
FUNSOFT Nets: A Petri-Net based

Software Process Modeling Language�

Wolfgang Emmerich, Volker Gruhn

Informatik X

Universit�at Dortmund

Postfach 500 500

D-4600 Dortmund 50

emmerich@udo.informatik.uni-dortmund.de

gruhn@udo.informatik.uni-dortmund.de

February 12, 1996

Abstract

We introduce an approach for modeling and analyzing software processes. It is based
on describing software processes by FUNSOFT nets. FUNSOFT nets are high level Petri
nets which have been particlularly developed to support software process modeling. Their
semantics is de�ned by Predicate/Transition nets. That enables to bene�t from standard
analysis techniques approved for Predicate/Transition nets. Finally we discuss how the
S-invariant analysis method for Predicate/Transition nets helps to reveal properties of
software processes described by FUNSOFT nets.

Keywords

FUNSOFT nets, semantics de�nition in terms of Pr/T nets, analysis of FUNSOFT nets,
S-invariant analysis method

1 Introduction

In this paper we present a result of applying Petri nets to software process modeling. We
introduce a kind of high-level Petri nets which is well-suited for describing software process
models.

Our basic motivation is the observation that formal languages which enable graphic animation
and the use of approved analysis techniques as well as the description of non-determinism
and concurrency are sought in various projects aiming at the development of software process
modeling languages. While these key requirements lead to Petri nets in general our work
revealed that none of the standard high level Petri net types measures up to the more detailed
requirements such as tight but still comprehensible representations of software process models.
Experiments [Jeg91] have shown that process models de�ned in terms of Predicate/Transition

�The work described here is partially sponsored by the ESPRIT project ALF and by the EUREKA project
ESF

1

nets [Gen87] (Pr/T nets) tend to become that large that they were neither comprehensible
nor manageable even by providing tool-support (e.g. [PSI87]). Thus, we developed a Petri
net type, namely FUNSOFT nets, which is dedicated to represent software process models.
FUNSOFT nets enable to express software process speci�c properties by single nodes rather
than (usually large) subnets in other Petri net types.

The semantics of FUNSOFT nets is de�ned in terms of Pr/T nets. Thus, the advantage of
our approach is to have a high-level application-oriented language and we further bene�t from
using analysis techniques de�ned for Pr/T nets to support property proving of software process
models.

The next section gives a very concise overview of the relationship between software process
modeling and software engineering. Furthermore that section stresses requirements for software
process modeling languages. Section 3 introduces FUNSOFT nets. We give an informal
explanation of FUNSOFT nets, their de�nition, their graphic animation, an example, and the
semantics de�nition of FUNSOFT nets in terms of Pr/T nets. Section 4 sketches how the
method of S-invariant analysis applied to Pr/T nets can help to reveal properties of software
process models described by FUNSOFT nets. Finally, section 5 closes with a conclusion of the
work described in this paper.

2 Software Process Modeling

Software process modeling is an area of increasing importance [Dow86, Per89]. Its main focus
is the description of software process models and the use of such descriptions for communi-
cation between people involved in software development, for �nding mistakes, for improving
the productivity of software development, and at last for increasing the quality of produced
software.

The software process is the ordering of activities performed during the creation and evolution
of a software system. This explanation of the term software process re
ects some opinions
given in [Dow86].

Regarding this idea of a software process it becomes obvious that there is one software pro-
cess for each software system that is developed. Several software processes are driven by the
same software process model. A software process model describes general features of a class of
processes but not those features which are unique for each process (a software process model
describes that a software developer has to participate in certain tasks, which software developer
actually participates di�ers from software process to software process). Software process mod-
els describe which activities have to be performed by which people, who is allowed to access
which documents, and which activities have to be performed when. Beyond the scope of tra-
ditional project management descriptions (done by Gantt diagrams or PERT charts [LH89]),
software process models serve as the basis for the execution of real software processes and by
that enable to retrieve on-line information about the actual state of the process at any time.

Two ways of describing software process models can be distinguished: a model description by
means of a formal notation and a narrative or informal description. The wide-spread use of
narrative descriptions is emphasized in the following quotation:

`Narrative descriptions have been employed by organizations to record their standard

2

operating procedures - a form of process description' [Kel88].

This statement shows that the idea of describing software processes is not new. Operating
procedures have been described for each software development. The problem of most of these
descriptions was and is that they lack in precision. They are given in the form of general
guidelines and advices like "start with a requirements phase" or "test each module carefully".
Therefore, they are the source for a lot of misunderstandings and mistakes. Moreover, it is
hardly possible to observe whether an informal software process model is respected during
software development itself. Furthermore, no precise analysis techniques can be applied to
informal descriptions.

That is why we focus only on formal software process modeling approaches in the following.
Subsequently we discuss some of the key requirements for software process modeling languages.

Representation of non-determinism and concurrency In software process models sev-
eral situations exist in which it is unimportant in which way something is done. Instead
it is important that it is done in one way or the other. To model this kind of non-
determinism is a crucial issue.

Moreover, it is necessary to model that several activities can be executed concurrently.
This must be expressible in software process modeling languages. The representation of
concurrent activities, for example, can help to �nd out how many people can be deployed,
thus it can be the basis for personnel management.

Representation of typical entities A language for the description of software process mo-
dels must enable the description of essential components of such models, otherwise it does
not ful�ll its main purpose. Essential components are object types, activity types and
some further kind of control conditions. These components are common to all languages
for describing software process models. Our investigations have shown that besides object
types, activities, and control conditions it is necessary to model predicates of activities
[DGS89]. Such predicates are conditions which must be ful�lled before the activity,
the predicate is associated with, can be executed. These predicates correspond to the
preconditions of activities as de�ned in [KF87]. Furthermore it must be possible to model
the duration of activities.

Simulation and analysis Analysis of software process models can contribute to the early
detection of errors. By analyzing software process models it is possible to prove speci�c
properties of these models, to detect errors, and to gain deeper insights into the nature
of the analyzed software process model.

Comprehensibility of software process models A software process modeling language
must enable a tight representation of software process models, since software process
models are usually quite complex. In order to keep this complexity manageable it is
necessary to represent basic entities as single units of description. In the case of software
process models this means for example to consider tools as black boxes describing their
input/output behavior rather than their internal structure, and the access-order to ob-
jects rather than the complete storage mechanisms of an object base. To ful�ll the above
mentioned requirement these entities must be represented by single units of the language.

The graphic animation of process models can help to understand the structure of the
model. Moreover graphic representations of models support the communication between
the software process engineer and software developers or customers which participate in
the process.

3

In the next section we introduce FUNSOFT nets. FUNSOFT nets are a software process
modeling language that ful�lls the discussed requirements.

3 FUNSOFT Nets

In this section we introduce a Petri net type which is well-suited for describing process pro-
gramming fragments. This type of high level Petri nets is called FUNSOFT nets. Some of the
concepts of FUNSOFT nets are based on ideas implemented in Function nets [?].

3.1 Introduction to FUNSOFT Nets

A FUNSOFT net is a tuple (S; T; F;O;P; J;E;C;A;M0) where (S; T ;F) denotes a net [Rei86].
Elements from S are called channels and elements from T are called instances. F denotes the
set of edges. Channels are used to model object stores, instances model activities, and describe
the relation between activities and object stores.

In order to enable the representation of software process relevant object types and in order
to have an extensible set of object types, O := (ON�OD) de�nes a set of object types.
ON := TY PID[� fBOOL; INTEGER;REAL; STRINGg is a set of type identi�ers and
OD de�nes a set of type de�nitions. fBOOL; INTEGER;REAL;STRINGg are prede�ned
types and TY PID denotes identi�ers of complex types. For each complex type OD contains
a type de�nition in the Language LType. In LType object types are de�ned analogously to the
way object types are de�ned in the programming language C. For x 2 ON , range(x) denotes
the domain of the type x.

Since it is necessary to model that the execution of activities depends on explicit conditions
concerning values of tokens which are to be read we introduce activation predicates. Activation
predicates can be attached to instances. P � (PN�PP) denotes a set of activation predicates.
P is called the activation predicate library. Each predicate from the library consists of a name
from the set PN and a list of parameters from PP . A predicate can be used to ensure that
an instance can only �re if tokens with certain properties are available in the preset of the
instance.

In order to get less complex nets (provided that a major part of the complexity is given by the
number of nodes) executable code can be attached to transitions in many net classes. This
code is executed whenever the transition is �red (e.g. ML in Colored Petri Nets). In these
approaches it is assumed that by �ring a transition a number of �xed tokens is consumed from
each place in the preset and another number of �xed tokens is produced for each place in the
postset. This assumption has to be weakened since activities occurring in software processes
do not have usually this �ring behavior.
In our approach instances can be inscribed with jobs and if an instance occurs, the correspond-
ing job is executed. Jobs are members of the job library J , J := (JN�JFI�JFO�JP). Jobs
have got names from JN . The input �ring behavior jfi 2 fALL;MULT;COMPLEXg and
the output �ring behavior jfo 2 fALL; SOME;DET;MULT;COMPLEXg of a job describe
how a transition to which that job is attached behaves. The formal semantics de�nition of
jobs will be given in terms of Pr/T Nets in subsection 3.5.4. An input �ring behavior ALL
for example indicates that the job reads one token from each channel of the preset of the
instance it is assigned to. An output �ring behavior MULT for example indicates that the

4

job writes a natural number n to the �rst channel of the postset of the instance to which the
job is assigned and that it writes n tokens to the second channel of the postset of the instance
the job is assigned to. An example of a job with a COMPLEX output �ring behavior is the
compile-job. The result of a compilation is either a successfully compiled module or a module
that has to be re-edited together with a failure report.
The job parameterization consists of input parameters and output parameters.

Edges are inscribed by two functions E := (ET ; EN). We distinguish information
ow
and control
ow as well as reading tokens by removing and by copying and with that
again enhance the modeling power of our language. ET assigns an edge type from the set
fIN;CO;OU;ST;FIg to each edge. An edge e 2 F with ET (e) 2 fIN;CO;OUg models in-
formation
ow and an edge e with ET (e) 2 fST; FIg models control
ow. If ET ((s; t)) = IN

and t occurs, a token is removed from s. If ET ((s; t)) = CO and t occurs, a token is copied from
s. The function EN de�nes an edge numbering. The edge numbering is needed for checking
consistency between the parameterization of the attached job and the object types assigned
to the channels in the pre- and postset.

C := (CA; CT) de�nes two functions which assign attributes to channels. CA attaches
an access attribute to each channel. The possible values are fFIFO; LIFO;RANDOMg.
Thereby we are able to model di�erent kinds of access by a simple channel attribute. The
access attribute de�nes the order in which tokens are removed from the channel. FIFO

denotes a 'First-In-First-Out' order, LIFO de�nes a 'Last-In-First-Out' order. Channels s
with CT (s) = RANDOM behave like places in P/T-Nets do.
CT attaches an object type from O to each channel. Each channel s can only be marked with
tokens of type CT (s).

An instance can be annotated with up to four inscriptions. They are assigned by four functions
A := (AJ ; AP ; AT ; AW). AJ assigns a job to each agency. AJ(t) denotes the job assigned
to the instance t. AP is a partial function which assigns predicates from the predicate library
P to instances. AP (t) denotes the predicate assigned to the instance t. The function AT

assigns a positive real value or the value 0 to instances. AT (t) denotes the time consumption
of instance t, it quanti�es the amount of time which passes between reading tokens from
the preset of t and writing tokens to the postset of t. The function AW assigns one of the
values fPIPE;NOPIPEg to instances. The pipelining attribute AW (t) de�nes whether the
instance t models a pipeline or not. If AW (t) = PIPE, t can �re without having �nished
previous �rings. Otherwise t must �nish each �ring before it can occur again.

The initial marking of the net is de�ned by the function M0, which assigns a set of tuples
from (range(CT(s))�IN) to each channel s. The �rst component of each tuple is the object
value, the second one is a natural number. This natural number de�nes an order of the tokens.
This order is required for channels s with CT (s) 2 fLIFO; FIFOg, since the access to tokens
marking such channels depends on their arrival order.

3.2 Syntax of FUNSOFT Nets

De�nition 3.1 Parameterizations of activation predicates and jobs

The languages LAP and LJP which de�ne the parameterizations of activation predicates and
jobs are de�ned by the following grammar. The language LAP is generated with the start symbol
< ActivationPredicateParameter > and for LJP the start symbol is < JobParameter >.

5

< Char > ::= aj : : : jzjAj : : : jZ
< ComplexTypeid > ::= < Char > f< Char >g�0
< SimpleTypeid > ::= BOOLjINTEGERjREALjSTRING

< Typeid > ::= < SimpleTypeid > j < ComplexTypeid >

< Parameter > ::= < Typeid > f� < Typeid >g�0
< ActivationPredicateParameter > ::= < Parameter >

< JobParameter > ::= < Parameter >! < Parameter >

A word of the language LAP is for example person�REAL, a word of the language LJP is for
example person�REAL!BOOL.

De�nition 3.2 FUNSOFT nets

Let LType be the language for de�ning token types and let TY PID denote the set of correct
type identi�ers. Let LAP and LJP be languages for de�ning parameterizations of activation
predicates and jobs as de�ned above. A tuple FS=(S; T; F;O;P; J; A;C;E;M0) is a FUNSOFT
net, i�:

1: (S; T ;F) is a net

2: O � (ON�OD) de�nes object types by
ON = fBOOL; INTEGER;REAL; STRINGg[� TY PID

is a set of type identi�ers
OD � LType is a set of type de�nitions for ON

3: P � (PN�PP) de�nes a library of predicates where
PN is a set of predicate names
PP � LAP is a set of predicate parameterizations

4: J � (JN�JFI�JFO�JP) is a library of jobs with
JN is a set of job names
JFI = fALL;MULT;COMPLEXg
JFO = fALL; SOME;DET;MULT;COMPLEXg

describe the input and the output �ring behavior
JP � LJP ist a set of parameterizations

5: E = (ET ; EN) de�nes edge annotations with

ET :

(
F \ (S�T)! fIN;CO; STg
F \ (T�S)! fOU; FIg

function assigning an edge type

EN : F ! IN de�nes an order on the pre- and postset of each instance by
8(t;s);(s0;t0)2F EN(t; s) � jt�j ^ EN(s0; t0) � j�t0j
8(s;t);(s0;t)2F EN(s; t) 6= EN(s0; t)
8(t;s);(t;s0)2F EN(t; s) 6= EN(t; s0)

6: C = (CA; CT) de�nes channel annotations by
CA : S ! fRANDOM;LIFO; FIFOg

function assigning access attributes
CT : S ! ON function assigning object types

6

7: A = (AJ ; AP ; AT ; AW) de�nes instance annotations by
AJ : T ! J function assigning jobs
AP : T ! P partial function assigning activation predicates
AT : T ! IR+

0 function assigning time consumptions
AW : T ! fPIPE;NOPIPEg function assigning pipelining attributes

8: M0 de�nes the initial marking by
M0 : S!P((

S
o2ON range(o))�IN)

i� M0 respects the channel types de�ned by CT .

3.3 Graphical Representation of FUNSOFT Nets

The net structure of a FUNSOFT net is graphically represented as usual: channels are drawn
as circles, instances as rectangles and edges as arrows.

The �ring behaviors of jobs provide some information about the behavior of jobs during their
execution. Firing behaviors are displayed as follows:

ALL S O M E DET MULT COMPLEX

n c

MULT COMPLEX

n c

ALL

J FI J F O

Figure 1: Graphical representation of the �ring behavior of jobs

Since each job has an input and an output �ring behavior graphical symbols for both kinds of
behaviors can be combined.

A JN
(t)

A J (t)
P

A
T

(t)

Name

0.01

Login

SA Analyzer

Person arriving The �gure left to this paragraph shows where attributes of an
instance depicted as a rectangle are displayed. The pipelining
attribute PIPE is indicated by a horizontal line in the lower
part of the rectangle. If this line is missing, the instance has
the attribute NOPIPE. If AT (t) = 0 it is omitted. On the
right hand of the �gure an example is given with AJ(t) =
Login, AP (t) = SA Analyzer, AW (t) = PIPE and AT (t) =
0:01. The instance name is optional

M(s)

Name Created Dfds

(fifo, string)

[’Root Dfd’]

(CA(s), C
T

(s))

The graphical representation of channel attributes and of ini-
tial markings is shown in the �gure left to this paragraph.
The example on the right of that �gure shows a channel s
with CT (s) = STRING, CA(s) = FIFO and M(s) =
f(0RootDfd0; 1)g. The channel name is optional.

The type of an edge is drawn near to the arrow representing the edge. If it is omitted an edge
(s; t) is of the type IN and an edge (t; s) is of the type OU . Edge numbers are written under
edges. For the remainder of this document edge numbers are omitted whenever the parameter
position of tokens read from or written to channels is clear.

7

3.4 A FUNSOFT Net Example

This subsection introduces an example showing how a requirements analysis phase of a software
process can be modeled by means of FUNSOFT nets.

The graphical representation of this example is enabled by using two kinds of hierarchies,
which were introduced in [HJS89], namely instance substitution and channel fusion.

In the following nets, instances inscribed with DEC denote that an instance is re�ned by a
subnet. In the subnet each channel which is connected with the re�ned instance of the supernet
is also depicted. This helps to recognize the interrelation of the two nets. Such channels are
called ports of the subnet. For example the instance Requirements Analysis in Figure 3 is
re�ned by the net in Figure 4 and the channels start and sa ready are the ports of that net.

Channels represented by a dotted circle are fusioned to a channel of the same name, which is
drawn by a solid circle and which appears in the same net or in another subnet. For example
the channels working sa-analyzers of Figure 4 are fusioned to the channel working sa-analyzer
of the net shown in Figure 2.

One of the object types used in this software process model is for example the object type
person which is a record containing a name, a salary, the number of hours worked at the current
day, number of hours worked in total, and a role. All object types used in this example are
explained in Table 2.

For an informal description of the jobs used in this example confer to Table 1.

Figure 2 shows an example of a model of project management activities.

p e r s o n s c o m i n g

(r a n d o m ,

Login
S A - A n a l y z e r

Login
D e s i g n e r

Login
P r o g r a m m e r

Login
T e s t e r

work ing
s a - a n a l y z e r s

work ing
d e s i g n e r s

work ing
p r o g r a m m e r s

work ing
t e s t e r s

(r a n d o m , p e r s o n)

(r a n d o m , p e r s o n)

(r a n d o m , p e r s o n)

(r a n d o m , p e r s o n)

L o g o u t S A - A n a l y z e r

p e r s o n s
leaving off work

(r a n d o m , p e r s o n)
p e r s o n)

C l o s i n g
T i m e

to work

1 6 . 0

W o r k e d _ e n o u g h

L o g o u t D e s i g n e r

W o r k e d _ e n o u g h

C l o s T i m e

L o g o u t P r o g r a m m e r

W o r k e d _ e n o u g h

Logou t
W o r k e d _ e n o u g h

[p1 ,4500 ,0 ,0 , ’Tes te r ’]
[p2 ,5000 ,0 ,0 , ’Des igne r ’]
[p 3 , 4 0 0 0 , 0 , 0 , ’ P r o g r a m m e r ’]
[p4,6000,0,0 , ’SA_Analyzer’]

Logou t Tes t e r

Logou t

Logou t

Logou t

Figure 2: Personnel Management

8

Jobname Firing behavior (Input parameter)!(Output parameter)

Informal description of the job

Login (all; all) (person)!(person)
Reads from the input channel a token representing a person, initializes the number person:worked today

to zero and �res the token into the output channel.

Logout (all; all) (person)!(person)
Reads from the input channel a token representing a person, adds the number person:worked today to
person:worked total and �res the result into the outpt channel.

ClosTime (all; all) (person)!(person)

Reads a token from the input channel and �res it to the output channel.

CreEmpSA (all; all) (bool)!(samodel)
Reads a control token and �res an object of the type samodel which is initialized with empty lists into the
postset.

EditSA (all; all) (person�samodel)!(person�samodel)
Reads a token from the type samodel and a token representing a person from the preset, increases
person:worked today by the time consumption of the instance and �res the tokens to the postset.

AnalyzeSA (all; some) (samodel)!(samodel�samodel�string)
Reads a token from the preset and �res it randomly either to the �rst or to the second output channel. If
the job �res to the second output channel a string modeling an error report is �red to the third output
channel.
Less (all; all) (person�string)!(person)
Reads a tokens from the preset, increases person:worked today by the time consumption of the instance
and �res the modi�ed token to the postset.

Decide (all; some) (person�samodel)!(person�samodel�samodel)
Reads a token from the �rst channel of the preset, and �res the increased component person:worked today

into the �rst channel of the postset. Moreover, a token is read from the second channel of the preset. This
token is �red randomly into the second or into the third channel of the postset.

Move (all; all) (samodel)!(samodel�samodel)

Reads a token from the preset, duplicates it and �res one to each output channel.

Table 1: Jobs used in the example

9

Tokens in this net represent persons and are of the object type person. Persons can be in
the states coming to work, working and leaving work. The job Login reads a token of the
type person from the preset, initializes the number worked today and writes it to the postset.
All instances having the job Login are inscribed with di�erent activation predicates which are
explained in Table 3. They check the role of a person and guarantee, that the channels in the
postset are only marked with persons having the checked role.

The job Logout reads tokens of the type person, adds the number worked today to the
number worked total and writes the new token into the preset. The activation predicate
worked enough is attached to all instances inscribed with the job Logout. The predicate checks
whether worked today is greater than 8.0 (hours). The job of the instance Closing Time has
got a time consumption of 16.0 hours and the instance allows pipelining, so that persons are
removed from persons leaving o� work and written to persons coming to work with a delay of
16.0 hours.

Figure 3 shows a net which models a waterfall driven software process.

s tar t

s t

(fifo,bool) (f i fo , samodel)

s a r e a d y

D E C

R e q u i r e m e n t s
Analysis

S t r u c t u r e d
D e s i g n

D E C

m o d u l e s t o
i m p l e m e n t

(f i fo ,module)

expor t
i n t e r f a c e s

(r a n d o m , s t r i n g)

D E C

I m p l e m e n t a t i o n
cor rec t

m o d u l e s r c

(r a n d o m , m o d u l e)

and Un i t Tes t

co r rec t
m o d u l e

ob j

(r a n d o m , s t r i n g)

D E C

Integra t ion
a n d T e s t

co r rec t
s y s t e m

(r a n d o m ,
str ing)

c r e a t e d m o d u l e s

(f i fo ,module)

n u m b e r o f m o d u l e s

(lifo,integer)

c o

[TRUE]

Figure 3: A waterfall driven software process modeled with FUNSOFT nets

Every instance of this net is re�ned by a subnet. Its channels de�ne the ports between the
subnets. In the following we explain the re�nement of the instance Requirements Analysis
which is shown in Figure 4.

This net models a requirements analysis phase following the Structured Analysis method
[dM79]. The ports to the instance re�ned by this net, namely start and sa ready are showed
on the left respective right sight of this Figure.

If the instance Create empty SA-Model occurs it reads the control token from its preset and
�res a token of the object type samodel into its postset. The instance Edit SA models the
editing of the SA model by sa-analyzers. The time to carry out this work is modeled by the
time consumption of 4.0 hours.

The check whether a SA model holds the consistency criteria proposed by de Marco for SA
documents is modeled by the instance Analyze SA. As this activity can be performed in the
background, this instance has the pipelining attribute value PIPE. The instance Analyze SA

10

s t

s tar t

EditSA

Edit SA
Analyze

SAe d i t e d
s a - m o d e l

D e c i d e

a n a l y s e d
s a - m o d e l

(f i fo , samodel)

(f i fo , samodel)

q u e s t i o n

(lifo,string)
[c h a n g e m o d e l ?]

c o
s a - m o d e l

(r a n d o m , s a m o d e l)

m o d e l e d
s a - m o d e l

(r a n d o m , s a m o d e l)

(f i fo , samodel)

s a r e a d y

M o v e

(r a n d o m ,
s a m o d e l)

c r e a t e d
s a - m o d e l

C r e a t e
e m p t y

S A - M o d e l

(fifo,bool)

(r a n d o m , p e r s o n)

C r e E m p S A AnalyzeSA

0 . 0 1 0 . 1

1 . 0

e r r o r s

(r a n d o m , s t r i n g)
L e s s

0 . 5

R e a d e r r o r s

working
s a - a n a l y z e r s

[TRUE]

(r a n d o m , p e r s o n)

working
s a - a n a l y z e r s

4 . 0

Figure 4: Requirements Analysis with SA

produces either an error message or an analyzed SA model, which is considered to be correct
(For detailed description cf. Table 1).

Reading of error messages by sa-analyzers is modeled by the instance Read errors. The fact
that the last decision on the correctness should be held by sa-analyzers, is modeled by the
instance holding the job Decide. This instance �res randomly the token from analyzed sa-model
either to created sa-model or to modeled sa-model. The instance holding the job Move models
the duplication of SA models in order to enable persons in later phases to read this document.

3.5 Unfolding FUNSOFT Nets to Predicate/Transition Nets

In the beginning of section 3 we gave a short and informal explanation of the semantics of
FUNSOFT nets. This informal explanation does not enable us to de�ne dynamic properties like
activation, �ring behavior or the reachability set. A formal semantics de�nition of FUNSOFT
nets is a prerequisite for analyzing them by standard Petri net analysis techniques.

In this section we describe an algorithm which is a `local simulation' [Sta87] of FUNSOFT nets
by Pr/T nets with 'Many-sorted Structures', 'Multi-Sets', and the 'Weak Transition Rule' as
proposed by Genrich [Gen87].

Pr/T nets resulting from applying the algorithm to FUNSOFT nets and the FUNSOFT nets
themselves are related by a net morphism [SR87]. The construction of Pr/T nets out of
FUNSOFT nets is called unfolding in the following. The result of applying this unfolding to a
net element is called the unfolded net element, the result of applying it to a FUNSOFT net is
called the unfolded FUNSOFT net.

In this section we describe the unfolding of FUNSOFT net components and how the unfolded
components are assembled. Furthermore we use the result of this construction to de�ne the
dynamic behavior of FUNSOFT nets. That builds the foundation for calling FUNSOFT nets
a type of Petri nets.

In the following we give a rough sketch how the unfolding of FUNSOFT net elements is
performed. In the beginning a �rst-order structure building the support of the Pr/T net is
provided. Secondly, the object types are mapped onto variable predicates. They are used

11

in the unfolding of channels. Thirdly, for each access attribute value a Pr/T net is de�ned.
Fourthly, jobs are described by Pr/T nets. These Pr/T nets de�ne the input and the output
�ring behaviors of a job formally. Moreover, each activation predicate is translated into a static
predicate. They are assigned to transitions in unfolded instances. The unfolding of instances
is mainly determined by the Pr/T net de�ning the job attached to these instances. The Pr/T
nets resulting from unfolding channels and instances are connected according to the edge type
of the edge connecting channel and instance in the FUNSOFT net. At last, formal sums of
tuples of constants derived from the marking of the FUNSOFT net, are attached to places of
the unfolded channels. This way of unfolding FUNSOFT nets to Pr/T nets is described in
detail in the rest of this section.

3.5.1 Support

The signature of the supporting structure used in the Pr/T nets encompasses the sorts: Bool,
Int, Real, Str, Set(Type), List(Type) as well as a set of commonly used functions and predicates
for these sorts.

3.5.2 Object types

The primitive type identi�ers BOOL; INTEGER;REAL;STRING are translated into the
unary variable predicates hBooli; hInti; hReali; hStri. Type identi�ers denoting complex object
types are translated into variable predicates re
ecting the structure of the object types. The
construction of records is implemented by building tuples over the variable predicates. The
construction of list is mapped onto the abstract type List. Correspondingly the construction
of sets is mapped onto the abstract type Set.

In Table 2 the object types and the corresponding variable predicates used in the example
given in the previous subsection can be found.

Names (ON) De�nitions (OD) Variable predicates

person

struct person {char *name;

float salary;

float worked_today;

float worked_total;

char *role;}

hStr; Real;Real; Real; Stri

dfdlist struct dfdlist {char *dfd;

struct dfdlist *next;}
hList(Str)i

dalist struct dalist {char *da;

struct dalist *next;}
hList(Str)i

msplist
struct msplist {char *msp;

struct msplist *next;}
hList(Str)i

samodel
struct samodel {dfdlist *dfds;

dalist *das;

msplist *msps;}

hList(Str); List(Str); List(Str)i

Table 2: Type de�nitions for complex object types

12

3.5.3 Channels

As mentioned above channels can have di�erent access attribute values, namely FIFO, LIFO
and RANDOM . The unfolding of channels with di�erent access attribute values results in
Pr/T nets with di�erent internal structures. The elements of the surface of unfolded channels
are places. These places are called ports. We distinguish between input ports (places from
which transitions of the Pr/T net read tokens) and output ports (places to which transitions
of the Pr/T net write tokens). Independent from the access attribute value unfolded channels
always have the same ports. Thus there is only one way to connect unfolded channels to
unfolded instances. That fact allows us to restrict ourselves to describe the unfolding of a
FIFO channel in this paper.

Figure 5 shows the generic Pr/T net which results from unfolding a FUNSOFT channel s with
CA(s) = FIFO.

< n r + 1 >

< n r >

< d a t a >

< F A L S E > < T R U E >

Input

< C h a n n e l t y p e >

E n t e r e d

< i n t >

R e m o v e d

< i n t >

< n r + 1 >

< n r >
< d a t a >

Outpu t

< C h a n n e l t y p e >

< F A L S E >
< T R U E >

R e q u e s t
H d l r e q u e s t

De l ay

< b o o l >

< T R U E >

< F A L S E >

< F A L S E >

< T R U E >
< b o o l >

< F A L S E >
< T R U E >

R e a d y

< b o o l >

Enter R e m o v e

Q u e u e

TRUE

TRUE

1 1

FALSE

C h a n n e l t y p e, i n t ><

< , n r >d a t a < , n r >d a t a

Figure 5: Generic Unfolding of a Channel s with CA(s) = FIFO

The variable predicates hChanneltypei (used for the places Input and Output) are replaced
by the predicates derived from the object type CT (s). Accordingly the inscriptions hdatai are
replaced by the symbolic sums representing objects of the type CT (s). How the variable pred-
icates are derived from CT (s) has been described in the previous subsection. The inscription
of the edges are derived analogously. By replacing the variable predicate hChanneltypei and
the hdatai inscriptions we obtain a concrete Pr/T net.

The places Input, Output, Request and Ready are the ports of the Pr/T net. Exactly these
places are connected with other transitions when a Pr/T net for a whole FUNSOFT net is
assembled.

Tokens are written to Input by unfolded instances of the preset of s. Tokens are read from
Output by unfolded instances of the postset of s.

If the port Output is marked, it is marked with exactly that token which resides on the
FUNSOFT channel for the longest time. The places Entered and Removed are marked with
exactly one natural number, initially they are marked with 1. The number marking the place

13

Entered shows how often tokens were �red into the original FUNSOFT channel s. The number
marking the place Removed shows how many tokens were already removed from s.

By marking the place Input the transition Enter is enabled. This transition reads a number
from Entered and a token from Input, builds a tuple of both and �res this tuple to the place
Queue. In the same �ring the number of the place Entered is increased and the boolean value
residing on Ready is set to TRUE. This shows that one token is ready to be processed by
transitions outside the unfolded channel and that token to transitions outside of this net and
that Input can be marked again. In so far Ready can be considered as a semaphore for Input.
This enables the de�nition of an order of tokens arriving on Input.

The transition Remove removes tokens from Queue exactly in their arrival order. Remove is
enabled, if the second component of the tuple marking Queue equals the number marking the
place Removed and if Output is unmarked. Whether Output is marked or not is indicated by
the marking of the place Delay. If Output is unmarked Delay is marked with FALSE. Firing
Remove means to cut the second component of the token read from Queue and to write the
�rst component to Output, and to increase the number marking the place Removed, and to set
Delay to TRUE.

If an arbitrary transition reads a token from Output it additionally sets the markings of Request
and Ready to FALSE. Thereby the transition Hdl request is enabled. Hdl request sets the
marking of Request and Ready to TRUE again, the marking of Delay to FALSE. Afterwards
the next token can be �red to Output.

The Pr/T net of Figure 5 guarantees the required FIFO access to tokens of the channel s.

3.5.4 Jobs

Jobs are attached to instances. At last the structure of the job AJ (t) determines the structure
of the Pr/T net resulting from unfolding t. The jobs are de�ned in terms of Pr/T nets, thus for
each job of the job library a Pr/T net must be provided. This Pr/T net de�nes the semantics
of the job. Figure 6 shows as an example the Pr/T net for the Job CheckDfd. The input �ring
behavior of CheckDfd is ALL, its output �ring behavior is SOME and the parameterization is
(string!string�string�string). CheckDfd reads a string which models a data
ow diagram
from its input channel and writes it non-deterministic either to the �rst or to the third output
channel. In the latter case an error message is written to the second output channel.

Corresponding to the parameterization we can �nd a place inscribed with the variable predicate
hStri on the left side. Moreover, we �nd there two places with the names OReady1 and
ORequest1. These places represent the input ports of the job CheckDfd. These places are
merged with ports of unfolded channels of the preset of instances to which the job CheckDfd
is assigned. This merging takes place when a complete Pr/T net is assembled. On the right
we �nd three places inscribed with the variable predicates hStri. Together with the places
inscribed with Ready1, Ready2, Ready3 they build the output ports of the job CheckDfd. In
between input and output ports we �nd

� a transition which reads tokens from the places on the left and which checks the activation
predicate.

� a subnet which manipulates the input tokens and creates the output tokens.

14

< S t r >

< b o o l >

O u t p u t 1
< e 1 1 >

< T R U E >

< F A L S E >

R e q u e s t 1

< b o o l >

< R e a d y 1 >

< T R U E >
< F A L S E >

< e 1 1 >

< S t r >

< e 1 1 >

< e 1 1 >

C o r r e c t

Test Activation

a 1 1 = e 1 1
< a 1 1 >

< F A L S E >

< T R U E >

< ’ e r r o r ’ >

< F A L S E >

< T R U E >

< a 3 1 >

R e a d y 3

< b o o l >

< F A L S E >
< T R U E >

P a r a m 1

T i m e

< S t r >

Inpu t2

R e a d y 2

< b o o l >

< b o o l >

R e a d y 1

< S t r >

Inpu t1

< S t r >

Inpu t3

W r o n g

a 3 1 = e 1 1

T i m e

Figure 6: Pr/T net de�ning the job CheckDfd

For each job exactly one transition is labelled with Test Activation and at least one transition
is labelled with Time. Static predicates and time consumptions are assigned to these labelled
transitions during the unfolding of instances.

3.5.5 Activation predicates

Each used activation predicate is translated into a �rst-order formula. These formulae are
used as static predicates of transitions Test Activation in unfolded instances. In the following
Table all activation predicates of the example mentioned above are given and translated into
�rst-order formulae.

Activation predicate Formula Description
Name Parameter

SA Analyzer person 'SA-Analyzer' = e15 TRUE, if person has role 'SA-Analyzer'
Designer person 'Designer' = e15 TRUE, if person has role 'Designer'
Programmer person 'Programmer' = e15 TRUE, if person has role 'Programmer'
Tester person 'Tester' = e15 TRUE, if person has role 'Tester'
worked enough person e13 > 8.0 TRUE, if person has worked today at least 8 units

Table 3: Transformation of activation predicates into formulae

3.5.6 Instances

For explaining the unfolding of instances we refer to the mentioned Pr/T net representations
of jobs. The unfolding of an instance t is essentially determined by the Pr/T net representing
the job AJ (t). What has to be supplemented are components re
ecting the speci�c instance

15

attributes, namely the formula derived from the activation predicate, a time consumption, and
a place for de�ning the pipelining behavior.

The formula derived from the activation predicate is attached as static predicate to that
transition of the Pr/T net de�ning the attached job which is labelled with Test Activation,
the time consumptions of instances is assigned as time consumption to the transitions labelled
with Time. The semantics of time consumptions of transitions are the same as de�ned in
[Ram74]. Due to the internal structure of all nets de�ning jobs no con
icts are resolved by
activation times. Thus the application of analysis techniques for non timed Petri nets is not
a�ected by this de�nition of time consumptions.

Figure 7 shows a simpli�ed net resulting from unfolding an instance and the extensions caused
by the pipelining attribute having the value PIPE. The dashed box contains the extensions.

J o b

Execu t e

Ac t i va t i on

T e s t

< e 1 >

< e 1 >

< e n >

< e n >

P a r a m 1

P a r a m n

< T R U E >

< F A L S E >

< T R U E >

< F A L S E >

< T R U E >

< F A L S E >

< T R U E >

< F A L S E >

O u t p u t 1

O R e a d y 1

O R e q u e s t 1

O u t p u t n

O R e a d y n

O R e q u e s t n

Inpu t1

I R e a d y m

I R e a d y 1

I n p u t m

< a 1 >

< a m >

< F A L S E >

< T R U E >

< F A L S E >

< T R U E >

< e 1 >

< e n >
P r e d i c a t e

< b o o l >

Active

Activation
t h e J o b

< T R U E >

< T R U E >

< F A L S E >< F A L S E >

FALSE

T i m e

Figure 7: Extensions of a net de�ning a instance t with AW (t) = PIPE

The additional place inscribed with Active is connected to the transitions labelled with Test
Activation and Execute the Job. It guarantees, that the transition Test Activation is only
enabled if the transition Execute the Job has �nished the �ring. For a pipelining attribute
value NOPIPE the additional place and its adjacent edges are omitted.

3.5.7 Edges

If an edge e connects a channel and an instance corresponding edges have to connect the
unfolded channel and the unfolded instance. To connect an unfolded channel and an unfolded
instance means to merge their ports. For edges (s; t) we have to merge the output ports
of the unfolded channel s with the input ports of the unfolded instance t. For edges (t; s)
the input ports of the unfolded channel s are merged with the output ports of the unfolded
instance t. Edges e with ET (e) = ST are treated as edges with the edge type IN , edges e
with ET (e) = ST are treated as edges with the edge type OU . In the following Figure 8 it is
depicted how edges with edge type IN and OU are represented in the Pr/T net.

16

Edge type IN E d g e t y p e O U T

T e s t
< T R U E >

< F A L S E >

< T R U E >

< F A L S E >

< e 1 >

Activation

R e q u e s t

< b o o l >
R e a d y

< b o o l >
Outpu t

< C h a n n e l t y p e >

Execu t e
J o b

Outpu t

< C h a n n e l t y p e >

R e a d y

< b o o l >

< a 1 >

< T R U E >

< F A L S E >

Figure 8: Pr/T net representation of edges with types IN and OU

Edges (s; t) with ET (s; t) = CO are represented as edges from the type IN , but the edges in
the Pr/T net connecting Request and Test Activation and vice versa are omitted and the edge
connecting Test Activation and Ready is inscribed with hTRUEi.

3.5.8 Initial Marking

Transforming the marking of a channel s means to mark several places of the unfolded channel
s. In the following we describe how the initial markingM(s) of a channel s with CA(s) = FIFO

is transformed into the initial marking of the unfolded channel. The transformation of initial
markings of channels s with CA(s) 2 fLIFO;RANDOMg is done analogously.

If the marking M(s) is empty the initial marking of the unfolded channel corresponds to the
one given in Figure 5. Otherwise the places of the unfolded channels are marked as follows:
The place Input is unmarked. The places Delay, Request and Ready are initially marked with
TRUE. The place Entered is marked with jM(s)j+ 1 and the place Removed is marked with
2. The place Output is marked with that token, that has to be accessed at �rst, i.e. with that
token whose second component equals 1. The place Queue is marked with all tokens of M(s)
which are not accessed at �rst.

Figure 9 shows as an example the transformation of the marking M(s) = f(4; 1); (3; 2); (7; 3)g
of a channel s with CT (s) = INTEGER and CA(s) = FIFO.

3.5.9 Assembling unfolded channels and instances

The following Figure 10 shows an Pr/T nets resulting from assembling an unfolded instance t
with AJ(t) = CheckDfd and its input and output channels. The input channel as well as the
output channels have the access attribute value RANDOM.

3.6 Dynamic behavior of FUNSOFT nets

Let in the following f denote the unfolding of channels and instances. f(s) denotes an unfolded
channel s and f(t) denotes an unfolded instance t. For a FUNSOFT net FS, f(FS) denotes

17

< n r + 1 >

< n r >

< d a t a >

< F A L S E > < T R U E >

Input

< i n t >

E n t e r e d

< i n t >

R e m o v e d

< i n t >

< n r + 1 >

< n r > < d a t a >

Outpu t

< i n t >

< F A L S E >
< T R U E >

R e q u e s t
H d l r e q u e s t

D e l a y

< b o o l >

< T R U E >

< F A L S E >

< F A L S E >

< T R U E >
< b o o l >

< F A L S E >
< T R U E >

R e a d y

< b o o l >

Enter R e m o v e

Q u e u e

TRUE

TRUE

4 2

TRUE

< i n t , i n t >

< , n r >d a t a < , n r >d a t a

4

3 , 2
7 , 3

Figure 9: Translation of a Marking for CA = FIFO

Input

R e a d y

Outpu t

R e q u e s t

< b o o l >

< s t r >

< b o o l >

< s t r >

< F A L S E >

< T R U E >

< T R U E >

< F A L S E >

< T R U E >
< F A L S E >

Trans fe r

H d l R e q u e s t

c o r r e c t d f d s

< d a t a > < d a t a >

< F A L S E >

< d a t a >

< T R U E >

< F A L S E >
R e a d y

< b o o l >

< s t r >

Input

Input

R e a d y

Outpu t

R e q u e s t

< b o o l >

< s t r >

< b o o l >

< s t r >

< F A L S E >

< T R U E >

< T R U E >

< F A L S E >

< T R U E > < F A L S E >

Trans fe r

H d l R e q u e s t

w r o n g d f d s

< d a t a > < d a t a >

Input

R e a d y

Outpu t

R e q u e s t

< b o o l >

< s t r >

< b o o l >

< s t r >

< F A L S E >

< T R U E >

< T R U E >

< F A L S E >

< T R U E >
< F A L S E >

Trans fe r

H d l R e q u e s t

e r r o r s

< d a t a > < d a t a >

< d a t a >

Outpu t

< s t r >

R e q u e s t

< b o o l >
< F A L S E >

< T R U E >
< T R U E >

< F A L S E >

< e 1 1 >

< T R U E >

< F A L S E >

T e s t
Activation

P a r a m 1

< e 1 1 >

< s t r >

< e 1 1 >

< a 1 1 >

< T R U E >

< F A L S E >

< T R U E >

< c o n c a t (e 1 1 ,
’ e r r o r ’) >

< e 1 1 >

< T R U E >

< e 1 1 >

0 . 0 1

0 . 0 1

C h e c k D f d

TRUE

TRUE

dfd1
d fd3

d fd4

d f d2

TRUE TRUE

TRUETRUE

TRUE TRUE

< T R U E >
< F A L S E >

Trans fe r

H d l R e q u e s t

e d u t e d d f d s

C o r r e c t

W r o n g

< F A L S E >

Figure 10: An assembled Pr/T net

18

the unfolding of FS (including the translation of the initial marking). If a FUNSOFT net FS
is marked with a marking M that is di�erent from the initial marking of FS, then gFS(M)
denotes the unfolding of FS under the marking M .

De�nition 3.3 Marking of FUNSOFT nets

Let FS = (S; T; F;O;P; J; A;C;E;M0) denote a FUNSOFT net. The annotation

M : S!P((
[
o2O

range(o))�IN)

is called Marking of FS, if it respects CT .

De�nition 3.4 Enabled instances

Let FS = (S; T; F;O;P; J; A;C;E;M0) denote a FUNSOFT net. An instance t is enabled
under a marking M , i� a transition in f(t) is enabled in f(FS).

De�nition 3.5 Firing rule

Let FS = (S; T; F;O;P; J; A;C;E;M0) denote a FUNSOFT net. If t is enabled under a
marking M, the result of its occurrence M 0 is determined by the �ring of t1; : : : ; tn 2 f(�t) [
f(t) [f(t�) for which holds:

gFS(M)[t1;:::;tnigFS(M
0)

with gFS(M 0) enabling no transition of f(t)[f(t�). If M 0 results by �ring instance t from M ,
we write M [tiM 0.

De�nition 3.6 Reachability set

Let FS = (S; T; F;O; P; J; A;C;E;M0) denote a FUNSOFT net and M be a marking of FS.
The reachability set M [i of M is the smallest set for which holds:

1. M 2M [i

2. 8t2T : M [tiM 0)M 0 2M [i

4 Veri�cation of FUNSOFT net properties

In this section we explain how FUNSOFT nets representing software process models can be
analyzed.

Before we explain the applied analysis techniques in detail we sketch the method for obtaining
software process relevant results. This method is depicted in Figure 11.

The diagram of Figure 11 shows that our approach towards analysis of software process models
is driven by the software process model speci�c relevance of expected results. That means
we start with de�ning software process model properties which we are interested in from a
software process modeling point of view. These properties are transformed into corresponding
properties of FUNSOFT nets. In some cases these properties can be veri�ed by applying
algorithms directly to FUNSOFT nets, in other cases it is necessary to unfold FUNSOFT nets
to Pr/T nets and to verify the corresponding properties of the unfolded net.

19

S o f t w a r e P r o c e s s
Mode l p rope r ty

F U N S O F T
proper ty

Pr /T ne t
proper ty

t r a n s f o r m t r a n s f o r m

proof proof

P r o v e n S o f t w a r e P r o c e s s M o d e l p r o p e r t y

Figure 11: Veri�cation method for FUNSOFT nets

In principle we distinguish between the veri�cation of dynamic properties of software process
models and the veri�cation of static properties of software process models. While the veri�ca-
tion of dynamic properties is based on reachability trees built for FUNSOFT nets [DG91], the
veri�cation of static properties is based on the examination of the net topology of FUNSOFT
nets and on the S-invariant analysis method for Pr/T nets [Gen87].

Within this paper we restrict ourselves to the examination and interpretation of S-invariants
of Pr/T nets that result from unfolding FUNSOFT nets.

Reverting to the net depicted in Figure 2 one interesting software process model property is
whether one of the persons participating in software development may disappear somewhere
in the process (which means that someone does not participate in the software process, what
obviously reveals an error in the software process model).

The corresponding FUNSOFT net property is strict conservativeness, i.e. the number of tokens
in the net shown in Figure 2 remains invariant.

This means that the analysis relevant predicates of the unfolded FUNSOFT net are covered
by an S-invariant.

De�nition 4.1 analysis relevant predicates of f(N):
Let N be a FUNSOFT net. The set AR(f(N)) of analysis relevant predicates of f(N) is
de�ned as follows:

AR(f(N)) =
[
s2S

�(s) with �(s) =

8><
>:

s input; s output; if CA(s) = RANDOM

s input; s queue; s output; if CA(s) = FIFO

s input; s stack; s output; if CA(s) = LIFO

The previous de�nition identi�es exactly those predicate as analysis relevant which can be
marked with representations of FUNSOFT tokens. In contrast to these there are further
predicates which are used for synchronization purposes (cf. Figure 5).

Table 4 shows the matrix C representing the Pr/T net resulting from unfolding the FUNSOFT
net shown in Figure 2 and the solutions of CT � i = 0. The solutions have been �gured out by
means of the tool described in [KL84] which is based on [Mev81].

The solution i3 is an S-invariant since it is variable free. As it covers all analysis relevant pred-
icates (i.e. the predicates pctw inp, pctw out, wsa inp, wsa out, wde inp, wde out, wpr inp, wpr
out, wte inp, wte out, plw inp, plw out) it proves the strict conservativeness of the FUNSOFT
net and thereby the requested property of the software process model. Correspondingly, we
can be sure that the number of people remains invariant in the net shown in Figure 2.

20

p
c
tw

L
iS
A

L
iD
e

L
iP
r

L
iT
e

w
s
a

w
d
e

w
p
r

w
t
e

L
o
S
A

L
o
D
e

L
o
P
r

L
o
T
e

p
lw

C
T

S
o
lu
t
io
n
s

t
r
a
n

h
d
r
q

a
c
t

e
x
j

a
c
t

e
x
j

a
c
t

e
x
j

a
c
t

e
x
j
t
r
a
n

h
d
r
q

t
r
a
n

h
d
r
q

t
r
a
n

h
d
r
q

t
r
a
n

h
d
r
q

a
c
t

e
x
j

a
c
t

e
x
j

a
c
t

e
x
j

a
c
t

e
x
j

t
r
a
n

h
d
r
q

a
c
t

e
x
j

i
1

i
2

i
3

p
c
tw

in
p

-p
e
r

p
e
r

-f
+
t

1

o
u
t

p
e
r

-s
a
n

-d
e
s

-p
r
o

-t
e
s

f-
t

1

r
d
y

-f
+
t

-f
+
t

f-
t

f-
t

f-
t

f-
t

p
e
r

r
e
q

-f
+
t

f-
t

f-
t

f-
t

f-
t

-p
e
r

L
iS
A

p
a
r
a
m
1

s
a
n

-s
a
n

1

w
s
a

in
p

s
a
n

-s
a
n

1

o
u
t

s
a
n

-p
e
r

1

r
d
y

f-
t

-f
+
t

-f
+
t

f-
t

r
e
q

-f
+
t

f-
t

L
iD
e

p
a
r
a
m
1

d
e
s

-d
e
s

1

w
d
e

in
p

d
e
s

-d
e
s

1

o
u
t

d
e
s

-p
e
r

1

r
d
y

f-
t

-f
+
t

-f
+
t

f-
t

r
e
q

-f
+
t

f-
t

L
iP
r

p
a
r
a
m
1

p
r
o

-p
r
o

1

w
p
r

in
p

p
r
o

-p
r
o

1

o
u
t

p
r
o

-p
e
r

1

r
d
y

f-
t

-f
+
t

-f
+
t

f-
t

r
e
q

-f
+
t

f-
t

L
iT
e

p
a
r
a
m
1

t
e
s

-t
e
s

1

w
t
e

in
p

t
e
s

-t
e
s

1

o
u
t

t
e
s

-p
e
r

1

r
d
y

f-
t

-f
+
t

-f
+
t

f-
t

r
e
q

-f
+
t

f-
t

L
o
S
A

p
a
r
a
m
1

p
e
r

-p
e
r

1

L
o
D
e

p
a
r
a
m
1

p
e
r

-p
e
r

1

L
o
P
r

p
a
r
a
m
1

p
e
r

-p
e
r

1

L
o
T
e

p
a
r
a
m
1

p
e
r

-p
e
r

1

p
lw

in
p

p
e
r

p
e
r

p
e
r

p
e
r

-p
e
r

f-
t

1

o
u
t

p
e
r

-p
e
r

1

r
d
y

f-
t

f-
t

f-
t

f-
t

-f
+
t

-f
+
t

f-
t

-p
e
r

r
e
q

-f
+
t

f-
t

p
e
r

C
T

p
a
r
a
m
1

p
e
r

-p
e
r

1

f

hF
A
L
S
E
i

t

hT
R
U
E
i

p
e
r

hS
tr
;
R
e
a
l;
R
e
a
l;
R
e
a
l;
S
tr
i

s
a
n

hS
tr
;
R
e
a
l;
R
e
a
l;
R
e
a
l;
0
S
A

A
n
a
ly
z
e
r
0
i

d
e
s

hS
tr
;
R
e
a
l;
R
e
a
l;
R
e
a
l;
0
D
e
s
ig
n
e
r
0
i

p
r
o

hS
tr
;
R
e
a
l;
R
e
a
l;
R
e
a
l;
0
P
r
o
g
r
a
m
m
e
r
0
i

te
s

hS
tr
;
R
e
a
l;
R
e
a
l;
R
e
a
l;
0
T
e
s
te
r
0
i

Table 4: Incidence matrix of Pr/T net resulting from unfolding the FUNSOFT net from Fig. 2

21

This short sketch of how we exploit standard Petri net techniques has shown that our approach
is a very pragmatic one. Our research of looking at software process model properties which
can be proven by standard Petri net techniques is an ongoing activity, since we do not believe
that all possibilities of analysis techniques have been exploited yet.

5 Conclusions and further work

We described a result of combining knowledge about software process modeling and high-
level Petri nets, namely FUNSOFT nets. They enable the exploitation of standard Petri net
analysis techniques. In this way results concerning the application area can be obtained on a
sound mathematical basis.

The practical use of FUNSOFT nets is supported by an environment called MELMAC
[DG90, DG91]. MELMAC provides the necessary tool support for graphical development
and animation, for simulation, the calculation of quantity restricted reachability trees, and the
S-invariant Pr/T net analysis, which is based on the tool PetSI [KL84].

Our current e�orts concentrate on the extension of MELMAC by further analysis tools. More-
over, our approach to software process modeling, analysis, and execution is currently used in
the Esprit project ALF and the Eureka project ESF.

Acknowledgements:

We want to thank the project group MELMAC for implementing essential parts of the above
mentioned environment, W. Deiters for contributing basic ideas to it, Prof. W. Sch�afer and
Dr. B. Holtkamp for giving helpful comments on earlier versions of this paper, and H. Jeib-
mann, J. Cramer, S. Wolf, K.-J. Vagts, and B. Peuschel for intensive discussions about process
modeling. The authors acknowledge the contribution to this paper from all the members of
the ALF consortium, who are: GIE Emeraude (France), CSC (Belgium), Computer Technolo-
gies Co., CTC (Greece), Grupo de Mecanica del Vuelo, S.A. (Spain), International Computers
Limited (United Kingdom), University of Nancy-CRIN (France), University of Dortmund-
Informatik X (Germany), Cerilor (France), Universite de Catholique de Louvain (Belgium)
and University of Dijon-CRID (France).

References

[DG90] W. Deiters and V. Gruhn. Managing Software Processes in MELMAC. In Proceedings
of the Fourth ACM SIGSOFT Symposium on Software Development Environments,
pages 193{205, Irvine, California, USA, December 1990.

[DG91] W. Deiters and V. Gruhn. Software Process Model Analysis Based on FUNSOFT
Nets. Mathematical Modeling and Simulation, (8), May 1991.

[DGS89] W. Deiters, V. Gruhn, and W. Sch�afer. Systematic Development of Generic Formal
Software Process Models. In Proceedings of the 2nd European Software Engineering
Conference, Coventry, UK, Berlin, FRG, September 1989. Springer. Appeared as
Lecture Notes in Computer Science 387.

[dM79] T. de Marco. Structured Analysis and System Speci�cation. Yourdon Press, 1979.

22

[Dow86] M. Dowson, editor. Iteration in the Software Process - Proceedings of the 3rd Inter-
national Software Process Workshop, Beckenridge, Colorado, USA, November 1986.

[Gen87] H.J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, pages 208{247, Berlin,
FRG, 1987. Springer. Appeared in Lecture Notes on Computer Science 254.

[HJS89] P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri Nets. In Proc.
of the 10th Int. Conf. on Application and Theory of Petri Nets, pages 192{209, Bonn,
FRG, 1989.

[Jeg91] R. Jegelka. Evaluierung der Software-Proze�modellierungs-Sprache FUNSOFT-Netze
und der Software-Proze�management-Umgebung MELMAC (in German). 1991.
Diplomarbeit, University of Dortmund.

[Kel88] M.I. Kellner. Representation Formalisms for Software Process Modelling. In Proceed-
ings of the 4th International Software Process Workshop, Moretonhampstead, Devon,
UK, May 1988.

[KF87] G.E. Kaiser and P.H. Feiler. An Architecture for Intelligent Assistance in Software
Development. In Proceedings of the 9th International Conference on Software Engi-
neering, Monterey, California, 1987.

[KL84] R. Kujansuu and M. Lindquist. E�cient Algorithms for computing S-Invariants for
Predicate/Transition Nets. In Proceedings of the 5th International Conference on
Application and Theory of Petri Nets, 1984.

[LH89] L. Liu and E. Horowitz. A Formal Model for Software Project Management. IEEE
Transactions on Software Engineering, 15(10), October 1989.

[Mev81] H. Mevissen. Algebraische Bestimmung von S-Invarianten in Pr�adikat/Transitions-
Netzen. Working report of the GMD no 81.01, Gesellschaft f�ur Mathematik und
Datenverarbeitung, Bonn, FRG, 1981.

[Per89] D.E. Perry, editor. Proceedings of the 5th International Software Process Workshop,
Kennebunkport, Maine, USA, September 1989.

[PSI87] PSI GmbH, Berlin, FRG. NED Release 2.0, 1987.

[Ram74] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri Nets.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,
1974.

[Rei86] W. Reisig. Petrinetze. Springer, Berlin, FRG, 1986.

[SR87] E. Smith and W. Reisig. The Semantics of a Net is a Net. In Concurrency and Nets,
Berlin, FRG, 1987. Springer.

[Sta87] P. Starke. On the mutual simulatability of di�erent types of Petri nets. In Concur-
rency and Nets, pages 481{495, Berlin, FRG, 1987. Springer.

23

