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Abstract. Much of small polaron ulenry is based on highly idealized models, often essentially 
a continuum description with a single vibrational frequency. These models ignore much of the 
wealth of experimental data, which find interpretation in many atomistic simulations. We review 
here a range of propenies of small polarons in real, rather ulan model. systems. The phenomena 
fall inlo three main classes: (i) the mechanisms and dynamics of self-trapping of polarons; 
(ii) stafic propenies4e relative energies of large and small polarons. the optical transitions 
expected, their effect on pmil im of other ions and on latlice vibrations, their papulation in 
Ihermal equilibrium. and so on; (iii) small polamn hopping and diffusion. We discuss the key 
concepu and methods of calculation ofpolarons, and explore the properties of self-trapped holes 
and excitons in ionic crystals. and those of an excess dectmn in liquid warer. 

1. Introduction 

In 1932 a short note by Landau 1 I] set the stage for small polaron studies with classic brevity 
and clarity. He observed that there were two quite distinct cases for an electron coupled 
to an otherwise perfect (but deformable) lattice. In one, the electron moved ‘freely’; in 
the other, the electron would be trapped at a strongly distorted region. Landau even noted 
that the electron could be trapped in the second case only by excitation over a barrier. The 
stimulus for this work was the further conjecture that this ‘small polaron’ might explain 
colouration in NaCI. This last point was not verified, at least as proposed, although the 
alkali metal halides did provide the first clear examples of small polarons when Kanzig 
discovered the VK centre in 1955 [Z]. The possibility of the exciton immobilization or 
self-trapping at low temperatures was suggested by Frenkel in 1926 [31, and Kabler 141 and 
Lushchik [51 showed the existence of the self-trapped excitons in KI in 1967. 

Landau’s remarks on the barrier to self-trapping were verified for the excitons in alkali 
metal halides, though not until much later. However, the existence of the barrier between the 
free and the self-trapped exciton states was further developed theoretically by Rashba in 1957 
[6], when he pointed out the importance of the short-range interactions. The coexistence 
of free and self-trapped excitons in alkali halides was first observed experimentally by 
Lushchik and co-workers in 1976 [7] and interpreted theoretically in several papers in 
terms of a potential barrier between these states (see 181 for a review). 

The conditions Landau envisaged would clearly affect transport properties too. The 
strong electron-phonon coupling would lead to very short mean-free paths; indeed. as 
shown by Yamashita and Kmsawa [9] and by Holstein [IO], one would expect an incoherent 
‘hopping’ transport mechanism in many cases of interest. Instead of the traditional behaviour 
of metals, where the phonon scattering becomes stronger as vibrational amplitudes increase, 
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so the carrier mobility decreases when the solid grows honer, one might expect the small 
polaron mobility to increase with temperature as incoherent hopping from one site to another 
becomes easier. 

Landau’s ideas were taken up by many later workers. Some generalized the picture 
phenomenologically, whereas others studied the particular properties of some hypothetical 
polaron state. Most of the present theories may be roughly classified in three categories: (i) 
developing the criteria for self-trapping and the phenomenological theory of polarons and 
excitons; (ii) simulating the process of self-trapping from delocalized states; (iii) studying 
the microscopic structure and properties of localized polarons. 

Phenomenological approaches based on the theory of electrons (excitons) in phonon 
fields [ 1 I ]  focus on the studies of how the stability of different types of polarons depends 
on the strength of the coupling beteween electron (exciton) and lattice, the dimension of 
the lattice and other parameters. Much of this field has been reviewed recently by Gerlach 
and Lowen [IZ]. In particular, Emin and Holstein [13] gave a very clear analysis using 
an adiabatic approximation and a continuum model for the lattice. Their scaling argument 
pointed out that, depending on the nature of the electron-phonon coupling (e.g. deformation 
potential against Frohlich coupling), there were several different categories of behaviour (see 
figure 1): some systems might have large polarons only, others small polarons only, still 
others could be of either type, with a barrier between the configurations, etc. In particular, 
for a three-dimensional continuum, a purely short-range electron-continuum interaction 
always yields two distinct cases: a small polaron state and a non-polaronic free state; the 
addition of a long-range component to the electron-continuum interaction can convert a 
non-polaronic state into a finiteradius polaron state. Another result of this work and that of 
Toyozawa [I41 concerns the dependence on the dimension of the lattice. In one dimension 
only a single stable state is predicted, corresponding to the localized polaron. This contrasts 
with the three-dimensional case, where two minima of the adiabatic potential are always 
predicted, corresponding to delocalized and strongly localized situations. 

Energy. E(L) 
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Figure 1. Regimes of behaviour for 
an electron coupled lo lanice distortion. 
The total energy is given as a function 
of scale length L characterizing a Io. 
calized normalized elecmn wavefunc- 
lion ( L / L O ) - ~ I ~ $ ~ ( T / L ) .  I: no short- 
range potential defomaIion-p’Aential in- 
teraction. Only a large polaron forms. II: 
pure short-range coupling to dilatation. 
Note lha! then are only small polamn 
( L  -+ 0) and k e  polamnic (L = m) 
minima In. IV general cases showing 
only small polarons (IV) or both small 
and large polarons separated by a M e r  
(110. After Emin and Holstein [13]. 

Toyozawa and co-workers [ I  I ,  I51 also looked at the effect of electron correlation, in 
an ‘STU’ model (where S is a measure of the electron-phonon coupling, T is a measure 
of the bandwidth of a bare electron in the absence of such coupling, and U is the Hubbard 
U ,  measuring the electron-zlectron interaction and including electron correlation). Other 
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workers made extensive formal calculations, especially based on the Frohlich model. These 
theories and the results of extensive experimental studies revealed a much richer picture 
of possible polaron and exciton states, which we attempt to summarize in table 1. The 
distinction between small and large polarons has very clear observable consequences. For 
example, the large polaron mobility decreases with rising temperature thmugh phonon 
scattering, whereas small polaron mobilities rise with temperature, as shown in figure 2. 
As was pointed out by Ueta and co-workers 1111 this smalMarge polaron nomenclature, 
although convenient, should be used with some caution. It may give a wrong impression 
that the ‘small’ polaron is simply the strongcoupling limit of the electron-polarization 
(optical phonon) interaction. The short-range interaction with acoustic phonons can trigger 
a self-trapped state, which can coexist with the largeradius or delocalized state [6,11,16]. 
It is this short-range interaction that makes the self-trapping a kind of critical phenomenon, 
which may be chamcterized by the abrupt change of parameters like the effective mass 
as a function of electron-phonon coupling constant. In contrast, although optical phonons 
do make a major contribution to nature of the polaron state, interaction with them alone 
leads only to a smooth change of the effective mass. The issues here point to one of the 
problems of the phenomenological theories, namely the emphasis on behaviour as a function 
of coupling constant. Experimentally, it is very difficult to alter the coupling constant, so 
that is hard to validate the phenomenological theories. 

Table 1. Typs of polaron. This table gives examples of some of the polaron systems observed 
experimentally. 

Large polaron 

Small polaron 

e in alkali halides e, h in 11-V and p u p - N  semiconductors. 

(i) One species only (e small or h small. not both) on one ion: 
h in AgCI. solvated e in water and alcoholic systems. 
(ii) Bo& electrons and holes small; one ion only: 
e. h on cation for certain @sition metal oxides. 
(iii) One species on two sites: 
h in halides (VK centre). 

(iv) One species on many sites: 
‘Polaron’ in mns-plyacetylene. 
(v) Exciton: 
excitons in alkali halides, Si%. 

(i) Trapped onto impurity site: 
transition metal ion impurity. 
(ii) ‘napped ono impurityldefect sublauice 
VK next to Br in KCI. 
(iii) ‘napped onto another sublattice 
VK next to Na in KCI: h near Li in MgO. 
(iv) Both l q e  and small polarons 
happed by the same defect: 
(a) Bistability: CdFz:ln 
(b)  CsI: Na; (e large. h small). 

(ii) Oxide superconductors. 

Trapped polaron 

Bipolaron (i) Electrochromics WO, eIc. 

We note in passing that, although the effective mass is one of the main characteristics of 
a large polaron, it should be treated with caution at T # 0. As was pointed out recently by 
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Figure 2. Observed e l m n  (e) and hole (h) mobilities in oxides, The lower limit for large 
polamns corresponds lo a mean-free path equal lo the interatomic distance. 7he upper limit 
for small polamns conesponds to one hop every lattice vibralion period. Note the opposite 
kends with temperature: for small polamns and ions, thexrnd activation is mded, so higher 
temperaNres raise the me; for large polamns. phonon scattering reduces the mobility al higher 
temperatures. 

Smilga [ 171, a comparison of the experimental shift of the cyclotron line maximum with the 
temperature dependence of the 'inertial mass' of a polaron is not always straightforward. 

The enhancement of the effective mass at the transition from the free to the self-happed 
polaron state proves to be of the order of exp(y-'), where y is defined as the ratio of the 
phonon energy to the halfwidth of the bare electron band. Since this parameter characterizes 
the relative rapidity of an excess electron and atoms in the lattice, y is sometimes referred 
to as a non-adiabaticity parameter. As shown by Emin and Holstein and by Toyozawa and 
co-workers [13,14] (see also [ 181 for a review), in the adiabatic limit ( y  +O) the transition 
between the free and the self-trapped states corresponds to a change in the relative stability 
of two minima in the adiabatic potential, and these minima are separated by an energy 
barrier (see figure I). We emphasize that these theories do not take into account a finite 
speed of the lattice relaxation (the so-called 'cooling transitions', cf. Stoneham 1191). In 
particular, as was noted by Wagner and Koengeter [20], on the transition between free and 
localized states of an exciton there could be a 'phonon bottleneck' which does not allow 
the lattice modes coupled to the exciton to get rid of their energy by means of phonon 
transpon. The speed of the lattice relaxation plays a crucial role in all dynamic processes. 
including the polaron(exciton) localization and transport [21]. In particular, it is one of 
the main factors that determine the characteristics of the 'hot' luminescence of excitons in 
alkali halides, which is emitted in the course of their self-trapping [22]. 

Although the phenomenological theory is reasonably satisfactory, as reviewed by Ueta 
and co-workers [ I l l ,  a few workers looked more closely at what might be expected in 
real solids. Among those was Mott, whose early work in this field is summarized in [23]. 
These studies led the way to the systematic use of Mott-Littleton methods [24] in serious 
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quantitative studies of polarons. The methods suggested first by Mott [231, Gilbelt [B], 
Toyozawa [16], Tolpygo [26] and Fowler [27] then were developed by many other workers. 
However, numerical studies of the microscopic structure and properties of self-trapped holes 
and excitons are still difficult problems (see, for example, [28]). 

The recent development of new femtosecond scale pulse optical spectroscopic 
experimental techniques [29] set a new stage for experimental studies of the mechanisms 
of dynamical processes in the condensed phase after electronic excitation. Valuable results 
have already been obtained on the dynamics of the relaxation processes of the excited states 
of the triplet self-happed exciton in NaCl [30]. A similar technique has been applied to 
the study of the hole polaron self-trapping in KBr [31], KI and RbI [32] and relaxation of 
solvated electron in water [33,341 and alcoholic systems [35]. Studies of the dynamics of 
the early stages of self-trapping of polarons and excitons in real systems have created a new 
class of very fascinating problems. 

In the later parts of this review we shall be concerned with a range of properties of 
small polarons, focusing primarily on the concepts and methods of their atomistic computer 
modelling and simulation. These fall into three main classes: (i) mechanisms and dynamics 
of self-happing of polarons; (ii) static properties-the relative energies of large and small 
polarons, the optical transitions expected, their effect on positions of other ions and on lattice 
vibrations, their population in thermal equilibrium, and so on; (iii) small polaron hopping 
and diffusion. One cannot separate the computational modelling entirely from the analytic 
theory. We will therefore discuss some aspects of the analytic theories which provide a 
background for computational studies. A number of recent reviews have concentrated on 
these general concepts and phenomenological theories of polarons. These are by Stoneham 
[36], Gerlach and Lowen [12], Fisher, Hayes and Wallace [37], Stoneham and Smith [38]. 
To keep this review to a reasonable length, we shall omit several important problems: 
polarons and solitons in polymeric materials like frons-polyacetylene, magnetic polarons in 
magnetically disordered materials, bipolarons in superconductors, and negative4 systems. 

The range of practical implications is itself quite formidable, even if one ignores the 
applications to amorphous and disordered systems and to some of the newer systems (like 
bondes or fullerene C, [39]) which may have some small polaron characteristics too. The 
self-trapping of excitons has been observed in a wide variety of insulating solids with strong 
exciton-lattice coupling, like alkali metal halides, alkali earth fluorides and some oxides 
[21,40.41]. It is responsible for various photochemical- and radiation-induced processes, 
including defect formation and optically-induced desorption [21,42]. Small-radius hole 
polarons and self-trapped holes are well studied in alkali metal, alkaline earth and silver 
halide, and other crystals [11,43]. The fact that the carrier is localized has important 
consequences: first, electron-electron interactions are more important; second, reactions 
involving localized carriers lead to local release of energy so that polarons participate in 
photo-induced processes. 

It is clear that polaron studies lead to several particular technical difficulties, which will 
become increasingly clear with specific examples. First, localized carriers mean ions in 
non-standard charge states. Some, like the 3+ states of CO or Ni or the I - state of 0, arc 
seen in Nature, whereas others, like the -1/2 state of Cl, are known only in molecular ions. 
Estimates of the polarizibilities and short-range forces involving the non-standard charge 
states are problematic. Therefore they have to be treated using manyelectron quantum 
mechanical techniques. Second, we shall combine (and sometimes compare) energies from 
two quite distinct calculations: those from band structure for a rigid perfect lattice, and 
lattice distortion and polarization from cluster-type calculations. Real caution is needed 
to avoid double-counting of energies; there are also problems in the determination of the 
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correct bandwidth of the polaron band and in the appropriate value for the crystal electron 
affinity. Third, we shall consider very small energies, often 0.1 eV or so, where useful 
accuracy is easier to claim than to demonstrate, except in very favourable circumstances. 

A L Shluger and A M Stoneham 

2. Localization process 

After Kanzig's initial spin resonance observation of the VK centre in KCI [Z], there was 
one general point which caused special concem, especially among those theorists whose 
background was band theory. This is based on Bloch's proof that, for a perfectly periodic 
solid, the eigenstates must also have periodicity: surely one should not find apparently 
localized states? In fact, one should consider the whole system (i.e. electrons and phonons) 
and should recognize that the small polaron might be found on any translationally equivalent 
site with equal probability. The Bloch-like wavefunction of the polaron in both free and 
localized states has a general form: 

L 

where Yjjs(r. Q) is a normalized wavefunction of the polaron on site L, j enumerates 
branches of the corresponding polaron bands, r and Q are the electron and the phonon 
coordinates, respectively. There are several points to note here: the point symmetry of the 
free and the localized polaron states (e.g. the one-centre hole or the VK centre) are different, 
therefore k, L, Q and even j are generally not the same; for the localized state the transition 
matrix elements of the Hamiltonian between different sites, IHLL,I. although they are much 
less than the corresponding diagonal matrix elements, determine the transport properties of 
the polaron; special attention should be paid to the timescale on which experiments are done 
relative to the timescale of polaron relaxation from a free state and its transitions from site 
to site. 

2.1. Electronic polaron 

The electrons respond more rapidly than the ions to the creation of a carrier, and the 
electronic polarization of the host lattice ions affects the way the localization process 
evolves. The response to a free camer can be described in terms of an electronic polaron, 
a quasi-particle which consists of an electron or hole together with its associated electronic 
polarization [45]. The nature of the electronic polaron state has been discussed by many 
workers in the context of the interpretation of interband transitions, in particular, optical 
properties of insulators, photoelectron emission spectra, x-ray photoemission spectra (XFS) 
and x-ray absorption spectra (XAS), electron spectroscopy for chemical analysis (ESCA), and 
other spectroscopic experiments (see, for example, [46] and references therein). This state 
is also relevant to many electrochemical processes that are concemed with thermalization 
and solvation of electrons. There are two basic questions to address here. First, what is 
the wavefunction of the electronic polaron? This determines the matrix elements of the 
electronic excitations in spectroscopic experiments, and the localization rate in the polaron 
studies. Second, what is the energy of the electronic polaron with respect to the ground 
state of the system before excitation? This determines the ionization and excitation spectra, 
and the relaxation energy into a final polaron state. 

We must emphasize a distinction between two models. For polar systems, it is clear that 
the dynamical effects of electronic relaxation and correlation may strongly affect the extent 
of localization and the energy of the quasi-particle in both crystals and liquids. This was 
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recently recognized also for the hydrated electron [47]. Another common approach, which 
might be adequate for electrons in liquid helium end similar systems, adopts a one-particle 
cavity model: it is claimed that the effects of electronic relaxation of the atoms caused by 
the polaron can be neglected and its localization is sensibly described within a one-electron 
model in terms of a classical polarization of the media or more refined approaches [48]. 

This point can be illustrated in the example of corelevel spectroscopy, where. in the 
final state of x-ray photoemission or absorption spectra, a core hole is left behind, and in 
some cases it couples with valence electrons. Qualitatively, a very similar situation exists 
for excitations from different states in the valence band of crystals with mixed bands, such 
as AgCI. In the systems with incompletely filled f or d electrons, the coupling between the 
core hole and the d or f electrons is strong enough to bring about characteristic spectral 
splitting in XPS and u s  (see [49] for review). 

The energy of electronic relaxation following localized excitations or ionization from 
core states is comparable with, or even larger than, the interactions between valence electrons 
which determine the valence band width. These many-electron effects are often treated using 
quantum chemical calculation techniques and embedded molecular cluster model. Although 
the wavefunction of the polaron state should be periodic, the localized cluster description 
can give reasonable ionization and excitation energies. There are several technical points to 
note here. (i) Most of the many-electron calculations use the oneelectron approximation, in 
particular the Haruee-Fock (HF) method. Within this method the eigenfunction of the Fock 
operator is not necessarily the eigenfunction of the point group operator representing the 
total group of the system. What Bagus and Schaefer pointed out [SO] was that symmetry- 
unrestricted or ‘broken symmetry’ KF solutions will provide a better first-order description 
in such a situation. The instability of w symmetry breaking solutions in different types of 
systems has been discussed by many workers (see, for example, [5 I] and references therein). 
(ii) A simple model analysis shows [52] that the Occurrence of broken symmetry solutions for 
hole states depends on the relative magnitudes of orbital energy splitting and the relaxation 
energy connected with the electron ionization from these orbitals. If local relaxation effects 
accompanying ionization are large compared to the delocalizing interactions that determine 
the orbital energy splitting, the lowest energy is obtained with a wavefunction corresponding 
to the lower symmetry so that the hole can localize on one of the geometrically equivalent 
atoms. (iii) Since all atoms are in their sites, both point and translational symmetry should 
be preserved in the exact wavefunction of the electronic polaron. This can be achieved if 
we use the more rigorous treatment discussed below. 

That a broken symmetry HF wavefunction corresponding to the hole localization at one 
site in a small cluster has a lower energy is partly due to an increase of the electronic 
relaxation energy (the relaxation energy decreases as the charge is spread out), and partly 
due to electronic polarization of surrounding atoms (see, for example, [531 and p 35 of [541). 
However, the correlation between elect”, which was only partly taken into account in 
the broken symmetry HF state, promotes the delocalization of the hole and restoration of the 
symmetry of the wavefunction. This effect can be treated by projecting proper symmetry 
states out of broken symmetry wavefunctions and using different configuration interaction 
techniques [55-571. In particular, the wavefunction of the system may be constructed as 
a linear combination of a wavefunctions corresponding to the hole localized onto different 
equivalent sites. The non-diagonal elements of the Hamiltonian between these states an the 
many-electron transfer integrals. If these matrix elements are large the total energy may be 
greatly reduced and the electronic density distribution may appear quite different from that 
corresponding to the broken symmetry solution. As has been demonstrated in [55], within 
an accuracy of several tenths of one eV, the broken symmetry solution already gives quite 
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a reasonable description of the photoionization and optical absorption spectra. However, 
this accuracy is not enough for the calculation of the barriers for self-trapping of polarons 
and excitons, which should be treated with proper account taken of electron correlation. 

Because the electronic polarization of the lattice accompanying the electronic polaron 
is largely ‘inertialess’ it affects transport properties but little. For a slowly moving quasi- 
particle we will consider the electronic polaron as a ‘free’ state. In simple cases, such 
as alkali halides where the electronic polaron state for the valence hole may be sensibly 
treated as localized on one of the p orbitals of the anion, the dispersion of the free hole 
band coincides with that for the valence band. As was demonstrated by Fowler [27] it is 
acceptable to calculate electronic polarization effects in these crystals using the classical 
approach of Mott and Littleton. In the next sections we will examine the effect of the 
‘inertial’ coordinates on the localization process and polaron structure. 

2.2. Localization rate 

The phenomenological theory for the three-dimensional case in the adiabatic limit 
qualitatively demonstrated that a purely short-range polaron-continuum interaction always 
yields two distinct states: a small polaron-like state and a free state separated by an adiabatic 
potential bamer 1131. The addition of long-range component to the polaron-continuum 
interaction can convert a free state into a large-radius polmnic state, still with a barrier 
between the two states. If a long-range component is ‘sufficiently strong’, the large-radius 
state may collapse into the small-radius polaronic state suppressing the barrier. Therefore 
if the system is first produced in a free state, and if self-trapping is to occur, it may have 
to pass through a potential bamer (see figure 3). The height of this barrier depends on 
the nature (one-centre, two-centre, etc.) and the degree of localization of the final state of 
this transition. If the localization process happens after the polaron has thermalized and 
at low temperatures the system should tunnel from the bottom of the band of free states 
(or from the large polaron state), and in order to calculate the tunnelling rate one needs to 
know the wavefunction of the localized state (the so-called state of nucleation [58] )  at the 
tunnelling energy (see figure 3). A state of nucleation with appreciable lattice distortion but 
less localized then the final self-trapped state is formed by quantum mechanical tunnelling, 
and then relaxes in order to stabilize itself. In this case a self-trapping rate is a rate with 
which the most probable nucleation state is formed [58]. The initial nucleation state in some 
cases can relax into a transient metastable localized state and subsequently transfer into a 
final stable state. Model calculations suggest that in some other cases the adiabatic picture 
may fail and the localization process may be driven by the speed of lattice relaxation [ZO]. 

We should stress that these arguments are valid not only for the crystal case but also for 
localization of an excess electron in water and other polar solutions [59], as well as in liquid 
helium and neon [601. However, current understanding of the dynamics of localization of 
polaron in crystals and polar solvents differs. Generally speaking. the non-radiative decay 
rate for the transition from the free polaron state to the localized state is determined by 
an electron matrix element of the non-radiative coupling between these two states and a 
Franck-Condon vibrational overlap factor. The latter is determined by the configurational 
changes between the initial and the final states, so both short-range structural modifications 
and long-range polarization (i.e. optical modes) are involved, as was described in the 
previous paragraph. These appreciable configurational changes are provided both in crystals 
and in the polar liquid by short-range structural fluctuations. However, in liquids, pre- 
existing configurational order may also contribute to the localization process. In particular. 
a quantum molecular dynamics simulation [61] of the electronic states accessible to an 
excess electron in pure liquid water prior to any induced liquid configurational relaxation 
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Q 
Figure 3. Adiabatic potentials associated with the free slates and the nucleation state of the 
self-trapping exciton [58]. Q is the reanion cwrdinate for lhe nuclearion of self-trapping. 

has demonstrated the existence of many pre-existing fluctuations capable of trapping an 
electron into a shallow ground state. However, solvent configurations supporting deeply 
trapped states are relatively highly improbable in the pure liquid. Pre-existing shallow 
fluctuations may serve as initial traps for excess electrons in liquids, so that localization of 
at least a fraction of them may happen with barrierless pre-localization in already-existing 
potential wells. The other component may behave like electrons in crystals, and tunnel into 
nucleation states or localize adiabatically, as was numerically simulated in [62]. At present, 
it is very hard to determine which case actually occurs from experiment 

The calculation of the self-trapping rate for the adiabatic barrier scenario has been 
studied by several authors (see, for example, [8,63]). The most comprehensive work 
relevant to real systems is that of Sumi [58]. In the study of the self-happing of excitons 
in alkali halides he demonstrated that the nucleation state in these materials should have 
a scale of a lattice constant. In his work he considered the one- and two-centre-type 
nucleation states with different degrees of localization of the exciton wavefunction. Using 
a phenomenological approach, and the theory of non-radiative tunnelling transitions, he 
calculated the tunnelling rate between the free state and different nucleation states of 
the exciton as a function of the parameters of the Hamiltonian (the localization and 
relaxation energies in the nucleation state) and of temperature. The localization energy, 
B, is determined by an increase of the exciton kinetic energy due to its localization in the 
nucleation state, whereas the relaxation energy, S, is gained due to the relaxation of the 
lattice in this state. As has been shown by Sumi, both B and S strongly depend on the 
degree of localization of the exciton. At low temperatures the tunnelling rate from the free 
into the nucleation state is given approximately by [58] 

WO = 4 r r * ~ B * e - ~ S ~ - ~ /  r(S - B + 1) for S > B (2) 

where U is the characteristic frequency of the lattice vibrations that govem relaxation of 
the system, and r is the Gamma function. Sumi’s theory gave a reasonable qualitative 
account of the mechanism of the self-trapping of excitons in alkali iodides, where the 
existence of the potential barrier between free and self-trapped states of the exciton was 
proved experimentally. In particular, the theory predicts that self-trapping of excitons in KI 
and RbI most probably takes place through the nucleation state of the one-centre type. 
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Intuitively, it is natural to believe that holes in alkali halides self-hap through a two- 
centre nucleation state (see figure 4(b)) which, in turn, relaxes directly into the well studied 
VK configuration. However, recent femtosecond scale spectroscopic experiments suggest 
a different model for the early stages of this process in KI, RbI [32]. The two-photon 
excitation employed in these experiments, with an energy of about 8eV first produces a 
free electrowhole pair in the bulk of these crystals. Very similar optical absorption spectra 
have been observed after the excitation pulse in pure samples of KI and in those doped 
with the electron-trapping impurity (NO;) in the time domain 0.3-2Ops. An intense optical 
absorption spectrum is observed after only 0.3 ps. It differs strongly from that of the VK 
centre, which appears only later after 3ps, and rises during lops. Similar behaviour of the 
transient optical absorption has been observed in RbI. However, in KBr a broad featureless 
optical absorption band was observed just after the pulse; this band hansfoms into the 
absorption spectrum of the VK centre after about lops. Since the behaviour of the transient 
optical absorption in both pure and doped samples of KI is the same, this suggests that the 
band may be attributed to some metastable state of the hole in these crystals. It is plausible 
to assume that the transient optical absorption observed 0.3 ps after the excitation of KI can 
be attributed to one-centre hole polarons (see figure qa) )  which subsequently transform 
into the VK centres. 

Figure 4. Onecenlre (a) and twoantre (b) rypes of hole sell-trapping in cubic ionic 
cryslals, which are shown schematically fa KI. Armws indicate, the directions of nonequivalent 
displacementr of lhe nearest-neighbow ions in both nucleation and relaxed stares. 

2.3. Quantum molecular dynamics approach 

Another approach employed in several recent studies is based on the adiabatic simulation 
of the dynamics of electron excitation, localization and migration. It employs a quantum 
path-integral molecular dynamics technique. or a direct description of the electron in terms 
of wavefunctions, and has been successfully applied to the simulation of the excess electron 
localization and diffusion in molten ionic salts [MI, liquid warer [62], and small polar 
[6Sl and alkali halide [66] clusters. The path-integral technique is developed from the 
ideas of Feynman 1671; indeed, one of the first applications of his method was to the 
polaron problem [68]. Feynman’s ideas exploit the equivalence between quantum systems 
and related (but different) classical systems; these ideas were taken up by many workers 
and developed into powerful simulation techniques [69,70]. It is this quantum-classical 
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‘isomorphism’ that leads to a simple representation of quantum particles in computer 
simulations. In the case of the real wavefunction representation of an excess electron in 
polar media, efficient methods have been developed for evaluating the Bom-Oppenheimer, 
or adiabatic, electronic states associated with a given molecular configuration [71,72]. The 
excess eEectron-molecule interaction is usually treated in the pseudopotential approximation 
(see, for example, L48.731). The efficiency of the simulation of the propagation of the 
wavefunction in time is based on algorithms using only simple multiplicative operations 
and repeated fast Fourier transforms [71,72]. 

Recent experiments have provided time-resolved femtosecond spectroscopy [34] of the 
electronic states of an excess electron in water at an early stage, well before the spectrum of 
the hydrated electron finally emerges. These experiments show that the electron transforms 
into a pre-localized state on a subpicosecond timescale and this manifests itself at the 
earliest times via a diffuse infrared spectrum. Even in the first experiments [331 it was 
noted that the relaxation process leading to initial infrared absorption is much shorter 
than the dielectric relaxation time of water (7.4 ps at 30°C). The evolution of the solvated 
electron absorption band (on the timescale - 4ps) exhibits the solvent relaxation around 
the localized state initially formed. This process was simulated in [61,62] by calculating 
the time evolution of the electronic gmund state in the solution in the Bom-oppenheimer 
approximation. The time dependence of the electronic state arises solely from the time 
dependence of the nuclear coordinates. The new electronic state is evaluated by solving the 
time-independent one-electron problem for each new solvent configuration in the sequence of 
molecular dynamic timesteps. Although the results of the simulation seem to be reasonable. 
quantitative predictions are. still not very reliable because of the oversimplified description 
of the electron-water and water-water interactions (see also discussions in [471). 

3. Stability and properties of small polarons 

The basic strategy for the study of the polaron stability in most atomistic simulations 
concems the extrema of the energy surface and the energy differences between such 
extrema, rather than the process of localization and the complete energy surface. The 
phenomenological theory of small-radius polarons predicts that the one-centre polaron state 
is always more stable than the two-centre state, whereas the energy difference between 
these two configurations is equal to the activation barrier for diffusion of the one-centre 
polaron (see, for example, the discussion in [74]). However, in some crystals such as 
alkali halides, alkaline earth fluorides [44], and possibly alumina [751, the two-centre state 
of the hole polarons is stabilized by the formation of a chemical bond between the two 
anions sharing the hole. These effects can be sensibly understood only on the basis of more 
sophisticated quantum mechanical calculations. Combined with the calculation of optical 
absorption energies, as well as other observables like magnetic resonance parameters and 
activation energies for diffusion, they can provide quantitative comparison between theory 
and experiment. 

As was pointed out by Flynn and Stoneham 1761, in many cases the wavefunctions of 
the localized polaron states may be treated as sensibly exact eigenfunctions of the total 
Hamiltonian. They bear the same relation to the exact eigenstates that Wannier functions 
bear to Bloch functions. Note, too, that for the mean energy of the band of the localized 
states both Bloch and Wannier representations have exactly the same value. Just as in 
the construction of Wannier functions, the localized functions of different sites may be 
orthogonalized. Nevertheless, they are mixed by the exact crystal Hamiltonian, and the 
transitions induced between different polaron configurations may be related to the polaron 
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hopping motion through the crystal. This approach has been used, for instance, by Holstein 
[IO]. In the latter work the electronic-overlap term of the total Hamiltonian, which is 
responsible for the polaron jumps between sites, was treated as a small perturbation. In 
zeroth order, i.e. in the absence of this term, the polaron may be treated as permanently 
localized at a given site. Within the static approach, which concerns the microscopic 
characteristics of the small polaron rather than the dynamics of its diffusion, this state is 
treated as approximately stationary. 

The pioneering calculations of small polaron against large polaron stability in actual 
(rather than model) systems were those of Gilbert 1251 (described in [77] by Fowler). The 
idea of Gilbert was to introduce a two-step procedure: (i) to localize the polaron from 
completely delocalized state onto several lattice sites; (ii) to calculate the energy gain due 
to the lattice relaxation from this state into the final polaron state. These calculations were 
primitive, but very illuminating. They suggested a calculation scheme, which was taken 
up in many other static approaches to the problem of polaron smcture and stability. In 
particular, they showed why holes self-trap in alkali metal halides but electrons do not in 
essence the difference comes from conduction bands, which are wider than valence bands, 
and f" the chemical binding forces within the anion molecular ions. 

It is interesting to compare these Mom-Littleton calculations with those of earlier 
workers (see [78], p 60 for a summary). The argument then was that the localization of 
the polaron produced a potential well from ionic polarization (so involving cion a dielectric 
constant determined by the ionic polarization and defined by 

(3) 
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l/Eion = l/Em - 1/60 

in terms of high-frequency and static dielectric constants); the potential well would be 
Coulombic, screened by the ionic polarization, outside the polaron radius R, and roughly 
constant inside the well. Minimizing the total energy, including kinetic energy, gives Rp in 
terms of cion. etc. For the small polaron, the effective radius becomes small, comparable 
with or less than interatomic spacings. In the fuller analysis the kinetic energy is replaced 
by band parameters, and the ionic polarization is modelled atomistically using the shell 
model and the Mott-Littleton method. However, the different mles of electronic and ionic 
polarizations continue to be essential, and the simple dielectric picture is still of value. 

In the later discussion we shall focus on the static approach, which is widely used 
in crystal calculations, although some comments will be made concerning the results of 
dynamic simulation. 

3.1. Static approach 

The scaling argument suggested by Emin and Holstein [I31 asserts that if we change the 
length scale of the (normalized) eigenfunction, the energy as a function of the scale factor 
should have a minimum at the scale corresponding to the actual eigenstate. Within the m m  
sophisticated technique developed by Toyozawa and co-workers, both states (delocalized and 
localized polaron) may be treated using the same model Hamiltonian [ l l ,  IS]. However, 
neither method allows us to take into account the microscopic sbucture of the polaron in 
the real solid. This is only possible by employing some atomistic approach. In parricular, 
one can assume the polaron to be localized in a small area comprising of several tens of 
ions or molecules, which are embedded in the remaining media and vary the radius of its 
wavefunction whilst simultaneously minimizing the total energy of the crystal with respect 
to the atomic coordinates. In this way, both the short-range and long-range contributions 
into the total energy may readily be taken into account. This approach is used for the 
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quantum molecular dynamics simulations of an excess electron in water [61,62] and small 
clusters [65,66]. A similar technique, though with the static model for the crystalline lattice 
and a very reshicted basis set, was used for the simulation of the self-trapped excitons 
in alkali halides by Song and Leung [79]. In both cases only one electron is treated 
rigorously, whereas other species are represented by their pseudopotentials. In the many- 
electron calculations the localized and the delocalized states usually belong to different 
Hamiltonians. However, it  is possible to derive a reliable estimate by taking di&"xs 
between the energies calculated by each method, and using the most appropriate methods 
at each stage in their calculation. 

Essentially, two energies are compared in these calculations: the kinetic energy gain 
from having a delocalized carrier in an undistorted lattice, and the polarization and distortion 
energy gain from having a localized carrier. The self-trapping energy is thus the difference: 

Er1 = Elm - (4) 

When one uses a standard stationary quantum chemical technique, one must introduce an 
artificial intermediate state, @,, as a common reference point for the calculation of E h  and 
Ercl [80,81]. It corresponds to the point Fin figure 3. Two steps are needed. First, one needs 
to construct an electronic state a, in the perfect lattice qualitatively the same as the localized 
configuration. Second, one assumes the magnitudes of the electronic polarization produced 
by this state and the completely delocalized polaron state are the same (or, occasionally, are 
related in some other simple way). The validity of the latter approximation was analyzed by 
Fowler 1271. In this case, polaron localization energy is given in terms of He, the electronic 
Hamiltonian, by 

EIS = (@iIHeeI@i) - (@ddHel@&~) (5) 

where @&I is the wavefunction of the delocalized state. The lathce relaxation energy is 
given in terms of the total Hamiltonian, H, by 

E d  = (@tIHI@t) - (@stlHl@n) (6) 

where is the wavefunction of the self-trapped states. Note that, in the approximation 
that the electronic polarization of the crystal and the self-energy of the polaron in the 
delocalized and the intermediate states compensate each other, the localization energy is 
simply the change in the kinetic energy of the localizing particle. The electronic polarization 
of the perfect lattice in the intermediate state has to be taken into account in calculating the 
relaxation energy. 

If En is found to be positive the localized state is certainly unsrable and the polaron can 
exist only as the delocalized state. In such casts localized states may form in the presence 
of a defect, or near an interface. If the calculated value of Est is negative, the localized 
state is considered to be stable. However, the real behaviour of the localized polaron is 
determined not only by the sign and the value of Est but, also by the barriers and the transfer 
matrix elements, I H L L ~ ,  for its diffusion between different localized states. 

3.2. Calculation of the localization energy 

The commonest and simplest form of the electronic Hamiltonian is the tight-binding form, 
with only the largest matrix elements between the nearest sites; the density of states of the 
valence band then has a symmetric form as a function of energy. The localization energy of 
the particle on one lattice site (i.e. the expectation value of a Wannier function at that site) is 
then equal to the halfwidth of the band of delocalized states. Such a picture is an appropriate 
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representation of the polaron states, to the extent that the s atomic orbitals centred on the 
sites are true Wannier functions, as for the Is core anion holes in the transition metal oxides. 
However, in many crystals the wavefunction of the valence hole polaron has p or d orbital 
characteristics. In these cases the simple approach described above leads to a substantial 
overestimation of the localization energy [81-831. Since the localization and relaxation 
energies are usually similar in magnitude, and their difference is much smaller than the 
width of the band of the delocalized states, the accuracy of the calculation of El, is crucial 
in the estimating the self-trapping energy, Est. As has been shown in [SCrSZ], accounting for 
the angular dependence of the matrix elements of the tight-binding Hamiltonian improves 
the accuracy of the calculation of El,. 

The situation becomes still more complicated when the valence band is a mixture of 
the stam originated from two or more sublattices. This is the case for AgCl, alumina, 
silica, transition-metal oxides and halides, and for other crystals where the self-trapping 
of holes is under discussion. A calculation scheme for the mixed band case based on a 
model Hamiltonian technique and the tight-binding approximation has been proposed in 
[80]. It takes into account the nature of the hole polaron states and real atomic orbitals of 
surrounding ions. 

Both methods mentioned above are based on the idea that the matrix elements of the 
tight-binding Hamiltonian, constructed using Wannier functions, may be calculated using the 
matrix elements obtained from some band structure calculation for the perfect crystal. The 
link becomes possible if we assume that: (i) the band of free holes coincides with the valence 
band taken with the opposite sign, i.e. the bottom of the hole band corresponds to the top 
of the valence band; (ii) the atomic orbitals of anions and cations may be used as Wannier 
functions; and (iii) the wavefunction of the intermediate state, Gi, calculated in the cluster 
approximation is physically equivalent to the Wannier function localized at certain perfect 
lattice sites. However, as was discussed in section 2, in many interesting cases as a result 
of electronic relaxation the wavefunction of electronic polaron is different from those of the 
valence band electrons. This is only partly taken into account within the methods discussed 
in [80-83]. Therefore, the localization energy calculated using frozen wavefunctions of the 
perfect crystal may be inaccurate. and a more flexible variational approach should be used 
to calculate the localization and relaxation energy terms accurately. 

An altemative approach to address these problems is based on cluster calculations. The 
wavefunction of the intermediate polaronic stale in the perfect lattice, which should be 
equivalent to the wave function of the localized polaron state, is often a broken symmehy 
solution of the HartreeFock equations. Nieuwpoort and Broer suggested a method for the 
calculation of the Hamiltonian matrix elements between broken symmetry wavefunctions, 
with holes localized on different equivalent sites. It is based on a variational procedure 
and provides a fruitful approach for investigation of ‘electronic polaron’ bands [55-57], 
and thus for evaluation of the polaron localization energy. The important advantage of 
their approach is that the matrix elements needed to evaluate both the localization and the 
relaxation energies of the polaron may be calculated employing the same quantum chemical 
technique and set of parameters. There is a further problem for electron (as opposed to hole) 
polarons, since the calculations for the conduction band and the crystal electron affinity are 
still very unreliable. 

33 .  Microscopic structure of small polarons and calculation of the relaxation energy 

Most model Hamiltonian methods used in studies of self-trapping assume that the harmonic 
approximation suffices, and the energy of interaction between the particle and the medium 
is linear in coordinates representing the deformation of the medium from its equilibrium 

A L Shluger and A M Stoneham 
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Two Region MerhodoloPy 

1. The lallice responds lo defects by 
relaxing ion and electron positions. 

2. Those ions close IO [he defect move 
to the greatest extent. 

m 

3. The model which accounts for the 
response of outer ions (region IIb) 
can be more approximate. 

Figure 5. Ww'egion methodology for defect calculations in a polarizable laftice. In region 
I. electlonic swcbxe is calculated self-consistently as forces on the ions are relaxed to zero. 
In region II, simpler approximations are sufficient to embed region I. Thus ionic positions and 
palarimions are estimated from a continuum model. Region Ila is created to link Ihe two 
regions properly; in many calculations Ihe ions in region Iia are discre&, but with displacements 
and dipole moments derived f" continuum models. 

configuration [8,11]. These are rather dubious approximations for strong lattice distortions. 
It is in calculating this lattice relaxation that the Mott-Littleton method and related 
techniques come into their own; indeed this was done in early work by generalizing an 
approach to the vacancy problem [ZS]. Gilbert's calculations were the basis for more 
extensive work of Jette and co-workers [84]. who made extensive estimates for alkali metal 
fluorides and chlorides, showing that the self-trapped holes could be regarded rather weU 
as halogen molecular ions in a polarizable distortable matrix. These calculations were done 
within a polarizable point-ion model, a model which has been superseded for most serious 
estimates by the shell model. Later work in the same spirit, but using the shell model, 
has been published for a wide range of systems: for the alkali metal halides (including 
mixed alkali metal halides) by Cade and co-workers [8S,86], for the Cs structure alkali 
metal halides by Monnier and co-workers [87] and by Norgett and Stoneham [88] for the 
alkali earth metal halides. The 'molecule in a crystal' model for the hole polarons in alkali 
metal halides (VK centre) has been examined by Stoneham [MI, by Tasker and Stoneham 
1891 and by Cade and co-workers [8S]; here a diatomic molecular ion is studied quantum 
mechanically [go], and then embedded into a classical ionic host. In this case one has strong 
covalent bonding within the molecular ion &-, but ionic interactions with the rest of the 
crystal. 

A more sophisticated approach combines a quantum mechanical treatment of a small 
molecular cluster, in which the polaron is localized, with the Mott-Littleton calculation of 
the polarization of the rest of the crystal (for a review see Catlow and Stoneham 1241; see 
also [28,91-93]). The crystal is divided into two regions: an inner region (I), containing 
the defect and its immediate surroundings, and an outer region (II) which responds as a 
dielectric continuum (see figure 5). The quantum cluster is placed at the centre of region I. 
This quantum chemical approach has recently been used for studies of several alkali metal 
halides [281 and oxides 1941, and has provided satisfactory microscopic models for the self- 
trapped holes and excitons in these crystals. In particular, the quantum chemical calculations 
of the VK centre in several alkali halides [81,83,95,96] give atomic displacements similar 
to those obtained by Cade and co-workers using the classical Mott-Littleton technique [85]. 
Similar results were also obtained with both techniques for the lattice distortion around the 
hole in MgO [82,971. However, the main advantage of the quantum mechanical methods 
is that they provide a stronger connection between the localized and delocalized states. 
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Although the atomic structures of point defects in ionic crystals can be studied more 
or less routinely, this is certainly not the case with the calculation of the relaxation energy. 
The most substantial problem is the choice of the path for the localization of the polaron 
and, as a consequence, of the intermediate state, which provides the reference point for 
the calculation of the relaxation energy [81]. Another point concerns the accuracy of the 
calculation, since the self-trapping energy rarely exceeds several tenths of an eV and is the 
difference of two large and similar values. 

The situation is not simple even for the 'dielectric' polaron, in which electrons or 
holes in a polar lattice interact mainly with the long-range polarization. According to the 
phenomenological theory, the radius of the dielectric polaron should be large rather than 
small. An example of the problems can be seen for MgO, where trapping of the holes has 
been modelled quite extensively. All the calculations of the lattice relaxation predict that 
the hole should be strongly localized on one oxygen ion. The relaxation energy, which 
is the energy difference between the final completely relaxed state and the intermediate 
state (the latter corresponds to the hole on one oxygen in the perfect lattice where only 
electronic relaxation is taken into account), was calculated using different methods to be 
1.7-24eV [82,97,98]. This large energy is fully consistent with a theoretical analysis of 
the observed charge-state stabilities of transition metal impurities in MgO. The localization 
energy according to the existing estimations [82] is 2.C-2.4eV. The value of 2.4eV is equal 
to half of the experimental magnitude of the valence band width (4.8 eV 1991) and so gives 
an upper limit [ lOO]t. Recent calculations [82], in which both relaxation and localization 
energies were treated using the same quantum chemical technique, indicated a self-trapping 
energy of about -0.4eV. In simple treatments of small dielectric polarons, the hopping 
energy for diffusion motion is less then this, and probably less than half of the self-trapping 
energy, so the polaron should be very mobile. Therefore, despite the strong localization 
in the cluster calculation and the large relaxation energy, it  will be h a d  to distinguish 
the behaviour of the polaron from that of the large polaron at appreciable temperatures. 
Apparently the transfer matrix elements 1H~h.l  are substantial and the stationary localized 
state on one site is not a good approximation. 

In the case of the 'molecular' polaron the self-trapping is caused by the short-range 
interaction, and the situation is complicated by the possibility of coexistence of both types 
of polarons. The VK centre is the classical example. For instance, it is not clear a priori 
if one should consider the localization in the one-centre form first and then calculate the 
additional energy gain due to the formation of the chemical bond between two anions, or 
if the two-centre localization is preferable from the very beginning (see the discussion in 
section 2). 

As should be clear from the above discussion, the relaxation energy only makes sense 
as a part of the self-trapping energy, for it depends on the intermediate state@) chosen in 
its calculation. It cannot be measured directly, although it may be estimated on the basis of 
energy cycles, which combine available experimental and theoretical data, as demonstrated 
by Itoh and co-workers [ lol l  for self-trapped excitons in alkali metal halides. Relaxation 
energies contribute substantial terms to a wide range of observable quantities, including 
defect formation energies and optical charge-transfer processes. Moreover, the observed 
systematics of behaviour (e.g. which charge states of transition metals are stable in a given 
host) gives strong support to theoretical estimates of relaxation energies. 

t The experimentally obseNed lotal valence band width of 4.8 i 0.3eV is in a gwd ape" with the result 
of the Hamee-Fock calculation by caU& and m-workers, which gives 5.1 eV. However, recent experimenls by 
French and co-workers. using valence band x-ray photoemission spectroswpy. and LDA calculations gave for ule 
valence band width in MgO the value of 6eV. 
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We should note that the self-trapping energy is defined relative to the bottom of the band 
of free polaron states, which in turn depends on the crystal under study. Thus whilst Est 6 0 
may be used as a critenon of self-trapping in each particular crystal. it does not provide a 
good basis for comparison of different or mixed crystals. Such a comparison is possible on 
the basis of energy cycles aiming at the calculation of the defect formation energy. This 
formation energy may also be compared with the crystal ionization and excitation thresholds, 
and in this way COMeCted with the effectiveness of the polaron or exciton production. 

3.4. Small polaron formation energy 

Although the general idea is quite transparent energy cycles differ from one case to another 
and, moreover, there are alternative cycles for each particular case (see, for example 
[28,85,101]. Let us consider, for example, the VK type of self-trapped hole in alMi 
metal halides, caesium halides or alkaline earth fluorides. Despite the differences in the 
crystalline structure, the hole in all these cases is sensibly regarded as an X; molecular ion, 
which occupies two anion lattice sites (see [44] for a discussion). 

The energy required to form a VK centre may be considered as the sum of energies for 
several distinct steps [85]. (i) The energy required to remove the two X- lattice ions to 
infinity (separatelytthe vacancy energy E". (ii) The energy of formation of X; (gaseous) 
+ e- from two X- anions. The internuclear separation R for X; may be taken as Re for free 
X;, although other values of R do not change the final result. (iii) The energy associated 
with introducing X; into the prepared (perfect) vacancy site-the interstitial energy Ex. 
(iv) The energy arising from relaxation of ions in region I, region n, and of course, within 
the VK centre-the relaxation or lattice energy ER. It is necessary to consider the electron 
released in step (ii), and this is usually placed at the bottom of the conduction band of the 
crystal. The associated energy for this process is the electron aflinity of the crystal, ,y. The 
VK centre formation energy may be written in the form 

(7) 

where A(X) is the electron affinity of the halide X. The values of electron affinity for crystals 
are not well known, but values are quoted in the range 0.1-1.5eV [102]. The result is that 
the defect energy has a consistent reference point within a given crystal, but comparisons 
of different energies involving different crystals do not have identical reference points. 

Alternative energy cycles might be useful; for example, the uncertainty in x can be 
eliminated if the electron is removed from the conduction band and placed on an 'electron 
trap', i.e. it reduces a metal ion doped into the crystal for this purpose. Typically, for VK 
centre formation, Pb2+, TI+ or Agi cations are employed as electron traps. The energy 
scale (zero) involving the electron trap corresponds more to what is involved in practice 
in self-trapped hole formation, and in that sense this zero point may be more satisfying. 
However it has serious technical drawbacks, especially if the Moa-Littleton technique is 
employed for calculations. These concern the pair potentials between the host lattice ions 
and impurities in different charge states and the accuracy of the relaxation energy calculation 
for the impurity states. However, the location of the electron on a trap preserves the crystal 
neutrality and permits comparison with uncharged defects on a common ground. It enables 
one to use the periodic boundary conditions in the calculations of charged polaronic states. 

One simple estimate of the energy Er of a hole at the top of the valence band of 
an undistorted crystal assumes [87] that the centre of the valence band corresponds to the 
Madelung potential at the anion, so that 

ED = EV + Ei + E R  + [A(X) - X I  
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where M is the Madelung constant, a0 is the lattice constant, and Eva, is the valence band 
width. The corresponding approximate condition for self-trapping becomes: 
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an equation that has been widely used in previous calculations (see for example [85,87,88]). 

3.5. Specifrc properties of the self-trapped exciton state 

The structure and characteristics of a self-trapped exciton (Sm) involve both the basic 
issues of self-trapping, and the interaction and correlated behaviour of the electron and 
the hole. The conditions for the exciton self-trapping have been studied extensively 
phenomenologically as reviewed by Ueta and co-workers I1 11 and Rashba [8]. The theory 
predicts that an exciton can self-trap even if neither an electron nor a hole can do so alone. 
Another remarkable prediction is that, in certain circumstances, the parity of the relative 
motion of an electron and a hole may be broken [ 111. In particular, this may happen when 
a hole has a very large effective mass and its interaction with an electron consists of the 
long-range Coulomb attraction and short-range strong repulsion. These predictions of the 
phenomenological theory have been supported by the results of recent quantum mechanical 
calculations. 

Starting from the first calculations by Wood 11031 and Stoneham [104], successful 
attempts have been made to use for self-trapped excitons the methods developed for 
calculations of point defects [105]. As was noted above, such an approach is only possible 
when the exciton is well localized in a small region of the crystal host. Even then there are 
clear distinctions between the ground or excited state of the localized point defect and the 
STE. 

An exciton is an excited state of an otherwise perfect (but deformable) lattice. A 
key characteristic of the STE is its luminescence: ST"€ are short-lived luminescent states of 
excited crystals, with propelties very different from those for the crystal ground state (see 
for reviews [21,40,41] and references therein). The initial states for the luminescence are 
treated as approximately stationary, and correspond to the minima of the adiabatic potential 
of the excited crystal. However, the methods and basis sets which were developed for the 
calculation of the properties of the crystal ground state are not well suited for its excited 
state. Moreover, usual adiabatic calculations are meaningful only in the close vicinity 
of these minima, for which atomic structures are considered as models of SE [28]. The 
dynamics of the processes leading to these states requires further concepts and complexities. 

The electron and the hole overlap strongly, but become localized in the lattice for 
different reasons. In alkali halides and fluorides, in effect, the hole is self-trapped and 
localized in the form of a quasi-molecule, whereas the electron is localized mainly by its 
Coulomb interaction with the hole. In crystalline quartz the holes do not self-trap, while 
the self-trapping of excitons gives rise to the luminescence with a very large Stokes shift. 
According to experimental ESR data, the electron of the STE in these crystals is less localized 
than the hole. Further, the self-trapping of the exciton in many crystals is accompanied by its 
decay, producing primary Frenkel defects [42]. The degree of localization of the electronic 
component of the nearest-neighbour defect pair depends sharply on the relative position 
of the hole component. Since the radius of the electron localization is large and changes 
significantly during the calculation of the adiabatic potential for the exciton localization and 
decomposition, special efforts are needed in order make the basis set flexible enough and 
to take into account the resulting changes in polarization and other energies. 
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Another issue arises with the wavefunction of the SE. Experimentally, in the alkali 
metal halides both singlet and triplet states of the self-trapped exciton have been detected 
or inferred. In crystalline quartz only the triplet state of the SE has been observed so 
far. Nevertheless, most of the theoretical studies concem only the triplet excited state of 
the crystal. This is solely for technical reasons. In wide-gap insulators, as all of these 
crystals indeed are, the crystal triplet state automatically means the excited state. For the 
lowest multiplicity it may be treated in the single-determinant unrestricted Hartree-Fock 
approximation. This approach has been employed in all the many-electron calculations 
made so far. It is much more time-consuming to treat the singlet excited state using a many- 
determinant approximation for the wavefunction of the crystal. The first calculations for the 
singlet state of the S E  in NaCl were performed by Stoneham [104]. Similar calculations 
using the generalized valence bond (GVB) technique in several alkali metal halides have 
been made only recently [106]. 

3.6. How good are the results? 

3.6.1. Stabiliry of the small polaron form: will self-trapping occur? 

Self-trapped holes. In all cases studied seriously, the correct prediction is achieved. For the 
halides, the margin is substantial, where the hole small polaron is stable by several tenths 
of a volt [Scr85]. Typical relaxation energies (i.e. the energy to relax a hole localized 
on a single halogen to the VK centre geometry) are 1.0-1.5 eV. The situation is less clear 
for oxides, principally because of lack of direct experimental evidence. Theoretically there 
are substantial problems with the calculation of the localization energy due to the mixed 
character of the valence band. Once again, relaxation energies are quite large (for instance, 
about 2 eV for the one-centre hole on oxygen in MgO [82,97]). Recent quantum chemical 
cluster simulation of the self-trapped hole in a-AI203  [75] suggested a model with the hole 
shared between two anions, analogous to that in alkali halides. The energetically most 
favourable configuration appears to involve a strong inward Jahn-Teller displacement of 
two 0 ions (on which about 80% of the hole density is localized), accompanied by the 
outward displacement of the two nearest AI atoms. The self-trapping energy predicted for 
this configuration is -2.7eV [75]. EPR experiments [lo71 suggested that the holes can 
self-trap in fused silica in the form of 0;- molecular centres. However, hole trapping in 
a glass network could be assisted by charge and density fluctuations. Quantum chemical 
simulations [ 1081 made in a periodical model for an idealized Si02 structure (,%qstobalite) 
have shown that the holes most probably cannot self-trap on the one anion site in this 
material. The two-centre-type localization of the hole in pure silica has not been simulated 
so far. 

In these crystals the holes (if self-trapped) are localized onto one or two anions. In 
AgCl the situation is qualitatively different. The structure of the self-trapped hole has been 
studied using various experimental techniques and reliably established [IOP-11 I]. AgCl 
has the rock salt structure, but a different character of chemical bonding and valence band 
electronic structure. In particular, the top of the valence band in AgCl is determined by 
the d states of the silver ions. This is certainly an important factor: for alkali halides the 
holes are self-trapped in the anion sublattice and form VK centres; for AgCl the cation can 
change charge state without a large energy cost, and the hole is localized on one cation. 
Indeed, the simulation of the hole self-trapping on chlorine ions in AgCl [SO] revealed a hole 
density redistribution from the chlorine ions to silver because the silver states have higher 
energy in the valence band. The chemical bond sharing the hole between two chlorines 
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does not form because the lattice polarization encourages the hole transfer. The value of 
the hole self-trapping energy obtained in [SO] is equal to -0.1 eV (where the zero of energy 
corresponds to the bottom of the free hole band (see figure 3)) which is close to 0.12eV. 
the experimentally observed activation energy for the thermo-stimulated ionization of the 
self-trapped hole in AgCl [ 1121. About two thirds of the hole spin density is localized 
on the dxz-y2 atomic orbital of the silver ion. The remaining third of the spin density is 
delocalized by p x y  orbitals of four nearest chlorine ions. This model agrees well with the 
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ESR data [ 11 11. 

Holes trapped near impurities. The commonest examples are the so-called V- and [Melo 
centres (Me = Li, Na) in 11-VI compounds, where the theory has been applied successfully 
(see [ 1131 for a review). In these systems holes were trapped near impurities or vacancies. 
In many cases impurities can trap holes by simply changing charge state. The best known 
cases are mercury-like centres in alkali halide crystals. The peculiarity of these centres is 
that their optical excitation releases the hole back from the impurity ion. The effect of 
optical delocalization of the holes from mercury-like A'+ centres (A = TI, In, Ga) has been 
observed in KCI crystals [85]. A simple explanation of this effect in terms of one-electronic 
states [115] is based on the idea that the charged activator ion A'+ strongly perturbs the 
occupied 3p states of at least two spheres of surrounding Cl ions. This results in either 
split-off from the valence band edge of local occupied states or the formation of resonant 
states withii the valence band. The electron transition from these states to the impurity state 
formed by the mixture of ns A2+ and 3p Cl states is accompanied by formation of the hole 
in the valence band, or essentially by the hole transfer from impurity to swund ing  anions. 
The holes created rapidly become self-trapped in the lattice. Theoretical calculations [ 1161 
suggested that this effect should be observable for any centres that are charged OT strongly 
perturb their crystalline ionic environment. Before self-trapping and/or at high temperatures. 
the released holes are very mobile and can participate in further defect processes. 

Self-trapped excitons. Self-trapping of excitons has been observed in many insulating 
crystals, such as alkali metal halides, quartz, rare-gas solids, alkaline earth halides, 
perovskite-structured halides of the W g F 3  family, and other systems 13.61. Extensive 
experimental studies on SE in insulators have been camid out during the last few decades 
(see [21,40,41,117] and references therein), and these show how self-trapping drastically 
alters the optical, luminescent and energy transport properties of the crystal. 

For a rough evaluation of the exciton relaxation energy, one can consider the excited 
state of the perfect lattice, and try to find local ionic displacements that localize the exciton. 
Such an approach has been used by Shluger and Stefanovich [IO81 in their study of the S E  
in Si02 with the fl-crystobalite structure. Periodic boundary conditions for the supercell 
si8016 resulted in the equivalence of all the perfect lattice sites. The triplet-excited state 
remained delocalized for small ionic displacements. The displacement of one oxygen ion 
from its site by about 0.1 8, localized the hole on this oxygen. Starting from this p i n t  one 
can try to find the lowest minimum of the adiabatic potential energy surface (APES), which 
corresponds to the bound electron-hole pair and yields the luminescence energy and other 
spectroscopic data in agreement with experiment. (We should note that then are several 
other minima, corresponding to defect pairs). Clearly, within the accuracy of the calculation 
technique both the structure and spectroscopic parameters may be found only approximately. 
However, two completely different methods, employed by Fisher and co-workers [I 181 and 
in [IOS, I191 give qualitatively very similar models for the S E  in SO'. Although the 
differences between the crystal excitation energy and the minima of the APES calculated by 
these workers are large, they cannot be attributed directly to the exciton relaxation energy. 
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The reason is twofold first, the short-range crystal distortion, which localizes the exciton 
in these calculations, depends quantitatively on the shape and size of the cluster and/or 
boundary conditions; second, the exciton excitation energies calculated using both periodic 
and cluster models are much smaller than the experimental value because of the restricted 
basis set This is one case where we cannot readily identify an adiabatic route from the 
delocalized to the localized forms; indeed, the adiabatic approximation may fail. 

The alkali halides are regarded as prototype materials in which both holes and excitons 
self-trap. The microscopic features of exciton self-trapping processes have been studied 
extensively. However, the experimental determination of the model of the sm in these 
crystals is still far from complete. Many theoretical investigations of STE in alkali halides 
have been made, as reviewed in [41,105]. First it was assumed that the STE in alkali 
halides consisted of a diffuse electron bound to a self-tmpped hole or VK centre, the so 
called (VK t e) model 11201. After the ENDOR experiments on the STE in KCI [121], 
which suggested asymmetry, it was shown that the (VK t e) configuration, which has DZh 
symmetry, could be unstable [ 1221. It is suggested that the STE is an off-centred (VK + e). 
in which the Da symmetry is broken by the pseudo-Jahn-Teller interaction of the electron 
with the local lattice vibrations. Extensive studies of the off-centre model of the STE have 
been carried out by Song and Leung, using a one-electron pseudopotential extended-ion 
technique (see 179,1231 aqd references therein). In most of these calculations the hole 
component of the STE was treated as a frozen X; molecular ion, repelling the electron, 
which is localized in the crystalline potential (as in an F cenhe) rather than due to the 
Coulomb interaction with the molecular core of the VK centre. 

F g r e  6. OK-cenwe model for exciton geometries in 
alkali halide crystals (hen NaCl). The shaded circles 
represent the Na+ ions, and fhe WO open circles the 
CI ions that make up a U; ion. The charge on this 
molecular ion is such h t  one ion (labelled h+) is 
ronghlghly neutral (Cl") and the other is close to C f .  
The large circle identifies what is effectively an anion 
v m c y  containing an electmn (essentially an F centre). 

Figure 7. Spin density dhhibution of WO unpaired 
electmm of the triplet STB in NaCI. This is a schematic 
MI normalized picture. The thRe main featum 
compond to the configuration shown in figure 6. The 
electmn is hat of thc nascent F cenue. the hole (Cld 
is that of the CI ion (approximately Cl') moving away 
h-om its site to join with the next ion (Cl,) on the close- 
packed row of halogens. 

Recent ab initio many-electron calculations [28,95,96,106,124,125] have supported 
this conclusion, and simultaneously emphasized the importance of the many-electron 
approach to the problem. It has been shown that an Xi molecular ion, displaced from 
the Da position (see figure 6), is polarized in such a way that the hole is mainly localized 
on that anion located closer to the anion vacancy (created by the axial motion of the X; ion) 
which is trapping the electron (see figure 7, which represents the spin density distribution 
calculated for the S E  in NaCl [125]). This points to what seems to be a common feature 
of the STE structure, not only in the alkali halide crystals but also in silicon dioxide and 
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lithium oxide [ 1261. As was discussed by Shluger and co-workers [127], in all these STE the 
electron is trapped on a lattice anion site and the hole is localized onto the anion displaced 
from this site. 

Nevertheless a number of crucial problems remain unsolved. These concern, first, the 
APES for the ground hiplet state of the m (see [28,125] for a discussion). Hmee-Fock 
calculations of the APES for the triplet exciton in alkali halides and Si02 have demonstrated 
that the potential energy is remarkably flat near its minima with respect to further spatial 
separation of the electronic and hole components of the STE. However, a rigorous location 
of the minimum corresponding to the STE and barrier for its decay into primary Frenkel 
defects in each particular case has not teen determined reliably. Consequently, the models 
of the STE are not finally established. The APES for the singlet excited state of the crystal 
(singlet STE) has not been considered in detail. Electron correlation must be included 
to solve these problems [125]. There is possible experimental support for the view that 
the energy surface is flat from the observation of muon-induced fluorescence [1281. The 
observed luminescence occurs after the decay of the muon, at an energy not far from the 
normal triplet luminescence; the data are consistent with the idea that the muon stabilizes 
the self-trapped exciton in a minimum different from its normal one. 

Second, the exciton self-trapping energy was not considered seriously. The width of 
the energy dispersion of a free exciton in alkali halides was regarded as roughly equal to 
that of the hole in the valence hand [%I. This reflected the common view that the exciton 
self-trapping in these crystals is govemed by the hole localization at the first place. The 
situation is unclear in oxides, where the holes do not self-trap. Calculation of the self- 
trapping energy for the sTE in KCI using the energy cycle approach was performed in [281. 
Since the quantitative characteristics of the model of the m in this crystal are still unclear 
these calculations were unable to give a reliable number. However, they demonstrated that 
the self-trapping energy is probably more than 2.7eV, which is larger than that for the VK 
centre in this crystal (- 1.9eV [MI). Qualitatively the same conclusion has been drawn by 
Itoh and co-workers [IOl], on the basis of somewhat different energy cycle. 

36.2. Optical spectra and spin resonance data. There are two main types of optical 
transition associated with polarons. First, there are the ‘intramolecular’ or ‘intraionic’ 
transitions, where the distorted and polarized host merely weakly alters a transition 
identifiable from some free ion (X; molecular ion in the VK centn). Here one may use free 
molecular ion data plus calculated distortions [44,85.129] (giving effectively the ‘molecule 
in a crystal’ approach). 

Second, there are charge-transfer transitions, in which an electron moves from one site 
to another (or to another group of sites). These are the dominant transitions, for instance, 
in cation vacancy centres like V-type centres in oxides (see figure 8). The transition energy 
for this type of transitions is determined by polarization and distortion energy and is very 
sensitive to the relaxation of the surrounding lattice. In panicular, the displacements-and 
hence the polarization potential-are different for the anion carrying the hole and for the 
other anions [1301. This leads to an additional splitting of the hole electronic states and 
affects optical absorption energies of the hole especially in the one-centre state. Note that 
since the optical transition is a Franck-Condon transition (the nuclei remain at their original 
positions) only the electronic part of lattice polarization should be taken into account in the 
final state (see [ 131 J for a discussion of the Zn vacancy in ZnSe, where the simplest models 
are demonstrably inconsistent). 

In the exciton case the optical spectra are more complicated. The STE comprises a hole, 
usually well localized on an ion (0- in quartz or Agzt in AgCI) or molecular ion (q-, 
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Fwre 8. Optical hansitiom oi the V-type centres in MgO. In (U). h* indicates an excited state 
of 0- reached in a crystal field Uansition. In (b). the hole fmtions on each neighbour in the 
exciled stale are shown before lattice relaxation. These charge-msfer bansitions dominate the 
optical absorption. The equamrial hansition will be split by electmn exchange terms between 
the four oxygens. Note thal h always indicates lhat the lowest crystal-field state of oxygen is 
occupied or partly occupied: h' indicates that an excited nystal-field state is occupied 

where X is a halogen in alkali halides and alkali fluorides [41,117]), and an electron which 
is much more delocalized. In some cases like, for example, in alkali halides, the electronic 
and the hole component of the SE are apparently spatially separated. Decomposition of 
the STE in these crystals can be accompanied by the formation of Frenkel defects: F and 
H centres [42]. Although optical absorption spectra of the S E  in alkali halides and in 
quartz resemble the combined spectra of the defect pair qualitatively, there are considerable 
quantitative distinctions. These are caused by the strong electron-hole interaction and 
mutual perturbation of the electron and the hole components of the STE compared to the 
separated pair. 

A helpful way to display data for a large number of crystals of the m e  structure is 
the so-called Mollwo-hey plot, where energies are expressed as a power of lattice spacing. 
This has been done 1911 for the energies of the electron transitions of the SE in alkali halides 
and the interionic distance in the lattice as for isolated F centres 11331 (see also section 15.1 
of 1441). However, at least three groups of alkali halides have different Mollwo-Ivey plots. 
A similar categorization has been made on the basis of an analysis of the luminescent states 
in various alkali halides [134]. The physical nature of this grouping of all alkali halides 
according to the optical and luminescence properties of the SE is still unclear. The results 
of theoretical calculations of the electron and hole transitions in several alkali halides are 
summarized in [28,1351. The agreement in all cases is satisfactory, but is not sufficient 
to distinguish between different (on-centre against offcentre) models of SE. However, we 
should note that these are most difficult calculations, which presently require the use of the 
ASCF technique. For the delocalized excited states the convergence of this method is very 
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poor. For the well localized excitations of the hole component of the S E  the agreement with 
experiment is better [9S, 13.51. However, the energies of these transitions are also sensitive 
to the displacement of the X; molecular ion. 

For paramagnetic polarons, such as VK centres, it is important to calculate spin resonance 
characteristics like the g tensor and hyperfine parameters. For the calculation of the g 
tensor the Stone equation [136] is widely used, derived from second-order perturbation 
theory (m) applied to the spin-orbit and Zeeman interactions of an unpaired electron 
orbital momenta with the magnetic field. However, for high symmetry defects, such as 
VK or H centres in alkali halides, m yields zero shifts of the longitudinal components 
of a tensor, Aga = 911 - go. (go = 2.0023) because of the zero value of the relevant 
matrix elements between ground and all excited states. As is shown in [97-99], in this 
case much better agreement with experimental data can be achieved by taking into account 
thid-order perturbation corrections (m). A novel technique has recently been derived by 
Heifets [ 1381 which allows one to calculate g tensors for an arbitrary total electron spin 
of the paramagnetic defect by means of quantum chemical methods based on m and 
corrections. This technique has been successfully applied to the VK centre calculations in 
KCI [83]. The g-tensor calculations for the hole trapped in the [Lilo-centre in MgO [82] 
demonstrated that in this case, unlike the ‘molecular’ type VK centre, all optical and ESR 
active transitions depend very strongly on the values of the ion displacements. Therefore 
good agreement with experiment of both optical transition energies and g tensor indicates 
that the geometry of the hole centre has been determined reliably. 

Hyperfine parameters are even more crucial, p;uticularly when the nuclei on which the 
unpaired spin resides have naturally abundant magnetic isotopes. In this case one can make 
estimates of the orbital composition of the polaron electronic wavefunction, i.e. the relative 
s and p character of the wavefunction on each nucleus. The relationship between hyperfine 
parameters and the geometry of point defects in non-metallic solids has been examined in 
ch. 13 of [44] (see also [ 1391). The compact configuration of the S E  in alkali halides, where 
the centre of the electron distribution is located only about 1.7A from the hole nucleus (see 
figures 6 and 7). suggests that contributions of both unpaired electrons should be taken 
into account in calculating the hyperline interaction for both ions of the X; molecular ion. 
Reliable many-electron calculations of the hyperfine parameters have been performed so far 
only for the STE in quartz [ 1181. 

3.6.3. Entropy of formation and vibrational properties. Study of vibrational properties of 
small polarons is important for gaining an understanding of their structure and localization 
processes as well as thermodynamical characteristics of materials. Local modes [140], as 
well as the optical linewidth, the broadening of spin resonance lines, spin-lattice relaxation 
and Raman data [141], have all been exploited and tested against theory. The calculated 
and experimental values for the frequencies of the stretching vibration of X; molecular 
ions in VK centre and STE in several alkali metal halides and alkaline earth fluorides are 
collected in [28,140]. Calculations presented in [22] determine the local lattice dynamics 
of a self-trapped exciton in NaI and KI, its relaxation law and the shape of the hot emission 
spectra. 

Lattice distortions and spectroscopic characteristics discussed above are. usually 
calculated at constant lattice parameter. Thus the lattice does not expand or contract 
because of the presence of the polaron, although the ion displacements are calculated at 
long range. So these are essentially internal properties at constant volume (the distinction 
between constant volume and constant lattice parameter is negligible for our purposes). 
This point was argued in detail by Gillan [ 1421 and reviewed recently by Catlow and 
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co-workers and Harding [143,144]. Its recognition is most important for the calculation 
of defect formation energies and diffusion parameters because these values are usually 
compared with polaron parameters obtained by fitting to experimental conductivity or 
diffusion data. These parameters are enthalpies since the experiments are performed at 
constant pressure. The relationship between the constant-pressure parameters (enthalpy 
and entropy. of formation) and constant-volume parameters (internal energy and entropy 
at constant volume) was discussed in several papers (see, for example, [143,1441). The 
formation energy at constant volume and zero temperature is the main energy parameter 
calculated using the static approach. 

The entropy of formation of a point defect or polaron at constant volume As = S (defect 
crystal) -S(perfect crystal) in the harmonic approximation in the high-temperature limit 
may be written in the form [I441 

3" 
A s = - k  B In - "1' + 3k~(N' - N)(1 - h/kBT)  (10) 

where w' and w are the lattice frequencies for the defective and perfect lattice. respectively, 
and k B  is the Boltzmann constant. Evaluation of As thus requires the summation over 
all these modes in the crystal. It should be noted that a calculation of only a few 
lattice vibrations localized around the defect and ignoring the rest gives wrong values 
for the entropies of formation of point defects. Existing methods for the calculation of 
the thermodynamical parameters of point defects in ionic solids were discussed by Harding 

The vibrational entropy associated with thermal generation of electron-hole pairs is 
of considerable significance for an understanding of the anomalous thermal properties of 
uranium dioxide at high temperatures, as was emphasized by MacInnes [145]. In particular, 
in most materials the thermal conductivity decreases monotonically with temperature; in 
U&, though, it goes through a pronounced minimum at about 2000K. and increases by 
a b u t  60% of the minimum value before the melting point is reached at 3210K 11461. 

As has been suggested in several papers (see. for example, [147-1491) this is because 
of the existence of an ambipolar contribution; there is transport of energy down the thermal 
gradient by the creation of electron-hole pairs at high temperature and their recombination 
at low. temperature. This electronic contribution was considered using the small polaron 
model. According to [ 147-1491 the electron and hole small polarons make a substantial 
contribution to certain properties-thermal conductivity and specific heat-at temperatures 
near the melting point. These properties, in turn, are needed in assessing the safety cases 
for several hypothetical reactor incidents. 

Quantitatively, the early study of Harding and co-workers [147] was one of the first to 
make a serious attempt at entropy calculations for small polarons within the shell model. 
Recent calculations by Harding and Martin [149], data from Hampton and co-workers [148], 
and a molecular dynamics study of the thermal conductivity of U@ by Lindan and Gillan 
[1501, confirmed the importance of the polaron contribution in a heat conduction mechanism 
in U@. 

ni4 wi 

(1441. 

3.6.4. Pressure dependence. The atomic positions involve a balance between several types 
of force: short-range repulsion, polarization and intramolecular bonding. Cade and co- 
workers [86] showed that, as the pressure was increased, there was a striking change to be 
expected in the VK centre optical transition for KCI. This should occur at pressures that 
should be accessible. The defect energy is also sensitive to any decrease of ao, although 
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this did not affect qualitatively the stability of the hole. Since the width of the valence band 
increases as the lattice constant becomes smaller, this also affects the self-tmpping energy. 

Measurements of the pressure dependence of dielectric constants and of polaron transpolt 
in uranium dioxide give additional information, which can be used to separate the binding 
and motion energy contributions to the observed Arrhenius energies in polaron transport 
The point is that the number of carriers depends mainly on 60, which determine the binding 
of holes on U ions to oxygen interstitials, whereas the hole mobility depends on 6;’ - 6;‘. 

3.6.5. Elusticpmperties. The volume change and the related elastic dipole tensor [ 151,1521 
have been calculated in several ways, and compared with experiment 11531. Agreement is 
not good, perhaps because the result is sensitive to details of the precise potentials assumed 
for the molecular ion’s interaction with its host (a point also suggested by relations among the 
hopping energies for the several possible transitions in other systems [SS]). The displacement 
field has also been monitored by spin resonance, and more recently the potential of neutron 
scatter in such studies has been assessed [154]. 
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4. Small polaron diffusion 

4.1, Basic ideas 

In the standard approach to ionic migration, a key energy is that of a ‘saddle point’ relative 
to the initial state. In simple cases, where the initial and final states are symmetrical, and 
where there are no complications like change of charge state during the jump process, this 
classical saddle point is obtained as follows. The moving ion is placed at the mid-point of 
its path, and held there whilst the other ions are relaxed (both shells and COB if the shell 
model is used). The energy of this saddle point relative to the initial state can be related 
to the dynamics of classical diffusion. In small polaron migration, there is a quantum 
component too. 

The analogue of the saddle point is the ‘coincidence site’ (see figure 9). This is the 
lowest-energy distortion (in practice the configuration of the cores is what is defined, for 
the shells are treated separately) which is such that the carrier (which could be ion, like a 
proton, but is normally a hole or an electron) would have the same energy if localized at the 
initial or the final site. There may still be a barrier in the adiabatic energy surface between 
the two sites, but the panicle is able to tunnel between them for this geometry. 

Suppose for this coincidence geometry the tunnel frequency is U. We anticipate that the 
rate will be proportional to the probability that the energies associated with the two sites 
will be equal to within hu,  and hence to huexp(-W/ksT) at higher temperatures. Since 
the rate, once the energies are equal to this accuracy, is then proponional to U (albeit with an 
upper bound related to phonon frequencies) an overall rate proportional to Y* exp(-W/keT) 
is expected. 

This is shown by fuller calculations [9,10,76] by explicit summation of the component 
transition probabilities over vibronic states, plus thermal averaging over initial states and 
summing over final vibrational states. This fuller calculation can only be carried through 
with some quite strong assumptions (normally an harmonic lattice and single vibration 
frequency). so there are undoubtedly deeper questions remaining. 

Clearly the saddle-point energy for classical diffusion can be calculated by the Mott- 
Littleton method. What Norgett and Stoneham 1881 showed was that the coincidence site 
energy for small polaron motion could also be calculated by this method. 
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Io, Classical dinusion 

Energy of relaxed lanice 
(disionion lollowing motion) 

Ib) Small polaron 

Initial state. with sell4rapping 

Final state\ v, 
Figure 9. (a) Classical diffusion and (b) small polaron motion. In (a) the energy surface 
shown 1s ihaf in whch the lattice relaxes around the moving panicle at each state, and En is 
Ihe mivation energy for motion. in (b) there is a thermal fluctuation (requiring enagy E;) 
h m  the initial self-trapped state to Ihe coincidence configuration, in which tunnelling can o%w 
between states of the same energy on NO adjacent sites. 

4.2. Working approximations 

4.2.1. Charge redistribution during motion. The Mon-Littleton method, plus a knowledge 
of the key interatomic potentials, is still not quite sufficient. There are decisions to be taken 
about the response of host lattice electrons and cores and about the disposition of charge 
at various stages of the coupled carrier-lattice motion. The details depend on the system 
under study and, at least in principle, can be obtained from quantum chemical calculations. 

Consider first a transition metal oxide (essentially a system in which the hole is localized 
on one site). Initially there is a 3+ ion on site I and a 2+ ion on site 2. An electron jumps 
from site 2 to site 1 (or the hole from 1 to 2). Let us first use the language of the classical 
shell model [ 1551. We shall assume that the electronic polarization can follow the motion 
of the polaron (hole), so that the shells of the ions are always in their optimum sites for a 
given hole position. The positions of the ion cores, therefore, must be such that the hole has 
the same energy whichever of the two sites is occupied (in the harmonic limit this actually 
means that the energy does not change even if the hole were transferred gradually; the shell 
model is not fully harmonic because of the short range forces, however). The sequence of 
steps used is this: (i) find the relaxed (shells and cores) initial state (E', x' say). (ii) Find 
the relaxed (shells and cores) state with both initial and final states equally occupied (E", 
x" say). Note that this needs assumptions about whether the half hole is on the shells or 
the cores, and note too that the half hole on one site does not interact with its other half on 
the other site. (iii) Decide whether or not the transfer is rapid. 

This third point needs more careful consideration. If the hole transfer between two sites 
takes place adiabatically, i.e. the hole follows the nuclei all the time, the transition state for 
the hole transfer conesponds to the state in which the hole is equally shared between two 
sites. Whether or not the transition is adiabatic should be determined by the value of the 
transfer matrix element between two sites and the effectiveness of the vibrational relaxation 
pmcess. 
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4.2.2. Adiabatic or non-adiabatic?The approximate quantum mechanical model of electron 
transfer in a polar media, including the dynamics of the reaction coordinates relaxation, has 
been presented in [ 1561. It suggests an 'adiabaticity' parameter G, defined as 
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where T is the electron transition mabix element between the initial and the final states, 
I/& is the characteristic vibrational relaxation time of the reaction coordinate, and ER is 
the system reorganization energy. The reaction is considered to be adiabatic (G >> I )  or 
non-adiabatic (G << 1) depending on the size of G; G may be qualitatively interpreted as 
the ratio between the time spent by the 'reaction coordinate' in the barrier region and the 
time taken by the one electron transition between the initial and the final states. In order 
to estimate the value of G we need to calculate T and ER for hole transfer between the 
nearest anion sites. According to the conventional definition ER may be calculated as the 
difference between the energy at the adiabatic potential energy minimum, corresponding to 
the hole localization in its initial state, and the final hole state, but with the crystal relaxation 
remaining the same as in the first case. The calculation of T is much less straightforward 
[157]. An approximate way of estimating T for the case of the resonant hole transfer in 
a crystal was discussed in [82]. If the value of G for the polaron transition between the 
two sites is much greater than 1, one resonant jump of the electron (hole) takes place much 
faster than the decay of the resonant state for electron (hole) transfer due to the relaxation 
process of the local vibrations. Hence the electron will be able to make many transitions 
between the two sites and the loss of the phase coherence between these states becomes an 
important question. As shown in [ 1581, the reaction rate at this limit is similar to what one 
would obtain by assuming that the hole followed the nuclei adiabatically. If so, then the 
adiabatic barrier height (not yet what is observed in an Arrhenius plot!) is E" - E'. If not, 
i.e. slow transfer, keep the cores fixed at x" but put the hole solely on the original site and 
allow shells alone to relax. This state has higher energy still, say E" +e"; the magnitude 
of the barrier (in the Same Sense as above) is E" + e" - E'. 

It seems likely that the e" term should be ignored, in that the transfer integrals for the 
hole band in oxides seem to be bigger than the longitudinal optic phonon energy (see for 
example discussion in [5 I]). If so, then in ctystals where both electrons and holes are on the 
same sublattice (e.g. MnO, FeO, COO, NiO, UOz) it can be shown that l e  elecfron mobility 
and the hole mobility will be the same to lowesf order. This is important in the ambipolar 
contribution to thermal conductivity in UO?, where one wishes to know its dependence on 
stoichiometry (i.e. the ON ratio). 

Consider next a halide in which the VK centre moves. The basic initial defect involves 
a hole shared on two sites, 1 and C (the cenhal site), and this transfers to a hole shared on 
the two sites, C and 2. We may assume again that the shells respond rapidly. However, we 
might identify af least two types of intermediate state. One type corresponds to the case 
when the carrier tunnels to what is in effect the final charge distribution (G < 1). The other 
type assumes a molecular ion is formed as an intermediate state (G >> I), with charges on 
sites ( I ,  C. 2) of (-A, [ A  - I],-A), with A usually taken to be the proton charge (this 
value is also uncertain in the absence of additional calculations). Which type is correct 
needs self-consistent calculations outside the Mott-Littleton framework. Good agreement 
with experiment has been found for the V, centn in KCI [83] and A1203 [75] using the 
quantum chemical embedded molecular cluster approach, but the experiments themselves 
still leave much to be desired as a test of the prediction (see discussions in [75,83,159]). 
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4.2.3. Interatomic potentials. A further technical issue in both approaches is that it is 
not clear that the short-range repulsive forces should be independent of charge state. Of 
the several theoretical studies using pair potentials and aimed at estimating the activation 
energy of VK centre reorientations in cubic lattices [87,88,160], the most comprehensive 
were concemed with the mechanism of this process in alkaline earth fluorides [88] and 
caesium halides [87]. Here, a check of sensitivity to the interatomic potentials showed 
that modest changes of short-range potential with ionic charge state affected the relative 
activation energies for jumps with different angles of reorientation. Thus one potential might 
indicate the 90" jump had lowest energy, another potential favouring the 180" jump. Yet for 
oxides, studies of charge state stabiIity [I611 show that keeping the same repulsive forces 
for both charges is a good first-order approximation. However, the calculated adiabatic 
barriers (which are smaller energies and so m w  sensitive to details) for the hole jumps in 
MgO are unreasonably large [97]. These issues are being addressed by the current state of 
electronic structure plus Mott-Littleton methods, as discussed in [28.94,82]. 

4.2.4. Polarization and electron correlation effects. Recent quantum chemical calculations 
[83] show that the activation energy required for VK centre reorientation in KCI includes 
what can be described as the excitation of translational and rotational modes, and is strongly 
affected by a change in the crystal polarization energy. The polarization energy itself, near 
the coincidence configuration, is 0.2eV greater than that for the equilibrium VK geometry, 
simply because the hole is more strongly localized onto a single site in the intermediate 
state (see [54,74] for general discussion of this point). For KCI, the repolarization energy 
(i.e. the difference of polarization energies at the coincidence site and the equilibrium 
configurations) reduces the reorientation adiabatic barrier by about one third. This is quite 
different from the one-centre hole jumps in MgO [82], where the hole is delocalized over 
two nearest oxygens at the coincidence site for the hole diffusion. The polarization of the 
crystal lattice at the coincidence state is then smaller than for the equilibrium one-centre 
polaron state, so the repolarization energy raises the barrier height in MgO. 

In both the Mott-Littleton-type atomistic simulation [97] and the quantum chemical 
Hartree-Fock [82] calculations of the barrier for the one-centre hole jumps in MgO the 
intraionic part of the electron correlation was effectively included in a semi-empirical manner 
through the electronic part of the lattice polarization and the experimental values of the ionic 
polarizibilities used in the calculation. The adiabatic barrier to hole transfer is given by the 
energy difference between the state in which the hole is completely localized on one oxygen 
centre and that in which it is equally distributed over the two adjacent oxygen sites. Within 
this model the barrier results from the larger polarization of the surrounding lattice in the one- 
centre configuration. However, in order to take into account the difference in the electron 
correlation and in the kinetic energy of the hole in the two states the wavefunction of the 
hole in both states should have much more variational freedom. In particular, the barrier is 
found to be 1.05 eV at the ab initio Hamee-Fock level, while inclusion of the configuration 
interaction (CI) technique for the valence electrons reduces this. value to 0.23 eV [82]. Within 
the CI method the wavefunction of the system is constructed as a linear combination of Slater 
determinants corresponding to all possible single and double electronic excitations from the 
ground state of the system. At the transition state, the local symmetry of the system is Da 
and the main excitation involves the promotion of an electron from the doubly occupied C, 
orbital to the singly occupied E., and of a second electron to an unoccupied orbital. In the 
case of the localized hole state, the electronic configuratiom with the largest coefficients in 
the CI expression do not involve excitations to or from the singly occupied orbital. Hence 
the majority of the correlation energy in the one-centre state is due to electrons in the 
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doubly filled valence orbitals. Consequently, at the banier point to hole migration, the hole 
is distributed over several orbitals in the CI expression, giving rise to a extra contribution 
to the kinetic and correlation energies. 

4.2.5. Exciton motion and decomposition. In the exciton case the joint motion of an electron 
and a hole has to be considered. Because of the high symmetry of the lattice (especially in 
alkali metal halides and Li20) the adiabatic potential energy surface of the lowest state of 
the exciton may have two or more equivalent minima near the same anion site, separated 
by some energy barrier. (In the alkali halides the X; molecular ion in the off-centre 
configuration of the STE may be displaced to the left or to the right from the anion site as 
shown in figure 6). As has been pointed out by Chen and Song 11621, in the framework 
of the off-centre model of the STE, the mechanism for its diffusion in alkali halides may be 
considered as comprising two steps: (i) a joint motion of the electron and the hole along 
the ( I  IO) axis; (ii) rotation of the hole component of the STE which changes its direction by 
60" (see figure IO); the process strongly resembles the 60" reorientation of the V, centre. 
This has been studied within the many-electron approach for the STE in NaCl [IZ]. 
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C 

Figure 10. A schematic presentation of the process of M)" reorientalion 
of the sm in NaU. (a) me iNtial configuration (see also figures 6 and 
7). (b) The saddle point (c) The hnal eonfiguration 

Exciton decomposition into a pair of primary defects is an example of a chemical 
reaction in the solid state.. The evaluation of the barrier for this process is a formidable task. 
Although the crystal relaxation energies are usually large, the barriers for the processes of 
the STE decay into defects, for diffusion of the S E  and for migration of the hole component 
of the primary defect pair, rarely exceed 0.1 eV [21,40,41]. Such an accuracy is hard to 
achieve reliably, even for simple defects, within even the best current theoretical methods 
(see 1281 for a discussion). 

4 3 .  Comparison with experimental data 

Experimentally, there are several distinct measures of activation energies. Each is usually 
fitted to an Arrhenius or altered Arrhenius expression locally, and we must ask what 
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precautions are needed to relate to the Arrhenius energy the activation energy calculated. 
(i) Small polaron theory does not predict simply Arrhenius rates for hopping, but a more 
complex form (see 1881 for analytical and numerical expressions) which has a T'/' 
prefactor in some limits (T large). At low T the apparent Arrhenius energy should be very 
small, even for quite large activation energies. (ii) The Nemst-Einstein relation between 
mobility and diffusion constant brings in another factor T in some situations, dependent 
on what is measured, and this must be allowed for. (iii) There will often also be trapping 
energies in the Arrhenius energy, and these must be included. In some cases (e.g. 0 
interstitials in UOz) a trap may accommodate two holes, and these defects will give two 
trap energies, depending on whether it is the first or second hole removed. (iv) There may 
be several distinct jumps (as for VK centres in fluorites). Note that reorientation can be 
specmscopically detected by decay of polarization with time, whereas linear motion (180" 
jumps) can be detected only by decay of intensity. 

There is a hidden assumption that the process being considered is indeed thermally 
activated, i.e. an Arrhenius expression in which a physical meaning can be given to the 
activation energy [163]. This is not always the case, especially for systems that have (or 
appear to have) small activation energies. In these cases, one- or two-phonon processes 
may be dominant, and the correct dependence is then often a power of T. If the rate varies 
as T", then the apparent activation energy at temperature T is nkT; thus with n = 7 for 
two-phonon processes [76], at room temperature the activation energy would appear to be 
about 0.16 eV. Experimentally, it is very hard to decide between activated and power-law 
dependences without data over a wide range of temperatures. 

4.4. Special cases 

Whereas the halides are understood reasonably well (especially qualitatively), the oxide 
systems have caused considerable controversy, not least because of the experimental 
difficulties faced in avoiding problems of impurities or near-surface non-stoichiometry. The 
position for alkali metal doped oxides is much clearer, with sensible (rather then precise) 
accord of theory with experiment for both binding and activation energies. For free polarons, 
the experimental position is less clear: for MnO there appears to be a small polaron [ l a ] ;  
for Fe0 again a small polaron [165,166] with its motion strongly influenced by defect 
clusters [1661; COO probably has a small polaron [ I 6 4 1  too. NiO is especially interesting, 
apparently having a small polaron, but with a large apparent achvation energy [ 1641; a 
surface contribution must be eliminated in experiment [164,167]. 

The result for NiO raises an interesting possibility [167,168], namely that the motion 
is by excitation from a small polaron form into the large polaron form. Precise theoretical 
estimates need values for both the localization energy and for the crystal-field terms. We 
note that transitions may occur for coincidences corresponding to more then one final state 
because of the several crystal field levels (see below), and these uncertainties are sufficiently 
large to make a clear decision almost impossible. Nevertheless, this small-to-large excitation 
mechanism seems to be one of the most sensible explanations of the experiments in NiO. 
Thermally induced small-large transitions could also be important in the very different 
system MgO, where only one or two phonons would be needed to change the state. 

The thermal and elecbonic conductivities of non-stoichiometric oxides like U02 present 
one further problem, namely the high jump rates that are needed to understand some 
experiments. High prefactors would not be a problem (though entropies of motion have yet 
to be calculated), but there are difficulties when the hopping rate itself appears faster than 
the maximum phonon frequency, since that is an upper hound on the average rate that the 
coincidence site can be reached. That problem is not resolved. One possibility concerns 
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the multiplet structure from the crystal-field splitting. For many transition metal ions, the 
partly filled shell of d- or f-electrons leads to low-lying levels, which may be 0.1 eV or less 
above the ground state. This can help in two ways: there are more accessible coincidence 
states (e.g. the initial state may correspond to one of these low-lying levels, the final state 
to another) and there is also a greater possibility of multiple jumps. However, why the 
rates are high may have yet another explanation. In oxides the level of non-stoichiometry is 
significant (one charged defect every l(H1-1OOO molecular units is common). These charged 
defects have two effects. One effect is to make certain sites inaccessible, hence the Heikes 
formula [169], which gives a rate proportional to c(l - c)  for fractional concentration c. 
Another is to give random electric fields, which can be very large (up to 108Vcm-' at 
these concentrations [170]), so that the jumps may be forced by these fields, rather than 
simply the thermal motion a single polaron would have in an otherwise perfect crystal. 

A further interesting situation exists for a completely different system: the excess 
electron in liquid water provides a classical example of a small 'dielectric' electron polaron. 
The hydrated electron has been treated using various quantum simulation techniques 
[62,65,17I]t . The experimental estimate for the diffusion coefficient of the hydrated 
electron (from the conductivity via the Nemst-Einstein equation) shows that it is about 
2.5 times larger than that for negative halide ions Cl- or Br- in aqueous solutions (see, 
for example, [172]). Recent quantum molecular dynamics simulations of the hydrated 
electron have shown that to a good approximation the excess e l e c m  wavefunction 
adiabatically follows the fluctuations in the electron-water potential caused by thermal 
motion of surrounding water molecules [173], so the high mobility of electrons relative 
to classical ions comes from the absence of inertial effects [172]. The coupling between 
solvent dynamics and that of the solute should be rather different in the inertial and adiabatic 
cases. As was shown by Schnitker and Rossky [ 1731, the electron is capable of following 
the high-frequency solvent polarization fluctuations associated primarily with the rapid 
solvent vibrational motions, whereas the solvent, in its turn, responds to a substantially 
shifted electrostatic source (diffusive electron) also on short timescales. However, recent 
simulation 1471 demonstrated clearly that the enhancement of the electronic diffusion rate in 
the quantum simulations over the rate exhibited by classical ions can be attributed only partly 
to the adiabatic dynamics of the excess electron per se. although it is essential. The specific 
features of the solute-solvent interaction potential are also essential to the description of the 
mobility of the hydrated electron. These features include, first, the relatively weak forces 
that derive from the variation of the quantum kinetic energy with the spatial confinement of 
the excess electron. Note that very similar problems are characteristic for the simulation of 
polaron localization in crystalline materials within the static approach (see section 3.2 for a 
discussion). 

4.5. Muons as small polarons 

That light interstitial atoms in metals behave as small polarons in some respects was 
recognized several years ago [761. The description of these systems needed concepts 
and analysis beyond the standard polaron theories (e.g. moving beyond the Condon 
approximation), and indeed hydrogen in metals proved to be one of the first systems for 

t Several different models of solvation were proposed. In particular, Ovchinnikw has shown thal Ihe shape and the 
thermal behaviour of the optical absorption spcctra of thc hydrafed elenmn in water can be reasonably understood 
if thc excess elecuon is localized on the water molecule situated in !he centre of a cavity. However, since the 
elecuonic affinity of the wafer molecule is most pmhbly very small (if any) this model requires much m m  
exfensive many-elemon calculalions. 
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which detailed realistic models were attempted [36.163]. The subsequent experiments using 
muons pointed to new features again. Not only could the incoherent hopping regime be 
studied, but the coherent motion of small polarons was also accessible. Moreover, the 
electron gas in metals had dramatic effects on muon dynamics in this coherent regime 
[174]. For our purposes, it  is muon behaviour in non-metals that is of more importance, 
though we shall confine our comments to an illustration of the range and variety of polaron 
behaviour once one goes beyond the standard idealized models. Most of the studies are for 
muonium, i.e. a muon with an associated electron. A general review is given by Cox [175]. 

4.5.1. Metustable states. Muons are slowed rapidly to thermal or near-thermal energies, 
certainly on timescales short compared with the instrumental resolution of nanoseconds. It is 
sensible to assume that the muon will quickly reach the lowest-energy relaxed state, and that 
it is this state that is seen prior to muon decay after a few microseconds. There are several 
clear exceptions to that argument. First, in the cubic semiconductors (Si, Ge and diamond) 
the metastable (tetrahedral site) ‘normal’ muonium is formed as well as the stable (bond 
centre site) ‘anomalous’ muonium, and interconversion is thermally activated. Second, in 
the ionic semiconductor CuCI, muonium exists in two forms at the same tetrahedral site 
(that with four Cu neighbours): Cu(I) is metastable and mobile (locally: there is no long- 
range diffusion), and Cu(I1) is quasi-stationary below 30K, both on the timescale of the 
muon lifetime [ 1761. It is not clear whether the difference is vibronic, or whether electronic 
excitation is involved, or whether it corresponds to what one might describe as delayed self- 
trapping ([ I771 discussed some of the ways in which delayed self-trapping might occur; note 
too [30] for the ST@. Third, in KBr there is an anomalous fluorescence induced by muons 
with an efficiency of perhaps 25% at the lowest temperatures [128]. This fluorescence 
occurs after muon decay and appears to be related to, but distinct from, the spin-forbidden 
fuminescence from the ground state of the self-trapped exciton. One possibility is that the 
muon has stabilized the exciton into a distinct metastable state on the lowest-energy surface, 
a possibility consistent with much recent evidence that this lowest adiabatic energy surface 
is relatively flat and that different routes to it lead to apparently different behaviour. 

45.2.  Mobility and local environment. Experimentally, one of the key quantities is a 
relaxation function. This usually contains two pieces of information: a meansquare field 
from magnetic dipole interactions with nearby nuclei, and a “station time associated with 
dynamic behaviour such as diffusion. The dipolar interactions and their dependence on 
the direction of any applied field can be used to identify the site the muon occupies. One 
fascinating experiment [ 1781 shows that muonium in KCI has a diffusion rate falling as the 
cube of T at lower temperatures. This leads to some puzzles not yet resolved. The natural 
interpretation [ 1791 is to say that the muon is moving coherently as a small polaron, and 
that there is deformation-potential scattering by acoustic phononst. However, this would 
yield another problem [183]. If the polaron is moving coherently over N sites between 
such scattering events (and these alone lead incoherence in the wavefunction) then the 
mean-square field should be reduced by a factor N [ 54,1841, which is not the case. 

t The same conclusion may be reached far more easily [I801 by calculating h e  standard deformation-potential 
scattering. This is given by Kittel[1811 for large polarons: ths same formula holds unaltered for coherently moving 
Small polarons, though the remper;uure range is different, and this afWS interns over phonon occupation n u m b  
This scatter time can chen be inserted in the standard expression for a small poiamn in the band regime, with well 
defined wavevecm [1821. The cubic dependence on empenlure appears to mrrespond to ulat observed, though 
other problems remain. 
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5. Conclusions 

Our first observation must be how widespread the application of the small polaron COIICept 
is. The range of materials that show features characteristic of small polarons is very wide: 
indeed, we have not discussed important cases like borides, or more exotic materials. Partly 
the range stems from links of polaron ideas to conventional defect issues, where lattice 
deformation and polarization is a crucial component of defect processes and spectroscopy. 
The lattice relaxation which drives self-trapping is similar to the lattice relaxation which 
stabilizes a range of charge states, which determines optical spectra. and which contributes 
to characteristic activation energies. The link is at its clearest when a defect might be 
regarded as a small polaron trapped by an impurity (such as a self-trapped hole bound to 
an Na ion in GI). Indeed, the interactions of small polarons with defects, or with other 
small polarons, are especially important in polaron dynamics at finite concentrations, as in 
non-stoichiometric solids. But, just as the small polaron ideas give a new way of looking at 
certain defect states, so do defect ideas point to small polaron ideas which were not evident 
in Landau’s original paper. The electronic excited states of self-trapped excitons (again not 
discussed in any detail in this review), and especially the variety according to whether it 
is the electron or hole (or both) that is excited indicates an important area of spectroscopy. 
Trapped small polarons (like the V- centre in MgO. where a hole is localized on an oxygen 
next to a cation vacancy) have contrasting forms of excitation, too, both charge transfer (the 
hole moving to other oxygens) and electronic excitation of the oxygen ion itself. 

Many 
workers regarded (and may still regard) small polarons as a simple extrapolation of large 
polarons. Their theories use single phonon frequencies with couplings appropriate for 
long wavelengths, and with little or no attempt to be system-specific. Certainly significant 
qualitative results can be obtained this way, but it is hard to relate most of them directly to 
the recent range of quantitative experiments, and such theories are of little help in unravelling 
the complex dynamical behaviour of many systems. Quantitative modelling has been very 
successful, now exploiting quantum chemistry alongside accurate interatomic potentials. 
There are still technical problems, of course, partly because the energies that are needed are 
relatively small. The momentum of polaron studies comes from their importance in defect 
processes. It seems to us that the areas which will attract most attention relate to polaron 
dynamics: the self-trapping step, their motion (whether coherent or incoherent), and the 
non-adiabatic transitions amongst electronic excited states. 

The third point is more general: why do small polarons matter? Are they a mere 
scientific curiosity? In the halides, the technological impact is present but not dominant: 
there are links to the understanding of the photographic process for silver halides; there 
are polaron aspects to the operation of x-ray phosphors like CsI:Na; the sputtering and 
selective desorption processes have associations with small polaron processes. It is to the 
oxides that one turns to see great practical significance, and especially the non-stoichiometric 
oxides. For these, discussions of sensor operation or of catalytic behaviour will normally 
involve small polaron concepts. Perhaps the clearest example, though, concerns the thermal 
properties of urania at high temperatures, where the specific heat and thermal conductivity 
are important parameters in safety cases for hypothetical reactor incidents. Both these 
properties are dominated by small polaron behaviour at temperatures near to the melting 
temperature. Such conditions are extremely difficult experimentally, so the case of urania 
reinforces the point made above: good quantitative modelling is a vital complement to 
experiment. 

A L Shluger and A M Stoneham 

This Ieads to a second point and indeed to the reason for this survey. 
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