
A Decision Support Method for the Selection of OMSs�

S. Dewal, W. Emmerich K. Lichtinghagen

U. of Dortmund, Dept. of CS Lion GmbH

P.O.Box 500500 Universit�atsstr. 140

4600 Dortmund 50 4360 Bochum 1

Abstract

With the increasing demand for highly complex, in-
tegrated and application-domain-speci�c systems en-
gineering environments (SEEs) more or less special-
ized components of the SEEs are developed. An im-
portant component is the database management sys-
tem (DBMS). As conventional DBMSs are not useful
to ful�ll the requirements on highly complex, persis-
tent data structures, specialized DBMSs, namely object
management systems (OMS), have been developed. An
advantage of OMSs is that they further enhance the in-
tegration not only of data but also of processes.
Currently several specialized OMSs with signi�cantly
di�erent properties such as the data model, architec-
ture and performance are available. As it is very di�-
cult for an SEE developer to select the most appro-
priate OMS, we propose a decision support method
which enables an SEE developer to identify his re-
quirements and to compare the evaluation results of
di�erent OMSs. Additionally we present a practical
experiment where we have applied the decision support
method for comparing di�erent OMSs. Experiences of
the investigation are presented briey.

1 Introduction

Nowadays more and more highly complex, inte-
grated and application-domain-speci�c systems engi-
neering environments (SEEs) are developed. For such
SEEs the development of more or less specialized com-
ponents of the SEEs becomes necessary. These com-

�This work has been partially funded by the Esprit
II Project ATMOSPHERE (No. 2565)

ponents are tailored towards solving problems of the
particular application domain considered.

The demand for complex SEEs includes the ne-
cessity for managing persistent, complex data struc-
tures. It is generally accepted that such complex
data structures cannot be managed by conventional
database management systems (DBMSs) such as the
well-known relational DBMSs (c.f. [11], [14]). Non-
standard database management systems, namely ob-
ject management systems (OMSs), have been de-
veloped for managing the complex data structures.

For developing highly integrated SEEs it is neces-
sary to determine the various interfaces of the compo-
nents of an SEE to be integrated and to de�ne particu-
lar integration mechanisms for achieving the proposed
degree of integration. For example the ECMA refer-
ence model for SEEs [8] identi�es three interfaces of
components, namely user, task and data management
interface. OMSs are the one of the major vehicles to
achieve data integration by enabling component inter-
operation via the programming interfaces of the OMSs
(see �g. 1). Additionally trigger mechanisms enable
task integration with OMSs to some extent.

The heterogeneity of the requirements on (1) the
persistent complex data structures of the di�erent ap-
plication domains and (2) the degree of integration
has resulted in the development of many more or less
specialized OMSs. Thus, existing OMSs di�er signif-
icantly regarding the data model, architecture, host
language, etc. which means that an SEE developer1

has to carefully select the most appropriate OMS
among the existing ones.

This paper focusses on de�ning a method to select
an OMS for an SEE developer. In this context se-

1i.e. a person or institution developing SEEs

User Interface and Task
Management Interface

Message Server
Network Interface

Private Data

Private Methods

Data Services Interface

Message Server
Network Interface

OMS Self-Contained
 Browsers

OMS Administration
 Tools

OMS Programming
 Interface

Private Methods

Private Data

OMS Private
 Methods

User Interface and Task
Management Interface

Tools

Figure 1: SEE-Reference Architecture / Data Integration by OMSs

lection means identi�cation of the requirements on an
OMS, the evaluation of OMSs regarding these require-
ments and the comparison of the evaluation results of
the di�erent OMSs in order to derive a purchasing
decision. In section 2 of the paper we present the par-
ticular goals of the decision support method in detail.
In sections 3 and 4 the decision support method and
the decision process for OMSs are presented. In sec-
tion 5 the results of an evaluation of OMSs performed
in the ATMOSPHERE project2 by applying the deci-
sion support method.

2 Goals of OMS Evaluation

In the ATMOSPHERE project existing OMSs are
used for the development of SEEs and components of
SEEs, respectively. Our method therefore focusses on
the selection of an OMS for an SEE developer.

The scope of a selection of OMSs signi�cantly dif-
fers from the scope of such a selection of conventional
DBMSs. In the latter case the scope is on comparing
the implementations of the same interface, optimiza-
tion and tuning of the DBMS or performance estima-
tion for prede�ned loads. For the selection of OMSs
we propose the following scope:

� the description of the technical properties of the
product (architecture, performance, functionality
etc.)

2ATMOSPHERE is a project that focusses on the
development of a complex integrated industrial SEE

� the description of the non-technical (commercial)
properties of the product (supplier, price, docu-
mentation, maintenance, support etc.)

� the assessment of the product, including an as-
sessment of the adequacy and usefulness of the
technical concepts, the performance and usabil-
ity of the product.

Selecting an OMS means to de�ne requirements on
the OMS. The requirements on an OMS are dependent
on the potential SEE to be developed. The aforemen-
tioned heterogeneity of the applications and the re-
sulting heterogeneity of the derived requirements ag-
gravates a general assessment of an OMS in such a
way that either the decision support method has to
be restricted on assessing very common features of the
OMSs or has to use very precise requirements derived
from a particular application. Nonetheless, the deci-
sion process may be very di�cult for several reasons.

� The di�erences of the various OMSs complicate
the comparison of the evaluation results.

� Due to the di�erences in philosophy and docu-
mentation of the various OMSs it is even not
trivial to identify common basic features.

We present a decision support method which over-
comes the aforementioned di�culties. The method
presented in this paper focusses on the de�nition of
such a decision framework providing a uniform grid
for the comparison and evaluation of OMSs with the
intention to be appropriate for many di�erent require-
ments and OMSs. In particular, our method allows to

� cope with the heterogeneity regarding OMS
properties by de�ning a common view on the dif-
ferent systems using a classi�cation schema,

� simplify an individual selection by allowing to
check the application-speci�c requirements.

� assess the performance of the di�erent OMSs us-
ing benchmarks.

3 Decision Support Method for

Selecting OMSs

An SEE developer applies the decision support
method for identifying the most appropriate OMS for
the currently developed system. A faulty decision may
be disastrous for the SEE developer, as the develop-
ment schedule can be delayed or the funding does not
allow to buy another OMS. Thus, the decision must
be comprehensive. In particular, it is not su�cient to
focus on some aspects of an OMSs only, but to con-
sider various aspects such as data model, architecture,
performance, etc.

For a comprehensive decision the SEE developer
has to de�ne his requirements. Such requirements de-
scribe the role which an OMS plays as part of an SEE.
However, the various characteristics dependent on the
role of the OMS are quite di�cult to derive. The prob-
lem is that for identifying such characteristics an SEE
or parts of an SEE must be completely developed. In
particular it is important to de�ne the requirements
of an SEE user3 and to de�ne the architecture of the
SEE on the basis of the SEE user-speci�c requirements
in order to derive the particular role which the OMS
plays as a component of this SEE.

Such an approach is very complex and highly time-
and e�ort-consuming. The variety of existing require-
ments catalogues (see [12], [10], etc.) and the vari-
ety of the existing OMSs [16] point out the di�culties
de�ning SEE user-speci�c requirements catalogues.
For solving the problem we have de�ned a classi�-
cation schema. The classi�cation criteria identify
and address the various aspects of OMSs which are
summarized in the following.

3SEE user is a person or institution developing sys-
tems using an SEE

� General (non-technical) product informa-
tion: name of the OMS, supplier, hardware plat-
form, price, documentation, etc.;

� Architecture: in particular the functions, in-
ternal interfaces, distribution concepts, extensi-
bility and openness;

� Functionality of the programming inter-
face: the data model, identi�cation/navigation,
versioning, external views, etc.;

� System Features: segmentation and cluster-
ing, transaction concepts and mechanisms, ac-
cess control, security, etc.;

� Standard browser: required hardware/soft-
ware, functionality, data model in comparison
with the programming interface, etc.;

� OMS administration: Installation, crash re-
covery, administration of distribution, perfor-
mance monitoring and tuning, etc.;

� Performance issues: execution time of the
OMS functions, execution conditions, etc.

The evaluation of OMSs regarding a classi�cation
criterion is highly dependent on the particular aspect
addressed. Whether a particular concept is supported
by the data model can usually be decided on the basis
of the documentation of the SEE. However, aspects
such as performance can be decided after practical
use of an OMS only. Therefore we distinguish an-
alytical evaluation and experimental evaluation
which are described in the following sections.

3.1 Analytical Evaluation

During the analytical evaluation OMSs are evalu-
ated on the basis of the documentation or any market-
ing material available. For most of the classi�cation
criteria it is very di�cult to de�ne formal evaluation
scales for the evaluation results. Thus, we have de-
scribed the evaluation results of an OMS regarding
each classi�cation criteria informally.

Typical aspects considered by the analytical evalu-
ation are non-technical aspects, data model, architec-
ture, application interface, etc.

3.2 Experimental Evaluation

A typical aspect considered by the experimental
evaluation is performance. During the experimen-
tal evaluation a particular experiment further called
benchmark is implemented and executed on the
OMS. Benchmarks known for conventional DBMSs are
usually de�ned in form of a source program (e.g. im-
plemented in C or SQL). As the OMSs di�er regarding
their data model, interfaces and host languages, it is
not possible to de�ne a benchmark in form of a source
program. Rather it is important to de�ne the bench-
mark in a highly abstract way, such that it can be im-
plemented on top of a large variety of OMSs. Here the
term \abstract" means that the particular data stor-
age problem is described on a highly abstract level,
e.g. based on an entity relationship model, in order to
be implementable on various OMSs. For distinguish-
ing the benchmarks for conventional database systems
and OMSs, we call the latter benchmark abstract
benchmark.

For deriving any decisions on the basis of the ab-
stract benchmark it is important that the abstract
benchmark is SEE user-speci�c. As an SEE usually
works on complex data structures and uses manyOMS
functions which access the data, the OMS benchmark
must ideally simulate the behavior of an SEE or parts
of an SEE (i.e. de�ne many complex operations for
complex data structures). An example for such a
complex benchmark is the HyperModel benchmark
(see [2, 1]).

However, a complex benchmark is always only ap-
propriate for a certain class of applications and its
implementation is fairly expensive. Moreover, the im-
plementation of a complex benchmark is complicated
in so far that the choice of a particular data structure
is usually not reproducible. Rather there exist several
implementation alternatives for a complex benchmark
which produce signi�cantly di�erent performance re-
sults. Thus, the implementation must be optimized
in order to use the appropriate OMS functions with
good performance only. The paradox is that we must
know the performance results of the OMS functions
for evaluating the performance of the OMS functions.

The solution of this problem is a two-step ap-
proach. In the �rst step we de�ne an OMS bench-
mark for elementary OMS functions using simple data
structures. The main idea is that these operations
should be easy to implement and valid for all OMSs

constituting the basis for more complex and applica-
tion dependent operations. The performance results of
this benchmark, further called simple benchmark,
may be afterwards used for implementing a complex
benchmark in the second step.

Such a simple benchmark has been de�ned in [4].
Figure 2 depicts the data structure of the simple
benchmark using a very simple entity relationship
model. Figure 3 sketches the operations de�ned for
the simple benchmark. It has been used as an input
for a complex benchmark that measures performance
of operations on persistent syntax-graphs.

DIR

DIRREL

SMALL BIG

DIRREL

MNREL

str10

str80

str160

str10

str80

str160

long

str10

str80

str160

Figure 2: Data Structure of the Simple Benchmark

The data structure of the simple benchmark con-
sists of three di�erent object types, namely DIR,
SMALL, BIG. For each of the two object types
SMALL and BIG we de�ne three attributes of the type
STRING. With the attributes it is possible to store
values (i.e. byte strings) with a maximum length of
10 Byte, 80 Byte and 160 Byte (\small attribute val-
ues"). For the object type BIG we de�ne an additional
attribute of type LONGFIELD where values up to 10
KByte and 128 KByte can be stored. The object type
DIR has no attributes.

For each pair of object types DIR/BIG, DIR/
SMALL and SMALL/BIG we de�ne relationship
types. The �rst two relationship types are 1 : n (n �
1) relationships without attributes, for the third rela-
tionship type, which is of the kind n : m (n;m � 1),
three attribute of the type STRING used for storing
small attribute values are de�ned.

This entity relationship model is very simple but it

Write and Read of ‘‘big’’ attributes of an object.

Write and Read of all ‘‘small’’ attributes of an object.

Write and Read of a relation.

Creation and Deletion of objects without
 initialization of the attribute values.

Write and Read of ‘‘small’’ attributes of an object.

Write and Read of a ‘‘small’’ attribute value of
a relation.

Initialization, Opening and Closing of the database.

Figure 3: Operations of the Simple Benchmark

includes the basic object types and relationships that
are typical within SEEs. Furthermore, it can be im-
plemented using almost every OMS. Thus, it is possi-
ble to measure the elementary operations mentioned
above that constitute the basis for all kinds of com-
plex operations in SEEs. Before starting the measur-
ing an initial database has been created for all tested
OMSs that is based on the described entity relation-
ship model.

4 Decision Process

The SEE developer identi�es the most appropri-
ate OMS by applying the decision support method.
However, we claim that the identi�cation process can
be performed independent from the decision process.
The idea is to classify all existing OMSs by using the
classi�cation schema and not only the OMS for a par-
ticular SEE developer only. The advantage of such an
approach is that it is possible to store the classi�cation
schema and the results for all OMSs in a database and
to provide tool support for the identi�cation. Such a
tool is called decision support system (DSS).

An SEE developer (1) views the existing classi�ca-
tion criteria of the classi�cation schema, (2) de�nes
the criteria of interest and (3) identi�es the impor-
tance of the selected criteria using the DSS. The DSS
allows to retrieve the evaluation results of the OMSs
stored in the database regarding the identi�ed clas-
si�cation criteria. As the evaluation results are de-
�ned informally, the SEE developer has to view and
compare the evaluation results thoroughly in order to

identify the most appropriate SEE.

In case classi�cation criteria are missing, the SEE
developer has to add these criteria to the classi�cation
schema. It is obvious that the OMSs must be evalu-
ated regarding the newly de�ned criteria using analyt-
ical or experimental evaluation. The addition of new
classi�cation criteria allows to improve the \quality"
of the classi�cation schema through repeated usage of
the DSS.

The advantage of the DSS is that it is possible to
derive decisions not only once, but several times. Fur-
thermore, the e�ort is reduced signi�cantly as it is not
necessary to perform the benchmarks repeatedly.

5 A Practical Example

We have applied the decision support method sev-
eral times in di�erent context (see [4], [5]). In this
paper we present the evaluation results produced in
the context of the ATMOSPHERE project [5], where
we examined four OMSs, namely PCTE/OMS [9],
CADLAB/OMS [15], GemStone [3] and Damokles
[7]. PCTE/OMS and CADLAB/OMS are both used
within the ATMOSPHERE project, while the evalua-
tion of GemStone and Damokles serves for comparison
purposes. GemStone is an example for a wide-spreadly
used commercial database system, while Damokles
is rather a research-oriented system than a product.
However, Damokles has very good and interesting con-
cepts.

As the existing classi�cation schemata were not use-
ful for the ATMOSPHERE context and the OMSs to
be evaluated within were di�erent, we had to per-
form the decision process \from scratch". In the �rst
step we have modi�ed the classi�cation schema de-
�ned in [4] according to the particular needs of AT-
MOSPHERE. In the second step we have evaluated
the OMSs regarding this classi�cation schema. In the
third step we have implemented and executed the sim-
ple benchmark on the di�erent OMSs. For the perfor-
mance analysis we have chosen several test frames that
cover the most important execution conditions and en-
able to check the OMSs according to these conditions.
Examples for these test frames are executions

� with direct and navigational access,

� with and without transaction mechanism,

� in a \cold" database state (i.e. read and ma-
nipulation of objects directly after opening the
database) and in a \warm" database state (i.e.
read and manipulation of an object immediately
after reading the object),

� with di�erent contents and sizes of the database.

Each benchmark has been performed using the
same hardware platform (i.e. computer, primary and
secondary storage) and software platforms (i.e. op-
erating system, network software, load). A constant
load was achieved by guaranteeing exclusive access
to the computing system during the execution of the
benchmark. Furthermore, we have repeated each op-
eration and each benchmark several times in order to
overcome unexpected side-e�ects on the performance
results.

The evaluation has shown that the evaluated OMSs
di�er tremendously regarding their data model, their
degree of object orientation, their transaction concept
and many other aspects. In the remainder of this sec-
tion we will only give some examples of our evaluation
results. Due to space limitations it is not possible to
present all the evaluation results in detail. The com-
plete evaluation report can be found in [5].

Data Models. Concerning the data models of the
programming interface the OMSs di�er in the underly-
ing abstract model. Thus, PCTE/OMS and Damokles
are based on an extended entity relationship model,
CADLAB/OMS has a graph-based and GemStone a
set-theoretical data model.

Object Orientation. Except GemStone that may
be called fully or behaviourally object-oriented4 (i.e.
it enables the de�nition of class speci�c methods) all
other OMSs are only structurally object-oriented (i.e.
methods are always prede�ned).

Transactions. We have identi�ed great di�erences
in the supported transaction concepts. Damokles
e.g. supports mechanisms for design transactions

4Concerning the di�erent degrees of object-
orientation c.f. [6]

and PCTE/OMS covers short and nested transactions.
Gemstone provides support for short transactions by
o�ering optimistic and pessimistic transaction mecha-
nisms. The release of CADLAB/OMS which we have
evaluated, however, has only a simple locking mech-
anism but no real transaction support, not even for
short and at transactions.

Standard-Browsers. Capable browsing facilities
for comfortable interactive access to the database are
actually imperative for OMSs. It is desirable for an
OMS to provide at least one textual browser with
full functionality or even better a graphical browser.
Damokles, however, provides no browser, while CAD-
LAB/OMS only provides a very low level textual
browser (similar to a debugger) with restricted func-
tionality. PCTE/OMS and GemStone provide full
browsing facilities.

Administration Tools and Documentation.
Not all of the OMSs show su�cient administration ca-
pabilities. GemStone and PCTE/OMS, however, pro-
vide speci�c tools for administration.

Archivation and Recovery. Recovery and data
replication is another weakness of most OMSs. Gem-
Stone and PCTE/OMS, however, supply tools or pro-
cedures for replication and backup in case of system
or media crashes.

Performance Concerning our performance mea-
surements we have again identi�ed tremendous dif-
ferences between the OMSs. The execution times of
the benchmark for the di�erent OMSs have elucidated
that each of the OMSs has its strength concerning
particular execution conditions and hence is obviously
not appropriate in all application areas. A general re-
sult is that there is one group of OMSs (PCTE/OMS,
Damokles) that is more appropriate to handle big ob-
jects, i.e. at �les like textual or multimedia doc-
uments, while the other group of OMSs (GemStone,
CADLAB/OMS) is more appropriate for small objects
like e.g. syntax graphs or CAD objects.

Besides the mentioned results there are a lot of fur-
ther interesting di�erences between the various sys-
tems, e.g. concerning versioning, security and distri-
bution.

6 Summary and Conclusion

In this paper we have de�ned a method for select-
ing OMSs and we have presented evaluation results of
OMSs which we have evaluated by applying the deci-
sion support method. The practical experiment with
the decision support method has further pointed out
the strength and weaknesses of the method.

In particular, the experiment has shown that the
classi�cation schema may be used for not only de-
scribing the various aspects of OMSs, but also for a
comparison in order to identify the most appropriate
OMS.

The major disadvantage of the classi�cation schema
is that the de�nition of the classi�cation criteria is not
reproducible. In particular, it is di�cult for other per-
sons to use the classi�cation schema as there does not
exist a glossary where the di�erent terms are de�ned.

For the experimental evaluation the simple bench-
mark allows to derive the performance of an OMS
for simple OMS functions accessing simple data struc-
tures. We had lots of di�culties for ensuring the same
hardware and software platforms and the same con-
ditions such as work load in order to keep the results
comparable. The major problems of the benchmark
are that it focusses on the simple OMS functions only
and that it does not cover an examination of concur-
rent execution.

In a next step, we are currently implementing a
more complex benchmark for accessing more complex
data structures. Furthermore, we will extend the fo-
cus of the experimental evaluation on aspects such as
distribution, multi-processing, etc. Additionally the
introduction of a glossary for the classi�cation criteria
may allow di�erent persons to work with the DSS.

Our experiences with OMS evaluation have shown
that a single OMS can perhaps be su�cient for a
certain application, but not for a number of di�er-
ent tasks within a complex environment like an SEE.
For instance, a common data repository within a soft-
ware development environment has to cope with �ne
grained objects (e.g. for the syntax graph of a syntax-
directed editor) as well as with big objects (e.g. stor-
age of the modular structure of a software system).
Moreover a project manager could perhaps wish to
store administrative data within a relational database
system, especially if we consider that he uses a tool

that internally handles relational data.

The simple example depicts the demand of complex
applications which have various highly heterogeneous
requirements on an OMS. Thus, for a highly complex
SEE it is important to integrate several OMSs in order
to support the di�erent application-speci�c require-
ments appropriately.

Our long term activities are to focus on the develop-
ment and de�nition of a framework for integrating dif-
ferent OMSs in order to ful�ll the complex application-
speci�c requirements. This integration framework is
important for two reasons. The �rst reason is that
the development of single overall optimal OMS ful�ll-
ing all requirements seems to be technically unfeasible
for the near future. The coupling of di�erent subop-
timal OMSs is the straight-forward approach to com-
bine the features of these OMSs. The second reason is
that SEEs must be able to work with existing OMSs
in order to increase their acceptance in the industrial
context.

Major requirements on a framework are that it
should be open and extensible in the sense that an
integration of OMSs has to be most easy by providing
an appropriate plug-in concept. OMSs will be horizon-
tally integrated below an OMS interoperation mecha-
nism that de�nes di�erent qualities of interoperation
and allows di�erent degrees of integration. The con-
cept of such an integration framework is based on a
software bus (c.f. [13]).

We will use our OMS evaluation method for an ex-
amination of di�erent OMSs concerning their features
and suitability for an integration into the framework.
In this context the OMSs have to be analyzed concern-
ing their interfaces, the di�erent data models and the
corresponding query languages with respect to OMS
integration. The examination will be based on the
descriptions of the OMS products.

References

[1] T. L. Anderson, A. J. Berre, M. Malli-
son, H. H. Porter, and B. Schneider. The
hypermodel benchmark. In F. Bancilhon,
C. Thanos, and D. Tsichritzis, editors, Proceed-
ings of the International Conference on Extend-
ing Database Technology { LNCS 416, pages 317{
331. Springer, Mar. 1990.

[2] A. Berre, T. L. Anderson, and M. Mallison.
VBase and the HyperModel Benchmark. Techni-
cal Report CS/E-88-031, Oregon Graduate Cen-
ter, 1988.

[3] R. Bretl, D. Maier, A. Otis, J. Penney,
B. Schuchardt, J. Stein, E. H. Williams, and
M. Williams. The GemStone data management
system. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Appli-
cations, pages 283{308. Addison-Wesley, 1989.

[4] S. Dewal, H. Hormann, L. Sch�ope, U. Kel-
ter, D. Platz, and M. Roschewski. Bewertung
von Objektmanagementsystemen f�ur Software-
Entwicklungsumgebungen (in German). In Proc.
of the GI Fachtagung Datenbanksysteme in B�uro,
Technik und Wissenschaft, 1991.

[5] S. Di�mann, W. Emmerich, B. Holtkamp,
K. Lichtinghagen, and L. Sch�ope. OMSs Com-
parative Study. Technical Report D2.4.3-rep-1.0-
UDO-EL, ATMOSPHERE, 1991.

[6] K. R. Dittrich. Object-oriented database sys-
tems: the notion and the issues. In K. Dit-
trich and U. Dayal, editors, Proc. of the 1986 Int.
Workshop on Object-Oriented Database Systems.
IEEE Computer Society Press, 1986.

[7] K. R. Dittrich, W. Gotthard, and P. C. Locke-
mann. Damokles { a database system for software
engineering environments. In R. Conradi, T. M.
Didriksen, and D. H. Wanvik, editors, Proc. of an
Int. Workshop on Advanced Programming Envi-
ronments, LNCS 244, pages 353{371. Springer,
1986.

[8] A. Earl. A Reference Model for Computer As-
sisted Software Engineering Environment Frame-
works. Technical report, Hewlett Packard, Au-
gust 1990.

[9] F. Gallo, R. Minot, and I. Thomas. The object
management system of PCTE as a software en-
gineering database management system. ACM
SIGPLAN NOTICES, 22(1):12{15, 1987.

[10] GIE Emeraude. Requirements and Design Cri-
teria for Tool Support Interface. Technical Re-
port 15, ECMA TC33, 1988.

[11] W. Gotthard and P. C. Lockemann. Daten-
banksysteme f�ur Software-Produktionsumgebun-
gen { Anforderungen und Konzepte (in Ger-
man). In W. E. Proebster, R. Remshardt, and
H. A. Schmid, editors, Methoden und Werkzeuge
zur Entwicklung von Programmsystemen { Fach-
berichte und Referate Band 16, pages 185{210.
Oldenbourg, 1985.

[12] GPI { The German PCTE Initiative. Require-
ments for the enhancement of PCTE/OMS, ver-
sion 2.0. Technical report, Nixdorf Computer
AG, Berliner Str. 95, D-8000 M�unchen 40, Mar.
1989.

[13] B. Holtkamp and H. Weber. Object-Management
Machines: Concept and Implementation. Journal
of Systems Integration, 1:367{389, 1991.

[14] D. Maier. Making database systems fast
enough for CAD applications. In W. Kim and
F. H. Lochovsky, editors, Object-Oriented Con-
cepts, Databases and Applications, pages 573{
582. Addison-Wesley, 1989.

[15] J. Miller, K. Gr�oning, G. Schulz, and C. White.
The object-oriented integration methodology of
the cadlab work station design environment. In
Proc. of the 26th ACM/IEEE Design Automation
Conference, pages 807{810, June 1989.

[16] L. Sch�ope and H. Hormann. �Ubersicht �uber
Nicht-Standard Datenbanksysteme. Internal Re-
port 42, University of Dortmund, Dep. of Com-
puter Science, Software-Technology, FRG, Jan.
1990.

