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Abstract. Much of small polaron theory is based on highly idealized models, often essentially
a continuum description with a single vibrational frequency. These models ignore much of the
wealth of experimental data, which find interpretation in many atomistic simulations. We review
here a range of properties of small polarons in real, rather than model, systems. The phenomena
fall into three main classes: (i) the mechanisms and dynamics of seif-trapping of polarons;
(ii) static properties—the relative energies of farge and small polarons, the optical transitions
expected, their effect on positions of other ions and on lattice vibrations, their population in
thermal equilibrium, and so on; (iii) small polaron hopping and diffusion. We discuss the key
concepts and methods of calculation of polarons, and explore the properties of self-trapped holes
and excitons in ionic crystals, and those of an excess electron in liquid water.

1. Introduction

In 1932 a short note by Landau [ 1] set the stage for small polaron studies with classic brevity
and clarity. He observed that there were two quite distinct cases for an electron coupled
to an otherwise perfect (but deformable) lattice. In one, the electron moved ‘freely’; in
the other, the electron wouid be trapped at a strongly distorted region. Landau even noted
that the electron could be trapped in the second case only by excitation over a barrier. The
stimulus for this work was the further conjecture that this “small polaron” might explain
colouration in NaCl. This last point was not verified, at least as proposed, although the
alkali metal halides did provide the first clear examples of smali polarons when Kanzig
discovered the Vg centre in 1955 [2]. The possibility of the exciton immobilization or
self-trapping at low temperatures was suggested by Frenkel in 1926 [3], and Kabier [4] and
Lushchik [5] showed the existence of the self-trapped excitons in KI in 1967.

Landau’s remarks on the barrier to self-trapping were verified for the excitons in alkali
metal halides, though not until much later. However, the existence of the barrier between the
free and the self-trapped exciton states was further developed theoretically by Rashba in 1957
f6], when he pointed out the importance of the short-range interactions. The coexistence
of free and self-trapped excitons in alkali halides was first observed experimentally by
Lushchik and co-workers in 1976 [7] and interpreted theoretically in several papers in
terms of a potential barrier between these states (see [8] for a review).

The conditions Landau envisaged would cleariy affect transport properties too. The
strong electron—phonon coupling would lead to very short mean-free paths; indeed, as
shown by Yamashita and Kurosawa [9] and by Holstein [10], one would expect an incoherent
‘*hopping” transport mechanism in many cases of interest. Instead of the traditional behaviour
of metals, where the phonon scattering becomes stronger as vibrational amplitudes increase,
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50 the carrier mobility decreases when the solid grows hotter, one might expect the smali
polaron mobility to increase with temperature as incoherent hopping from one site to another
becomes easier.

Landau’s ideas were taken up by many later workers. Some generalized the picture
phenomenologically, whereas others studied the particular properties of some hypothetical
polaron state. Most of the present theories may be roughly classified in three categories: (i)
developing the criteria for self-trapping and the phenomenological theory of polarons and
excitons; (ii) simulating the process of self-trapping from delocalized states; (iii) studying
the microscopic struciure and properties of localized polarons.

Phenomenological approaches based on the theory of electrons (excitons) in phonon
fields [11] focus on the studies of how the stability of different types of polarons depends
on the strength of the coupling beteween electron (exciton) and lattice, the dimension of
the lattice and other parameters. Much of this field has been reviewed recently by Gerlach
and Lowen [12]. In particular, Emin and Holstein [13] gave 2 very clear analysis using
an adiabatic approximation and a continuum model for the lattice. Their scaling argument
pointed out that, depending on the nature of the electron—phonon coupling (e.g. deformation
potential against Frohlich coupling), there were several different categories of behaviour (see
figure 1): some systems rnight have large polarons only, others small polarons only, stiil
others could be of either type, with a barrier between the configurations, etc. In particular,
for a three-dimensional continuum, a purely short-range electron—continuum interaction
always yields two distinct cases: a small polaron state and a non-polaronic free state; the
addition of a long-range component to the electron—continuum interaction can convert a
non-polaronic state into a finite-radius polaron state. Another result of this work and that of
Toyozawa [14] concerns the dependence on the dimension of the lattice. In one dimension
only a single stable state is predicted, corresponding to the localized polaron. This contrasts
with the three-dimensional case, where two minima of the adiabatic potential are always
predicted, corresponding to delocalized and strongly localized situations.

Energy, E(L)
|
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Toyozawa and co-workers [11, 15] also looked at the effect of electron correlation, in
an ‘STU’ model (where S is a measure of the electron—phonon coupling, T is a measure
of the bandwidth of a bare electron in the absence of such coupling, and U is the Hubbard
U, measuring the electron—electron interaction and including electron correlation). Other
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workers made extensive formal calculations, especially based on the Frohlich model. These
theories and the resuits of extensive experimental studies revealed a much richer picture
of possible polaron and exciton states, which we attempt to summarize in table 1. The
distinction between small and large polarons has very clear observable consequences. For
example, the large polaron mobility decrecases with rising temperature through phonon
scattering, whereas small polaron mobilities rise with temperature, as shown in figure 2.
As was pointed out by Ueta and co-workers [11] this small/large polaron nomenclature,
although convenient, should be used with some caution. K may give a wrong impression
that the ‘small’ polaron is simply the strong-coupling limit of the electron—polarization
{optical phonon} inferaction. The short-range interaction with acoustic phonons can trigger
a self-trapped state, which can coexist with the iarge-radius or delocalized state [6,11, 16].
It is this short-range interaction that makes the self-trapping a kind of critical phenomenon,
which may be characterized by the abrupt change of parameters like the effective mass
as a function of electron-phonon coupling constant. In contrast, although optical phonons
do make a major contribution to nature of the polaron state, interaction with them alone
leads only to a smooth change of the effective mass. The issues here point to one of the
problems of the phenomenological theories, namely the emphasis on behaviour as a function
of coupling constant. Experimentally, it is very difficult to alter the coupling constant, so
that is hard to validate the phenomenological theories.

Tahle 1. Types of polaron. This table gives examples of some of the polaron systems observed

experimentally.
Large polaron ¢ in alkali halides; e, £ in TI-V and group-IV semiconductors.
Small polaron (i) One species only (¢ small or & small, not both) on one ion:

# in AgCl, solvated e in water and alcoholic systems.
(ii} Both electrons and holes small; one ion only:

¢, 1 on cation for certain transition metal oxides.

(iii) One species on two sites:

k in halides (Vi centre).

(iv) One species on many sites:

‘Polaron’ in frans-polyacetylene.

(v) Exciton:

excitons in alkali hatides, SiOs.

Trapped polaron (i) Trapped onto impurity site:
transition metal ion impurity.
(ii) Trapped onto impurity/defect sublattice
Vk next to Br in KCL.
(iii) Trapped onto another sublattice
Vg next to Na in KCI; £ near Li in MgO,
(iv) Both large and small polarons
frapped by the same defect:
(2) Bistability: CdF;:In
(b) CsI: Na; (e large, A smali).

Bipolaron (i) Electrochromics WO; etc.
(i} Oxide superconductors,

We note in passing that, although the effective mass is one of the main characteristics of
a large polaron, it should be treated with caution at T # 0. As was pointed out recently by
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Figure 2. Observed electron {¢) and hole (h) mobilities in oxides. The lower limit for large
polarons corresponds to a mean-free path equal to the interatomic distance. The upper limit
for small polarons corresponds to one hop every lattice vibration period. Note the opposite
trends with temperature: for small polarons and ions, thermal activation is needed, so higher
temperatures raise the rate; for large polarons, phonon scattering reduces the mobility at higher
temperatures.

Smilga [17], a comparison of the experimental shift of the cyclotron line maximum with the
temperature dependence of the ‘inertial mass’ of a polaron is not always straightforward.

The enhancement of the effective mass at the transition from the free to the self-trapped
polaron state proves to be of the order of exp(y '), where y is defined as the ratio of the
phonon energy to the halfwidth of the bare electron band. Since this parameter characterizes
the relative rapidity of an excess electron and atoms in the lattice, y is sometimes referred
to as a non-adiabaticity parameter. As shown by Emin and Holstein and by Toyozawa and
co-workers [13, 14] (see also [18] for a review), in the adiabatic limit (y» — 0} the transition
between the free and the self-trapped states comesponds to a change in the relative stability
of two minima in the adiabatic potential, and these minima are separated by an energy
barrier (see figure 1). We emphasize that these theories do not take into account a finite
speed of the lattice relaxation (the so-called ‘cooling tramsitions’, cf. Stoneham [19]). In
particular, as was noted by Wagner and Koengeter {20], on the transition between free and
localized states of an exciton there could be a ‘phonon bottleneck® which does not allow
the lattice modes coupled to the exciton to get rid of their energy by means of phonon
transport. The speed of the lattice relaxation plays a crucial role in all dynamic processes,
including the polaron{exciton) localization and transport [21]. In particular, it is one of
the main factors that determine the characteristics of the ‘hot’ luminescence of excitons in
alkali halides, which is emitted in the course of their self-trapping [22],

Although the phenomenological theory is reasonably satisfactory, as reviewed by Ueta
and co-workers [11], a few workers looked more closely at what might be expected in
real solids. Among those was Mott, whose early work in this field is summarized in [23].
These studies led the way to the systematic use of Mott-Littleton methods [24] in serious
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quantitative studies of polarons. The methods suggested first by Mott [23], Gilbert [25],
Toyozawa [16], Tolpygo [26] and Fowler [27] then were developed by many other workers.
However, numerical studies of the microscopic structure and properties of self-trapped holes
and excitons are still difficult problems (see, for example, [28]).

The recent development of new femtosecond scale pulse optical spectroscopic
experimental techniques [29] set a new stage for experimental studies of the mechanisms
of dynamical processes in the condensed phase after electronic excitation. Valuable results
have already been cobtained on the dynamics of the relaxation processes of the excited states.
of the triplet self-trapped exciton in NaCl [30]. A similar technique has been applied to
the study of the hole polaron self-trapping in KBr [31], KI and Rb] [32] and relaxation of
solvated electron in water [33,34] and alcoholic systems [35]. Studies of the dynamics of
the early stages of self-trapping of polarons and excitons in real systems have created a new
class of very fascinating problems. _

In the later parts of this review we shall be concerned with a range of properties of
small polarons, focusing primarily on the concepts and methods of their atomistic computer
modelling and simulation. These fall into three main classes: (i} mechanisms and dynamics
of self-trapping of polarons; (ii) static properties—the relative energies of large and small
polarons, the optical transitions expected, their effect on positions of other ions and on lattice
vibrations, their population in thermal equilibrium, and so on; (iii) small pelaron hopping
and diffusion. One cannot separate the computational modelling entirely from the analytic
theory. We will therefore discuss some aspects of the analytic theories which provide a
background for computational studies. A number of recent reviews have concentrated on
these general concepts and phenomenological theories of polarons. These are by Storiehamn
[36], Gerlach and Lowen [12], Fisher, Hayes and Wallace [37], Stoneham and Smith [38].
To keep this review (o a reasonable iength, we shall omit several important problems:
polarons and solitons in polymeric materials like frans-polyacetylene, magnetic polarons in
magnetically disordered materials, bipolarons in superconductors, and negative-{/ systems.

The range of practical implications is itself quite formidable, even if one ignores the
applications to amorphous and disordered systems and to some of the newer systems (like
borides or fullerene Cg [39]) which may have some small polaron characteristics too. The
~ self-trapping of excitons has been observed in a wide variety of insulating solids with strong
exciton—lattice coupling, like alkali metal halides, alKali earth fluorides and some oxides
[21,40,41]. It is responsible for varions photochemical- and radiation-induced processes,
including defect formation and optically-induced desorption [21,42]. Smali-radius hole
polarons and self-trapped holes are well studied in alkali metal, alkaline earth and silver
halide, and other crystals [11,43). The fact that the carrier is localized has important
consequences: first, electron-electron interactions are more important; second, reactions
involving localized carriers lead to local release of energy so that polarons participate in
photo-induced processes,

It is clear that polaron studies lead to several particular technical difficultiss, which will
become increasingly clear with specific examples. -First, localized carriers mean ions in
non-standard charge states. Some, like the 3+ states of Co or Ni or the 1— state of O, are
seen in Nature, whereas others, like the —1/2 state of Cl, are known only in molecular ions.
Estimates of the polarizibilities and short-range forces involving the non-standard charge
states are problematic. Therefore they have to be treated using many-electron quantum
mechanical techniques. Second, we shall combine (and sometimes compare) energies from
two quite distinct calculations: those from band structure for a rigid perfect laitice, and
lattice distortion and polarization from cluster-type calculations. Real caution is needed
to avoid double-counting of energies; there are also problems in the determination of the
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comrect bandwidth of the polaron band and in the appropriate value for the crystal electron
affinity. Third, we shall consider very small energies, often 0.1¢V or so, where useful
accuracy is easier to claim than to demonstrate, except in very favourable circumstances,

2. Localization process

After Kanzig’s initial spin resonance observation of the Vi centre in KCI [2], there was
one general point which caused special concern, especially among those theorists whose
background was band theory. This is based on Bloch’s proof that, for a perfectly periodic
solid, the eigenstates must also have periodicity: surely one should not find apparently
localized states? In fact, one should consider the whole system (i.e. electrons and phonons)
and should recognize that the small polaron might be found on any translationally equivalent
site with equal probability. The Bloch-like wavefunction of the polaron in both free and
localized states has a general form:

Bk(r, Q) ~ D exp(~ikL)¥;r(r, Q) ¢y
L

where W;r(r, Q) is a2 normalized wavefunction of the polaron on site L, j enumerates
branches of the corresponding polaron bands, * and € are the electron and the phonon
coordinates, respectively. There are several points to note here: the point symmetry of the
free and the localized polaron states (e.g. the one-centre hole or the Vi centre) are different,
therefore k, L, Q and even j are generally not the same; for the localized state the transition
matrix elements of the Hamiltonian between different sites, |Hpr/|, although they are much
less than the corresponding diagonal matrix elements, determine the transport properties of
the polaron; special attention should be paid to the timescale on which experiments are done
relative to the timescale of polaron relaxation from a free state and its transitions from site
to site.

2.1. Electronic polaron

The electrons respond more rapidly than the ions to the creation of a carrier, and the
electronic polarization of the host lattice jons affects the way the localization process
evolves. The response to a free carrier can be described in terms of an electronic polaron,
a quasi-particle which consists of an electron or hole together with its associated electronic
polarization [45]. The nature of the electronic polaron state has been discussed by many
workers in the context of the interpretation of interband transitions, in particular, optical
properties of insulators, photoelectron emission spectra, x-ray photoemission spectra (XPS)
and x-ray absorption spectra (XAS), electron spectroscopy for chemical analysis (ESCA), and
other spectroscopic experiments (see, for example, [46] and references therein). This state
is also relevant to many electrochemical processes that are concerned with thermalization
and solvation of electrons. There are two basic questions to address here. First, what is
the wavefunction of the electronic polaron? This determines the matrix elements of the
electronic excitations in spectroscopic experiments, and the localization rate in the polaron
studies. Second, what is the energy of the electronic polaron with respect to the ground
state of the system before excitation? This determines the ionization and excitation spectra,
and the relaxation energy into a final polaron state.

We must emphasize a distinction between two models. For polar systems, it is clear that
the dynamical effects of electronic relaxation and correlation may strongly affect the extent
of localization and the energy of the quasi-particle in both crystals and liquids. This was
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recently recognized also for the hydrated electron [47]. Another common approach, which
might be adequate for electrons in liquid helium and similar systems, adopts a one-particle
cavity model; it is claimed that the effects of electronic relaxation of the atoms caused by
the polaron can be neglected and its localization is sensibly described within a one-electron
model in terms of a classical polarization of the media or more refined approaches [48].

This point can be illustrated in the example of core-level spectroscopy, where, in the
final state of x-ray photoemission or absorption spectra, a core hole is left behind, and in
some cases it couples with valence electrons. Qualitatively, a very similar situation exists
for excitations from different states in the valence band of crystals with mixed bands, such
as AgCl. In the systems with incompletely filled f or d electrons, the coupling between the
core hole and the d or f electrons is strong enough to bring about characteristic spectral
splitting in XPs and XAS (see [49] for review).

The energy of electronic relaxation following localized excitations or ionization from
core states is comparable with, or even larger than, the interactions between valence electrons
which determine the valence band width, These many-electron effects are often treated using
quantum chemical calculation techniques and embedded molecular cluster model. Although
the wavefunction of the polaron state should be periodic, the localized cluster description
can give reasonable ionization and excitation energies. There are several technical points to
note here. (i) Most of the many-electron calculations use the one-electron approximation, in
particular the Hartree—Fock (HF) method. Within this method the eigenfunction of the Fock
operator is not necessarily the eigenfunction of the point group operator representing the
total group of the system. What Bagus and Schaefer pointed out [50] was that symmetry-
unrestricted or ‘hroken symmetry’ HF solutions will provide a better first-order description
in such a situation. The instability of HF symmetry breaking solutions in different types of
systems has been discussed by many workers {see, for example, [51] and references therein).
(it) A simple model analysis shows [52] that the occurrence of broken symmetry solutions for
hole states depends on the relative magnitudes of orbital energy splitting and the relaxation
energy connected with the electron ionization from these orbitals. If local relaxation effects
accompanying ionization are large compared to the delocalizing interactions that determine
the orbital energy splitting, the lowest energy is obtained with a wavefunction corresponding
to the lower symmetry so that the hole can localize on one of the geometrically equivalent
atoms. (iii) Since all atoms are in their sites, both point and translational symmetry should
be preserved in the exact wavefunction of the electronic polaron. This can be achieved if
we use the more rigorous treatment discussed below,

That a broken symmetry HF wavefunction corresponding to the hole localization at one
site in a small cluster has a lower energy is partly due to an increase of the electronic
relaxation energy (the relaxation energy decreases as the charge is spread out), and partly
due to electronic polarization of surrounding atoms (see, for example, [53] and p 35 of {54]).
However, the correlation between electrons, which was only partly taken into account in
the broken symmetry HF state, promotes the delocalization of the hole and restoration of the
symmetry of the wavefunction. This effect can be treated by projecting proper symmetry
states out of broken symmetry wavefunctions and using different configuration interaction
techniques [55~57]. In particular, the wavefunction of the system may be constructed as
a linear combination of a wavefunctions corresponding to the hole localized onto different
equivalent sites. The non-diagonal elements of the Hamiltonian between these states are the
many-electron transfer integrals. If these matrix elements are large the total energy may be
greatly reduced and the electronic density distribution may appear quite different from that
corresponding to the broken symmetry solution. As has been demonstrated in [55], within
an accuracy of several tenths of one eV, the broken symmetry solution already gives quite
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a reasonable description of the photoionization and optical absorption spectra. However,
this accuracy is not enough for the calculation of the barriers for self-trapping of polarons
and excitons, which should be treated with proper account taken of electron correlation.

Because the electronic polarization of the lattice accompanying the electronic polaron
is largely ‘inertialess’ it affects transport properties but little, For a slowly moving quasi-
particle we will consider the electronic polaron as a ‘free’ state. In simple cases, such
as alkali halides where the electronic polaron state for the valence hole may be sensibly
treated as localized on one of the p orbitals of the anion, the dispersion of the free hole
band coincides with that for the valence band. As was demonstrated by Fowler [27] it is
acceptable to calculate electronic polarization effects in these crystals using the classical
approach of Mott and Littleton. In the next sections we will examine the effect of the
‘inertial’ coordinates on the localization process and polaron structure,

2.2. Localization rate

The phenomenological theory for the three-dimensional case in the adiabatic limit
qualitatively demonstrated that a purely short-range polaron—continuum interaction always
yields two distinct states: a small polaron-like state and a free state separated by an adiabatic
potential barrier [13]. The addition of long-range component to the polaron—continuum
interaction can convert a free state into a large-radius polaronic state, still with a barrier
between the two states. If a long-range component is ‘sufficiently strong’, the large-radius
state may collapse into the small-radius polaronic state suppressing the barrier, Therefore
if the system is first produced in a free state, and if self-trapping is to occur, it may have
to pass through a potential barrier (see figure 3). The height of this barrier depends on
the nature (one-centre, two-centre, etc.) and the degree of localization of the final state of
this transition. If the localization process happens after the polaron has thermalized and
at low temperatures the system should tunnel from the bottom of the band of free states
(or from the large polaron state), and in order to calculate the tunnelling rate one needs to
know the wavefunction of the localized state (the so-called state of nucleation [58]) at the
tunnelling energy (see figure 3). A state of nucleation with appreciable lattice distortion but
Iess localized then the final self-trapped state is formed by quantum mechanical tunnelling,
and then relaxes in order to stabilize itself. In this case a self-trapping rate is a rate with
which the most probable nucleation state is formed [58]. The initial nucleation state in some
cases can relax into a transient metastable localized state and subsequently transfer into a
final stable state. Model calcuiations suggest that in some other cases the adiabatic picture
may fail and the localization process may be driven by the speed of lattice relaxation [20].

We should stress that these arguments are valid not only for the crystal case but also for
localization of an excess electron in water and other polar solutions [59], as well as in liquid
helium and neon [60]. However, current understanding of the dynamics of localization of
polaron in crystals and polar solvents differs. Generally speaking, the non-radiative decay
rate for the transition from the free polaron state to the localized state is determined by
an electron matrix element of the non-radiative coupling between these two states and a
Franck—Condon vibrational overlap factor. The latter is determined by the configurational
changes between the initial and the final states, so both short-range structural modifications
and long-range polarization (i.e. optical modes) are involved, as was described in the
previous paragraph. These appreciable configurational changes are provided both in crystals
and in the polar liquid by short-range structural fluctuations. However, in liquids, pre-
existing configurational order may also contribute to the localization process. In particular,
a quantum molecular dynamics simulation [61] of the electronic states accessible to an
excess electron in pure liquid water prior to any induced liquid configurational relaxation
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Figure 3. Adiabatic pownﬁals associated with the free states and the nucleation state of the
self-trapping exciton [58]. @ is the reaction coordinate for the nucleation of self-trapping.

has demonstrated the existence of many pre-existing fluctuations capable of trapping an
electron into a shallow ground state. However, solvent configurations supporting deeply
trapped states are relatively highly improbable in the pure liquid. Pre-existing shallow
fluctuations may serve as initial traps for excess electrons in liquids, so that localization of
at least a fraction of them may happen with barrierless pre-localization in already-existing
potential wells. The other component may behave like electrons in crystals, and tunnel into
nucleation states or localize adiabatically, as was numerically simulated in [62). At present,
it is very hard to determine which case actually occurs from experiment.

The calculation of the self-trapping rate for the adiabatic barrier scenario has been
studied by several authors (see, for example, [8,63]). The most comprehensive work
relevant to real systems is that of Sumi [58). In the study of the self-trapping of excitons
in alkali halides he demonstrated that the nucieation state in these materials should have
a scale of a lattice constant. In his work he considered the one- and two-centre-type
nucleation states with different degrees of localization of the exciton wavefunction. Using
a phenomenological approach, and the theory of non-radiative tunnelling transitions, he
calculated the tunnelling rate between the free state and different nucleation states of
the exciton as a function of the parameters of the Hamiltonian (the localization and
relaxation energies in the nucleation state) and of temperature. The localization energy,
B, is determined by an increase of the exciton kinetic energy due to its localization in the
nucleation state, whereas the relaxation energy, S, is gained due to the relaxation of the
lattice in this state. As has been shown by Sumi, both B and § strongly depend on the
degree of localization of the exciton. At low temperatures the tunnelling rate from the free
into the nucleation state is given approximately by [58]

Wy = 4n?vB?e 5858 /T(S - B+ 1) for S» B )

where v is the characteristic frequency of the lattice vibrations that govern relaxation of
the system, and T" is the Gamma function. Sumi’s theory gave a reasonable qualitative
account of the mechanism of the self-trapping of excitons in alkali iodides, where the
existence of the potential barrier between free and self-trapped states of the exciton was
proved experimentally. In particular, the theory predicts that self-trapping of excitons in KI
and Rbl most probably takes place through the nucleation state of the one-centre type.
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Intuitively, it is natural to believe that holes in alkali halides self-trap through a two-
centre nucleation state (see figure 4(b)) which, in turn, relaxes directly into the well studied
Vi configuration. However, recent femtosecond scale spectroscopic experiments suggest
a different model for the early stages of this process in KI, Rbl [32]. The two-photon
excitation employed in these experiments, with an energy of about 8eV first produces a
free electron-hole pair in the bulk of these crystals. Very similar optical absorption spectra
have been observed after the excitation pulse in pure samples of Kl and in those doped
with the electron-trapping impurity (NO; ) in the time domain 0.3-20ps. An intense optical
absorption spectrum is observed after only 0.3 ps. It differs strongly from that of the Vi
centre, which appears only later after 3 ps, and rises during 10ps. Similar behaviour of the
iransient optical absorption has been observed in RbL. However, in KBr a broad featureless
optical absorption band was observed just afier the pulse; this band transforms into the
absorption spectrum of the Vi centre after about 10ps. Since the behaviour of the transient
optical absorption in both pure and doped samples of KI is the same, this suggesis that the
band may be attributed to some metastable state of the hole in these crystals. It is plausible
to assumne that the transient optical absorption observed 0.3 ps after the excitation of KI can

be attributed to one-centre hole polarons (see figure 4(a)) which subsequently transform
into the Vy centres.

Figure 4. One-centre (@) and two-centre (b) types of hole self-trapping in cubic ionic
crystals, which are shown schematically for KI. Ammows indicate the directions of non-equivalent
displacements of the nearest-neighbour ions ir both ancleation and relaxed states.

2.3. Quantum molecular dynamics approach

Another approach employed in several recent studies is based on the adiabatic simulation
of the dynamics of electron excitation, localization and migration. It employs a quantum
path-integral molecular dynamics technique, or a direct description of the electron in terms
of wavefunctions, and has been successfully applied to the simulation of the excess electron
localization and diffusion in molten ionic salts [64], liquid water [62], and small polar
[65] and alkali halide [66] clusters. The path-integral technique is developed from the
ideas of Feynman [67]; indeed, one of the first applications of his method was to the
polaron problem [68]. Feynman’s ideas exploit the equivalence between quantum systems
and related (but different} classical systems; these ideas were taken up by many workers
and developed into powerful simulation techniques [69,70]. It is this quantum—cilassical
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‘isomorphism’ that leads to a simple representation of quantum particles in computer
simulations. In the case of the real wavefunction representation of an excess electron in
polar media, efficient methods have been developed for evaluating the Born—Oppenheimer,
or adiabatic, electronic states associated with a given molecular configuration {71,72]. The
excess electron-molecule interaction is usually treated in the pseudopotential approximation
(see, for example, [48,73]). The efficiency of the simulation of the propagation of the
wavefunction in time is based on algorithms using only simple multiplicative operations
and repeated fast Fourier transforms [71,72).

Recent experiments have provided time-resolved femtosecond spectroscopy [34] of the
electronic states of an excess electron in water at an early stage, well before the spectrum of
the hydrated electron finally emerges. These experiments show that the electron transforms
into a pre-localized state on a subpicosecond timescale and this manifests itself at the
earliest times via a diffuse infrared spectrum. Even in the first experiments [33] it was
noted that the relaxation process leading to initial infrared absorption is much shorter
than the dielectric relaxation time of water (7.4 ps at 30°C). The evolution of the solvated
electron absorption band (on the timescale ~ 4 ps) exhibits the solvent relaxation around
the localized state initially formed. This process was simulated in [61,62] by calculating
the time evolution of the electronic ground state in the solution in the Born—Oppenheimer
approximation. The time dependence of the electronic state arises solely from the time
dependence of the nuclear coordinates. The new electronic state is evaluated by solving the
time-independent one-electron problem for each new solvent configuration in the sequence of
molecular dynamic timesteps. Although the results of the simulation seem to be reasonable,
quantitative predictions are still not very reliable because of the oversimplified description
of the electron—water and water—water interactions (see also discussions in [47]).

3. Stability and properties of small polarons

The basic strategy for the study of the polaron stability in most atomistic simniations
concemns the extrema of the energy surface and the energy differences between such
extrema, rather than the process of localization and the complete energy surface. The
phenomenological theory of small-radius polarons predicts that the one-centre polaron state
is always more stable than the two-centre state, whereas the energy difference between
these two configurations is equal to the activation barrier for diffusion of the one-centre
polaron (see, for example, the discussion in [74]). However, in some crystals such as
alkali halides, alkaline earth fluorides [44], and possibly alumina [75], the two-centre state
of the hole polarons is stabilized by the formation of a chemical bond between the two
anions sharing the hole. These effects can be sensibly understood only on the basis of more
sophisticated quantum mechanical calculations. Combined with the calculation of optical
absorption energies, as well as other observables like magnetic resonance parameters and
activation energies for diffusion, they can provide quantitative comparison between theory
and experiment.

As was pointed out by Flynn and Stoneham [76], in many cases the wavefunctions of
the localized pelaron states may be treated as sensibly exact eigenfunctions of the total
Hamiitonian. They bear the same relation to the exact eigenstates that Wannier functions
bear to Bloch functions: Note, too, that for the mean energy of the band of the locatized
states both Bloch and Wannier representations have exactly the same value. Just as in
the construction of Wannier functions, the localized functions of different sites may be
orthogonalized. Nevertheless, they are mixed by the exact crystal Hamiltonian, and the
transitions induced between different polaron configurations may be related to the polaron
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hopping motion through the crystal. This approach has been used, for instance, by Holstein
[10]. In the latter work the electronic-overlap term of the total Hamiltonian, which is
responsible for the polaron jumps between sites, was treated as a small perturbation. In
zerath order, i.e. in the absence of this term, the polaron may be treated as permanently
localized at a given site. Within the static approach, which concerns the microscopic
characteristics of the small polaron rather than the dynamics of its diffusion, this state is
treated as approximately stationary.

The pioneering caicuiations of small polaron against large polaron stability in actual
(rather than model) systems were those of Gilbert [25] (described in [77] by Fowler). The
idea of Gilbert was to introduce a two-step procedure: (i) to localize the polaron from
completely delocalized state onto several lattice sites; (ii) to calculate the energy gain due
to the lattice relaxation from this state into the final polaron state. These calculations were
primitive, but very iltuminating, They suggested a calculation scheme, which was taken
up in many other static approaches to the problem of polaron structure and stability. In
particular, they showed why holes self-trap in alkali metal halides but electrons do not; in
essence the difference comes from conduction bands, which are wider than valence bands,
and from the chemical binding forces within the anion molecular ions.

It is interesting to compare these Mott-Littleton calculations with those of earlier
workers (see [78)], p 60 for a summary). The argument then was that the localization of
the polaron produced a potential well from ionic polarization (so involving €0, a dielectric
constant determined by the ionic polarization and defined by

1/€ign = /€00 = 1 /60 (3)

in terms of high-frequency and static dielectric constants); the potential well would be
Coulombic, screened by the ionic polarization, outside the polaron radius R, and roughly
constant inside the well. Minimizing the total energy, including kinetic energy, gives R, in
terms of €ign, etc. For the small polaron, the effective radius becomes small, comparable
with or less than interatomic spacings. In the fuller analysis the kinetic energy is replaced
by band parameters, and the jonic polarization is modelled atomistically using the shell
model and the Mott-Littleton method. However, the different roles of electronic and ionic
polarizations continue to be essential, and the simple dieleciric picture is still of value.

In the later discussion we shall focus on the static approach, which is widely used
in crystal calculations, although some comments will be made concerning the results of
dynamic simulation.

3.1. Static approach

The scaling argument suggested by Emin and Holstein [13] asserts that if we change the
length scale of the (normalized) eigenfunction, the energy as a function of the scale factor
should have a minimum at the scale corresponding to the actual eigenstate. Within the more
sophisticated technique developed by Toyozawa and co-workers, both states (delocalized and
localized polaron) may be treated using the same model Hamiltonian [!1,18]. However,
neither method allows us to take into account the microscopic structure of the polaron in
the real solid. This is only possible by employing some atomistic approach. In particular,
one can assume the polaron to be localized in a small area comprising of several tens of
ions or molecules, which are embedded in the remaining media and vary the radius of its
wavefunction whilst simultaneously minimizing the total energy of the crystal with respect
to the atomic coordinates. In this way, both the short-range and long-range contributions
into the total energy may readily be taken into account. This approach is used for the
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quantum molecular dynamics simulations of an excess electron in water [61,62] and small
clusters [65,66]. A similar technique, though with the static model for the crystalline lattice
and a very restricted basis set, was used for the simulation of the self-trapped excitons
in alkali haiides by Song and Leung [79]. In both cases only one electron is treated
rigorously, whereas other species are represented by their pseudopotentiais. In the many-
electron calculations the localized and the delocalized states usually belong to different
Hamiltonians. However, it is possible to derive a reliable estimate by taking differences
between the energies calculated by each method, and using the most appropriate methods
at each stage in their calculation.

Essentially, two energies are compared in these calculations: the kinetic energy gain
from having a delocalized carrier in an undistorted lattice, and the polarization and distortion
energy gain from having a localized carrier. The self-trapping energy is thus the difference:

Ey = Eioc — Lipel- (4)

When one uses a standard stationary quantum chemical technique, one must introduce an
artificial intermediate state, ®;, as a common reference point for the calculation of Ey. and
Er [80, 81]. It corresponds to the point F in figure 3. Two steps are needed. First, one needs
to construct an electronic state @; in the perfect Iattice qualitatively the same as the localized
configuration. Second, one assumes the magnitudes of the electronic polarization produced
by this state and the completely delocalized polaron state are the same (or, occasionally, are
related in some other simple way). The validity of the latter approximation was analyzed by
Fowler [27]. In this case, polaron localization energy is given in terms of H,, the electronic
Hamiltonian, by -

Eloc = {Pi| Hee| Pi) — (®yot| Hoe|Paet) (5

where @4, is the wavefunction of the delocalized state. The lattice relaxation energy is
given in terms of the total Hamiltonian, H, by

Ew) = (i|H|Pi) — (Pu| H|Pa} ©

where &y, is the wavefunction of the self-trapped states. Note that, in the approximation
that the electronic polarization of the crystal and the self-energy of the polaron in the
delocalized and the intermediate states compensate each other, the localization energy is
simply the change in the kinetic energy of the localizing particle. The electronic polarization
of the perfect lattice in the intermediate state has to be taken into account in calculating the
relaxation energy.

If E is found to be positive the ocalized state is certainly unstable and the polaron can
exist only as the delocalized state. In such cases localized states may form in the presence
of a defect, or near an interface. If the calculated value of E; is negative, the localized
state is considered to be stable. However, the real behaviour of the localized polaron is
determined not only by the sign and the value of E;; but, also by the barriers and the transfer
matrix elements, |Hr |, for its diffusion between different localized states.

3.2. Calculation of the localization energy

The commonest and simplest form of the electronic Hamiltonian is the tight-binding form,
with only the largest matrix elements between the nearest sites; the density of states of the
valence bhand then has a symmetric form as a function of energy. The localization energy of
the particle on one lattice site (i.e. the expectation value of a Wannier function at that site) is
then equal to the halfwidth of the band of delocalized states. Such a picture is an appropriate
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representation of the polaron states, to the extent that the s atomic orbitals centred on the
sites are true Wannier functions, as for the 1s core anion holes in the transition metal oxides.
However, in many crystals the wavefunction of the valence hole polaron has p or d orbital
characteristics. In these cases the simple approach described above leads to a substantial
overestimation of the localization energy [81-83). Since the localization and relaxation
energies are usually similar in magnitude, and their difference is much smaller than the
width of the band of the delocalized states, the accuracy of the calculation of E\, is crucial
in the estimating the self-trapping energy, E;;. As has been shown in [80-82], accounting for
the angular dependence of the matrix elements of the tight-binding Hamiitonian improves
the accuracy of the calculation of E..

The situation becomes still more complicated when the valence band is a mixture of
the states originated from two or more sublattices. This is the case for AgCl, alumina,
silica, transition-metal coxides and halides, and for other crystals where the self-trapping
of holes is under discussion. A calculation scheme for the mixed band case based on a
model Hamiltonian technique and the tight-binding approximation has been proposed in
[B0]. It takes into account the nature of the hole polaron states and real atomic orbitals of
surrounding ions,

Both methods mentioned above are based on the idea that the matrix elements of the
tight-binding Hamiltonian, constructed using Wannier functions, may be calculated using the
matrix elements obtained from some band structure calculation for the perfect crystal. The
link becomes possible if we assume that: (i) the band of free holes coincides with the valence
band taken with the opposite sign, i.e. the bottom of the hole band corresponds to the top
of the valence band; (i1) the atomic orbitals of anions and cations may be used as Wannier
functions; and (i) the wavefunction of the intermediate state, ¢;, calculated in the cluster
approximation is physically equivalent to the Wannier function localized at certain perfect
lattice sites. However, as was discussed in section 2, in many interesting cases as a result
of electronic relaxation the wavefunction of electronic polaron is different from those of the
valence band electrons. This is only partly taken into account within the methods discussed
in [80-83]. Therefore, the localization energy calculated using frozen wavefunctions of the
perfect crystal may be inaccurate, and a more flexible variational approach should be used
to caiculate the localization and relaxation energy terms accurately,

An alternative approach to address these problems is based on cluster calculations. The
wavefunction of the intermediate polaronic state in the perfect lattice, which should be
equivalent to the wave function of the localized polaron state, is often a broken symmetry
solution of the Hartree-Fock equations. Nieuwpoort and Broer suggested a2 method for the
calculation of the Hamiltonian matrix elements between broken symmetry wavefunctions,
with holes localized on different equivalent sites. It is based on a variational procedure
and provides a fruitful approach for investigation of ‘electronic polaron’ bands [55-57],
and thus for evaluation of the polaron localization energy. The important advantage of
their approach is that the matrix elements needed to evaluate both the jocalization and the
relaxation energies of the polaron may be calculated employing the same quantum chemical
technique and set of parameters. There is a further problem for electron (as opposed to hole)
polarons, since the calculations for the conduction band and the crystal electron affinity are
still very unreliable, :

3.3. Microscopic structure of small polarons and calculation of the relaxation energy

Most model Hamiltonian methods used in studies of self-trapping assume that the harmonic
approximation suffices, and the energy of interaction between the particle and the medium
is linear in coordinates representing the deformation of the medivm from its equilibrium
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Two Region Methodology

1. The lattice responds to defects by
relaxing ion and electron positions.

2. Those ions close to the defect move
to the greatest extent.

3. The model which accounts for the
‘ response of quter ions (region IIb)
b —> oo can be more approximate.

Figure 5. Two-region methodology for defect calculations in a polarizable lattice. In region
I, electronic structure is calculated self-consistently as forces on the ions are relaxed to zero.
In region Il, simpler approximations are sufficient to embed region 1. Thus ionic positions and
polarizations are estimated from a continuum model. Region Ila is created to link the two
regions properly; in many calculations the jons in region 1Ia are discrete, but with displacements
and dipole moments derived from continuum models,

configuration [8, 11]. These are rather dubious approximations for strong lattice distortions.
It is in calculating this lattice relaxation that the Mott~Littleton method and related
techniques come into their own; indeed this was done in early work by generalizing an
approach to the vacancy problem [25]. Gilbert’s calculations were the basis for more
extensive work of Jette and co-workers [84], who made extensive estimates for alkali metal
fluorides and chlorides, showing that the self-trapped holes could be regarded rather weil
as halogen molecular ions in a polarizable distortable matrix. These calculations were done
within a polarizable point-ion model, a model which has been superseded for most serious
estimates by the shell model. Later work in the same spirit, but using the shell model,
has been published for a wide range of systems: for the alkali metal halides (including
mixed alkali metal halides) by Cade and co-workers [85, 86], for the Cs structure alkali
metal halides by Monnier and co-workers [87] and by Norgett and Stoneham [88] for the
alkali earth metal halides. The ‘molecule in a crystal’ model for the hole polarons in alkali
metal halides (Vi centre) has been examined by Stoncham [44], by Tasker and Stoneham
[89] and by Cade and co-workers [85]; here a diatomic molecular ion is studied quantum
mechanically [90], and then embedded into a classical ionic host. In this case one has strong
covalent bonding within the molecular ion X7, but ionic interactions with the rest of the
crystal.

A more sophisticated approach combines a quantum mechanical treatment of a small
molecular cluster, in which the polaron is localized, with the Mott-Littleton calculation of
the polarization of the rest of the crystal (for a review see Catlow and Stonecham [24); see
also [28,91-93]). The crystal is divided into two regions: an inner region (I), containing
the defect and its immediate surroundings, and an outer region (II) which responds as a
dielectric continuum (see figure 5). The quantum cluster is placed at the centre of region I.
This quantum chemical approach has recently been used for studies of several alkali metal
halides [28] and oxides [94], and has provided satisfactory microscopic models for the self-
trapped holes and excitons in these crystals, In particular, the quantum chemical calcuiations
of the Vi centre in several alkali halides [81, 83,95, 96] give atomic displacements similar
to those obtained by Cade and co-workers using the classical Mott—Littleton technique [85).
Similar results were also obtained with both techniques for the lattice distortion around the
hole in MgO (82, 97]. However, the main advantage of the quantum mechanical methods
is that they provide a stronger connection between the localized and delocalized states.
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Although the atomic structures of point defects in ionic crystals can be studied more
or less routinely, this is certainly not the case with the calculation of the relaxation energy.
The most substantial problem is the choice of the path for the localization of the polaron
and, as a consequence, of the intermediate state, which provides the reference point for
the calculation of the relaxation energy [81]. Another point concemns the accuracy of the
calculation, since the self-trapping energy rarely exceeds several tenths of an eV and is the
difference of two large and similar values.

The situation is not simple even for the ‘dielectric’ polaron, in which electrons or
holes in a polar lattice interact mainly with the long-range polarization. According to the
phenomenological theory, the radius of the dielectric polaron should be large rather than
small. An example of the problems can be seen for MgO, where trapping of the holes has
been modelled quite extensively, All the calculations of the lattice relaxation predict that
the hole should be strongly localized on one oxygen ion. The relaxation energy, which
is the energy difference between the final completely relaxed state and the intermediate
state (the latter corresponds to the hole on one oxygen in the perfect lattice where only
electronic relaxation is taken into account), was calculated using different methods to be
1.7-2.4eV [82,97,98]. This large energy is fully consistent with a theoretical analysis of
the observed charge-state stabilities of transition metal impurities in MgQ. The localization
energy according to the existing estimations [82] is 2.0-2.4eV. The value of 2.4 eV is equal
to half of the experimental magnitude of the valence band width (4.8 eV [99]) and so gives
an upper limit [100]. Recent calculations {82}, in which both relaxation and localization
energies were treated using the same quantum chemical technique, indicated a seif-trapping
energy of about —0.4eV. In simple treatments of small dielectric polarons, the hopping
energy for diffusion motion is less then this, and probably less than half of the self-trapping
energy, so the polaron should be very mobile. Therefore, despite the strong localization
in the cluster calculation and the large relaxation energy, it will be hard to distinguish
the behaviour of the polaron from that of the large polaron at appreciable temperatures.
Apparently the transfer matrix elements |y | are substantial and the stationary localized
state on one site is not a good approximation.

In the case of the *molecular’ polaron the self-trapping is caused by the short-range
interaction, and the situation is complicated by the possibility of coexistence of both types
of polarons. The Vi centre is the classical example. For instance, it is not clear a priori
if one should consider the localization in the one-centre form first and then calculate the
additional energy gain due to the formation of the chemical bond between two anions, or
if the two-centre localization is preferable from the very beginning (see the discussion in
section 2).

As should be clear from the above discussion, the relaxation energy only makes sense
as a part of the self-trapping energy, for it depends on the intermediate state(s) chosen in
its calculation. It cannot be measured directly, although it may be estimated on the basis of
energy cycles, which combine available experimental and theoretical data, as demonstrated
by Itoh and co-workers [101] for self-trapped excitons in alkali meta! halides. Relaxation
energies contribute substantial terms to a wide range of observable quantities, including
defect formation energies and optical charge-transfer processes. Moreover, the observed
systematics of behaviour (e.g. which charge states of transition metals are stable in a given
host) gives strong support to theoretical estimates of relaxation energies.

1 The experimentally observed fotal valence band width of 4.8 = 0.3eV is in a good agreement with the result
of the Hartree—Fock calculation by Causa and co-workers, which gives 5.1eV. However, recent experiments by
French and co-workers, using valence band x-ray photoemission spectroscopy, and LDA calculations gave for the
valence band width in MgO the value of 6eV.
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We should note that the self-trapping energy is defined relative to the bottom of the band
of free polaron states, which in turn depends on the crystal under study. Thus whilst Eq < 0
may be used as a criterion of self-trapping in each particular crystal, it does not provide a
good basis for comparison of different or mixed crystals. Such a comparison is possible on
the basis of energy cycles aiming at the calculation of the defect formation energy. This
formation energy may also be compared with the crystal ionization and excitation thresholds,
and in this way connected with the effectiveness of the polaron or exciton production.

3.4. Small polaron formation energy

Although the general idea is quite transparent, energy cycles differ from one case to another -
and, moreover, there are alternative cycles for each particular case (see, for example
[28,85,101]. Let us consider, for example, the Vi type of self-trapped hole in alkali
metal halides, caesium halides or alkaline earth fluorides. Despite the differences in the
crystalline structure, the hole in all these cases is sensibly regarded as an X molecular ion,
which occupies two anion lattice sites (see [44] for a discussion).

The energy required to form a Vg centre may be considered as the sum of energies for
several distinct steps [85]. (i) The energy required to remove the two X~ lattice ions to
infinity (separately)—the vacancy energy E. (ii) The energy of formation of X5 (gaseous)
+ e~ from two X~ anions. The intemuclear separation R for X; may be taken as R, for free
X, . although other values of R do not change the final resuit. (jii) The energy associated
with introducing X, into the prepared (perfect) vacancy site—the interstitial energy Ei.
(iv) The energy arising from relaxation of ions in region I, region II, and of course, within
the Vi centre—the relaxation or lattice energy Eg. It is necessary to consider the electron
released in step (ii), and this is usnaily placed at the bottom of the conduction band of the
crystal. The associated epergy for this process is the electron affinity of the crystal, x. The
Vk centre formation energy may be written in the form

Ep = Ev + Ei + Eg + [AX) — x] )

where A(X) is the electron affinity of the halide X. The values of electren affinity for crystals
are not well known, but values are quoted in the range 0.1-1.5eV [102]. The result is that
the defect energy has a consistent reference point within a given crystal, but comparisons
of different energies involving different crystals do not have identical reference points.

Alternative energy cycles might be useful; for example, the uncertainty in y can be
eliminated if the electron is removed from the conduction band and placed on an ‘electron
trap’, i.e. it reduces a metal ion doped into the crystal for this purpose. Typically, for Vg
centre formation, Pb®*, TI* or Ag* cations are employed as electron traps. The energy
scale (zero) involving the electron trap corresponds more to what is involved in practice
in self-trapped hole formation, and in that sense this zero point may be more satisfying.
However it has serious technical drawbacks, especially if the Mott—Littleton technique is
employed for calculations. These concern the pair potentials between the host lattice ions
and impurities in different charge states and the accuracy of the relaxation energy calculation
for the impurity states. However, the location of the electron on a trap preserves the crystal
neutrality and permits comparison with uncharged defects on a common ground. It enables
one to use the periodic boundary conditions in the calculations of charged polaronic states.

One simple estimate of the energy £r of a hole at the top of the valence band of
an undistorted crystal assumes {87] that the centre of the valence band corresponds to the
Madelung potential at the anion, so that

M

Er=—-1E
r= gy "1k ity
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where M is the Madelung constant, a; is the lattice constant, and E,y is the valence band
width. The corresponding approximate condition for self-trapping becomes:

M
"‘ED__+%Eval-<..0 (9

o
an equation that has been widely used in previous calculations (see for example [85, 87, 88]).

3.5. Specific properties of the self-trapped exciton state

The structure and characteristics of a self-trapped exciton (STE) involve both the basic
issues of self-trapping, and the interaction and correlated behaviour of the electron and
the hole. The conditions for the exciton self-trapping have been studied extensively
phenomenologically as reviewed by Ueta and co-workers [11] and Rashba [8). The theory
predicts that an exciton can self-trap even if neither an electron nor a hole can do so alone.
Another remarkable prediction is that, in certain circumstances, the parity of the relative
motion of an electron and a hole may be broken [11]. In particular, this may happen when
a hole has a very large effective mass and its interaction with an electron consists of the
long-range Coulomb attraction and short-range strong repuision. These predictions of the
phenomenological theory have been supported by the results of recent quantum mechanical
calculations.

Starting from the first calculations by Wood [103] and Stoneham [104], successful
attempts have been made to use for self-trapped excitons the methods developed for
calculations of point defects [105]. As was noted above, such an approach is only possible
when the exciton is well localized in a small region of the crystal host. Even then there are
clear distinctions between the ground or excited state of the localized point defect and the
STE.

An exciton is an excited state of an otherwise perfect (but deformable) lattice. A
key characteristic of the STE is its luminescence: STE are short-lived luminescent states of
excited crystals, with properties very different from those for the crystal ground state (see
for reviews [21,40,41] and references therein). The initial states for the luminescence are
treated as approximately stationary, and correspond to the minima of the adiabatic potential
of the excited crystal. However, the methods and basis sets which were developed for the
calculation of the properties of the crystal ground state are not well suited for its excited
state. Moreover, usual adiabatic calculations are meaningful only in the close vicinity
of these minima, for which atomic structures are considered as models of STE [28]. The
dynamics of the processes leading to these states requires further concepts and complexities.

The electron and the hole overlap strongly, but become localized in the lattice for
different reasons. In alkali halides and fluorides, in effect, the hole is self-trapped and
localized in the form of a quasi-molecule, whereas the electron is localized mainly by its
Coulomb interaction with the hole. In crystalline quartz the holes do not self-trap, while
the seli-trapping of excitons gives rise to the luminescence with a very large Stokes shift.
According to experimental ESR data, the electron of the STE in these crystals is less localized
than the hole. Further, the self-trapping of the exciton in many crystals is accompanied by its
decay, producing primary Frenkel defects [42), The degree of localization of the electronic
component of the nearest-neighbour defect pair depends sharply on the relative position
of the hole component. Since the radius of the electron localization is large and changes
significantly during the calculation of the adiabatic potential for the exciton localization and
decomposition, special efforts are needed in order make the basis set flexibie enough and
to take into account the resulting changes in polarization and other energies.
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Another issue arises with the wavefunction of the STE. Experimentally, in the alkali
metal halides both singlet and triplet states of the self-trapped exciton have been detected
or inferred. In crystalline quartz only the triplet state of the STE has been observed so
far. Nevertheless, most of the theoretical studies concern only the triplet excited state of
the crystal. This is solely for technical reasons. In wide-gap insulators, as all of these
crystals indeed are, the crystal triplet state automatically means the excited state. For the
lowest multiplicity it may be treated in the single-determinant unrestricted Hartree—Fock
approximation. This approach has been employed in all the many-electron calculations
made so far. It is much more time-consuming to treat the singlet excited state using a many-
determinant approximation for the wavefunction of the crystal. The first calculations for the
singlet state of the STE in NaCl were performed by Stoneham [104]. Similar calculations
using the generalized valence bond (GVB) technique in several alkali metal balides have
been made only recently [106].

3.6. How good are the results?

3.6.1. Stability of the small polaron form: wiil se[f-trapping‘ occur?

Self-trapped holes. In all cases studied seriously, the correct prediction is achieved. For the
halides, the margin is substantial, where the hole small polaron is stable by several tenths
of a volt [80-85]. Typical relaxation energies (i.e. the energy to relax a hole localized
on a single halogen to the Vg centre geometry) are 1.0~1.5eV. The situation is less clear
for oxides, principally because of lack of direct experimental evidence. Theoretically there
are substantial problems with the calculation of the localization energy due to the mixed
character of the valence band. Once again, relaxation energies are quite large (for instance,
about 2 eV for the one-centre hole on oxygen in MgQ [82,97]). Recent quantum chemical
cluster simulation of the self-trapped hole in a-Al,03 [75] suggested a model with the hole
shared between two anions, analogous to that in alkali halides. The energetically most
favourable configuration appears to involve a strong inward Jahn-Teller -displacement of
two O ions (on which about 80% of the hole density is localized), accomipanied by the
outward displacement of the two nearest Al atoms. The self-trapping energy predicted for
this configuration is —2.7eV [75]. EPR experiments [107] suggested that the holes can
self-trap in fused silica in the form of 03' molecular centres. However, hole trapping in
a glass network could be assisted by charge and density fluctuations. Quantum chemical
simulations [108] made in a periodical model for an idealized SiO; structure (8-crystobalite}
have shown that the holes most probably cannot self-trap on the one anion site in this
material. The two-centre-type localization of the hole in pure silica has not been simulated
50 far.

In these crystals the holes (if self-trapped) are localized onto one or two anions. In
AgCl the situation is qualitatively different. The structure of the self-trapped hole has been
studied using vartous experimental techniques and reliably established [109-111]. AgCl
has the rock salt structure, but a different character of chemical bonding and valence band
electronic structure. In particular, the top of the valence band in AgCl is determined by
the d states of the silver ions. This is certainly an important factor: for alkali halides the
holes are self-trapped in the anion sublattice and form Vx centres; for AgCl the cation can
change charge state without a large energy cost, and the hole is localized on one cation.
Indeed, the simulation of the.hole self-trapping on chlorine ions in AgCl [80] revealed a hole
density redistribution from the chlorine ions to silver because the silver states have higher
energy in the valence band. The chemical bond sharing the hole between two chlorines
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does not form because the lattice polarization encourages the hole transfer. The value of
the hole self-trapping energy obtained in [80] is equal to —0.1 eV (where the zero of energy
corresponds to the bottom of the free hole band (see figure 3)) which is close to ~ 0.12eV,
the experimentally observed activation energy for the thermo-stimulated ionization of the
self-trapped hole in AgCl [112]. About two thirds of the hole spin density is localized
on the dy2..,2 atomic orbital of the silver ion. The remaining third of the spin density is
delocalized by p,, orbitals of four nearest chlorine jons. This model agrees well with the
ESR data [I11].

Holes trapped near impurities. The commonest examples are the so-called V™~ and [Me)®
centres (Me = Li, Na) in II-VI compounds, where the theory has been applied successfully
(see [113] for a review). In these sysiems holes were trapped near impurities or vacancies.
In many cases impurities can trap holes by simply changing charge state. The best known
cases are mercury-like centres in alkali halide crystals. The peculiarity of these centres is
that their optical excitation releases the hole back from the impurity ion. The effect of
optical delocalization of the holes from mercury-like A%* centres (A = TI, In, Ga) has been
observed in KClI crystals [85). A simple explanation of this effect in terms of one-electronic
states [115] is based on the idea that the charged activator ion A2+ strongly perturbs the
occupied 3p states of at least two spheres of surrounding Cl ions. This results in either
split-off from the valence band edge of local occupied states or the formation of resonant
states within the valence band. The electron transition from these states to the impurity state
formed by the mixture of ns A2 and 3p C} states is accompanied by formation of the hole
in the valence band, or essentially by the hole transfer from impurity to surrounding anions.
The holes created rapidly become self-trapped in the lattice. Theoretical calculations [116]
suggested that this effect should be observable for any centres that are charged or strongly
perturb their crystalline ionic environment. Before self-trapping and/or at high temperatures,
the released holes are very mobile and can participate in further defect processes.

Selftrapped excitons. Self-trapping of excitons has been observed in many insulating
crystals, such as alkali metal halides, quartz, rare-gas solids, alkaline earth halides,
perovskite-structured halides of the KMgF; family, and other systems [3,6]. Extensive
experimental studies on STE in insulators have been carried out during the last few decades
(see [21,40,41, 117] and references therein), and these show how self-trapping drastically
alters the optical, luminescent and energy transport properties of the crystal.

For a rough evaluation of the exciton relaxation energy, one can consider the excited
state of the perfect lattice, and try to find local ionic displacements that localize the exciton.
Such an approach has been used by Shiuger and Stefanovich [108] in their study of the STE
in 8i0; with the B-crystobalite structure. Periodic boundary conditions for the supercell
SigO 16 resulted in the equivalence of all the perfect lattice sites. The triplet-excited state
remained delocalized for small ionic displacernents. The displacement of one oxygen ion
from its site by about 0.1 A localized the hole on this oxygen. Starting from this point one
can try to find the lowest minimum of the adiabatic potential energy surface (APES), which
corresponds to the bound electron-hole pair and yields the luminescence energy and other
spectroscopic data in agreement with experiment. (We should note that there are several
other minima, corresponding to defect pairs), Clearly, within the accuracy of the calculation
technique both the structure and spectroscopic parameters may be found only approximately.
However, two completely different methods, employed by Fisher and co-workers [118] and
in [108, 119} give qualitatively very similar models for the STE in SiO,. Although the
differences between the crystal excitation energy and the minima of the APES calculated by
these workers are large, they cannot be attributed directly to the exciton relaxation energy.
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The reason is twofold: first, the short-range crystal distortion, which localizes the exciton
in these calculations, depends quantitatively on the shape and size of the cluster and/or
boundary conditions; second, the exciton excitation energies calculated using both periodic
and cluster models are much smaller than the experimental value because of the restricted
basis set. This is one case where we cannot readily identify an adiabatic route from the
delocalized to the localized forms; indeed, the adiabatic approximation may fail.

The alkali halides are regarded as prototype materials in which both holes and excitons
self-trap. The microscopic features of exciton self-trapping processes have been studied
extensively. However, the experimental determination of the model of the STE in these
crystals is still far from complete. Many theoretical investigations of STE in alkali halides
have been made, as reviewed in [41, 105). First it was assumed that the STE in alkali
halides consisted of a diffuse electron bound to a self-trapped hole or Vk centre, the so
called (Vk + e) model [120]. After the ENDOR experiments on the STE in KCl [121],
which suggested asymmetry, it was shown that the (Vg + e) configuration, which has Dy,
symmetry, could be unstable [122]. It is suggested that the STE is an off-centred (Vg + e),
in which the D2, symmetry is broken by the pseudo-Jahn—Teller interaction of the electron
with the local lattice vibrations, Extensive studies of the off-centre model of the STE have
been carried out by Song and Leung, using a one-electron pseudopotential extended-ion
technique (see [79,123) and references therein). In most of these calculations the hole
component of the STE was treated as a frozen X7 molecular ion, repeiling the electron,
which is localized in the crystalline potential (as in an F centre) rather than due to the
Coulomb interaction with the molecular core of the Vg centre.

Figure 6, Off-centre model for exciton peometries in
alkali halide crystals (here NaCl), The shaded circles
represent the Na* ions, and the two open circles the
Cl ions that make up a Cl; jon. The charge on this
molecular ion is such that one ion (labelled ht) is
roughly reutral (CI°) and the other is close to CI™.
The large circle identifies what is effectively an anton
vacancy containing an electron (essentially an F centre).

Figure 7. Spin density distribution of two unpaired
electrons of the triplet STE in NaCl. This is a schematic
not nommalized picture. The three main [eatures
comrespond to the configuration shown in figure 6. The
electron is that of the nascent F centre, the hole (Clp)
is that of the Cl ion {approximately CI°) moving away
from its site to join with the next ion {Cl;) on the close-
packed row of halogens.

Recent @b initio many-electron calculations [28,95,96, 106, 124, 125] have supported
this conclusion, and simultaneously emphasized the importance of the many-electron
approach to the problem. It has been shown that an X5 molecular jon, displaced from
the Dy position (see figure 6), is polarized in such a way that the hole is mainly localized
on that anion located closer to the anion vacancy (created by the axial motion of the X5 ion)
which is trapping the electron (see figure 7, which represents the spin density distribution
calculated for the STE in NaCl [125]). This points to what seems to be a common feature
of the STE structure, not only in the alkali halide crystals but also in silicon dioxide and
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lithium oxide [126]. As was discussed by Shiuger and co-workers [127], in all these STE the
electron is trapped on a lattice anion site and the hole is localized onto the anion displaced
from this site.

Nevertheless a number of crucial problems remain unsolved, These concern, first, the
APES for the ground triplet state of the STE (see [28, 125] for a discussion). Hartree~Fock
calculations of the APES for the triplet exciton in alkali halides and Si0; have demonstrated
that the potential energy is remarkably flat near its minima with respect to further spatial
separation of the electronic and hole components of the STE. However, a rigorous location
of the minimum corresponding to the STE and barrier for its decay into primary Frenkel
defects in each particular case has not been determined reliably. Consequently, the models
of the STE are not finally established. The APES for the singlet excited state of the crystal
(singiet STE} has not been considered in detail. Electron correlation must be included
to solve these problems [125]. There is possible experimental support for the view that
the energy surface is flat from the observation of muon—-induced fluorescence [128]. The
observed luminescence occurs after the decay of the muon, at an energy not far from the
normal triplet luminescence; the data are consistent with the idea that the muon stabilizes
the self-trapped exciton in a minimum different from its normal one.

Second, the exciton self-trapping energy was not considered seriously. The width of
the energy dispersion of a free exciton in alkali halides was regarded as roughly equal to
that of the hole in the valence band [58). This reflected the common view that the exciton
self-trapping in these crystals is governed by the hole localization at the first place. The
situation is unclear in oxides, where the holes do not self<trap. Calculation of the self-
trapping energy for the STE in KCl using the energy cycle approach was performed in [28].
Since the quantitative characteristics of the model of the STE in this crystal are still unclear
these calculations were unable to give a reliable number. However, they demonstrated that
the self-trapping energy is probably more than 2.7 eV, which is larger than that for the Vg
cenire in this crystal (~ 1.9eV [44]). Qualitatively the same conclusion has been drawn by
Itoh and co-workers [101], on the basis of somewhat different energy cycle.

3.6.2. Optical spectra and spin resonance data. There are two main types of optical
transition associated with polarons. First, there are the ‘intramolecular’ or ‘intraionic’
transitions, where the distorted and polarized host merely weakly alters a transition
identifiable from some free ion (X3 molecular ion in the Vi centre). Here one may use free
molecular ion data plus calculated distortions [44, 85, 129] (giving effectively the ‘molecule
in a crystal’ approach).

Second, there are charge-transfer transitions, in which an electron moves from one site
to another (or to another group of sites). These are the dominant transitions, for instance,
in cation vacancy centres like V-type centres in oxides (see figure 8). The transition energy
for this type of transitions is determined by polarization and distortion energy and is very
sensitive to the relaxation of the surrounding lattice. In particular, the displacements—and
hence the polarization potential-—are different for the anion carrying the hole and for the
other anions {130]. This leads to an additional splitting of the hole electronic states and
affects optical absorption energies of the hole especially in the one-centre state. Note that
since the optical transition is 2 Franck—Condon transition (the nuclei remain at their original
positions) only the electronic part of lattice polarization should be taken into account in the
final state (see [131] for a discussion of the Zn vacancy in ZnSe, where the simplest models
are demonstrably inconsistent).

In the exciton case the optical spectra are more complicated. The STE comprises a hole,
usually well localized on an ion (O~ in quartz or Ag?* in AgCl) or molecular jon (X7,
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Figure 8. Optical transitions of the V-type centres in MgO. In (a), h* indicates an excited state
of O~ reached in a crystal field transition, In (b), the hole fractions on each neighbour in the
excited state are shown before lattice relaxation. These charge-transfer transitions dominate the
optical absorption. The equatorial transition will be split by electron exchange terms between
the four oxygens. Note that h always indicates that the lowest crystal-field state of oxygen is
occupied or partly occupied; h* indicates that an excited crystal-field state is occupied.

where X is a halogen in alkali halides and alkali fluorides [41, 117]), and an electron which
is much more delocalized. In some cases like, for example, in alkali halides, the electronic
and the hole component of the STE are apparently spatially separated. Decomposition of
the STE in these crystals can be accompanied by the formation of Frenkel defects: F and
H centres [42]. Although optical absorption spectra of the STE in alkali halides and in
quartz resemble the combined spectra of the defect pair qualitatively, there are considerable
quantitative distinctions. These are caused by the strong electron-hole interaction and
mutual perturbation of the electron and the hole components of the STE compared to the
separated pair.

A helpful way to display data for a large number of crystals of the same structure is
the so-called Mollwo-Ivey plot, where energies are expressed as a power of lattice spacing.
This has been done [91] for the energies of the electron transitions of the STE in alkali halides
and the interionic distance in the lattice as for isolated F centres [133] (see also section 15.1
of [44]). However, at least three groups of alkali halides have different Mollwo-Ivey plots.
A similar categorization has been made on the basis of an analysis of the luminescent states
in various alkali halides [134]. The physical nature of this grouping of all alkali halides
according to the optical and luminescence properties of the STE.is still unclear. The results
of theoretical calculations of the electron and hole transitions in several alkali halides are
summarized in {28, 135]. The agreement in all cases is satisfactory, but is not sufficient
to distinguish between different (on-centre against off-centre) models of STE. However, we
should note that these are most difficuit calculations, which presently require the use of the

ASCF technique. For the delocalized excited states the convergence of this method is very
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poor. For the well localized excitations of the hole component of the STE the agreement with
experiment is better {95, 135]. However, the energies of these transitions are also sensitive
to the displacement of the X5 molecular ion.

For paramagnetic polarons, such as Vi centres, it is important to calculate spin resonance
characteristics like the g tensor and hyperfine parameters. For the calculation of the g
tensor the Stone equation [136] is widely used, derived from second-order perturbation
theory (PT2) applied to the spin—orbit and Zeeman interactions of an unpaired electron
orbital momenta with the magnetic field. However, for high symmetry defects, such as
Vi or H centres in alkali halides, PT2 yields zero shifts of the longitudinal components
of a tensor, Agy = g| — go, (go = 2.0023) because of the zero value of the relevant
matrix elements between ground and all excited states. As is shown in [97-99], in this
case much better agreement with experimental data can be achieved by taking into account
third—order perturbation corrections (PT3). A novel technique has recently been denived by
Heifets [138} which allows one to calculate g tensors for an arbitrary total electron spin
of the paramagnetic defect by means of quanturn chemical metheds based on PT2 and P13
corrections. This technique has been successfully applied to the Vi centre calculations in
KCI [83). The g-tensor calculations for the hole trapped in the [Lil°-centre in MgO [82]
demonstrated that in this case, uniike the ‘molecular’ type Vi centre, all optical and ESR
active transitions depend very strongly on the values of the ion displacements. Therefore
good agreement with experiment of both optical transition energies and g tensor indicates
that the geometry of the hole centre has been determined reliably.

Hyperfine parameters are even more crucial, particularly when the nuclei on which the
unpaired spin resides have naturally abundant magnetic isotopes. In this case one can make
estimates of the orbital composition of the polaron electronic wavefunction, i.e. the relative
s and p character of the wavefunction on each nucleus. The relationship between hyperfine
parameters and the geometry of point defects in non-metallic solids has been examined in
ch. 13 of [44] (see also [139]). The compact configuration of the STE in alkali halides, where
the centre of the electron distribution is located only about 1.7 A from the hole nucleus (see
figures 6 and 7), suggests that contributions of both unpaired electrons should be taken
into account in calculating the hyperfine interaction for both ions of the X; molecular ion.
Reliable many-electron calculations of the hyperfine parameters have been performed so far
only for the STE in guartz [118].

3.6.3. Entropy of formation and vibrational properties. Study of vibrational properties of
small polarons is important for gaining an understanding of their structure and localization
processes as well as thermodynamical characteristics of materials. Local modes [140], as
well as the optical linewidth, the broadening of spin resonance lines, spin-lattice relaxation
and Raman data [141], have all been exploited and tested against theory, The calculated
and experimental values for the frequencies of the stretching vibration of X; molecular
ions in Vg centre and STE in several alkali metal halides and alkaline earth fluorides are
collected in [28,140]. Calculations presented in [22] determine the local lattice dynamics
of a self-trapped exciton in Nal and K1, its relaxation law and the shape of the hot emission
spectra,

Lattice distortions and spectroscopic characteristics discussed above are usually
calculated at constant lattice parameter. Thus the lattice does not expand or contract
because of the presence of the polaron, although the ion displacements are calculated at
long range. So these are essentially internal properties at constant volume (the distinction
between constant volume and constant lattice parameter is negligible for our purposes).
This point was argued in detail by Gillan {142] and reviewed recently by Catlow and
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co-workers and Harding [143,144]. Its recognition is most important for the calculation
of defect formation energies and diffusion parameters because these values are usually
compared with polaron parameters obtained by fitting to experimental conductivity or
diffusion data. These parameters are enthalpies since the experiments are performed at
constant pressure. The relationship between the constant-pressure parameters (enthalpy
and entropy of formation) and constant-volume parameters (intemal energy and entropy
at constant volume) was discussed in several papers (see, for example, [143,144]). The
formation energy at constant volume and zero temperature is the main energy parameter
calculated using the static approach.

The entropy of formation of a point defect or polaron at constant volume As = S (defect
crystal) — 38 (perfect crystal) in the harmonic approximation in the high—temperature limit
may be written in the form [144]

N
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where « and e« are the latticé frequencies for the defective and perfect lattice, respectively,
and kp is the Boltzmann constant. Evaluation of As thus requires the summation over
all these modes in the crystal. It should be noted that a ealculation of only a few
lattice vibrations localized around the defect and ignoring the rest gives wrong values
for the entropies of formation of point defects. Existing methods for the calculation of
the thermodynamical parameters of point defects in ionic solids were discussed by Harding
(144].

The vibrational entropy associated with thermal generation of electron-hole pairs is
of considerable significance for an understanding of the anomalous thermal properties of
uranium dioxide at high temperatures, as was emphasized by MaclInnes [145]. In particular,
in most materials the thermal conductivity decreases monotonically with temperature; in
UQ;, though, it goes through a pronounced minimum at about 2000K, and increases by
about 60% of the minimum value before the melting point is reached at 3210K [146].

As has been suggested in several papers (see, for example, [147-149]) this is because
of the existence of an ambipolar contribution; there is transport of energy down the thermal
gradient by the creation of electron-hole pairs at high temperature and their recombination
at low temperature. This electronic contribution was considered using the small polaron
model. According to [147-149] the electron and hole small polarons make a substantial
contribution to certain properties—thermal conductivity and specific heat—at temperatures
near the melting point. These properties, in tumn, are needed in assessmg the safety cases
for several hypothetical reactor incidents.

Quantitatively, the early study of Harding and co-workers {147] was one of the first to

make a serious attempt at entropy calculations for small polarons within the shell model.
Recent calculations by Harding and Martin [149], data from Hampton and co-workers [148],
and a molecutar dynamics study of the thermal conductivity of UQ; by Lindan and Gillan
[150), confimmed the importance of the polaron contribution in a heat conduction mechanism

in UQOs,.

3.64. Pressure dependence. The atomic positions involve a balance between several types
of force: short-range repulsion, polarization and intramolecular bonding. Cade and co-
workers [86] showed that, as the pressure was increased, there was a striking change to be
expected in the Vi centre optical transition for KCl. This should occur at pressures that
should be accessible. The defect energy is also sensitive to any decrease of ay, although
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this did not affect qualitatively the stability of the hole. Since the width of the valence band
increases as the lattice constant becomes smaller, this also affects the self-trapping energy.

Measurements of the pressure dependence of dielectric constants and of polaron transport
in uyranium dioxide give additional information, which can be used to separate the binding
and motion energy contributions to the observed Arrhenius energies in polaron transport.
The point is that the number of carriers depends mainly on €y, which determine the binding
of holes on U ions to oxygen interstitials, whereas the hole mobility depends on €! — ¢y L

3.6.5. Elastic properties. The volume change and the related elastic dipole tensor {151, 152]
have been calculated in several ways, and compared with experiment [153]. Apreement is
not good, perhaps because the result is sensitive to details of the precise potentials assumed
for the molecular ion’s interaction with its host (a point also suggested by relations among the
hopping energies for the several possible transitions in other systems [88]). The displacement
field has also been monitored by spin resonance, and more recently the potential of neutron
scatter in such studies has been assessed [154].

4. Small polaron diffusion

4.1, Basic ideas

In the standard approach to ionic migration, a key energy is that of a ‘saddle point’ relative
to the initial state. In simple cases, where the initial and final states are symmetrical, and
where there are no complications like change of charge state during the jump process, this
classical saddle point is obtained as follows. The moving ion is placed at the mid-point of
its path, and held there whilst the other jons are relaxed (both shells and cores if the shell
model is used). The energy of this saddle point telative to the initial state can be related
to the dynamics of classical diffusion. In small polaron migration, there is a quantum
component too,

The analogue of the saddle point is the ‘coincidence site’ (see figure 9). This is the
lowest—energy distortion {(in practice the configuration of the cores is what is defined, for
the shells are treated separately) which is such that the carrier (which could be ion, like a
proton, but is normally a hole or an electron) would have the same energy if localized at the
initizl or the final site, There may still be a barrier in the adiabatic energy surface between
the two sites, but the particle is able to tunnel between them for this geometry.

Suppose for this coincidence geometry the tunnel frequency is v. We anticipate that the
rate will be proportional to the probability that the energies associated with the two sites
will be equal to within v, and hence to Avexp(—W/ksT) at higher temperatures. Since
the rate, once the energies are equal to this accuracy, is then proportional to v (albeit with an
upper bound related to phonon frequencies) an overall rate proportional to v exp{—W/ksT)
is expected.

This is shown by fulier calculations [9, 10, 76] by explicit summation of the component
transition probabilities over vibronic states, plus thermal averaging over initial states and
summing over final vibrational states. This fuller calculation can only be carried through
with some quite strong assumptions (rormally an harmonic lattice and single vibration
frequency), so there are undoubtedly deeper questions remaining.

Clearly the saddie-point energy for classical diffusion can be calculated by the Mott—
Littleton method. What Norgett and Stoneham [88} showed was that the coincidence site
energy for small polaron motion could also be calculated by this method.
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Figure 9. (g) Classical diffusion and (b) small polaron motion. In (z) the energy surface
shown is that in which the lattice relaxes around the moving particle at each state, and E, is
the activation energy for motion. In () there is a thermal fluctuation (requiring energy Ej)
from the initial self-trapped state to the coincidence configuration, in which tunnelling can ocour
between states of the same energy on two adjacent sites.
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4.2. Working approximations

4.2.1. Charge redistribution during motion. The Mott-Littleton method, plus a knowledge
of the key interatomic potentials, is still not quite sufficient. There are decisions to be taken
about the response of host lattice electrons and cores and about the disposition of charge
at various stages of the coupled carrier—laitice motion. The details depend on the system
under study and, at least in principle, can be obtained from quantum chemical calculations.

Consider first a transition metal oxide (essentially a system in which the hole is localized
on one site). Initially there is a 3+ ion on site 1 and a 2+ ion on site 2. An electron jumps
from site 2 to site { (or the hole from 1 to 2). Let us first use the language of the classical
shell model [155]). We shall assume that the electronic polarization can follow the motion
of the polaron (hole), so that the shells of the ions are always in their optimum sites for a
given hole position. The positions of the ion cores, therefore, must be such that the hole has
the same energy whichever of the two sites is occupied (in the harmonic limit this actually
means that the energy does not change even if the hole were transferred gradually; the shell
model is not fully harmonic because of the short range forces, however). The sequence of
steps used is this: (i) find the relaxed (shelis and cores) initial state (E’, x’ say). (ii) Find
the relaxed (shells and cores) state with both initial and final states equally occupied (E”,
x” say). Note that this needs assumptions about whether the half hole is on the shells or
the cores, and note too that the half hole on one site does not interact with its other half on
the other site. (iii) Decide whether or not the transfer is rapid. '

This third point needs more careful consideration. If the hole transfer between two sites
takes place adiabatically, i.e. the hole follows the nuclei all the time, the transition state for
the hole transfer corresponds to the state in which the hole is equally shared between two
sites. Whether or not the transition is adiabatic should be determined by the value of the
transfer matrix element between two sites and the effectiveness of the vibrational relaxation
process.
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4.2.2. Adiabatic or non—adiabatic? The approximate quantum mechanical mode! of electron
transfer in a polar media, including the dynamics of the reaction coordinates relaxation, has
been presented in [156]. It suggests an ‘adiabaticity’ parameter G, defined as

G =2m|T % /hew Er (11)

where T is the electron transition matrix element between the initial and the final states,
1/w, is the characteristic vibrational relaxation time of the reaction coordinate, and Ejy is
the system reorganization energy. The reaction is considered to be adiabatic (G » 1) or
non-adiabatic (G < 1) depending on the size of &; G may be qualitatively interpreted as
the ratic between the time spent by the ‘reaction coordinate’ in the barrier region and the
time taken by the one electron transition between the initial and the final states. In order
to estimate the value of G we need to calculate T and Eg for hole transfer between the
nearest anion sites. According to the conventional definition £r may be caiculated as the
difference between the energy at the adiabatic potential energy minimum, corresponding to
the hole localization in its initial state, and the final hole state, but with the crystal relaxation
remaining the same as in the first case, The calculation of T is moch less straightforward
{157]. An approximate way of estimating T for the case of the resonant hole transfer in
a crystal was discussed in [82]). If the value of G for the polaron transition between the
two sites is much greater than 1, one resonant jump of the electron (hole) takes place much
faster than the decay of the resonant state for electron (hole) transfer due to the relaxation
pracess of the local vibrations. Hence the electron will be able to make many transitions
between the two sites and the loss of the phase coherence between these states becomes an
important question. As shown in [158], the reaction rate at this limit is similar to what one
would obtain by assuming that the hole followed the nuclei adiabatically. If so, then the
adiabatic barrier height (not yet what is observed in an Arrheniuns plot!} is £ — E’. If not,
i.e. slow transfer, keep the cores fixed at x” but put the hole solely on the original site and
allow shells alone to relax. This state has higher energy still, say £” + ¢"; the magnitude
of the barrier (in the same sense as above) is E” +¢” — E',

It seems likely that the ¢” term should be ignored, in that the transfer integrals for the
hole band in oxides seem to be bigger than the longitudinal optic phonon energy (see for
example discussion in [51]). If so, then in crystals where both electrons and holes are on the
same sublattice (e.g. MnO, FeQ, CoQ, NiQ, UQs) it can be shown that the efectron mobility
and the hole mobility will be the same to lowest order. This is important in the ambipolar
contribution to thermal conductivity in UO,, where one wishes to know its dependence on
stoichiometry (i.e. the G/U ratio).

Consider next a halide in which the Vi centre moves. The basic initial defect involves
a hole shared on two sites, | and C (the central site), and this transfers to a hole shared on
the two sites, C and 2. We may assume again that the shells respond rapidly. However, we
might identify at least two types of intermediate state. One type corresponds to the case
when the carrier tunnels to what is in effect the final charge distribution (G < 1). The other
type assumes a molecular ion is formed as an intermediate state (G > 1), with charges on
sites (1, C, 2) of (—A, [A — 1],—A), with A usually taken to be the proton charge (this
value is also uncertain in the absence of additional calculations). Which type is correct
needs self-consistent calculations outside the Mott—Littleton framework, Good agrecment
with experiment has been found for the Vi centre in KCI [83] and Al,Q5 [75] using the
quantum chemical embedded molecular cluster approach, but the experiments themselves
stil! leave much to be desired as a test of the prediction (see discussions in [75,83, 159]).
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4.2.3. Interatomic potentials. A further technical issue in both approaches is that it is
not clear that the short-range repulsive forces should be independent of charge state. Of
the several theoretical studies using pair potentials and aimed at estimating the activation
energy of Vg centre reorientations in cubic lattices [87,88, 160], the most comprehensive
were concerned with the mechanism of this process in alkaline earth fluorides [88] and
caesium halides [87]. Here, a check of sensitivity to the interatomic potentials showed
that modest changes of short-range potential with ionic charge state affected the relative
activation energies for jumps with different angles of reorientaiion. Thus one potential might
indicate the 90° jump had lowest energy, another potential favouring the 180° jump. Yet for
oxides, studies of charge state stability [161] show that keeping the same repulsive forces
for both charges is a good first-order approximation. However, the calculated adiabatic
barriers (which are smaller energies and so more sensitive to details) for the hole jumps in
MgO are unreasonably large [97]. These issues are being addressed by the current state of
electronic structure plus Mott-Littleton methods, as discussed in [28, 94, §2].

4.24. Polarization and electron correlation effects. Recent quantumn chemical calculations
[83] show that the activation energy required for Vi centre reorientation in KCl incledes
what can be described as the excitation of translational and rotational modes, and is strongly
affected by a change in the crystal polarization energy. The polarization energy itself, near
the coincidence configuration, is 0.2 eV greater than that for the equilibrium Vy geometry,
simply because the hole is more strongly localized onto a single site in the intermediate
state (see [54,74] for general discussion of this point). For KCI, the repolarization energy
(i.e. the difference of polarization energies at the coincidence site and the equilibrium
configurations) reduces the reorientation adiabatic barrier by about one third. This is quite
different from the one-centre hole jumps in MgO [82], where the hole is delocalized over
two nearest oxygens at the coincidence site for the hole diffusion. The polarization of the
crystal lattice at the coincidence state is then smaller than for the equilibrium one-cenire
polaron state, so the repolarization energy raises the barrier height in MgO.

In both the Mott-Littleton-type atomistic simulation [97] and the quantum chemical
Hartree—Fock [82] calculations of the barrier for the one-centre hole jumps in MgQO the
intraionic part of the electron correlation was effectively included in a semi-empirical manner
through the electronic part of the lattice polarization and the experimental values of the ionic
polarizibilities used in the calculation. The adiabatic barrier to hole transfer is given by the
energy difference between the state in which the hole is completely localized on one oxygen
centre and that in which it is equally distributed over the two adjacent oxygen sites. Within
this model the barrier results from the larger polarization of the surrounding lattice in the one-
centre configuration. However, in order to take into account the difference in the electron
correlation and in the kinetic energy of the hole in the two states the wavefunction of the
hole in both states should have much more variational freedom. In particular, the barrier is
found to be 1.05 eV at the ab initio Hartree—Fock level, while inclusion of the configuration
interaction (CI) technique for the valence electrons reduces this value to 0.23eV [82]. Within
the C1 method the wavefunction of the system is constructed as a linear combination of Slater
determinants corresponding to all possible single and double electronic excitations from the
ground state of the system. At the transition state, the local symmetry of the system is Dy,
and the main excitation involves the promotion of an electron from the doubly occupied
orbital to the singly occupied X, and of a second electron to an unoccupied orbital. In the
case of the localized hole state, the electronic configurations with the largest coefficients in
the CI expression do not involve excitations to or from the singly occupied orbital. Hence

the majority of the correlation energy in the one-centre state is due to elecirons in the
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doubly filled valence orbitals. Consequently, at the barrier point to hole migration, the hole
is distributed over several orbitals in the CI expression, giving rise to a extra contribution
to the kinetic and correlation energies.

4.2.5. Exciton motion and decompasition. In the exciton case the joint motion of an electron
and a hole has to be considered. Because of the high symmetry of the lattice (especially in
alkali metal halides and Li»O) the adiabatic potential energy surface of the lowest state of
the exciton may have two or more equivalent minima near the same anion site, separated
by some energy barrier. (In the alkali halides the X5 molecular ion in the off-centre
configuration of the STE may be displaced to the left or to the right from the anion site as
shown in figure 6). As has been pointed out by Chen and Song [162], in the framework
of the off-centre model of the STE, the mechanism for its diffusion in alkali halides may be
considered as comprising two steps: (i) a joint motion of the electron and the hole along
the (110} axis; (ii) rotation of the hole component of the STE which changes its direction by
60° (see figure 10); the process strongly resembles the 60° reorientation of the Vi centre.
This has been studied within the many-electron approach for the STE in NaCl {125].

a
b -
:'. /“"h {
O -
ra
Y A / e .
NV Figure 10. A schematic presentation of the process of 60° reorientation

of the sTE in NaCl. {a) The initial configuration {(see also figures 6 and
7). (b) The saddte point. (¢} The final configuration.

Exciton decomposition into a pair of primary defects is an example of a chemical
reaction in the solid state. The evaluation of the barrier for this process is a formidable task.
Although the crystal relaxation energies are usually large, the barriers for the processes of
the STE decay into defects, for diffusion of the STE and for migration of the hole component
of the primary defect pair, rarely exceed 0.1eV [21,40,41]. Such an accuracy is hard to
achieve reliably, even for simple defects, within even the best current theoretical methods
(see [28] for a discussion).

4.3. Comparison with experimental data

Experimentally, there are several distinct measures of activation energies. Each is usually
fitted to an Amhenius or altered Arrhenius expression locally, and we must ask what
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precautions are needed to relate fo the Arrhenius energy the activation energy calculated.
(i) Small polaron theory does not predict simply Arrhenius rates for hopping, but a more
complex form (see [88] for analytical and numerical expressions) which has a T/
prefactor in some limits (T large). At low T the apparent Arrhenius energy should be very
small, even for quite large activation energies. (ii) The Nemst-Einstein relation between
mobility and diffusion constant brings in another factor T in some situations, dependent
on what is measured, and this must be allowed for. (iii) There will ofien also be trapping
energies in the Arrhenius energy, and these must be included. In some cases (e.g. O
interstitials in U0;) a trap may accommodate two holes, and these defects will give two
trap energies, depending on whether it is the first or second hole removed. (iv) There may
be several distinct jumps (as for V¢ centres in fluorites). Note that reorientation can be
spectroscopically detected by decay of polarization with time, whereas linear motion (180°
jumps) can be detected only by decay of intensity.

There is a hidden assumption that the process being considered is indeed thermally
activated, i.e. an Arrhenius expression in which a physical meaning can be given to the
activation energy [163]. This is not always the case, especially for systems that have (or
appear to have) small activation energies. In these cases, one- or two-phonon processes
may be dominant, and the correct dependence is then often a power of T. If the rate varies
as T", then the apparent activation energy at temperature T is nkT; thus with » = 7 for
two-phonon processes [76], at room temperature the activation energy would appear to be
about .16 eV. Experimentally, it is very hard to decide between activated and power-law
dependences without data over a wide range of temperatures.

4.4. Special cases

Whereas the halides are understood reasonably well (especially qualitatively), the oxide
systems have caused considerable controversy, not least because of the experimental
difficulties faced in avoiding problems of impurities or near-surface non-stoichiometry, The
position for alkali metal doped oxides is much clearer, with sensible (rather then precise)
accord of theory with experiment for both binding and activation energies. For free polarons,
the experimental position is less clear: for MnO there appears to be a small polaron [164];
for FeO again a small polaron [165, 166] with its motion strongly influenced by defect
clusters [166]; CoG probably has a small polaron [164] too. NiO is especially interesting,
apparently having a small polaron, but with a large apparent activation energy [164]; a
surface contribution must be eliminated in experiment [164, 167].

The result for NiO raises an interesting possibility [167, 168], namely that the motion
is by excitation from a small polaron form into the large polaron form. Precise theoretical
estimates need values for both the localization energy and for the crystal-field terms. We
note that transitions may occur for coincidences corresponding to more then one final state
because of the several crystal field levels (see below), and these uncertainties are sufficiently
large to make a clear decision almost impossible. Nevertheless, this small-to-large excitation
‘mechanism seems to be one of the most sensible explanations of the experiments in NiO.
Thermally induced small-large transitions could also be important in the very different
system MgO, where only one or two phonons would be needed to change the state.

The thermal and electronic conductivities of non-stoichiometric oxides like UQ, present
one further problem, namely the high jump rates that are needed to understand some
experiments. High prefactors would not be a problem (though entropies of motion have yet
to be calcutated), but there are difficuities when the hopping rate itself appears faster than
the maximum phonon frequency, since that is an upper bound on the average rate that the
coincidence site can be reached. That problem is not resoived. One possibility concerns
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the multiplet structure from the crystal-field splitting. For many transition metal ions, the
partly filled shell of d- or f-electrons leads to low-lying levels, which may be 0.1 eV or less
above the ground state. This can help in two ways: there are more accessible coincidence
states {¢.g. the initial state may correspond to one of these low-lying levels, the final state
to another) and there is also a greater possibility of muitiple jumps. However, why the
rates are high may have yet another explanation. In oxides the level of non-stoichiometry is
significant (one charged defect every 100-1000 molecular units is common). These charged
defects have two effects. One effect is to make certain sites inaccessible, hence the Heikes
formula {169], which gives a rate proportional to c(1 — ¢) for fractional concentration c.
Another is to give random electric fields, which can be very large (up to 10 Vem™! at
these concentrations [170]), so that the jumps may be forced by these fields, rather than
simply the thermal motion a single polaron would have in an otherwise perfect crystal.

A further interesting situation exists for a completely different system: the excess
electron in liquid water provides a classical example of a small ‘dielectric’ electron polaron.
The hydrated electron has been treated using various quantum simulation techmiques
[62,65,171]F . The experimental estimate for the diffusion coefficient of the hydrated
electron (from the conductivity via the Nemst-Einstein equation) shows that it is about
2.5 times larger than that for negative halide ions CI™ or Br™ in aqueous selutions (see,
for example, [172]). Recent quantum molecular dynamics simulations of the hydrated
electron have shown that to a good approximation the excess electron wavefunction
adiabatically follows the fluctuations in the electron—water potential caused by thermal
motion of surrounding water molecules [173], so the high mobility of electrons relative
to classical jons comes from the absence of inertial effects [172]. The coupling between
solvent dynamics and that of the solute should be rather different in the inertial and adiabatic
cases. As was shown by Schnitker and Rossky [173], the electron is capable of following
the high-frequency solvent polarization fHoctuations associated primarily with the rapid
solvent vibrational motions, whereas the solvent, in its tum, responds to a substantially
shifted electrostatic source (diffusive electron) also on short timescales, However, recent
simulation [47] demonstrated clearly that the enhancement of the electronic diffusion rate in
the quantum simulations over the rate exhibited by classical ions can be attributed only partly
to the adiabatic dynamics of the excess electron per se, although it is essential. The specific
features of the solute—solvent interaction potential are also essential to the description of the
mobility of the hydrated electron. These features include, first, the relatively weak forces
that derive from the variation of the quantum kinetic energy with the spatial confinement of
the excess electron. Note that very similar problems are characteristic for the simulation of
polaron localization in crystalline materials within the static approach (see section 3.2 for a
discussion).

4.5. Muons as small polarons

That light interstitial atoms in metals behave as small polarons in some respects was
recognized several years ago [76]. The description of these systems needed concepts
and analysis beyond the standard polaron theories (e.g. moving beyond the Condon
approximation), and indeed hydrogen in metals proved to be one of the first systems for

i Several different models of solvation were proposed. In particular, Ovchinnikov has shown that the shape and the
thermal behaviour of the optical absorption spectra of the hydrated electron in water can be reasonably nnderstood
if the excess electron is localized on the water molecule situated in the centre of a cavity. However, since the
electronic affinity of the water molecule is most probably very small (if any) this model requires much more
extensive many-electron calculations.
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which detailed realistic models were attempted [36,163). The subsequent experiments using
muons pointed to new features again. Not only could the incoherent hopping regime be
studied, but the coherent motion of small polarons was also accessible. Moreover, the
electron gas in metals had dramatic effects on muon dynamics in this coherent regime
[174]. For our purposes, it is muon behaviour in non-metals that is of more importance,
though we shall confine our comments to an iliustration of the range and variety of polaron
behaviour once one goes beyond the standard idealized models. Most of the studies are for
muonium, i.e. a mucn with an associated electron. A general review is given by Cox [175].

4.5.1. Metastable states. Muons are slowed rapidly to thermal or near-thermal energies,
certainly on timescales short compared with the instrumental resolution of nanoseconds. It is
sensible to assume that the muon will quickly reach the lowest-energy relaxed state, and that
it is this state that is seen prior to muon decay after a few microseconds. There are several
clear exceptions to that argument. First, in the cubic semiconductors (Si, Ge and diamond)
the metastable (tetrahedral site) ‘normal’ muonium is formed as well as the stable (bond
- centre site} ‘anomalous’ muonium, and interconversion is thermally activated. Second, in
the ionic semiconductor CuCl, muonium exists in two forms at the same tetrahedral site
(that with four Cu neighbours): Cu(l) is metastable and mobile (locally: there is no long-
range diffusion), and Cu(II} is quaéi-stationary below 30K, both on the timescale of the
muon lifetime [176]. It is not clear whether the difference is vibronic, or whether electronic
excitation is involved, or whether it corresponds to what one might describe as delayed self-
trapping ([ 177} discussed some of the ways in which delayed self-trapping might occur; note
too [30] for the STE). Third, in KBr there is an anomalous fluorescence induced by muons
with an efficiency of perhaps 25% at the lowest temperatures [128]. This fluorescence
occurs after muon decay and appears to be related to, but distinct from, the spin-forbidden
Tuminescence from the ground state of the self-trapped exciton. One possibility is that the
muon has stabilized the exciton into a distinct metastable state on the lowest-energy surface,
a possibility consistent with much recent evidence that this lowest adiabatic energy surface
is relatively flat and that different routes to it lead to apparently different behaviour.

4.5.2. Mobility and local environment. Experimentally, one of the key quantities is a
refaxation function. This usually contains two pieces of information: a mean-square field
from magnetic dipole interactions with nearby nuclei, and a correlation time associated with
dynamic behaviour such as diffusion. The dipolar interactions and their dependence on
the direction of any applied field can be used to identify the site the muon occupies. Cne
fascinating experiment [178] shows that muonium in KCl has a diffusion rate falling as the
cube of T at lower temperatures. This leads to some puzzles not yet resolved. The natural
interpretation [179] is to say that the muon is moving coherently as a small polaron, and
that there is deformation-potential scattering by acoustic phonons}. However, this would
yield another problem [183]. If the polaron is moving coherently over N sites between
such scattering events (and these alone lead incoherence in the wavefunction) then the
mean-square field should be reduced by a factor N [ 54,184], which is not the case.

t The same conclusion may be reached far more easily [180] by calculating the standard deformation-potential
scattering. This is given by Kittel [181] for large polarons; the same formula holds unaltered for coherently moving
smatl polarons, though the temperature range is different, and this affects integrals over phoron occupation rRumbers.
This scatter time can ihen be inserted in the standard expression for a2 small polaron in the band regime, with well
- defined wavevector [182]. The cubic dependence on temperature appears to comespond o that observed, though
other problems remain. '
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5. Conclusions

Our first observation must be how widespread the application of the small polaron concept
is. The range of materials that show features characteristic of small polarons is very wide;
indeed, we have not discussed important cases like borides, or more exotic materials. Partly
the range stems from links of polaron ideas to conventional defect issues, where lattice
deformation and polarization is a crucial component of defect processes and spectroscopy.
The lattice relaxation which drives self-trapping is similar to the lattice relaxation which
stabilizes a range of charge states, which determines optical spectra, and which contributes
to characteristic activation energies. The link is at its clearest when a defect might be
regarded as a small polaron trapped by an impurity (such as a self-trapped hole bound to
an Na ion in CsI). Indeed, the interactions of smatl polarons with defects, or with other
small polarons, are especially important in polaron dynamics at finite concentrations, as in
non-stoichiometric solids. But, just as the small polaron ideas give a new way of looking at
certain defect states, so do defect ideas point to small polaron ideas which were not evident
in Landau’s original paper. The electronic excited states of self-trapped excitons (again not
discussed in any detail in this review), and especially the variety according to whether it
is the electron or hole (or both) that is excited indicates an important area of spectroscopy.
Trapped small polarons (like the V™~ centre in MgQ, where a hole is localized on an oxygen
next to a cation vacancy) have contrasting forms of excitation, too, both charge transfer (the
hole moving to other oxygens) and electronic excitation of the oxygen ion itself.

This leads to a second point, and indeed to the reason for this survey. Many
workers regarded (and may stili regard) small polarons as a simple extrapolation of large
polarons. Their theories use single phonon frequencies with couplings appropriate for
long wavelengths, and with little or no attempt to be system-specific. Certainly significant
qualitative results can be obtained this way, but it is hard to relate most of them directly to
the recent range of quantitative experiments, and such theories are of little help in unravelling
the complex dynamical behaviour of many systems. Quantitative modelling has been very
successful, now exploiting quantum chemistry alongside accurate interatomic potentials.
There are still technical problems, of course, partly because the energies that are needed are
relatively small. The momentum of polaron studies comes from their importance in defect
processes. It seems to us that the areas which will attract most attention reiate to polaron
dynamics: the self-trapping step, their motion (whether coherent or incoherent), and the
non-adiabatic transitions amongst electronic excited states.

The third point is more general: why do small polarons matter? Are they a mere
scientific curiosity? In the halides, the technological impact is present but not dominant:
there are links to the understanding of the photographic process for silver halides; there
are polaron aspects to the operation of x-ray phosphors like CsI:Na; the sputtering and
selective desorption processes have associations with small polaron processes. It is to the
oxides that one turns to see great practical significance, and especially the non-stoichiometric
oxides. For these, discussions of sensor operation or of catalytic behaviour will normally
involve small polaron concepts. Perhaps the clearest example, though, concerns the thermal
properties of urania at high temperatures, where the specific heat and thermal conductivity
are important parameters in safety cases for hypothetical reactor incidents. Both these
properties are dominated by small polaron behaviour at temperatures near to the melting
temperature. Such conditions are extremely difficult experimentally, so the case of urania

reinforces the point made above: good quantitative modelling is a vital complement to
experiment.
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