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Summary

Objectives: To evaluate the potential for machine
learning techniques to identify objective criteria for
classifying vertical facial deformity.

Methods: 19 parameters were determined from 131
lateral skull radiographs. Classifications were induced
from raw data with simple visualisation, C5.0 and
Kohonen feature maps; and using a Point Distribution
Model (PDM) of shape templates comprising points
taken from digitised radiographs.

Results: The induced decision trees enable a direct
comparison of clinicians” idiosyncrasies in classifica-
tion. Unsupervised algorithms induce models that are
potentially more objective, but their blackbox nature
makes them unsuitable for clinical application. The
PDM methodology gives dramatic visualisations of
two modes separating horizontal and vertical facial
growth. Kohonen feature maps favour one clinician
and PDM the other. Clinical response suggests that
while Clinician 1 places greater weight on 5 of

6 parameters, Clinician 2 relies on more parameters
that capture facial shape.

Conclusions: While machine learning and stafistical
analyses classify subjects for vertical facial height,
they have limited application in their present form.
The supervised learning algorithm C5.0 is effective
for generating rules for individual clinicians but its in-
herent bios invalidates its use for objective classifica-
tion of facial form for research purposes. On the other
hand, promising results from unsupervised strategies
(especially the PDM) suggest a potential use for ob-

jective classification and further identification and anak-

ysis of ambiguous cases. At present, such methodolo-
gies may be unsuitable for clinical application because
of the invisibility of their underlying processes. Further
study is required with additional patient data and o
wider group of clinicians.
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1. Introduction

Individuals with very long faces and people
with very short faces are examples of the
two extremes of vertical facial growth. The
former extreme, Long Face Syndrome or
LFS (1), arises from an elongation of the
face as the lower jaw rotates away from the
upper jaw during growth as illustrated in
Fig. 1la (2). Conversely, in Short Face
Syndrome or SFS (3), the lower jaw rotates
towards the upper jaw, reducing the vertical
length of the face (Fig. 1c). These growth
patterns not only affect the shape of
the face but also result in malocclusions
of varying severity where the teeth fail
to meet properly. For example, in LFS
only the back teeth of each jaw touch
together when the mouth is closed because
the lower jaw has grown away from the
upper jaw.

Patients with extremes of vertical facial
forms often require a combination of
orthodontic realignment of the teeth and
surgery on the jaws to correct their maloc-
clusion. Different facial types require sig-
nificantly different orthodontic treatment
plans and respond differently to orthodon-
tic treatment. Thus, it is important to
correctly identify a subject’s vertical
facial form before starting treatment.
Furthermore, differences in the horizontal
growth of the face may confuse the diagno-
sis of vertical facial form.

In the UK, patients with SFS or LFS are
normally referred to a specialist for treat-
ment. Diagnosis and treatment planning
are based on examination of the patient
together with analysis of appropriate re-
cords, including a standardized lateral skull
radiograph (cephalogram) designed specif-
ically for use in orthodontics. Angular and
linear measurements of skeletal landmarks
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are obtained from the cephalogram (see
Fig. 2a). The clinician assesses facial form
by comparing the patient’s measurements
with tables of relevant means and standard
deviations compiled from growth studies
grouped by ethnicity, age and sex (see Fig. 2b)
(4). These cephalometric measurements, in
conjunction with the results of the clinical
assessment, act as a guide when the clinician
formulates a treatment plan. In cases where
the classification group is not immediately
apparent, the clinician’s perception of facial
form, informed by clinical experience, may
determine the final classification. Unfortu-
nately, if the classification is erroneous,
then orthodontic treatment can exacerbate
the original problem. However, there is
no internationally agreed upon objective
classification of vertical facial form.

The biomechanical relationships between
the skeletal components of the jaws and
face, the associated musculature and the
teeth may be important factors in the
origins of vertical facial discrepancy. An
important goal for basic science research is
to identify specific developmental anoma-
lies that cause extremes of facial growth.
However, it is important that objective
schema are first determined for the
classification of facial form. These should
allow individual subjects to be indepen-
dently and reproducibly classified irrespec-
tive of the experience of the clinician. Only
then can hypotheses be deduced for the
biological processes involved in the origin
of facial form.

The analysis of the dataset considered in
this study is described in three sections.
The method described in the first section
was based on a straightforward visualization
and provided a simple classificatory model
that agreed strongly with one of the two
clinicians taking part. The second section
describes the use of a supervised learning
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a)
Fig. 1

algorithm, C5.0, with each clinician’s classi-
fication, in turn, acting as a gold standard.
The objective was to generate symbolic
representations of the induced models
for inspection and interpretation by the
clinicians to clarify and corroborate the
parameters upon which they place greatest
emphasis. The third section focuses on two
unsupervised algorithms, the first gener-
ated a Kohonen network (5) induced from

b)

Lateral radiographs of the skull illustrating a) “long face”, b) “normal” and ¢) “short face” patients

the cephalometric measurements. By way
of contrast, the second model was com-
puted using a statistical technique, the Point
Distribution Model (6), on point-set tem-
plates fitted to the skeletal structures and
including landmarks typically used in
cephalometric analysis. The aim was to
determine the objectivity and utility of the
clusterings induced by unsupervised tech-
niques.
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Fig. 2 Tracing of cephalogram (a) showing a selection of cephalometric measurements and (b) the published means and
standard deviations (SD) for cephalometric measurements [2]. The letters N, S, Go and Me refer to skeletal landmarks

identifiable in the cephalogram
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2. The Dataset and Methods
for Comparing Clinicians
and Induced Classifications

Data were collected for each of 131 pa-
tients attending a specialist clinic in the East-
man Dental Hospital for an on-going study
into the aetiology of vertical facial discre-
pancy. Patients were randomly selected
from medically healthy Caucasian' subjects
undergoing orthodontic treatment with or
without orthognathic surgery. Of the 131 sub-
jects, 63.4% (n = 83) required a combina-
tion of orthodontics and surgery whereas
36.6% (n = 48) required orthodontics
alone. Apart from age and sex, all measure-
ments were taken from manual tracings of
cephalograms. Two specialist clinicians
independently classified the facial type of
the 131 patients into one of three categories
{long, normal, short} by comparing their
cephalometric measurements to published
means and standard deviations. Some of
the available parameters were rejected by
the clinicians as irrelevant or not informa-
tive for this study. The remaining sixteen

! Only Caucasian subjects were used to avoid
the influence of variation in facial form
between ethnic groups



parameters, including each clinician’s
classification of vertical facial deformity,
were used for the supervised and unsuper-
vised learning.

Table 1 indicates a raw classificatory
agreement of 84 out of 131 for the two
specialist clinicians or, equivalently, a pro-
portional agreement of 0.64. Raw agree-
ment is too simplistic so the kappa statistic
(x), or chance-corrected proportional agree-
ment, is used instead (7). The kappa
statistic takes into account the chance
occurrence of agreement and also where in
the frequency table the agreement occurs
(see Appendix a). However, k treats all
disagreements equally, which is not appro-
priate here since the categories {long, nor-
mal, short} can be ordered, and disagree-
ments can be weighted according to their
“distance” from the diagonal of the fre-
quency table. For Table 1, the weighted
kappa (k) is 0.58, earning an agreement
categorisation of “moderately good” on
Altman’s suggested interpretive scale (7).
Throughout the remainder of the paper, the
weighted kappa statistic will be used as a
convenient means for summarising a com-
parison of classification schemes. However,
as Altman recommends, the frequency
table is always provided in addition to
support a detailed comparison.

Upon completing the analysis of the
models, the clinicians were asked to list the
parameters used in their cephalometric
diagnosis. They were then asked to com-
ment upon the results presented below
and for their view of the suitability of these
models for clinical diagnosis.

3. Use of Data Visualisation
fo |dentify a Simple
(lassificatory Model

A visual inspection of a matrix of scatter
graphs (not shown) of parameters in the
dataset identified two of these parameters
(the angles SNMn and MM, see explana-
tion in Fig. 2) as providing an excellent
basis for agreement with Clinician 1. A
plot of SNMn against MM (Fig. 3) over-
laid by Clinician 1’s classification suggested

Table 1
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Frequency fable and weighted kappa stafistics of 131 patients by two specialist clinicians (see Appendix for a full

definition of the kappa stafistics and an example calculation for the data in Table 1)

Clinician 1 Clinician 2

K, = 0.58 long normal short Interpretation of «w values

long 37 1 0 <0.20 = poor agreement

normal 35 24 7 0.21-0.40 = fair agreement
0.41-0.60 = moderate agreement

short 0 4 23 0.61-0.80 = good agreement

0.81-1.00 = very good agreement

Table 2 Linear combination (SNMn+17+MM/28) compared with both dlinicians

Clinician 1 Clinician 2
SNMn/ K, = 0.96 K, =0.57
combination long normal short long normal short
long 37 0 0 3l 2 0
normal 1 63 0 33 42 5
short 0 3 27 2 5 3

Table 3 Parameter sets nominated by the two clinicians
as heing used in their respeciive classification schemes. The
starred parameters were fypically used in ambiguous or

borderline cases

(linician 1 (linician 2

MM MM

SNMn SNMn

ArGoMe ArGoMe

PFH/AFH% PUDH

LAFH% LAFH%
*LAFH (mm)
*0B

a simple linear combination SNMn +
17*MM/28, with the ranges “<44”, “44 to
60.27”, “> = 60.27” chosen to minimise
misclassification and to provide putative

short, normal and long classification re-
spectively. For Clinician 2, the plot of SNMn
against MM (Fig. 3) separated the three
groups, but less obviously than for Clinician 1.
The agreement between each clinician and
the classification by the linear combination
of SNMn and MM are shown in Table 2.
Thus, there was very good agreement,
for this dataset, between a simple combina-
tion of two parameters and Clinician 1. For
Clinician 2, the agreement was less good.
No single variable or linear combination of
two variables could be found to separate
the groups for Clinician 2 as well as for
Clinician 1.

Both clinicians were asked indepen-
dently to identify the variables used in
their cephalometric analysis (see Table 3).
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Fig. 3 Graph of MM against SNMn overlaid by each clinician’s clussification and by boundary separators (dashed lines) for
the values 44.00 and 60.27 of SNMn + 17*MM/28
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They both listed MM and SNMn and sug-
gested that they were significant factors in
the diagnosis of facial form. This may ex-
plain the agreement identified between the
clinicians and their linear combination as
described above. However, the clinicians
commented that other parameters were
given weight in ambiguous or borderline
cases. Thus, the lack of perfect agreement
suggests that other parameters may fine-
tune the diagnostic process.

4. Supervised Learning

Although it is the overall clinical assess-
ment of an individual patient that determi-
nes corrective treatment, cephalometric
analysis contributes significantly to the
classification of vertical facial deformity,
especially for research purposes. How-
ever, both clinical and cephalometric
assessments are prone to subjectivity (re-
flecting training and experience) and lead
to differences in categorisation between
clinicians. Because of this, the aim was to
determine a more objective assessment of
vertical facial form from the cephalogram.
The induction of symbolic models of
clinical characterisations of facial form
may identify similarities and differences
between how cephalometric measurements
appear to be used and how clinicians
suggest they are used. They may also help
to articulate differences between clinicians.

4.1 (5.0 for Inducing Decision Trees

The C5.0 algorithm (8) was used within the
CLEMENTINE machine learning environ-
ment to induce decision trees with each
clinician’s classification, in turn, acting as
a gold standard. In both cases, the entire
dataset was used to induce a decision tree
for preliminary discussion with the clinician.
The algorithm was executed with various
penalty weightings for incorrect classifica-
tions of normal as short or long (and vice
versa) and short as long (and vice versa).
A penalty weighting of 2 produced the best
performing trees. A 10-fold cross validation,
with the same penalty-weighting scheme,
was also performed to induce 10 additional
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Fig. 4  Decision-free induced by (5.0 from the entire
dataset with clinician 1 as gold standard. The pair of
numbers in brackets before each arrow gives the number
of patients satisfying the conditions in that branch and, of
those, the proporfion of agreement between the clinician’s
and the induced classifications

Table 4  Frequency fable for the decision tree (Fig. 4)
induced with €5.0 using the entire dataset and Clinician 1
as gold standard

(5.0 (entire data)  Clinician 1

long normal ~ short
long 38 0 0
normal 0 66 ]
short 0 0 26

decision trees for comparison and for further
interpretation. Mean weighted kappa
values were computed for both the training

and testing performance of the cross
validation trees.

With Clinician 1 acting as gold standard,
a decision tree was induced from the entire
dataset. The tree and its frequency table
are shown in Fig. 4 and Table 4 respectively.
Given the simple model derived from
visualization alone, one would expect to
induce a simple decision tree based
largely on the two parameters MM and
SNMn. Furthermore, the critical values for
MM and SNMn (33 and 41.5 respectively)
are close to the means + 1 SD for these
parameters (see Fig. 2). These are the values
that are in general clinical use. Of the
10 cross validation trees induced, seven
were isomorphic apart from only minor
variation to the tree induced from the
entire dataset. The mean weighted kappa
value for the cross-validation for testing
was 0.89. Clinician 1 accepted the common
structure to 8 of the 11 trees induced
despite the apparent redundancy of 2 of the
5 parameters listed in Table 3.

With Clinician 2 acting as gold standard,
the same scheme of supervised learning
was completed. The decision tree induced
from the entire dataset and its correspond-
ing frequency table are shown in Fig. 5
and Table 5 respectively. Clinician 2 accept-
ed this decision tree as a reasonable reflec-
tion of the classification scheme. However,
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Fig. 5 Decision-tree induced by (5.0 from the entire dataset with clinician 2 as gold standard. The pair of numbers
in brackets before each arrow gives the number of patients satisfying the conditions in that branch and, of those, the pro-
portion of agreement hetween the dlinician’s and the induced dassifications



one parameter (LPFH %) appearing in the
decision tree is certainly not one of those
listed in Table 3 by Clinician 2. The mean
weighted kappa value for the cross-valida-
tion for testing was 0.78. Common structu-
res in the corresponding decision trees were
infrequent. Thus, while the cross validation
produced good weighted kappa statistics,
there was inconclusive support for the
validity of the decision tree induced from the
entire dataset.

In terms of potential clinical use, both
clinicians preferred an equivalent, rule-
based representation of these decision trees.
Because of space limitations, only the more
compact decision-tree format is given. The
subdivided graph of Fig. 3 would be more
easily applied in a clinical environment.
However, this may reflect the fact that two
parameters happen to capture Clinician 1’s
reasoning so well.

5. Unsupervised Learning
5.1 Kohonen Networks

Kohonen networks of various shapes and
sizes were induced [see (5) for a detailed
description of the underlying algorithm)].
Typically, in the 2D plot of clusters pro-
vided by the Clementine environment, there
were always large clusters leaving smaller
ones with only a few members, and often of
mixed class. This makes their interpretation
difficult and suggested that the net topol-
ogy be kept quite small. Indeed, 3 X 3 topol-
ogies performed best.

By overlaying the two-dimensional out-
put from the Kohonen modelling with the
classification scheme of each clinician,
agreement between clinician and clustering
can be visualised. Fig. 6 suggests that
the particular Kohonen net considered
(and this was the case for all those gener-
ated) is in closer agreement with Clinician 1
than with Clinician 2. Furthermore, the
discrepancy between the classification of
long and normal by both clinicians is again
highlighted [see cluster (2,0) in Fig. 6].
The overlaying of a clinician’s classification
partitions each cluster into subgroups of
small, normal and long cases. The standard
entropy calculation for a cluster partition

Table 5  Frequency table for the decision tree (Fig. 5)
induced with (5.0 using the entire dataset and Clinician 2
as gold standard

(5.0 (entire data)  Clinician 2

long normal ~ short
long 66 1 0
normal 6 28 1
short 0 0 29

(-YpJog,p., where p, is the proportion of
class ¢ in a cluster and the summation is
over ¢ O{small, normal, long}) can be added
to give an overall measure of ambiguity of
the match between the clusters and the
clinician’s classification. For a cluster com-
prising a single class, the entropy is 0. For
the two sets of clusters in Fig. 6, the sum of
the entropies of the constituent clusters is
4.85 and 7.05 for Clinician 1 and Clinician 2
respectively. Thus the visually observed bias
towards Clinician 1 is endorsed by this
informal use of the entropy measure.

5.2 Point Distribution Model (PDM)

The previous unsupervised learning meth-
od used the cephalometric angles and
ratios to induce a clustering of the 131 ex-
amples. The approach described here used
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instead the raw tracing of each cephalo-
gram. A shape template of 148 land-
mark points was manually placed on each
image, as in Fig. 7a. The template in-
cluded points spaced along important
structures, such as the mandible, as well as
the standard cephalometric landmarks.
Thus the data here implicitly contained the
angles and distances presented as param-
eters to the C5.0 and Kohonen algorithms.
The connectivity between template points
is included solely for display purposes.

The Procrustes algorithm (9) was used
to align the templates, giving a mean.
Principal Components Analysis (PCA) was
then applied to derive the major modes of
deformation (see Appendix b). Together,
the mean and the modes formed the PDM.
The first three modes accounted for 64 % of
the total variation in shape seen across the
examples (Fig. 7b). The first mode had
captured the horizontal variation and ac-
counted for 37%. The second mode showed
change in vertical form and accounted for
19% of the total variation. The third mode
of 9% showed variation in the position
of the molars and incisors. It must be
emphasized that these deformation modes
were computed directly from the set of
templates and that no other information
was given.
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Fig. 6 2D dustering for an induced 3 < 3 Kohonen net overlaid with each clinician’s classification (short, normal, long).
The entropies for each individual cluster are tabulated below the plots
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Table 6 Comparison hetween PDM induced dlassification
and clinician 1 (using —0.55 & 0.95 as Mode 2 splits)

a)

Fig. 7 Cephalogram with overlaid template a) and examples of the three major modes of variation showing the means
and their extremes b). The figures in parentheses represent the percentages of the total variation accounted for by each of

the modes

For this study, it was the second mode
that was of primary interest. Each cephalo-
gram could be classified by correlating it
with this deformation mode, yielding a
score that typically ranged between -3 and
+3 standard deviations from the mean. If
the classification of a clinician was plotted
for each example against this value, it could
be seen that there was some agreement
(see Fig. 8). Indeed, for negative values of
the second mode parameter there was

-3S.Ds mean +3S.D.s
\ \ \ PDM Mode 2 Clinician 1
L e o iy = 0.62 long normal  short
mode 1 B
37%) M @ @ long 24 8 0
normal 14 54 9
\ \ short 0 4 18
u/\, Lf_/L U‘/\/
mode 2 “@’\
(19%) ( @ @
\ \\ \ Table 7 Comparison hetween PDM induced dlassification
"‘(‘;"/’)3 /@ L \3‘? and clinician 2 (using 0 & 0.75 as Mode 2 splits)
% 5
K‘BC? PDM Mode 2 (linician 2
b K, =0.70 long normal short
long 62 1 0
normal 7 15 6
short 3 3 24

more frequent concurrence with Clinician
2’s “long” classification than with that of
Clinician 1. The PDM methodology gave a
dramatic visualisation of two modes sepa-
rating horizontal and vertical facial growth.
It is interesting that it is the facial shape in
mode 1 at -3 SD (Fig. 7b) that causes the
greatest disagreement between Clinician 1
and Clinician 2. Clinician 1 would classify
this facial shape as having “normal” vertical
form with an horizontal problem that gener-

Clinleian 1

Cliniclan 2

Fig. 8 Frequency histograms showing the relationship between mode 2 derived from the PDM model and the facial
dlossifications determined by the two clinicians. The scale for Mode 2 is expressed in standard deviations (sd) from the mean

of Mode 2
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ates a large chin and secondarily increases
the length of the face. Clinician 2 would
include this particular facial shape in the
“long” category. A classification based on
values of mode 2 could be constructed
using each clinician’s classification scheme
but required specific cut-off values to sepa-
rate the three classes. For each clinician,
a pair of cut-off values of mode 2 were
chosen to minimise the number of incon-
sistent classifications. The contingency
tables and kappa statistics for the two
comparisons are shown in tables 6 and 7.
The slight bias towards one clinician, this
time Clinician 2 (as seen in the histograms
in Fig. 8), was confirmed by the weighted
kappa values.

6. Discussion

This study has considered how machine
learning techniques can contribute to the
long-term goal of identifying an objective
process for the classification of vertical
facial discrepancy that is suitable for both
research and clinical use. Although super-
vised learning algorithms, such as CS5.0,
are necessarily subject to a gold standard
against which models are induced, the
decision trees generated do capture a



symbolic model of each clinician’s classifi-
cation scheme. The induced trees, or rules
(as were preferred by both clinicians),
enable a direct comparison of idiosyn-
crasies in classification. Although unsuper-
vised algorithms induce models that are
potentially more objective, their blackbox
nature does not inspire confidence in their
clinical application. Moreover, unless
the induced clusterings are sharply differ-
entiating, it is still necessary to make some
subjective interpretation of the output.

The PDM methodology gives a dramatic
visualisation of two modes separating hori-
zontal and vertical facial growth. Indeed,
the PDM approach has highlighted the fact
that horizontal growth may be a confound-
ing factor when classifying vertical facial
discrepancy. The orthodontic significance
of this is beyond the remit of this paper, but
it does reveal the power of these techniques
as a research tool. Why Kohonen appears
to favour one clinician and PDM the other
is still a matter of speculation. Importantly,
the response of the clinicians suggests that
while Clinician 1 places greater weight on 5
of 6 parameters, Clinician 2 may rely on a
greater number of parameters that in some
way “capture” facial shape during the
diagnostic process. Such processes are
mirrored in the induced models where the
data entry into the two models differed.
The Kohonen model worked from a rather
limited number of cephalometric values,
while the PDM model was able to deal with
many more reference points in close proxi-
mity to one another. This use of fewer
variables in the Kohonen model may have
led to some bias in the interpretation of
lower facial growth. However, the limited
numbers of clinical opinions tested in this
way preclude any firm interpretation of
this data.

7. Conclusions
and Further Work

While machine learning and statistical anal-
yses can classify subjects for vertical facial
height, they have limited application in
their present form. The supervised learning

algorithm C5.0 has proved effective for
generating rules for individual clinicians
but its inherent bias invalidates its use
for objective classification of vertical facial
form for research purposes. On the other
hand, promising results from the unsuper-
vised strategies (especially the PDM)
suggest a potential use for objective classi-
fication of form and further identification
and analysis of ambiguous cases. At
present, such methodologies may be un-
suitable for clinical applications because of
the invisibility of their underlying proces-
ses. Further study is required with additio-
nal patient data and a wider group of clini-
cians.
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Appendices

(a) Chance corrected proportional kappa
statistic

Agreement between observations is quan-
tified as the chance-corrected proportional
or kappa statistic (). In a square frequency
table [f;] of n observations and g categories,
k = (po— pe)/(1 - pe) where py, the observed
proportional agreement, is } f;/n and p,, the
expected index of agreement by chance, is
Sric;/n? (r; and ¢; are the row and column
totals for the ith category). Using the
weighting scheme w;; = 1 - [i - jl/(g-1), the
weighted kappa statistic, ., is defined as
(Po(W) = Pe(W))/(1 - pe(w)) where py(w) =
z z Wijfij/n and pe(W) = z Z WijriCj/Ilz.

Example calculation of k and «,, (weighted
kappa) for data in Table 1

po = (37+24+23)/131

Pe (38%72 + 66%29 + 27+30)/1312

k = 047

(1#37+0.5%1+0%0+0.5%35+1%24+
0.5%7+0*0+0.5%4+1%*23)/131
pe(w) = [(1%38+0.5%66+0%27)*72+
(0.5%38+1%66+0.5%27)*29+
(0%38+0.5%66+1%27)*30]/1312
Ky = 0.58

Po(W)
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(b) Procrustes Alignment and Principal

Components Analysis

The Procrustes algorithm aligns the set of

templates together in a least-squares sense:

1. align (rotate, scale and translate) all
the templates with the first template.

2. compute the mean of the set of templates.

3. align the mean template with the first
template.

4. align all the templates to this mean.

5. repeat from step 2 until no further change
is observed.

After alignment, the difference between
each shape and the mean is used to analyse
the variation in shape that is seen across the
training set. Each template has 148 points,
the x and y co-ordinates of these are conca-
tenated into a vector of length 296: x; y, x,
Vs ... Xia3 Vi The shape vector for the
mean shape is subtracted from each
template in the training set, leaving a set of
residual vectors. The covariance matrix
of this set of residuals is then computed by
summing the outer product of these vectors
with themselves: C = ¥ (Xi-Xmean) (Xi-Xmean) '+
Karhunen-Loeve decomposition is then
performed on the covariance matrix (which
is real and symmetric), yielding the eigen-
vectors and eigenvalues. The eigenvectors
are sorted by the magnitude of their corre-
sponding eigenvalues. The size of an eigen-
value as a proportion of the sum of all the
eigenvalues determines the percentage of
variation associated with the eigenvector
(px = Nk*100/3\;).

The eigenvectors can be added to the
shape vector for the mean template in vary-
ing proportions to create new shapes.
Similarly, any given shape can be correlated
against the various eigenvectors to yield a
parameterisation in terms of the weighting
required to synthesise that particular shape.

(c) Kohonen feature maps (following de-
scription in [S])

The Kohonen self-organising algorithm
transforms input patterns of arbitrary
dimension into a two dimensional map pre-
serving topological relationships. Each
training pattern is presented to a neural
network in succession, giving rise to a loca-
lized region of high activity in the feature
map compared to lower levels of activity
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elsewhere. Once trained, the presentation
of a test pattern should stimulate a loca-
lized group of network nodes giving a
clustering of similar patterns.

(d) C5.0 decision tree generation

Quinlan’s C5.0 algorithm constructs decision
trees top-down by recursively choosing the
next attribute to test as that best classifying
the training examples handed down to the
current node in the tree. The evaluation
of each attribute is performed using a
statistical measure known as information
gain.
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