Skottfelt, J;
Hall, DJ;
Gow, JPD;
Murray, NJ;
Holland, AD;
Prod'homme, T;
(2017)
Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission.
Journal of Astronomical Telescopes, Instruments, and Systems
, 3
(2)
, Article 028001. 10.1117/1.JATIS.3.2.028001.
Preview |
Text
Gow_028001.pdf - Published Version Download (3MB) | Preview |
Abstract
The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth’s atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley–Read–Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.
Type: | Article |
---|---|
Title: | Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1117/1.JATIS.3.2.028001 |
Publisher version: | http://doi.org/10.1117/1.JATIS.3.2.028001 |
Language: | English |
Additional information: | © 2017 SPIE. This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Technology, Physical Sciences, Engineering, Aerospace, Instruments & Instrumentation, Optics, Engineering, charge-coupled devices, radiation, simulations, image reconstruction, CCD IMAGING SPECTROMETER, TRANSFER INEFFICIENCY, MODEL, SILICON |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10040846 |
Archive Staff Only
![]() |
View Item |