in (A 6).

Returning to (A 7), then, we note next that c1, CLB may be obtained explic-
itly. First, using (A 5) yields η = ηc = ∆̂1/4S + . . . at the critical level, where
S ≡ −{6a13 + τ̄4η(η = 0)} /(6b3), in the notation of Smith (1988a), and uyy is in-
ferred from his (2.13b) or from (A 3), (3.7a). Hence setting u = ĉ at η = ηc and
substituting from his (2.18a) we obtain

c1 = −2b4p1

b3b1

+
µb4

1

6p′1

{(
p1 − 3ξp′1

)
+

4b4

b3b1

p1p
′
1

}
. (A 11)

Second, for CLB it is convenient to integrate I by parts, giving

I = −
[
ĉu′(y = 0)

]−1 −
∫ ∞

0

u′′(u− ĉ)−1(u′)−2dy, (A 12)

with a prime denoting ∂/∂y here. Then substitution of c0, of c1 from (A 11) and of

u,u′, u′′ from (A 3) produces, from the O(∆̂1/2) contributions,

CLB = −b
−2
1

a′10

−
∫ ∞
−∞
τ̄4ξdη = −b

−2
1

a′10

J. (A 13)

Proposing now that

(p1 − 3ξp′1) + 4b4p1p
′
1/(b3b1) = 0, (A 14)

however, we have τ̄4, c
′
1L, J all being identically zero then, and so from (A 13)

CLB = o(1). (A 15)

In addition, (A 11) reduces to

c1 = −2b4p1/(b3b1). (A 16)

Therefore the form (A 7) becomes

−p1

[
λ̄2 + 2b4λ̄1/(b3b1)

]
. (A 17)
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But this has to be one-signed or zero, whereas p1 takes both positive and negative
values as ξ varies. Hence the coefficient in (A 17) must be zero. So, from the original
general condition of one-signedness of I at all times t prior to t0, the result (A 1) is
derived for the general case.

We observe that the equation (2.22) of Smith (1988a) has not been assumed in
the above derivation; it is a corollary, and (since J is zero) it agrees with (A 14).
Again, there are derivations of (A 15) alternative to that in (A 12)–(A 14). Finally
here, similar working on step 2 and so on also confirms the result (A 1) for the
subsequent steps.

Appendix B. Further features in the terminal solution of §4
The numerical results for the terminal system (4.8a–c), (4.9a–c) described in §4

agree with the analytical result for small µ̃ based on gc1 as given between (4.8b) and
(4.8c). The agreement is indicated in figure 3(b), where for comparison purposes the
analytical result takes −χ3

c − χc + 6µ̃gc1 with imposed boundary conditions (at χ1, χ2)
the same as for the numerical ones.

The small-µ̃ features prove to be the most helpful ones in the analysis in §7. It is
of interest nevertheless to note also the appearance of a sub-structure developing in
the terminal solutions at the other extreme, as |µ̃| approaches

√
3/π(≡ ν̄). This can

be seen first in the coefficients D±2 in (4.9a–c), which behave as

D−2 ∼ 4ν̄(ν̄ − µ̃)−1, D+
2 ∼ 1

2
ν̄−2 (ν̄ − µ̃)2 (B 1)

as µ̃ → ν̄−, leaving the ratio D ∼
[
(ν̄ − µ̃) /(2ν̄)

]3 → 0 (see figure 3a) and implying
that (as mirrored in figure 3c) the left-side asymptotic growth of gc becomes more
severe and the right-hand side milder. Consequently the entire solution acquires a
left–right split, in a sense, the terms −6, g′′′c in (4.8a) becoming negligible at leading
order on the left and right respectively. On both the left and the right however the
integral contribution in (4.8a) is dominated by the right-side range, because of the
milder variation in g there: see below. So on the right, where gc, χc are of the orders

δ̂3ε̂−1, δ̂ε̂−1 say (ε̂ ≡ ν̄ − µ̃), respectively, with parameter δ̂ unknown, we obtain an
integral equation which becomes linear on inversion as in (B 2) below and is solvable,
given the required matching conditions. The right-side solution then helps to control,
through the integral term, the more severe left-side response in which gc, χc have the

orders δ̂3ε̂−1, δ̂ in turn. In between there is a near-plateau in the gc variation wherein
the left- and right-side solutions are matched, resembling the behaviour at small ε̂ or
D in the above figure, as discussed next.

At any µ̃ the inversion of (4.8a) gives the equation

−6Q =
1

2

d2

dZ2
(Q−2) + 6µ̃−

∫ ∞
−∞

Q(ξ)dξ

(Z − ξ)
(B 2)

for Q ≡ 1/g′(χc) regarded as a function of Z ≡ gc, subject to

Q ∼ − 1
3
(D∓2 )−1/3 |Z |−2/3

as Z → ±∞. (B 3)

Here Q must be negative. Various integrals of (B 2) can be taken, cf. the nonlinear
integral equations in Brown et al. (1988), but (B 2) suffices for our present purposes.
The small-µ̃ properties described earlier can be shown to be reproduced by (B 2),
(B 3). The primary features for µ̃ → ν̄− or D → 0 on the other hand are given by
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simply setting µ̃ equal to ν̄ in (B 2) but altering (B 3) to the forms

Q ∼ −σ1 |Z |−2/3
(ln |Z |)M as Z → −∞, (B 4)

Q ∼ −σ2Z
−2/3(lnZ)−M/2 as Z →∞, (B 5)

with M positive. The coefficients here satisfy 3σ1 = 2(3ν̄)2/3, 3σ2 = 1
2
(3ν̄)−1/3. Then

(B 2), (B 4), (B 5) give the leading-order (scaled) solution in the matching region
mentioned in the previous paragraph, subject to origin shifts in gc, χc, i.e. the matching
solution suitably scaled is an exact solution of (4.8a) but with adjusted boundary
conditions. The logarithmic terms in (B 4), (B 5) are found to be necessary when

µ̃ = ν̄ and the relative increase or decrease they represent over the |Z |−2/3
behaviour

corresponds exactly to the left–right differences in behaviour described in the previous
paragraph. Thus as Z → −∞ (χc increasing) (B 4) balances the 6Q term in (B 2)
against the µ̃ term but with ξ occupying (−∞, 0) only, whereas for Z → +∞ (χc
decreasing) (B 5) instead balances the nonlinear term against the µ̃ one, again with
ξ in (−∞, 0). Higher-order terms then imply that M = 2

3
. Moreover, the required

boundary conditions (B 3) are achieved ultimately in outer regions where |Z | is
exponentially large, of order exp(ε̂−2/3M) from comparison with (B 4), (B 5). The outer
left–right solutions here are simple χ3

c forms in gc but with logarithmic correction
effects. A numerical solution for Q versus Z is given in figure 3(c) for a small value
of D and it tends to confirm the above account.

The left–right split above also reproduces the coefficient values in (B 1) as required.
Further, the boundary conditions applied in the numerical solutions of (4.8a, c),

(4.9a–c) suggest that the parameter δ̂ here is of order unity, yielding the estimate
gc(0) ∝ −D1/3 as D → 0 in general, although with the particular finite boundaries used
in the computations a limit of χ1 seems to be reached. The earlier numerical results
are in fair agreement with that and with other features of the left–right split, especially
given the split sub-structure which is bound to be difficult to handle numerically with
accuracy. The above sub-structure and re-scaling for |µ̃| → ν̄− is likely to herald a
similar re-scaling occurring in terminal solutions for |µ̃| greater than ν̄.

Appendix C. Large-time response for zero µ
In this Appendix we consider the large-time solution for zero µ. We first pose the

similarity form

p̃ = T 1/2f(η), η = X/T 3/2 (C 1)

and find

Q(f) = εD(fηη), Q(f) = 1
2
f− 3η

2
fη+ffη, with f ∼ −sgn(η) |η|1/3 as |η| → ∞, (C 2)

where, for the KdV equation (in §6),

D(fηη) = fηηη, ε = a4T
−7/2, (C 3)

whilst for the Benjamin–Ono equation (see §8)

D(fηη) =
1

π

∫ ∞
−∞

fξξdξ

η − ξ , ε = a5T
−2. (C 4)

As T → −∞ we know that

p̃ = |T |1/2 f−(η−), η− = X/ |T |3/2 , (C 5a)



Short-scale break-up in unsteady interactive layers 373

with solution

η− = −f− − (f−)3, (C 5b)

from §§3,4.
If, in contrast, as T → +∞ we neglect the dispersive term in (C2 ) we find Q(f) = 0

with solution η = f − f3, which is multi-valued for − 2
9

√
3 6 η 6 2

9

√
3. We conclude

that the dispersive terms must be included to give a single-valued solution; this in
effect gives rise to the waves seen in the numerical solutions described in the text.

Consider now the case of the KdV equation. We have the conservation forms(
1
2
f − 3

2
ηfη
)

+
(

1
2
f2 − εfηη

)
η

= 0, (C 6a)

1
2

(
f2 − 3

2
η(f2)η

)
+
(

1
3
f3 − ε

(
ffηη − 1

2
f2
η

))
η

= 0, (C 6b)

and we propose for a large part of the solution as T →∞ the multiple-scale expansion

f ∼ f1(η, η̄) + ε̃f2(η, η̄) + . . . , η̄ = ε̃−1η, ε̃ = ε1/2 (C 7)

which from (C 2) and (C 3) yields

1
2
f1 − 3

2
ηf1η + ε̃−1 ∂

∂η̄

(
1
2
f2

1 − f1η̄η̄ − 3η
2
f1

)
+

∂

∂η

(
1
2
f2

1 − f1η̄η̄

)
=

∂

∂η̄
(Q̂). (C 8)

Here Q̂ is a combination of f1, f2 and their derivatives. The O(ε̃−1) terms, first, give the
equation governing cnoidal waves with locally constant amplitude and wavelength.
Integrating twice we find

1
2
f2

1η̄ = F(f1) ≡ 1
6
Bf1 + A+ 1

6
f3

1 + 1
2
Uf2

1 , (C 9)

where A,B,U (≡ −3η/2) are functions of the slow variable η. Second, at O(1) (C 8)
gives, after integration over a locally constant period π̂ of the waves,∫

π̂

∂B

∂η
dη̄ = 12

∫
π̂

f1dη̄, (C 10a)

governing the slow variation of B. Treating the second conservation law (C 6b)
similarly gives ∫

π̂

∂A

∂η
dη̄ = 5

4

∫
π̂

f2
1dη̄. (C 10b)

Hence (C9), (C10a, b), with U = −3η/2, control the slow variation of A,B,U, which
in turn determine the slow variation of the waves’ amplitude and period. These
can be described in terms of the roots α, β, γ (γ > β > f1 > α) where 6F(f1) =
(f1 − α)(β − f1)(γ− f1). Then ∆ = (β − α) is the wave amplitude and the wave period
π̂ = 2

√
12K(m)/(γ − α)1/2 where m = (β − α)/(γ − α) and K is the complete elliptic

integral of the first kind. The wave is locally given by

f1 = α+ (β − α)sn2

(
(γ − α)1/2

√
12

η̄ |m
)
, (C 11)

where f1 has a local maximum at η̄ = 0, with sn a Jacobian elliptic function, modulus
m. The mean value of f1 is f̄1 ≡ γ − (γ − α)G(m) ≡M where G = E(m)/K(m) with E
the complete elliptic integral of the second kind. The coupled equations

αη =
9α2 − 24αM − 5(B + 6MU)

2(α− β)(α− γ) , (C 12a)



374 L. Li, J. D. A. Walker, R. I. Bowles and F. T. Smith

βη =
−9β2 + 24βM + 5(B + 6MU)

2(α− β)(β − γ) , (C 12b)

then hold, with B = αβ + βγ + γα, −3U = α+ β + γ.
If m = 0 then (C 12a, b) reduce to α = β = M and Mη = M/(3η − 2M). This

has a solution η = M − cM3, for any c. Comparing with (C 5b)ff. we are interested
in the solutions with c = 1. For small m we may expand G ∼ 1 − m/2 − m2/16
to show that ∆ is O(η−11/12) as η → ∞ so that the amplitude of the waves decays
algebraically at +∞. The waves become approximately sinusoidal and the period
decreases like O(η−1/2). These results can also be obtained by considering the form
f1 ∼ f+(η) + ∆(η) exp

(
iT 7/4

∫
φ(η)dη

)
, where f+(η) is given by η = f+ − f3

+, and
substituting directly into (C 2), (C 3).

As m → 1− the waveform becomes more like a solitary wave. There β → γ− and
the solution takes on the singular form, as η → ηs+,

α ∼ α0 +
15β0 − 9α0

12(β0 − α0)
(η − ηs) +

4(10β0 − 7α0)

(β0 − α0)

η − ηs
L

(
1 + O(L−1)

)
, (C 13a)

β ∼ β0 − 2k1/2 (η − ηs)1/2

L1/2
, γ ∼ β0 + 2k1/2 (η − ηs)1/2

L1/2
(C 13b, c)

with

L = − 1
2
ln (η − ηs) , k = 2β0 − 5α0, α0 + 2β0 = 9ηs/2. (C 13d)

As this singularity is approached

π̂ ∼
√

12L

(β0 − α0)1/2
+ O(lnL), ∆ ∼ (β0 − α0)−

12k1/2(η − ηs)1/2

L1/2
. (C 14a, b)

The increase in π̂ here causes a breakdown in the multi-scaling (C 7), a point which
is taken up below.

We envisage a solution of (C 2) and (C 3) in which, for η below some value ηs, f1

is given by η = f1 − f3
1 to first order, whereas for η > ηs the solution is wave-like,

described by (C 12a,b), with diminishing wave amplitude as η →∞, as in figure 5(b–d).
The value of ηs must be determined numerically so that c = 1. We find ηs = −0.058
to three significant figures, implying β0 = 1.03, α0 = −2.32, and that ∆ = 3.35, at
η = ηs.

The singularity at η = ηs is smoothed out as follows. On approaching the singularity
from the right, the solution exhibits a series of solitary waves but with an increasing
distance between them. The solitary waves have the form

f1 ∼ β0 − (β0 − α0)sech2 (β0 − α0)
1/2

√
12

η̄, (C 15)

centred locally on η̄ = 0, but the distance between successive solitons increases like
ε̃
√

12L/(β0 − α0)
1/2 and so the above multiple-scales solution joins with the description

below. Denoting the leftmost soliton, centred on η = η1 say, by the subscript 1, and
successive ones to the right as 2, 3, . . . , etc., we expand

f ∼ f̂0n(η̃n) + ε̃f̂1n(η̃n) + . . . , with η = η1 + ε̃(Sn + η̃n), (C 16a, b)

in the vicinity of the nth soliton, centred at η̃n = 0 or η = η1 + ε̃Sn. The boundary
conditions here are

f̂01 ∼ β0 as η̃1 → −∞, where η1 = β0 − β3
0 , (C 17a)



Short-scale break-up in unsteady interactive layers 375

f̂11 ∼ b0η̃1 as η̃1 → −∞, where b0 = (1− 3β2
0 )−1. (C 17b)

Then, from substitution into (C 5a, b) and solving the resulting equations, the proper-
ties

f̂0n = β0 − 12r2sech2(rη̃n), 12r2 = (β0 − α0), (C 18a)

f̂1n ∼ −
exp(−2rη̃n)

16r
(Bn + Ê) + b0η̃n + O(1) as η̃1 → −∞, (C 18b)

f̂1n ∼ −
exp(2rη̃n)

16r
(Bn − Ê) + b0η̃n + O(1) as η̃1 →∞, (C 18c)

with Ê = 2b0 − 5, are obtained. Equation (C 17a) fixes B1 = −Ê. As η̃n → +∞,

f̂1n grows exponentially while f̂0n decays exponentially towards β0. Therefore when
η̃n ∼ O(`n), `n = (1/4r)ln(r3/ε̃κn), κn = (Bn − Ê)/768, we have

f ∼ β0 + ε̃1/2f̂∗n(η̃
∗
n), η̃n ∼ `n + η̃∗n , (C 19a)

and

f̂∗n = −96(rκn)
1/2 cosh(2rη̃∗n), (C 19b)

so that when η̃∗n ∼ `n the expansion (C 16a, b) must be used, with n increased by
1. The distance between successive solitons is then ε̃(Sn+1 − Sn) = 2`nε̃. In addition

Bn = −2Ê(n+ 1
2
) using (C 18b, c), so that κn = −Ê(n+1)/384,= (n+1)κ say. Therefore

this distance decreases as n increases. It becomes of the order of the soliton length
scale when n ∼ r3/κε̃. When this occurs Sn ∼ O(r2/κε̃) and so the solitons can no
longer be considered close to η = η1, the expansion (C 16) becomes invalid, and
(C 7)–(C 14) take over. The present description valid near η = η1 = ηs thus matches
with the multi-scaled solution valid for η > ηs. Again see figure 6(a).

The approach used to solve the Benjamin–Ono equation is similar. An expansion
of the type

f = α0(η) + εα1(η) + . . .+

n=∞∑
n = −∞
n 6= 0

(A0n(η) + εA1n(η) + . . .)En, (C 20)

where

Eη̄ = i(ε−1γ0(η) + γ1(η) + . . .)E,

with η = εη̄ is substituted into the first two conservation forms of the equation.
Solutions are found to be (see Benjamin 1967 for the first-order solution)

A0n = 2Ge−p|n|, Û + GΓ = 0, Γ = coth p, Û = α0 − 3η/2,
4G+ Q(α0) = 0,

∂
(
G2
)

∂η
= 4α0 −

15η

2
.

 (C 21)

These must be solved for η > ηs such that the condition G → 0 or equivalently
η = α0 − α3

0 is satisfied as η → +∞. We find ηs = −0.142.
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