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2 Department of Physics and Astronomy
University of Sheffield - Sheffield S3 7RH, UK
3 London Centre for Nanotechnology and Department of Physics and Astronomy
University College London - London WC1E 6BT, UK
4 Department of Physics, King Abdulaziz University - Jeddah 21589, Saudi Arabia

received 12 February 2004; accepted in final form 20 September 2004
published online 20 October 2004

PACS. 75.50.Kj – Amorphous and quasicrystalline magnetic materials.
PACS. 75.50.Bb – Fe and its alloys.
PACS. 25.40.Dn – Elastic neutron scattering.

Abstract. – X-ray and polarized neutron scattering techniques have been used to examine the
magnetic structure of wide-ribbon Fe78Si9B13 commercial metallic glass (METGLAS r© 2605-
S2). Samples with well-defined geometry have been made for the experiments at 300 K and in
1.1 T and have been measured in the As-received, Field Annealed and Stress Relieved states.
The data show that all three samples are spatially correlated non-collinear ferromagnets. A new
method of analysis has been applied to show that the non-collinear components of the moments
are correlated over several neighbour spacings, ≈ 50% of the range of the atomic correlations,
and that, while annealing treatments do not have a profound effect on the correlations, the
non-collinear components are larger in the annealed samples.

Ferromagnetic iron-metalloid (P,Si,B) metallic-glass alloys are magnetically extremely
soft. They are therefore produced commercially for use in a variety of applications such as
magnetic sensors, security tags, and transformer materials. The alloys display anomalous
behaviour linked to their magnetism, leading to the discovery that their magnetic struc-
ture may be non-collinear. Experimental evidence to support non-collinear ferromagnetism
in iron-metalloid glasses has come from techniques such as magnetostriction [1], Mössbauer
spectroscopy [2–4], high-field susceptibility [5], and neutron scattering with polarization anal-
ysis [6]. The discovery of non-collinear structures has stimulated theory developments, includ-
ing powerful computing methods to calculate the magnetic properties of metallic glasses. For
example, ab initio band-structure calculations have shown that non-collinear ferromagnetic
structures can be energetically favourable for (FeNi)B metallic glasses [7]. Amorphous iron
magnetism has therefore re-emerged as a topic of considerable current interest.

Fe78Si9B13 (METGLAS r©2605-S2) is a commercially produced, chemically simple iron-
metalloid metallic glass. The system has been extensively studied, with recent measurements
c© EDP Sciences
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using Mössbauer spectroscopy [3, 4] showing that non-collinear ferromagnetic structures may
exist in this system and that the structure may depend upon the heat treatment of the sample.
Models for magnetic structure have been proposed [3], but could not be confirmed. We have
therefore applied the techniques of neutron scattering with polarization analysis and X-ray
diffraction to determine the magnetic structure, and the changes on heat treatment.

Polarization-dependent neutron scattering from commercial Fe78Si9B13 metallic-glass rib-
bons has been measured in the past, concluding that the samples were collinear ferromag-
nets [6]. The quality of that data was not exceptional, and only two of the four polariza-
tion states were measured, leaving the analysis prone to possible systematic error. A re-
examination of the system is timely following dramatic improvements in instrumentation and
analysis software and the conclusions of the other studies [3,8]. The availability of wide-ribbon
samples also allowed for an improved sample geometry. The large width minimized demagneti-
zation due to edge effects and ensured that the samples were of even density with well-defined
dimensions, avoiding potential systematic errors and facilitating the analysis. The quality
control implicit in a commercial material also suggests that the samples were free from gross
compositional inhomogeneities that can affect laboratory grown samples [9].

The scattering cross-sections for a multicomponent glassy system depend on the atomic
pair number density ρij(r) and the scattering amplitudes of the species φi,j via the equation

∂σ

∂Ω
=

∑
i,j

φiφj

∫ ∞

0

4πr2 (ρij(r) − ρ0j)
sinQr

Qr
dr. (1)

X-ray scattering, with φ = (e2/me)fX(Q), where fX(Q) is the atomic form factor, probes
the atomic/chemical structure. Neutron scattering is sensitive to the magnetic structure and,
when used with polarization analysis, can discriminate between collinear and non-collinear
ferromagnetic order. When the neutron polarization is perpendicular to the scattering vector,
the polarization is unchanged on scattering from the nucleus and the collinear component of
the magnetic moment, µ||, and is called non-spin flip scattering, ∂σnsf/∂Ω. The scattering
amplitude is written φ = b ± (γe2/me)fm(Q)µ||, where b is the nuclear scattering length [10]
and fm(Q) is the magnetic form factor [11]. The sign depends on whether the polarization
is parallel or antiparallel to µ||. Scattering from non-collinear components of the magnetic
moments, µ⊥, causes the polarization to invert and is called spin flip scattering, ∂σsf/∂Ω, with
amplitude φ = 1/

√
2(γe2/me)fm(Q)µ⊥. A finite, coherent spin flip cross-section is therefore

direct evidence for non-collinearity in the magnetic structure.
Three sets of samples were cut from a roll of the commercial “ultra-wide” continuously cast

ribbon, METGLAS r©2605-S2, supplied by Allied Chemical Corporation. Two of the sets were
heat-treated in a furnace at 400 ◦C for 40 minutes. One set, hereafter called Field Annealed,
was subjected to a magnetic field of ≈ 0.09T during the treatment, applied with permanent
magnets in the plane of the sample. The other heat-treated sample will be called Stress Re-
lieved, with the third measured As-received. The X-ray measurements were performed at the
King Abdulaziz University using Mo Kα radiation, λ = 0.71073 Å. All the diffraction patterns
were very similar, an example of which is shown in fig. 1. The absence of Bragg peaks shows
that the heat treatments caused no crystallization. The neutron data were collected with the
IN20 polarized neutron three-axis spectrometer at the Institut Laue-Langevin. A ferromag-
net must be monodomain for polarized neutron experiments, otherwise the neutrons will be
randomly depolarized and any information on the magnetic structure will be scrambled. Con-
sequently, the neutron measurements were carried out in a vertical field of 1.1T and at 300K.
The samples are known to be monodomain under these conditions [5], which also match a
previous study by Mössbauer spectroscopy [4]. The 1.1T field was coaxial with the 0.09T



584 EUROPHYSICS LETTERS

Fig. 1 – The X-ray scattering from the As-received sample. The fit of eq. (4) to the data is also shown.
The insert shows a comparison of the global density function as calculated by Fourier-transforming
the fit with the function calculated by a discrete Fourier transform of the data.

field used during the heat treatment of the Field Annealed sample. Measurements were made
with two incident wave numbers k = 2.662 Å−1 and k = 4.1 Å−1, representing independent
measurements complete with separate backgrounds and instrument calibration. The neutron
polarization was determined to be 93% for k = 2.662 Å−1 and 88% for k = 4.1 Å−1. A crys-
tal analyser was used meaning that only the elastic scattering, therefore the static magnetic
structure, was measured. The methods used to present the four polarization-dependent cross-
sections in absolute units have been previously documented in the appendix of ref. [9]. Par-
ticular care was taken with attenuation corrections, which were calibrated and cross-checked
for each sample using both monochromatic and time-of-flight neutron techniques, and with
polarization corrections, which were calibrated and cross-checked using the flipping ratio of
the main beam; from a Si (111) Bragg peak; and from scattering from amorphous quartz.

The two non-spin flip cross-sections were averaged for each of the samples, being equivalent
to the sum of the cross-section due to nuclear scattering with that due to collinear magnetic
order. These cross-sections were similar for the three samples, showing that the data were
properly corrected and calibrated. An example of |∂σnsf/∂Ω| is given in fig. 2. The dip at
Q ≈ 4.4 Å−1 is due to a minor overcorrection for an aluminium Bragg peak in the background.

Fig. 2 – The mean non-spin flip scattering, |∂σnsf/∂Ω|, from the As-received sample, measured at the
two wave numbers, with the fit of eq. (4) to the data.
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Fig. 3 – The spin flip cross-sections, ∂σsf/∂Ω, of the three samples, measured at the two wave numbers,
along with the expected incoherent contribution and the fit of eq. (4) to the data.

The spin flip cross-sections, ∂σsf/∂Ω, are shown in fig. 3 with the expected incoherent
contribution [10]. Although the ∂σsf/∂Ω are ∼ 100 times smaller than |∂σnsf/∂Ω|, the data
coincide for two independent measurements, which shows that the experiments have been
correctly performed and analysed. Each of the ∂σsf/∂Ω shows peaks, confirming that the
magnetic structures are non-collinear. The peaks, appearing at the same Q as the first max-
imum of the glass structure factor, are highly unlikely to be due to depolarization of the
neutron beam by the sample as this effect would vary with wavelength, while the ∂σsf/∂Ω
in fig. 3 are independent of k. Peaks therefore indicate the presence of spatial correlations
between the non-collinear moments. There is also possibly a peak at Q ≈ 1.7 Å−1. While
small, the peak is consistently present in the heat-treated samples and is not visible in the
non-spin flip or X-ray data. The peak was therefore regarded as real for subsequent analysis,
and as evidence that the correlations differ between the magnetic and chemical structures.
The heat treament appears to have influenced the non-collinear structure, with the annealed
samples showing larger ∂σsf/∂Ω than the As-received sample. Thus, internal stresses are not
the source of the non-collinearity; however, stress may act to suppress the non-collinear state.

None of the cross-sections show any sign of an upturn at small Q, which would be evidence
for clustering. Any clustering is therefore so large that the associated small-angle scattering
is gone at Q ≈ 0.5 Å−1, or there is no clustering in these samples in the 1.1T applied field.
However, the cross-sections may be analysed to determine the magnitude of the non-collinear
magnetic components and the spatial correlations between them. Equation (1) must be re-
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arranged to expedite a comparison between the X-ray and neutron data and also to obtain
the mean value of µ⊥ from ∂σsf/∂Ω. Normalizing eq. (1) to the total scattering level 〈φ2〉
results with

∂σ

∂Ω
=

〈
φ2

〉 (
1 + 4π

∫ ∞

0

r2 (ρ(r) − ρ0)
sinQr

Qr
dr

)
, (2)

where the global density function

ρ (r) − ρ0 =
∑
i,j
i�=j

φiφj

〈φ2〉 (ρij (r) − ρ0j) (3)

contains the atomic pair density functions and their weighting terms based on 〈φ2〉.
The data may therefore be Fourier-transformed to derive the global density function. This

is relatively straightforward for the X-ray data, which extends to large Q where the atomic
pair number density is constant. The data in figs. 2-3, however, are over a limited range of
Q, thus a Fourier transform would be subject to aliasing errors. We have therefore adopted a
new method for the subsequent analysis. The data was fitted with an expression whose form
resembles the cross-section on scattering from an amorphous sample:

∂σ

∂Ω
= A(Q) (1− exp [−α (Q − Qc)]) +

∑
i

Bi exp
[
−β2

i (Q − Q0i)
2
]
, (4)

where A(Q) = 0 for Q ≤ Qc and A(Q) = 〈φ2〉 for Q > Qc. The first term in eq. (4) is a
saturating function, approaching 〈φ2〉 as Q → ∞; the second represents a series of Gaussians,
accounting for peaks at positions Q0i. The function can be Fourier-transformed analytically
to give a good approximation to (ρ(r)− ρ0). This approach was tested using the X-ray data.
Figure 1 shows a fit of the function to the data and the insert shows a comparison of the global
density function estimated from the transform of eq. (4) with a numerical Fourier transform.
The level of agreement is satisfactory.

Equation (4) was fitted to the |∂σnsf/∂Ω| data, as shown in fig. 2. The limiting 〈φ2〉 = 〈b2〉
can be determined from tabulated values [10]. The parameters Qc and α differed between the
fits to the non-spin flip and X-ray data, thus the two parameter sets were fixed for separate
fits to the spin flip cross-sections. The fits to ∂σsf/∂Ω, shown in fig. 3 were important as
〈φ2〉 = 1/2(γe2/me)2f2

m(Q)〈µ2
⊥〉 gives the mean non-collinear moment per atom. These fits

required an appropriate choice of the form factor fm(Q). The form factors for metallic glasses
usually [6, 12] decrease more slowly with Q than the listed form factors for metal atoms and
their ions [11], so a broadening parameter, W , is often included in the analytical approximation
for fm(Q) [12]. Previous experiments have found that the Fe3+ form factor, broadened by W =
0.35, is appropriate for the iron-metalloid glasses [6], and we adopted this form factor for the
analysis. Although some of the ∂σsf/∂Ω in fig. 3 show suggestions of peaks at Q ≈ 5.5 Å−1, for
simplicity and consistency no Gaussians were fitted to the data for Q > 3.5 Å−1. This simplifi-
cation resulted in an overestimation of 〈µ2

⊥〉, as introducing Gaussians at larger Q reduced the
fitted values of 〈φ2〉; however, the global density functions, being dominated by the shape of the
peak at Q ≈ 3 Å−1, were approximately correct. The fitted values of 〈µ2

⊥〉 are listed in table I.
The values of 〈µ2

⊥〉 also depend upon the fixed parameters Qc and α; however, the values
in table I confirm that the two annealed samples have a mean non-collinear moment that is
larger than the As-received sample. Structural relaxation which accompanies low-temperature
annealing decreases the free volume in these glasses [13]; therefore the increase in 〈µ2

⊥〉 is
consistent with the results of band-structure calculations that show a non-collinear ground
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Table I – Table of fitted non-collinear moments for the samples. The paramaters α and Qc were fixed
to 0.32 and 2.00 (from fitting the X-ray data) and 0.18 and 1.77 (from |∂σnsf/∂Ω|), respectively.

α and Qc from X-ray fits α and Qc from non-spin flip fits

Sample 〈µ2
⊥〉(µ2

B) ζ 〈µ2
⊥〉(µ2

B) ζ
Field Annealed 0.56 ± 0.07 24 ± 3 0.74 ± 0.09 27 ± 3
Stress Relieved 0.57 ± 0.05 24 ± 2 0.79 ± 0.07 28 ± 2

As-received 0.32 ± 0.06 20 ± 4 0.43 ± 0.09 23 ± 5

state is preferred as density increases [7]. The increase is qualitatively consistent with previous
studies of this system by Mössbauer spectroscopy [3, 4]. Although the numerical accuracy is
not the most significant aspect of our result, it is nevertheless interesting to compare our
results with a particular Mössbauer study [4], also conducted at 300K in a field of 1.1T,
which also found evidence for non-collinear ferromagnetism. Three model distributions were
proposed to describe the distribution in the angles that the moments made with the mean
ferromagnetic axis, but the analysis could not choose between them. The weighted mean angle,
ζ, for each of the models was ≈ 10◦. A mean angle for the current analysis may be calculated
by taking collinear moments from previous high-field magnetization studies, estimated to be
∼ 1.68µB/atom for an annealed sample and ∼ 1.58 for the As-received [5], and the 〈µ2

⊥〉 from
table I. The resulting ζ, also listed in table I, are larger than the previous estimates. The
differences may be partly due to the assumptions in the analysis of the neutron data, and
partly due to subtleties of configurational averaging when comparing the two techniques.

The global density functions, ρ(r) − ρ0, derived from the fits of eq. (4) to the data, are
shown in fig. 4. The functions derived from the neutron data have missing Fourier components
due to the limited range of Q available for the fits, resulting in large “ripples” for r < 1 Å.
Otherwise, the derived functions are all very similar. This is as expected for the X-ray and

Fig. 4 – The global density functions for the data sets, from the Fourier transforms of the fits to eq. (4).
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non-spin flip measurements, as both are sensitive to the chemical structure of the samples.
The functions derived from ∂σsf/∂Ω are also similar, indicating that the nearest-neighbour
correlation between the non-collinear components of the moments is ferromagnetic. The range
of the correlations is ≈ 8–10 Å, ≈ 50% the range of the atomic correlations in the glassy
structure. It is tempting to look for differences between the non-collinear distributions, and
inspection shows that the Field Annealed sample has slightly larger fluctuations indicating a
stronger correlation between neighbours. The quality of the data, however, may not support
such a detailed examination. If the functions are taken to be equal, heat treatment affects the
magnitude of 〈µ2

⊥〉 but not the correlation between moments.
In conclusion, these experiments have established that in a field of 1.1T the Fe78Si9B13

metallic-glass system has a spatially correlated non-collinear ferromagnetic structure. The
global density functions derived from X-ray and polarized neutron data show that the atomic
and collinear ferromagnetic structures have similar correlations on similar length scales. The
correlations between the non-collinear components of the moments resemble those of the
atomic structure over a restricted range.
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