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Three-Dimensional Imaging of Microstructure in Au Nanocrystals
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X-ray diffraction using a coherent beam involves the mutual interference among all the extremities of
small crystals. The continuous diffraction pattern so produced can be phased because it can be
oversampled. We have thus obtained three-dimensional images of the interiors of Au nanocrystals
that show 50 nm wide bands of contrast with f111g orientation that probably arise from internal
twinning by dynamic recrystallization during their formation at high temperature.
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that the diffraction can be oversampled relative to its
spatial Nyquist frequency, so that the Fourier transform

pathologically rare in dimensions higher than one [11].
While noise in the data increases the probability of
Deformation of metals is understood to involve com-
plex concerted motions of the dislocations that inevitably
break the perfection of their individual crystalline
grains, which are usually nanometers to microns in size
[1]. Electron microscopy (EM) is the most widely used
technique for dissecting this internal microstructure. The
relatively strong interaction of electrons with condensed
matter means that the method is limited to viewing either
the exterior surfaces of microstructures [scanning EM
(SEM)] or else 2D projections through thin slices [trans-
mission EM], which requires destructive sample prepa-
rations. It is highly desirable to find a nondestructive way
of imaging the interiors of material grains in 3D so that
arbitrary views can be investigated. This is analogous to
the advances in medicine that followed the development
of computed tomography methods in the 1970s [2,3].
Microtomographic methods for 3D imaging of materials
have since been developed [4,5]. The advantage of sec-
tions over projection views is that microstructural fea-
tures are unambiguously localized in 3D.

Coherent x-ray diffraction (CXD) is a rapidly develop-
ing technique [6] that opens opportunities for the study of
both dynamics of condensed-matter systems and their
structure. The method has become available by the recent
development of high-brilliance third-generation sources
of synchrotron radiation, such as the Advanced Photon
Source (APS). In favorable circumstances, the beam’s
coherence volume, which is directly proportional to the
source brilliance, can entirely enclose a small crystal.
Diffraction from all parts of the crystal then undergoes
wave superposition which leads to a highly structured
CXD pattern. If high-quality x-ray lenses were available,
as they are for electrons, such diffraction patterns could
be transformed to magnified images directly. In spite of
widespread efforts to develop such x-ray microscopes
[7,8], they are still not competitive with EM.

In this Letter, we show that the objective lens of an
x-ray microscope can be replaced by a computation that
inverts a 3D measurement of the amplitude of a CXD
pattern to a 3D image. The computation relies on the fact
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can be overdetermined in spite of the missing phase
information. We apply the method to the 3D imaging of
nanocrystals of Au obtained by high-temperature coales-
cence from an evaporated polycrystalline thin film. We
find residual internal texture that could be attributed to
twinning which might originate from dynamic recrystal-
lization of defects introduced during their formation.

When a crystal is illuminated by a coherent x-ray
beam, the intensity distribution in the vicinity of a
Bragg point forms a well-defined pattern. In the kine-
matical limit, this 3D CXD pattern is of the form of the
square of a structure factor multiplied by a function:
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The total electron density of the crystal is written as the
product of the crystal lattice, �L�r�, and a function de-
scribing the shape of the crystal, s�r�. Thus, the intensity
distribution in reciprocal space is the convolution of the
Fourier transform of the crystal shape with the reciprocal
lattice of the bulk crystal. The function u�r� represents the
strain field due to the displacement of atoms from their
bulk structure sites; therefore strain inside the crystal
gives rise to noncentrosymmetry in the CXD pattern. In
an earlier paper we reported the inversion of a CXD
pattern in 2D to arrive at the projection of a crystal
onto a plane [9]. More recently, a 3D calculation of this
kind has been achieved by Miao et al. [10]. Here we
present the extension of our procedure, allowing the
recovery of the 3D density distribution within the nano-
crystal.

Since the intensity distribution in reciprocal space is a
continuous one, the pattern around a Bragg peak can be
sampled with arbitrary q spacing. This property allows
the oversampling of such a pattern, leading to the collec-
tion of sufficient information to iteratively reconstruct the
phase of the collected diffraction data. In 1982, Bates
showed that nonunique solutions to such problems are
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FIG. 1. Experimental geometry. As the sample is rocked, 2D
slices are collected through the 3D CXD pattern.
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ambiguous solutions, it is possible to regain a unique
solution by applying an appropriate constraint [12].

To understand the oversampling requirement in 1D, we
write the amplitude of the intensity collected in pixel m
in a detector of N pixels as the discrete Fourier transform:

F�m�qx� �
XN
n�1

��n�x�ei2�mn=N; (2)

where �qx is the size of a pixel in the detector, �x is the
real space sampling, related by �x � 2�=N�qx. It is
clear from (2) that F is a periodic function with N distinct
values of m. In real space, we define a support region, N0,
that encompasses the entirety of the diffracting density,
i.e., ��n�x� � 0, for all n such that N0 < n 
 N. Then,
the oversampling ratio, �, is simply the ratio of the size of
the entire array to the size of the support, � � N=N0. In
reciprocal space, the oversampling ratio is given by the
ratio of the number of points measured per oscillation of
the transform (2) to the number of points necessary to
define an oscillation, which is the Nyquist sampling rate.
These oscillations are readily seen as fringes in the ex-
perimental data. Even if we assume the real space density,
��x�, is purely real, we have N unknowns and only N=2
measurements, because F�qx� � F���qx�. Therefore, �
must be at least 2 in order for it to be possible to invert (2),
i.e., to phase the diffraction pattern. The extension from
1D to 3D is trivial because the equation counting argu-
ment is the same. We introduce a separate measure of
oversampling for each dimension, � � �x�y�z, with
�  2. Millane has shown, using simulations, that in
the case with two of the �i’s greater than 2, the require-
ment on the oversampling in the third dimension is re-
laxed to sampling at the Nyquist frequency, �j � 1 [13].

The phasing of an oversampled diffraction pattern may
be accomplished through the use of an iterative method
[14], utilizing known information to find a set of phases
consistent with the measured data. Such methods have
been used successfully in similar situations, for example,
electron scattering measurements [14] and transmission
x-ray studies of nonperiodic materials [15]. The fitting
begins by assigning a set of random phases to the support
and evaluating (2) using a fast Fourier transform, which
yields a first ‘‘guess’’ at the diffraction pattern in recip-
rocal space. The amplitude of the guess is then overwrit-
ten with the measured amplitude and back transformed to
yield a complex density in real space. After applying an
appropriate real space constraint —for example, enforc-
ing a finite support and converting the density to a real,
non-negative function—it is transformed back to recip-
rocal space. This cycle is repeated until the search con-
verges to a solution.

The method described above is called the error reduc-
tion (ER) method [16]. The ER method may be modified
to propagate the result of previous iterations, giving vari-
ous ‘‘input/output methods’’ [16]. The hybrid input/output
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(HIO) method of Millane incorporates a parameter, �,
defining a fraction of the previous cycle’s result to com-
bine with the current result. Additionally, the real space
constraint is relaxed by allowing a small amount of
amplitude, �, to exist outside the support [17].

In order to conduct a CXD experiment, the spatial
extent of the diffracting density must be smaller than
the coherence volume of the incident beam. The insertion
device at Sector 33 of the APS, with a source size of �x �
240 �m and �y � 16 �m, gives transverse coherence
lengths greater than 5 �m. The longitudinal coherence
is determined to be 6 �m by a Si(333) monochromator
at 9.5 keV.

Diffraction patterns were collected with a direct-
reading CCD, whose pixel size is 22:5 �m� 22:5 �m,
located 2.8 m from the sample. A 2D CXD pattern was
collected near a f111g Bragg peak for 5–10 min. In order
to collect a full 3D pattern we rotated the sample through
the Bragg condition in steps of 0.002� acquiring a se-
quence of nearly parallel 2D slices, as shown in Fig. 1,
which were then stacked to obtain a sampled 3D pattern.
This procedure is equivalent to shifting the detector
perpendicular to the Ewald sphere in reciprocal space.
Because the 3D diffraction pattern surrounds a reciprocal
lattice point located far from the origin, the entire mea-
surement spans an angular range of only 0.1�. By con-
trast, the forward-scattering version of the experiment
[10] requires a 180� range.

To form crystals smaller than the coherence volume, a
100 nm Au film was deposited onto a Si(100) wafer, with
the native oxide intact, at room temperature forming a
conventional f111g textured polycrystalline film. The
sample was then placed in a radiative heating cell, which
was mounted on the goniometer, capable of achieving
temperatures up to the melting point of Au. Temperature
was measured by a thermocouple affixed to the back of
the sample and by tracking the expansion of the lattice
and comparing with tabulated values [18].
175501-2
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As the film was heated to near its melting point, it
spontaneously dewetted from the Si=SiO2 substrate in
less than 20 h at 1000 �C. The film first formed one-
dimensional ‘‘rivers,’’ before splitting at grain boundaries
into small single crystalline islands. This procedure re-
sulted in shapes similar to the well-known equilibrium
shapes [19] with a distribution of sizes in the micron
range. SEM recorded this evolution after the preparation.
Since an array of nanocrystals with different azimuthal
orientations is illuminated by the x-ray beam, one nano-
crystal can be selected and measured as a 3D rocking
series. Three such slices acquired at 950 �C are shown
in Fig. 2.

Certain information about the diffracting crystal may
be discerned from the CXD pattern directly. The flares in
reciprocal space correspond to facets of the crystal and
the modulation of these flares to the spacing of parallel
facets. Therefore, it is possible to make some conclusions
about the size and general shape of the particle before the
CXD pattern is phased. The size of the particle in a given
direction is 2�=�qfringe; hence the particle we measured
is approximately 1 �m by 3 �m.

In the experimental geometry, we define our local
reciprocal space axes as follows: qx and qy are mutually
perpendicular and coplanar with the surface of the CCD,
and qz is perpendicular to Q, the total scattering vector,
as shown in Fig. 1. Thus, �qx � �qy � 3:9� 10�4 nm�1

is the reciprocal space spanned by a pixel in the CCD.
FIG. 2 (color online). Typical slices through the 3D CXD
pattern of a Au crystal near the �111� reflection with spacing
2:8� 10�3 nm�1.
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Rocking the sample gives a spacing of �qz �
9:3� 10�4 nm�1 in the third direction. From Fig. 2 we
can readily estimate the oversampling of the measure-
ment. The data have a minimum of 15 pixels per fringe,
so we may be confident that �x � 2 and �y � 2. The
oversampling in the third direction, �z, can be estimated
from the 2D fringe spacing, of order 5� 10�3 nm�1, and
the step size, �qz. Thus, we expect that �z > 2, satisfying
the oversampling condition.

Once the 2D slices have been collected, they are
stacked to form a 3D reciprocal space constraint used
during the fitting. We define an error metric in reciprocal
space: �2 �

P
N
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amplitude at pixel i in the current fit,
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is the ampli-

tude of pixel i in the measured CXD pattern, and N is the
total number of pixels in the 440� 440� 30 array used.
Each fit consists of 2300 iterations, alternating between
the ER and HIO algorithms, with a real space constraint
box of dimension 100� 100� 20 pixels. Since the ER is
prone to stagnation near local minima of the error metric
[12], we performed 50–100 cycles of HIO after each 150–
250 cycles of ER. In our calculations, the best results were
obtained with the values � � 0:01 and � between 0.75 and
0.85 in the HIO algorithm.

The resolution—the period of the finest feature detect-
able —of the real space reconstruction is �� �
2�=�qmax, where �qmax is the radius in q space beyond
which the diffracted intensity had dropped to the noise
level. This resolution might be improved by extending the
exposure time. For the data shown in Fig. 2, we estimate
our resolution to be ��x;y � 80 nm and ��z � 450 nm.
The 3D real space density corresponding to the recon-
structed phase and measured amplitude of the CXD
pattern is shown in Fig. 3. The reciprocal space fits have
�2 � 0:04, which corresponds to an uncertainty of about
20% per pixel. The two best real space reconstructions
obtained from 15 sets of random starting phases are
shown in Fig. 3. Using a measure of real space reprodu-
cibility analogous to �2, i.e., by comparing the fit ampli-
tudes, we find the disagreement to be 0.033. This quantity
is 3� 10�5 for the corresponding reciprocal space re-
constructions. We interpret this reproducibility to be a
measure of the experimental uniqueness, since true
uniqueness is not assured with noisy data [12].

As expected, the 3D CXD real space images have
higher contrast than the 2D projections reported previ-
ously [9]. The diamond shaped region of high intensity is
believed to be an artifact caused by the partial coherence
of the incident beam [20]—specifically, a Be window 6 m
from the sample. The crystal’s external morphology is an
elongated-disk with well-developed �111� facets on the
top and bottom surfaces, parallel to the substrate. This
�111� plane appears diagonally in the side-view sections
shown because of the coordinate transformation of the
diffractometer operating in a grazing-exit geometry [21].
The faces are clearly visible, but it is not possible to
175501-3



FIG. 3 (color online). Top: The 2D slices through the best fit
3D reconstructed density separated as labeled. Bottom: (a) SEM
image of a Au nanocrystal prepared as described in the text.
(b) z � 0:00 �m slice from the second best fit showing good
agreement between fits. (c) Coordinate system for the recon-
structed crystal.
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distinguish between the top and bottom sides of the
image. The density appears above center in the early
sections (z ’ �1:35 �m) and below center in the later
sections (z ’ 1:35 �m), consistent with an oval morphol-
ogy sectioned obliquely. The �111� reflection, which was
used for imaging, points directly up the page [21]. This
can be seen to lie at the correct 70:5� angle to the �111�
direction.

The internal density contrast is in the form of bright
and dark bands oriented parallel to both the �111� and
�111� directions in the images. The �111� bands have a
width of 50 nm, a period of 100 nm, and a lateral extent
of 600 nm, both within the section and between adjacent
sections. The �111� bands have the same width and are
slightly less extended. Although dynamical scattering
and series termination effects may play a role in the
appearance of these features, we interpret these to be
deformation bands associated with the sample prepara-
tion. The dark region of the band presumably corresponds
to material with twinned stacking that would diffract in a
direction different from the �111� imaging direction. Such
bands are known to occur in soft fcc metals and are
attributed to recrystallization following slippage along
�111� planes during deformation [22]. Given the oval,
elongated-disk morphology of our nanocrystal samples,
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it is clear that they have not yet reached an equilibrium
shape in their growth out of the polycrystalline starting
film. It is therefore not surprising that residual deforma-
tion defects are observed.

In conclusion, we have obtained 3D images of micro-
structure by inversion of a coherent diffraction pattern.
Our method differs from related experiments [10] in that
the entire pattern may be measured directly. Because
Bragg diffraction is involved, all artifacts due to air or
slit scatter and other grains are avoided and a strong
sensitivity to strain results.
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